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ABSTRACT.   The balanced subgroups of Fuchs are generalised to arbitrary
abelian groups.   Projectives and injectives with respect to general balanced exact
sequences are classified; a new class of groups is introduced in order to classify
these projectives.

1. Introduction.  L. Fuchs [2] defined the notion of balanced subgroups of
abelian p-groups and showed the significant role they play in the study of totally
projective abeUan p-groups. This paper extends the definition of balanced sub-
groups to general abelian groups and contains an investigation of their properties,
generalising the work of Fuchs [2]. In §4, injectives with respect to balanced
exact sequences of general abelian groups are characterised, enabling us to answer
a question of C. L.Walker [8] regarding the injectives for regular exact sequences.
Cotorsion groups are characterised as being injective with respect to balanced ex-
act sequences of torsion free abelian groups. Dually, projectives with respect to
general balanced exact sequences are studied in §6 and are characterised by means
of a class A whose members are extensions of cyclic groups by totally projective
torsion groups. Precisely, an abelian group A is balanced projective if and only
if A is a direct summand of a direct sum of members of the class A. It is shown
that there are enough balanced projectives, and that the torsion part of a balanced
projective is a summand of an S-group in the sense of R. B. Warfield [10]. The
properties of members of the class A are investigated in some detaü and groups
in A are classified up to isomorphism using pairs (M, //*), where M is a height
matrix and H* is totally projective. The balanced projectives include the totaUy
projective torsion groups, completely decomposable torsion free groups, and cer-
tain mixed groups with totaUy projective torsion part. Thus our work sheds some
Ught on problems 81 and 83 of L. Fuchs [2].

2. Preliminaries.  AU groups under discussion wiU be abeUan, so the word
'group' wiU always designate an abelian group. For aU unexplained terminology
and notation see Fuchs [1] and [2]. Throughout, the symbol A wiU be reserved
for a group and P for the set of aU primes. For a given prime p, the reduced
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82 R. H. HUNTER

p-length of A, denoted lp(A), is the least ordinal a for which pa+ XA = p°A.  We
follow C. L. Walker [8] in defining the height of an element a in A to be H(a) =
«ß2,ß3, ... ,ßp, ...)) where p,EP and ßp is the p-height of a in A.  The height
matrix H^ (a) of an element a in A is the co x co matrix [a k], p G F, A: = 0,1,
..., where apk = h^(pka), the p-height of pka in A.  The p-indicator Up(a) -
(a0, ox, ...) of a in A is just the p-row of H^(a).  For a discussion of the prop-
erties of the height matrix, see Fuchs [2]. We will often write just H(a), H(a)
and Up(a) when there is no danger of confusion.

A height K = ((ß2, ß3, ... , ßp, ... », p E F, is a sequence of ordinals and
symbols °°; if L = «?2,y3, ... ,yp, ...)) is another height then K >L if ßp >yp
for all p in F.  For each height K we define A(K) = {aEA: H(a) > K}.

A height matrix M = [apk], p E F, k = 0,1,..., is an co x co matrix whose
entries apk axe ordinals and symbols °° satisfying opk+x > o k + 1 for all p and
k. We observe the convention 00+1=00 = 00-1 and say that 00-1 exists.
Given a height matrix M = [opk] and prime p define pM to be the matrix with
p-row (crpl, op2, ...) and all other rows the same as M.  For arbitrary positive
integers « and k we define («A:)M = n(kM); this, together with the above defini-
tion of pM for p in F, yields a 'multiplication' of height matrices by arbitrary
positive integers. Two height matrices M and N are said to be equivalent (we
write M ~ N) if there are positive integers m and « such that mM = «N.

A p-indicator is a sequence u   = (a0, a,, ...) of ordinals and symbols 00
such that a¡ + 1 < ai+1 for 1* = 0, 1, ... . Multiplication of p-indicators by
powers of a prime p and equivalence of p-indicators are defined by modifying the
previous definitions for height matrices in the obvious way. When dealing with
p-indicators for some fixed prime p, the reference to p may be dropped. An in-
dicator u — (ct0, Oj, ...) has a gap if, for some k > 0, we have ak + 1 < ak+ x ;
in this case the gap is said to follow ak and precede ak+x. For notational con-
venience we say that a gap precedes a0-however, we do not consider this gap to
be in u. A height matrix has a gap if one of its rows has a gap. From this point
on, all unexplained notation or terminology applied to indicators will be taken as
obvious from the appropriate definitions for height matrices.

Let M = [opk] and N = \ppk] be height matrices. Then we write M ~> N
to mean apk > ppk for all p in F and k = 0, 1.We denote the p-row of a
height matrix M by Mp (thus M   is a p-indicator). For each group A and height
matrix M, define

A(M) = {aEA: H(a) > M} =  f| A(MD).
pep

Let 5 be a subgroup of A.  An element a in A\B is p-proper (resp. H-proper,
^-proper) with respect to B if hf(a) = h^'B(a + B) (resp. HA(a) = HA/B(a + B),
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BALANCED SUBGROUPS OF ABELIAN GROUPS 83

HA(a) = HA/B(a + B)), and B is p-nice (resp. H-nice, H-nice) in A if every coset
a + B contains an element p-proper (resp. ¿/-proper, H-proper) with respect to B.

