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Balanced Symmetric Functions over GF (p)
Thomas W. Cusick,Yuan Li, and Pantelimon Stănică∗

Abstract—Under mild conditions on n, p, we give a lower
bound on the number of n-variable balanced symmetric poly-
nomials over finite fields GF (p), where p is a prime number.
The existence of nonlinear balanced symmetric polynomials is
an immediate corollary of this bound. Furthermore, we prove
that X(2t, 2t+1`− 1) are balanced and conjecture that these are
the only balanced symmetric polynomials over GF (2), where
X(d, n) =

∑
1≤i1<i2<···<id≤n xi1xi2 · · ·xid .

Index Terms—Cryptography, finite fields, balancedness, sym-
metric polynomials, multinomial coefficients.

I. INTRODUCTION

S INCE symmetry guarantees that all of the input bits have
equal status in a very strong sense, symmetric Boolean

functions display some interesting properties. A lot of research
about symmetry in characteristic 2 has been previously done,
and we mention here the references [1], [2], [22], [4], [5], [6],
[8], [14], [16], [17], [18], [20], [21]. On the other hand, it is
natural to extend various cryptographic ideas from GF (2) to
other finite fields of characteristic > 2, GF (p) or GF (pn), p
being a prime number. For example, [15] and [10] studied the
correlation immune and resilient functions on GF (p). Also,
[7] and [12] investigated the generalized bent functions on
GF (pn). In [13], Li and Cusick first introduced the strict
avalanche criterion over GF (p). In [14], they generalized
most results of [5] and determined all the linear structures
of symmetric functions over GF (p).

Balancedness is a desirable requirement of functions which
will be used in cryptography. In this paper, by an enu-
merating method, we give a lower bound for the number
of balanced symmetric polynomials over GF (p), and as an
immediate consequence, we show the existence of nonlin-
ear balanced symmetric polynomials. We did not find (even
conjecturally) any simple characterization of the algebraic
normal form of nonlinear balanced symmetric polynomials
even for p = 2. We prove that X(2t, 2t+1` − 1) are bal-
anced and conjecture that these polynomials are the only
nonlinear balanced elementary symmetric polynomials, where
X(d, n) =

∑
1≤i1<i2<···<id≤n xi1xi2 · · ·xid

.

II. PRELIMINARIES

In this paper, p is a prime number. If f : GF (p)n −→
GF (p), then f can be uniquely expressed in the following

Manuscript received August, 2006.
∗This work was supported by the Naval Postgraduate School RIP funding.
T.W. Cusick is with SUNY, Department of Mathematics, 244 Mathematics

Building, Buffalo, NY 14260; Yuan Li is with Department of Mathematical
Sciences, Alcorn State University, Alcorn State, MS 39096; P. Stănică is with
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form, called the algebraic normal form (ANF):

f(x1, x2, . . . , xn) =
p−1∑

k1,k2,...,kn=0

ak1k2...kn
x1

k1x2
k2 · · ·xn

kn ,

where each coefficient ak1k2...kn
is a constant in GF (p).

The function f(x) is called an affine function if f(x) =
a1x1 + · · · + anxn + a0. If a0 = 0, f(x) is also called a
linear function. We will denote by Fn the set of all functions
of n variables and by Ln the set of affine ones. We will call
a function nonlinear if it is not in Ln.

If f(x) ∈ Fn, then f(x) is a symmetric func-
tion if for any permutation π on {1, 2, . . . , n}, we have
f(xπ(1), xπ(2), . . . , xπ(n))=f(x1, x2, . . . , xn). The set of per-
mutations on {1, 2, . . . , n} will be denoted by Sn.

We define the following equivalence relation on GF (p)n:
for any x = (x1, . . . , xn), y = (y1, . . . , yn) in
GF (p)n, we say x and y are equivalent, and write x ∼
y, if there exists a permutation π ∈ Sn such that
(y1, y2, . . . , yn)=(xπ(1), xπ(2), . . . , xπ(n)) (by abuse of nota-
tion we write y = π(x)). Let x̃ = {y | ∃π ∈ Sn, π(x) = y}.
Let x = (x1, x2, . . . , xn) be the representative of x̃, where
0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ p− 1. Obviously, we have x̃ = ỹ
⇐⇒ x = y.

III. ENUMERATION RESULTS

Definition 1: f : GF (p)n −→ GF (p) is balanced if the
probability prob(f(x) = k) = 1

p for any k = 0, 1, . . . , p− 1.
As an immediate consequence, f is balanced if and only if
#{x ∈ GF (p)n|f(x) = k} = pn−1.

Using the equivalence relation of the previous section, we
get that f : GF (p)n −→ GF (p) is symmetric if f(x) = f(y)
whenever x̃ = ỹ. Let C(n, k) = n!

k!(n−k)! if 0 ≤ k ≤ n and 0
otherwise be the usual binomial coefficients. Then we have

Lemma 1: The number of n-variable symmetric polynomi-
als over GF (p) is

pC(p+n−1,n).

Proof: The number of different vector classes x̃ is the
number of solutions of the linear equation i0+i1+· · ·+ip−1 =
n, where ik is the number of times k appears in x. We know
that the number of solutions to the previous linear diophantine
equation is the same as the number of n-combinations of a set
with p elements, that is C(p+n−1, n) (see [3, p. 69]). Since
a symmetric function f(x) has the same value for any element
of x̃, the lemma is proved.