For each ordinal a and prime p, denote the Z/pZ dimension of
paA [p] /p0+ XA [p] by fp(A) and the Z/pZ dimension of

PaA[p]l((pa*xA+B)np°A[p])

by fp(A, B). We also write /£(/!) for the Z/pZ dimension of p°°A [p] and
/£04, B) for the Z/pZ dimension of p°°A [p] ¡(B n p°°A [p]). The cardinals
fp(A) ate known as the Ulm invariants of A, and the fp(A, B) are caUed the rel-
ative Ulm invariants of A with respect to B.

For a given ordinal o, a subgroup B of a p-group .4 is said to be o-dense in
A ii B + ppA — A whenever p < a.

If X is a subset of .4 then <X> denotes the subgroup of A generated by X;
if A is torsion free then (X)t denotes the unique minimal pure subgroup contain-
ing X.  A class of groups wiU always be understood to contain, with each member
A, all groups isomorphic to A.  If B is a class of groups, denote the class of aU
direct sums of groups in 8 by 8L, and the class of aU direct summands of groups
in 82 by 8.

Nunke [7] defined the class of totally projective groups and showed that a
totaUy projective group is the direct sum of a free group and a totaUy projective
p-group. Since the free groups introduce only a trivial perturbation, we ignore
them so that by a totally projective group we wiU always mean a torsion group
whose p-components are totally projective p-groups. Note that we are including
the divisible torsion groups in the class of totaUy projective groups.

We conclude this section with a definition and a Ust of weU-known results
which wüT be required in the sequel.

2.1. Definition. Let B be a subgroup of A and p a prime. Then we de-
note by A(p, B) the subgroup of A defined by

A(p, B) = {a G A : pka G B for some integer k > 0).

The foUowing lemma is essentiaUy due to Rotman.

2.2. Lemma. Let A have torsion free rank 1 and suppose the element a in
A has infinite order.  Then (a) is p-nice in A(p, (a)) for all p in P.

2.3. Lemma (Wallace [9]). IfA has torsion free rank land A  is totally
projective then (A/(a))p is totally projective for every a in A.

2.4. Theorem (Hill, E. A. Walker). Let A and C be groups and let </>
be an isomorphism between a p-nice subgroup G of A and a subgroup H of C
which does not decrease heights. Suppose that

(i) A/G is a totally projective p-group, and
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84 R. H. HUNTER

(ii) if a is an ordinal or °° then fpg(A, G) < fpa(C, H).
Then <¡> extends to a monomorphism <¡>*ofA into C. If equality holds in

(ii) for every a then <¡>* can be chosen as an isomorphism of A onto C.
In particular, two totally projective groups are isomorphic if and only if

they have the same Ulm invariants.

The proof of Corollary 81.4 in [2] applies directly to give:

2.5. Corollary. Let A and C be groups and t? a homomorphism of a
p-nice subgroup G of A into C which does not decrease heights. IfA/G is a
totally projective p-group then r¡ can be extended to a homomorphism r¡*: A—+C.

2.6. Lemma (Megibben). If B is a subgroup of A such that A/B has no
p-torsion, then B is p-isotype in A.

The following lemma will be useful on several occasions. We omit the
proof which is straightforward.

2.7. Lemma. Let A and B be groups and let H and Gt, i E I, be subgroups
of A such that A = E^fi, and G¡ n 2/e/. t+fit = H for all i in I. If <f>¡: G¡ —>
B are homomorphisms satisfying ç6f|H = fy\H for all i, j in I then there exists a
homomorphism <t>*: A—+ B such that 4>*\G. = <p¡ for all i in I.

3. Balanced subgroups. The balanced subgroups defined by Fuchs [2] in
the context of p-groups play an important role in the theory of totally projective
p-groups. In this section we define balanced subgroups of arbitrary abelian groups,
together with a weaker concept which we call //-balanced.

3.1. Definition. An exact sequence

(1) 0-^B-^A^C-^O
is said to be balanced if the induced sequence 0 —► F(M) —*A(M)—>- C(M) -* 0
is exact for every height matrix M. When convenient, we instead apply the adjec-
tive 'balanced' to the subgroup B, the homomorphism a or the element of
Ext(C, A) corresponding to (1). A group G is balanced projective if the induced
map Hom((7, A) —* Hom(G, C) is surjective for every balanced exact sequence
(1), and balanced injective if Uom(A, G) —» Hom(5, G) is surjective.

3.2. Definition. An exact sequence 0—*B—*-A—+C—»-Ois called
H-balanced if 0 —> B(K) —*■ A(K) -* C(K) —*• 0 is exact for every height K.

The //-balanced projectives and //-balanced injectives are defined in the
obvious manner. We remark that Exercise 6 on p. 93 of [2] effectively shows
that our definition of balanced specialises to that of Fuchs in the context of
p-groups. The same specialisation is obvious for //-balanced.

We begin our discussion of balanced subgroups with a result giving several
alternate characterisations.
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BALANCED SUBGROUPS OF ABELIAN GROUPS 85

3.3. Lemma. The following are equivalent for a subgroup B of A (here C
denotes the quotient A/B and a the natural epimorphism A —* C):

(a) B is balanced in A ;
(b) B is both isotype and H-nice in A;
(c) T(B) is balanced in T(A), and B is H-nice in A;
(d) to each c in C there is an element a in A such that aa = c, H(a) = H(c)

and o(a) = o(c); and
(e) the sequence 0 -* B/B(M) —> A/AQA) —*■ C/C(M) —► 0 is exact for

all height matrices M.

Proof, (a) <* (b). Immediate from the definitions.
(b) •*> (c).   Proposition 80.2 of [2] shows that T(B) is balanced in 7L4) if

and only if a(pa7L4)[p]) = paT(C)[p] for aU p inP and aU ordinals o. Let p
be fixed. Given c in p"T(Q[p], choose a in p°A such that aa = c.  Then pa G
pa*XA nB = p°*XB so pa = pb with b in p°B.   Clearly a-bGp°T(A)[p]
and a(a - b) = c.

(c) •» (d). When o(a) = °° there is nothing to prove, and when o(a) is finite,
we simply modify Exercise 6, p. 93 of [2] to ensure that orders are preserved.

(d) => (b). Since (d) imphes that a(paA[pk]) = pcC[pk] for aU primesp
and integers k > 0, Lemma 2.8 of [7] shows that B is isotype in A.

(a) o (e). The commutative diagram

0 0 0
1 i I

0 —* B(M)-► ¿(M) —► C(M) -» 0
I                 I |

0->B->A-►  C—► 0
1 i i

0 -»■ B/B(M) -* A/A(M) -* C/C(M) -* 0Í 1 1
0 0 0

with exact columns and exact middle row shows that the first row is exact if and
only if the last one is: that is, (a) and (e) are equivalent.

Remarks. 1. An identical result is obtained by replacing balanced with
//-balanced throughout.

2. Let 0 —* B —► A —*■ C —► 0 be balanced (or ¿/-balanced); then the
sequence 0 —► DB —»• DA —* Dc —■► 0 of maximal divisible subgroups is exact
and therefore spUts off.

Observing that the order of each element in a reduced group is determined
by its height matrix, we have the foUowing, perhaps interesting, consequence of
(d) in 3.3.
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86 R. H. HUNTER

3.4. Lemma. Let B be a subgroup of a reduced group A. Then B is balanced
if (and only if) B is H-nice in A.

The next lemma collects some properties of H-nice subgroups. The proof is
routine and hence is omitted.

3.5. Lemma. Let B and C be subgroups of A such that C<B.  Then:
(i) ifB is H-nice in A then B/C is H-nice in A/C; and
(ii) if C is H-nice in A and B/C is H-nice in A/C then B is H-nice in A.

Using 3.3 and 3.5 it is easy to prove that: both the balanced and the H-
balanced exact sequences form a proper class in the sense of Mac Lane [5].

We list some properties of balanced subgroups that are readily proved.
(A) If B is balanced in A then fpa(A) = fpa(A/B) + fp(B) for all primes p

and ordinals a.
(B) Let [At: i El} be a set of groups and let B¡ be a subgroup of A¡ for

each i in /.  Then (&¡eIB¡ is balanced in ©^/-dj if and only if B¡ is balanced in
A¡ for every i in /.

(C) Every subgroup of A is balanced if and only if A is elementary torsion.
(D) If F is a balanced subgroup of A then Tor(F, X) is a balanced subgroup

of Tox(A, X) for every X.
(E) If 0 —■> B —* A —> C —*■ 0 is balanced, then so are 0 —* T(B) —>

T(A) —► T(C) -+ 0 and 0 -* B/T(B) -+ A/T(A) -> C/T(Q -* 0.
4. Balanced injectives. In this section we show that the balanced injectives

are just the pure injectives (otherwise known as the algebraically compact groups).

4.1. Lemma. Let W be torsion free and homogeneous of type (0,...,
0,...). 77ze« every short exact sequence 0—+U —*■ V ̂ +W—*■ 0 is balanced.

Proof. We need only show U is H-nice in V as 2.6 takes care is isotype-
ness. Suppose w E W.  Then there is an element w'vnW and a positive integer
« such that nw = w and H(w') = «0,..., 0,...». Now any element v in V
for which r¡v = w' also satisfies r\nv = w and H(nv) = H(w).

4.2. Theorem. A group A is injective with respect to balanced exact se-
quences of torsion free groups if and only if A is cotorsion.

Proof. Let A be injective with respect to balanced exact sequences of
torsion free groups. We use a counting argument to show A cotorsion. Choose
a cardinal n such that \A\ < n and such that n ° > n; for instance n= \A\ +
21-4 ' + 22     + • • • is such a cardinal (see [3] for details of prooO- Note that
since 2m = mm for every infinite cardinal m, we have m < m °<2m. LetX =
nnZ, Y = 0n Z and let W be the full inverse image of the divisible part ofX/Y
under the natural epimorphism X —*• X/Y; then |W| = n °. Now let
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BALANCED SUBGROUPS OF ABELIAN GROUPS 87

(2) 0-+U-+V-* W-+0
be a free resolution of IV.  Applying Hom(-A) to (2) gives

... Hom(K, A) -& Hom(U, A) -*■ Ext(W, A) -> Ext(F, A) - 0.

By 4.1, (2) is balanced so our assumption on A impUes 0 is epic and Ext(lV, A)
= 0. Suppose A is not cotorsion, that is, Ext(ß, A) =£ 0. The sequence 0 —♦
Y —► W —>© «„ó —*• 0 induces

n  °

(3) ... Hom(r, A) -*♦ Extf © Q, A ) -♦ Ext(W, A) = 0.

Here |Hom(r, A)\ < nnWI < nn = 2n wlule

Extf© Q, A
M

-   II   IExt(f2, A)\ > 2n  °
n   O

which is contrary to the epimorphism v in (3).
Conversely, if A is cotorsion then Ext(lV, C) = 0 for every torsion free W

and so A is injective with respect to balanced exact sequences of torsion free
groups.

4.3. Theorem. A group A is balanced injective if and only if it is pure
injective.

Proof. Let A be balanced injective. By 4.2, .4 is cotorsion. Clearly the
torsion part T(A) is injective with respect to balanced exact sequences of torsion
groups. Griffith [3] has shown that T(A) must be torsion complete, from which
it foUows that A is pure injective. Conversely, every pure injective group is bal-
anced injective, since balanced exact sequences are pure.

Let B be a subgroup of A.  C. L. Walker [8] defines B to be regular in A
if for every x in A/B and every rank 1 subgroup C/B of A/B containing x there
is a c in the coset x such that o(x) = o(c) and Hc(c) = Hc,B(x), and then asks
for a description of injectives with respect to regular exact sequences. Since reg-
ularity Ues between purity and balanced, 4.3 yields an immediate answer to this
question.

4.4. Corollary. A group A is injective with respect to regular exact se-
quences if and only if A is pure injective.

A natural question that arises is: can one imbed every group as a balanced
subgroup of a balanced injective? The answer is no. This is clear from the foUowing

4.5. Proposition. Every balanced subgroup of a balanced injective is
again balanced injective.
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88 R. H. HUNTER

Proof. Let B be a balanced subgroup of a pure injective group A.  We may
assume A is reduced. Now f)n<UJnl(A/B) = 0 and CoroUary 39.2 of [1] shows
that B is also pure injective. As B is pure in A, we also have B a summand of A.

Remarks. 1.4.6 should be contrasted with 6.3 which asserts that every
group is a balanced homomorphic image of a balanced projective.

2. The results of 4.1—4.5 hold for ¿/-balanced exact sequences. Thus .,4 is
balanced injective if and only if A is ¿/-balanced injective.

5. Two classes of groups.  In this section we study two classes of groups
(denoted by A and C) whose members have torsion free rank at most 1. Groups
in A are the 'buüding blocks' for our study of the balanced projectives, and groups
in C are sirrularly fundamental to our work with ¿/-projectives. We first examine
arbitrary groups with torsion free rank 1, considering them as extensions: every
group A with torsion free rank 1 containing an element a of infinite order is an
extension

(4) 0-+(a)-> A ^ T*-+0

of the free group (a) by the torsion group T*. With each extension (4) we as-
sociate the pair (M, T*) where M = H(a). The asterisk is used throughout to
indicate that a group is being considered, in some sense, as the last term of a
sequence like (4).

5.1. Definition. Let M be a height matrix, u a p-indicator and T* a tor-
sion group. The pair (M, T*) (the pair (u, T*)) is said to be admissible if there is
a group A of torsion free rank 1 containing an element a of infinite order such
that H(a) = M (Up(a) = u) and A/(a) s T*.

The problem of finding admissible pairs immediately localises to a single
prime.

5.2. Proposition. Let M be a height matrix, T* a torsion group. Then
(M, T*) is admissible if and only if the pairs (Mp, Tp) are admissible for every
prime p.

Proof. Suppose a is an element of infinite order in a group A of torsion
free rank 1 such that H(a) = M and A/(a) = T*. Let A,p) be the complete in-
verse image of T* in A; then A/A,p) is torsion with no p-component so by 2.6,
A,p) is p-isotype in A and U^0>)(a) = Up(a) = Mp.

Conversely, suppose we are given, for each prime p, a group A^ contain-
ing an element ap of infinite order such that Up(ap) = Mp and A,p^(ap) = T*.
Since A(pJ<ap) has no ^-torsion it is evident from 2.6 that Uq(ap) = (0,1,2,...)
for every q + p.  Write B = ©P^(P) and let C be the subgroup of B generated
by {ap-aq : p.qG P). Setting A = B/C, the element a = ap + C (= aq + C
for every other prime q) is such that A/(a) as T* and H(a) = M.
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balanced subgroups of abelian groups 89

Fundamental to our treatment of a group A of torsion free rank 1 as an ex-
tension (4) is the observation that tj imbeds T(A) as a subgroup of T*. It is
readily seen that T*¡r¡T(A) is locally cyclic, so that T(A) and T* are closely re-
lated. In fact, the Ulm invariants of T(A) (which are the same as those of A)
and T* can be related via H(a); we do this in the next three lemmas. The restric-
tion of T* = ,4/<a> to a p-group in the proofs of these lemmas affords no loss of
generality-if A( ) is the group derived from A in 5.2 then Up^(a) = Up (a) and
fp(A,p)) = fp(A) for a an ordinal or °°. Thus we can use A/p^ and Mp for each
prime p separately to find the desired relationships. The proof of the first lemma
is trivial.

5.3. Lemma. Let A have torsion free rank 1 and suppose T(A) is reduced.
Then the divisible part of(A/(a))p is Z(p°°) if Up(a) contains °°, and is 0 otherwise.

5.4. Lemma. Let A have torsion free rank 1 and suppose a is an element of
A having infinite order and p-indicator (a0,ax,. . .).  Then for every ordinal a
we have

!fp(A, <a>) + 1   if a + 1 = a, and a gap precedes a¡; and

fpa(A,{a))   otherwise.

Proof. Assume ,4/<a> is a p-group. Let F (ft ) denote the image of a sub-
set B (element ft) under the natural map A —» ̂ 4/<a>. Observe that fp(A, <a>) <
fp(A/(a)) < fp(A, <a>) + 1 for every ordinal a, since A has torsion free rank 1
and <a> is p-nice in A (see 2.2). A little computation (using the p-niceness of <a>
in A) shows that fp(A, <a» <fp(A/(a)) if and only if paA\p] +pa+xÄ~<paI\p]
+ pa+xÄ~.

Suppose a is indeed such that fp(A, (a)) <fp(A/{a)). Then p-niceness of
(a> in A ensures the existence of a ft in A satisfying ft„(ft) = a and

bEp°A[p]\(pa+xA+p°A[p]).

We have pft = ra for some integer r. If a + 1 = ft„(ft) + 1 < h (ra) then there
exists c in pa+ XA with pc = ra = pb, so that 6 - c E paA [p], whence ft E
p     A + p°A [p], a contradiction. Thus a + 1 = hp(ra) = a¡ for some i.  If
a = of_, then ftp(ft) = a = at_x = hp(r'a), where pr = r and pft = pira), so
that ft = r'a + t such that t E paA [p]. Then F = T E p°A [p], a contradiction.
Thus a + o¡_x and since a + 1 = of it follows that a gap precedes a¡.

Conversely, suppose a + 1 = a¡ for some i and a gap precedes a¡. Then
hp(p'a) = a+l and p'a = pft with ftp(ft) = a. For this ft it follows that ft £
pO+1¿ _|_ pO¿ jpj. ¡f not) tjje p.niCeness of a in A yields 6 = c + x + sa such
that s is an integer, x E paA [p] and c E p0+ XA.  This implies hp(sa) > a and
hp(psa) = a + 1 so in fact hp(sa) = a, contradicting a =£ oy for / < i.
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5.5. Lemma.   Let A have torsion free rank 1 and suppose a is an element
of A having infinite order and p-indicator (o0,ox, ...). Then for o an ordinal or
00 we have

fp(A/(ä>) + 1   if o = on and a gap follows on ;

j fp(A/(d>) - 1    if there is an n such that o + 1 = on
and a gap precedes an ; and

fp(A/(a))   otherwise.

Proof. Assume ̂ 4/<a> is a p-group. Wallace [9] has shown that when a
is an ordinal

l/S(4) ~ 1    if ° = o_ and a gap foUows o„; and
fp(A,(a))= \   "„If 1(A)   otherwise.

The case for a an ordinal now foUows from 5.4 whüe the case when a = °° is
immediate from 5.3.

For a group A with torsion free rank 1 containing an element a of infinite
order, we have shown in 5.5 that the Ulm invariants of A (and therefore of T(A))
are uniquely determined by those of the quotient A/(a) in the presence of H(a)
and vice versa. With this in mind, we review what is known about the connection
between H(a) and the Ulm invariants of T(A). Write H(a) = [opk] and T = T(A).
Then the foUowing two conditions must be satisfied by H(a) and T (see Fuchs

[2, p. 200]):
(i) // there is a gap following opk then fp    (T)=£0; and
(ii) if opk ¥= °° for all k then opk < lp(T) + co, while if opr = °° for some

r then opk < lp(T) whenever opk ¥= °°.

We seek corresponding conditions on a pair (M, T*). First, it foUows from
5.5 that we must have:

(a) if opk - 1 exists and a gap precedes opk then fp k-i(T*) =/= 0.

RecaU that our convention °° - 1 = °° means that °° - 1 exists. In order to
translate condition (U) into our setting, the foUowing lemma is needed.

5.6. Lemma. Let A have torsion free rank 1 and contain an element a of
infinite order.  Write A/(a) = T*andT= T(A). Then lp(T*) + co = lp(T) + co.

Proof. We may assume T is reduced. Suppose T* is reduced. Then T =
■nT< T* impUes lp(T) < lp(T*), whüe 5.3 shows hp(pka) = ok < °° for k = 0,
1.We consider the sequence o0,ox.and distinguish two cases.
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1. The sequence (a0,ax,...) has only a finite number of gaps. If an is the
largest term with a gap preceding it (recall that a gap always precedes a0) then
let an — y + r with y zero or a limit ordinal and r finite. Condition (ii) implies
that lp(T) > y and 5.5 shows fp(T) = fp(T*) whenever p > an. Therefore
lp(T) + r>lp(T*)>lp(T).

2. The sequence (a0,ax, ...) has infinitely many gaps. If y = sup¡a¡ then
condition (i) implies lp(T) > y. Since fp(T) = fp(T*) when p>y,it follows
that lp(T) = lp(T*).

Suppose T* is not reduced; then T* has a (unique) summand Z(p°°). Let
rj: A —*■ T* be the natural homomorphism. Now

T*hT a Z(p") Si (Z(p~) + r¡T)MT

implies Z(p") + r¡T= T*. Writing T* = Z(p°°) © F we have

F s T*lZ(jT) = (rjF + Z(p~))lZ(p~)

~vT/(T}TnZ(p~)) = riT/C

where C is cyclic because rjT is reduced. Let y = / (F) = lp(T*). As C is finite
and therefore p-nice in r\T it follows that lp(r\T) > y and pyr]T < C.  Thus
/p(F*) < lp(r)T) < Zp(F*) + k for some integer k > 0.

Condition (ii) and 5.6 together imply

(b)i/opfc*~r«e«ap*</p(r*) + w.

5.7. Lemma. Let A have torsion free rank 1 and contain an element a of
infinite order such that H(A) = M and A/<a) =• T*. Write T = T(A) and M =
[apk]. Then conditions (i) and (ii) are satisfied exactly when (a) and (ft) are
satisfied.

Proof. We see from 5.5 that (i) and (a) are both satisfied automatically,
and it remains only to show that (ii) is satisfied if and only if (b) is. In view of
the fact that lp(T) + co = lp(T*) + co, we have (ii) implies (b) and (b) implies
the first part of (ii). In the remaining case when (b) is assumed and apk = °°
for some but not all k, one considers the greatest integer / for which a ¡ =£ 0 and
recalls that 5.5 implies/£ ;(F) ^ 0 so lp(T) > apl.

In the light of 5.7, we make the following definition.
5.8. Definition. Let M = [apk] be a height matrix, T* a torsion group.

We say that M and T* axe compatible if they satisfy conditions (a) and (b) of 5.7.
We now restrict attention to pairs (M, H*) where H* is totally projective.

One reason for this is that it enables us to use Ulm's theorem for totally pro-
jective groups in our calculations.
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5.9. Definition. Let A be the class of groups A such that A is an exten-
sion of a cycUc (finite or infinite) group by a totally projective group. An admis-
sible pair (M, ¿/*), where H* is totally projective, is said to be A-admissible.  If
M is a height matrix and H* is a torsion group then we say that the pair (M, H*)
is K-compatible if//* is totaUy projective and M and H* are compatible.

Observe that A includes aU torsion free groups of rank 1, aU totally pro-
jective groups (in fact, a torsion group is a member of A exactly when it is totaUy
projective), and by 2.3, groups of torsion free rank 1 having totally projective
torsion part (the latter have been classified by WaUace [9]). If A G A and B is
a finitely generated subgroup of A then A/B G A. In particular if g and h are
elements of a group G such that o(g) = o(h) = °° and G/(g) is totaUy projective,
then G/(h) is also totaUy projective.

The possibUity of nonisomorphic groups being associated with a given A-
admissible pair is excluded by the foUowing theorem.

5.10. Theorem. If A and A' are two groups in A containing, respectively,
elements a and a of infinite order such that H(a) = H(a') and A/(a) =s Ä/(a) then
A^A'.

Proof. We may assume that A (and therefore A') is reduced. It is clear
from 5.5 that fp(A, (aï) = fp(A', (aï) for all primesp and ordinals o, whUe
/£,(/!, (aï) = 0 = /£,04', <a'>) follows because A and A' are reduced. Now
fp(A(p, (aï), (a)) = fp(A, (aï) for all p and a, so 2.4 yields, for each prime p, an
isomorphism A(p, (aï) —► A'(p, (aï). The homomorphism A —*■ A' given by 2.7
is clearly an isomorphism.

5.11. Definition. Let (M, H*) be an A-admissible pair and A the unique
(up to isomorphism) group in A containing an element a of infinite order such
that H(a) = M and A/(a) = H*. Then we say that (M, H*) represents A.

In general there are many different A-admissible pairs representing the same
group in A, and some way of equating such pairs would be useful. We begin by
defining invariants for an arbitrary pair (M, T*) in a manner suggested by 5.5.

5.12. Definition. Let M = [opk] be a height matrix, T* a torsion group.
For each prime p, and for o an ordinal or °° we define:

fP(T*) + 1   if o = opk and a gap foUows opk;

fp(T*) - 1    if there is an n such that o + 1 = opn
and a gap precedes opn; and

fp(T*)   otherwise.

5.13. Definition. Let (M, H*) and (N, G*) be two A-compatible pairs. We
say that (M, //*) and (N, G*) are equivalent (we write (M, H*) ~ (N, G*)) if

/S(M, 7-) =
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M ~ N and fp(M, H*) = fp(N, G*) for all a and primes p.
It is clear that ~ defined in 5.13 is an equivalence relation—our next result

shows that the obvious correspondence is a bijection between equivalence classes
of Ä-admissible pairs and isomorphism classes in A.

5.14. Theorem. Let A, A' be two groups in A containing, respectively,
elements a, a' of infinite order such that H(a) = M and H(a') = N. Then A =A'
if and only i/(M, A/{d» ~ (N, A'¡(a)).

Proof. Suppose (M, A/{a)) ~ (N, A'lia')). It is clear from 5.5 that the Ulm
invariants of A and A' are the same. Replacing a and a', if necessary, by suitable
multiples of themselves we may assume H(a) = H(a'). Then 5.5 and 2.4 yield
A/(a) = A'¡{a'). By 5.10, .4 =A'. The converse is obvious.

We now show that A-compatible pairs are A-admissible in two stages-first
for a restricted class of A-compatible pairs and using this, for an arbitrary A-com-
patible pair.

5.15. Theorem. Let M be a height matrix with only a finite number of
gaps.  Then a pair (M, //*) is A-admissible if and only if it is A-compatible.

Proof. From the discussion leading up to 5.8 it is immediate that all A-
admissible pairs are A-compatible. For the converse part, suppose (M, H*) is A-
compatible. There is an integer « > 1 such that «M has no gaps, and a totally
projective group G* such that (M, //*) and («M, G*) axe equivalent. Now (M,//*)
is admissible if and only if («M, G *) is. In view of this we assume M contains no
gaps and by 5.2 we replace M by Mp = u = (a, a + 1, a + 2,...) and H* by
H*. Next we show that lp(H*) = a can also be assumed. Now A-compatibility
of (u, //*) ensures that fp_x(H*) #= 0 when a is not a limit ordinal. This fact,
together with standard results on totally projective groups (see, for example, Fuchs
[2]) now allows us to write H* = H\* © //2* with lp(Hf) = a. Now (u, H*) is
A-compatible and if (u, Hf) represents A' then (u, //*) represents A = A' © H%.
As the result is trivial when a = °° we also assume that a is an ordinal.

To complete the proof, we use a construction of Hill and Megibben [4].
The existence of a subgroup H of H* such that H is isotype and o-dense in H*
and 0 # H*/H = Z(pa) where a E {0, 1,...} U {j»} is well known. Note that
a = °° whenever a > co. Let F be a torsion free group of rank 1 containing an
element a such that ftp (a) = a and such that H*/H = R/{a). Define A to be the
subdirect sum of H* and R having kernels H and <a> respectively. Identifying H*
and R as subgroups of H* © F in the natural way, we have A+H*=A+R =
H* © F and A n H* = H and A n F = <a>. Arguing as in Proposition 1.7 of
Hill and Megibben [4] we have p°A = A n p°(H* © F). Now pa(H* © F) = P°R
and since p°R = <a> when a < co and p°R = R when a > co, it follows that p°A =
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A n p"R = (a). Therefore hj(a) = o and

A/(a) = A/AnR = (A+ R)/R = (H* 8 R)/R s H*

shows that A is represented by (u, H*).
It will be convenient to have a notation for the groups described in 5.15.
5.16. Definition. Let C be the class of groups C in A such that the height

matrix of every element c in C contains only finitely many gaps.
Before proceeding further we point out a modification of Theorem 103.3

[2]. Let A have torsion free rank 1 and totaUy projective torsion part T. Let
Xp be the p-length of Tp and H(a) = [opk], where a is an element of A having
infinite order. Then conditions (i) and (ii) of 5.7 together with

if p is a limit ordinal not cofinal
(in) with co and p < Xp < p + co then

opk + °° implies apk< max(Xp, co)

must be satisfied by H(a) and T.  Condition (iii) is in fact equivalent to condition
(iv), p. 201 of [2] (this equivalence is evident from Proposition 4 of [6]). Thus
Theorem 103.3 of [2] becomes:

5.17. Theorem. Let T be a reduced totally projective group, M a height
matrix.  There exists a mixed group A of torsion free rank 1 with T(A) = T and
which contains an element a of infinite order with H(a) — Mif and only if M
satisfies (i)—(iii).

Now the main theorem of this section.

5.18. Theorem. Let M be a height matrix, H* a torsion group.  Then
(M, H*) is A-admissible if and only if it is k-compatible.

Proof. Only half the statement requires verification and again we can
replace M by Mp = u = (o0, ox, ...) and H* by H*. Assume that (u, H*) is
A-compatible. In view of 5.15 we need only consider the case when u has infinitely
many gaps. There is a totally projective p-group H with Ulm invariants given by
fp(H) = fp(M, H*). Clearly lp(H) > an for n = 0, 1,... so that u and H satisfy
(iii) with u in place of M and H in place of T.  Let A be a group of torsion free
rank 1, torsion part H, and element a of infinite order such that Up(a) = u (the
existence of such an A is guaranteed by (5.17)). Since A/(a) is a totaUy projective
p-group and has the same Ulm invariants as H*, 2.4 yields A/(a) = H*.

Having solved the problem of which pairs (M, H*) are admissible when H*
is totally projective, it wiU be useful to know that every height matrix occurs in
some A-admissible pair. We first prove a corresponding result for heights.

5.19. Proposition. To each height K = <</32, /33,...,ßp,...» there is a
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group C in C containing an element c of infinite order such that H(c) = K. Fur-
ther, this c can be chosen so that H(c) contains no gaps.

Proof. Let M be the height matrix with no gaps and first column «f?2,
..., ßp,...» and let H* = ©pSPxYf , where Hpß  is the generalised Prüfer p-
group of length ßp  (if ßp = <*>, we set Hp&  = Z(p°°)). It is easy to check that
(M, H*) is A-compatible.

5.20. Proposition. To each height matrix M there is a group A in A rep-
resented by (M, H*) for some totally projective group H*.

Proof. Let M = [apk] and set H* = ©pe/> (Bk<it)Hp   ; now argue as
for 5.19.

Let X be a limit ordinal not cofinal with co. Warfield [10] defines a p-
group G to be a X-elementary S-group if G is a X-dense isotype subgroup of co-
rank 1 in some totally projective p-group. A p-group G is an 5-group if G is the
direct sum of a totally projective group and X-elementary 5-groups for various
limit ordinals X not cofinal with co. By an S-group we mean a torsion group
whose p-components are 5-groups.

5.21. Theorem. If A E A then T(A) is an S-group.

Proof. We need only consider a reduced group A in A with torsion free
rank 1 represented by (M, //*) where H* is a p-group. Put u = Mp = (a0,ax,...),
let r\: A —► H* be the natural homomorphism and T the torsion part of A.  Re-
call that r¡T s T. We consider three cases.

1. u has infinitely many gaps. As we saw in the proof of 5.18 there is a
group A' with torsion free rank 1 and represented by (M, //*) such that T(A')
is totally projective. Now A s A' implies T(A') is totally projective.

2. u has only finitely many gaps and supjcr, = p <<*>. Let X be the limit
ordinal such that X + co = p. When X is cofinal with co, an argument similar to
that used in 1 shows that T is totally projective. Suppose X is not cofinal with
co. By changing to another representation if necessary, we can assume that
a0 > X. It is easily shown that r¡T is X-dense in H* and that

p°r,T = p°H* D r¡T   for all a <X.

Then T)T/p\T^(nT + pxH*)lpxH*. Set G = (r¡T + pxx7*)/px//*. Then G is
X-dense and isotype of corank 1 in the totally projective p-group H*/pxH*. Thus
r¡T/pKvT is an 5-group. Observe that ppijT = ppH*. As X + co = p, we see that
pKr¡T/pprjT is a direct sum of cyclic p-groups and thence an 5-group. Put G' =
r¡T/ppT]T; then we have shown that pxG' and G'/pxG' axe both 5-groups, so by
Warfield [10], G' is an 5-group. However, ppr¡T = ppH* is also an 5-group so
that i\T is itself an 5-group.
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3. u contains °°. Assume o0 = °°; then H* has a unique summand Z(p°°)
such that i}T n Z(p°°) = 0. Since r\T + Z(p°°) = H*, we have H* = r¡T® Z(p°°)
and t¡T is totaUy projective.

6. Balanced projectives. In this section we completely characterise the
balanced projectives in the category of aU abelian groups:  they are just the direct
summands of direct sums of members of the class A. We also explore the prop-
erties of balanced projectives. Every group is the balanced image of a balanced
projective. If A is balanced projective, then A/T(A) is completely decomposable
and T(A) is a summand of an 5-group in the sense of Warfield. A torsion (torsion
free) group is balanced projective in the category of aU abelian groups if and only
if it is totaUy projective (completely decomposable).

We begin with a generaUsation of Lemma 80.3 of [2] to mixed groups. The
proof requires little change and is therefore omitted.

6.1. Lemma. Given a commutative diagram

0 -*N-*A

Oo-^u-+v^*w-^o
where U is H-balanced in V and the two rows are exact, suppose that 0 does not
decrease heights in A. If the element a is p-proper with respect to N and paGN
then \jj can be extended to a map \}/*: (N, a) —► V such that a0*a = 0a and 0*
does not decrease heights.

6.2. Theorem. If A G Ä" then A is balanced projective, and if CGC then
C is H-projective.

Proof. We need only consider groups A in A and groups C in C.
Suppose A G A, let 0: A —*■ W be a homomorphism and let 0 —»• Í7 —*•

V -2* W —> 0 be a balanced exact sequence: we show that 0 lifts to a homomor-
phism 0: A —* V such that aip = 0. When A is torsion, A is totaUy projective.
Since 0 -* T(U) -* T(V) -* T(W) —> 0 is balanced, 0 Ufts to \¡i: A -* T(V)
such that a0 = 0 and we are done. If A has torsion free rank 1, let a be an
element of infinite order in A and choose v in V such that <xu = 0a and H(0a) =
H(v). The correspondence a |—► v gives rise to a homomorphism \¡/': <a> —► V
which does not decrease heights in A.  If 0p is the restriction of 0 to A(p, <a>)
for each prime p, we have the commutative diagram

0 -* <a> -* A(p, <a» -* (A/(a))p -+ 0

0-+U-+V -" w->0
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where both rows are exact and the bottom row is balanced. Now 2.2 implies
(a) is p-nice in ^4(p, <a>); using 6.1 and a nice composition series for (A/(a))p (see
[2]) we extend \p' to \pp: A(p, <a>) —► V in such a way that a\pp = (¡>p (this ex-
tension is done transfinitely, taking unions at limit ordinals and using 6.1 at non-
limit ordinals). An application of 2.7 yields a \¡/:A—*■ Ksuch that a\p = <j>.

The proof that groups C in C, and hence groups in C, are //-projective is
similar: the case for torsion C is the same as above, while for C having torsion
free rank 1 we must choose a c in C with infinite order such that H(c) has no
gaps to ensure that the map \jj': <c> —► V does not decrease heights in C.

6.3. Theorem. There are enough balanced (H-balanced) projectives. In
particular, every group G can be imbedded in a balanced (H-balanced) exact se-
quence 0 —*■ B —*A —► G —> 0 where A E As   (AE Cz), and every balanced
(H-balanced) projective is in A (C).

Proof. Corresponding to each element g in G we choose a group A   in A
containing an element a  such that o(a ) = o(g) and H(a ) = H(g); when o(g) = <»
we refer to 5.20 and for the case when o(g) is finite one readily constructs a direct
sum of generalised Prüfer groups containing the required element.  By 2.6, the
height preserving map <p: <,ag) —* (g) sending ag\—*g extends to a map Ag(p, <ag))
—* G and 2.7 provides a homomorphism <p : A   —*■ G whose restriction to (a)
is 4>. The epimorphism (&geG<¡>g: (Bg<=cïAg ~~* G satisfies condition (d) of 3.3
and is therefore balanced. The final statement of the theorem is now trivial. An
identical argument to the above can be used to show the existence of enough H-
projectives.

A summand of a balanced projective is again balanced projective. If A is
balanced projective then A/T(A) is completely decomposable; this follows from
the fact that A is a direct summand of a direct sum of groups having torsion free
rank 1. We see from 6.3 and 5.21 that T(A) is a summand of an 5-group. These
results are summarized in the following:

6.4. Proposition, (i) The torsion part of every balanced projective (H-pro-
jective) is a direct summand of an S-group.

(ii) A torsion (torsion free) group is balanced projective if and only if it is
totally projective (completely decomposable); the same holds for H-balanced.

(iii) If A is balanced projective (H-projective) then A/T(A) is completely
decomposable.

(iv) A torsion summand of a balanced (H-balanced) projective is totally
projective.
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