Lemma 2: We have
p−1∏
k=0

C((k + 1)a, a) =
(pa)!
(a!)p

.
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Proof: It is a straightforward computation
p−1∏
k=0

C((k + 1)a, a) =
a!
a!

(2a)!
a!a!

· · · (pa)!
a!((p− 1)a)!

=
(pa)!
(a!)p

.

Lemma 3: The number of n-variable balanced polynomials
over GF (p) is

(pn)!
(pn−1!)p

.

Proof: The number we are looking for is

C(pn, pn−1)C(pn − pn−1, pn−1) ·

· · ·C(pn − (p− 1)pn−1, pn−1) =
(pn)!

(pn−1!)p
,

using Lemma 2, and the claim is proved.
Let x = (0, . . . , 0︸ ︷︷ ︸

i0

, 1, . . . , 1︸ ︷︷ ︸
i1

, . . . , p− 1, . . . , p− 1︸ ︷︷ ︸
ip−1

), where i0 +

i1 + · · · + ip−1 = n, 0 ≤ ij ≤ n, j = 0, 1, . . . , p − 1.
The cardinality of the set x̃ is the value of the multinomial
coefficient C(n, i0, i1, . . . , ip−2) = n!

i0!i1!···ip−1!
. We have the

following widely known multinomial expansion lemma.
Lemma 4: [3, p. 123] We have the following formula

(t0 + t1 + · · ·+ tp−1)n

=
∑

i0+i1+···+ip−1=n

C(n, i0, i1, . . . , ip−2)ti00 ti11 · · · tip−1
p−1 .

By specializing t0 = t1 = · · · = tp−1 = 1, we get the
following corollary.

Corollary 1: The n-th power of p satisfies

pn =
∑

i0+i1+···+ip−1=n

C(n, i0, i1, . . . , ip−2).

From the proof of Lemma 1, we know that the number of
terms in the sum in Corollary 1 is C(p + n− 1, n). It is clear
now, that to get balanced symmetric polynomials amounts to
partitioning the set of C(p + n − 1, n) many multinomial
coefficients C(n, i0, i1, . . . , ip−2) into p groups, the sum of
each group being equal to pn−1.

For a fixed solution {i0, i1, . . . , ip−1} of i0 + i1 + · · · +
ip−1 = n, there are p!

m0!m1!···mn! many ways to order it,
where ij ∈ {0, 1, . . . , n}, and ml is the number of times that
l appears in {i0, . . . , ip−1}, 0 ≤ l ≤ n. Hence,

m0 +m1 + · · ·+mn = p, and 0m0 +1m1 + · · ·+nmn = n.
(1)

Let us consider the following map:

F : {{i0, i1, . . . , ip−1}|
p−1∑
j=0

ij = n}

→ {(m0,m1, . . . ,mn)|
n∑

l=0

ml = p,
n∑

l=0

lml = n}

defined by

F ({i0, i1, . . . , ip−1}) = (m0,m1, . . . ,mn),

where ml is as above. It is not hard to check that F is a
bijection.

Now, we will partition the set of multinomial coeffi-
cients C(n, i0, . . . , ip−2) using the following equivalence rela-
tion: C(n, i0, . . . , ip−2) and C(n, j0, . . . , jp−2) belong to the
same class if and only if j0, . . . , jp−1 is a permutation of
i0, . . . , ip−1. Of course, any element in the same class has the
same value. So, we can think of F as a map that assigns to
each class the value p!

m0!m1!···mn! .
Lemma 5: Let n, p be positive integers, with p a prime

number. If mi < p for some i (and so for all i), or if
gcd(n, p) = 1, then p divides p!

m0!m1!···mn! .
Proof: Assume mi < p. By a known extension of Kum-

mer’s result that belongs to Dickson (see [11, Theorem D, p.
3860]) the power of p that divides the multinomial coefficient
equals the number of carries when we add m0+m1+· · ·+mn

in base p, but the mentioned sum is equal to p, therefore the
number of carries is 1. (One can also prove the same assertion
without using Dickson’s result.)

Now, assume gcd(n, p) = 1. If mi < p, the first part of the
proof proves the claim. Assume mi ≥ p. Since m0 + m1 +
· · · + mn = p, we can find j such that mj = p and m0 =
· · · = mj−1 = mj+1 = · · ·mn = 0. From the definition of
the mi’s we obtain that jp = n, which is a contradiction.

Remark 1: The two conditions mi < p, and gcd(n, p) =
1 are not equivalent (although, it is true that gcd(n, p) = 1
implies mi < p). For instance, by taking m0 = 3,m1 =
2,m2 = 1,m3 = 1,m4 = m5 = m6 = m7 = 0, we get
m0 +m1 + · · ·+m7 = p = 7 = n = 0m0 +1m1 + · · ·+7m7,
so p = n in this case.

Since the cardinality of each multinomial coefficient class
is a multiple of p, we can divide each class into p groups with
an equal number of coefficients, hence, equal sum. Doing the
same for each class, we finally partition all of the C(p + n−
1, n) coefficients into p groups with equal sum.

For a given (m0,m1, . . . ,mn), m0 + m1 + · · ·+ mn = p,
0m0 + 1m1 + · · ·+ nmn = n, the partition number is

C

(
p!

m0!m1! · · ·mn!
,

(p − 1)!

m0!m1! · · ·mn!

)
·

C

(
p!

m0!m1! · · ·mn!
− (p − 1)!

m0!m1! · · ·mn!
,

(p − 1)!

m0!m1! · · ·mn!

)
· · ·

C

(
p!

m0!m1! · · ·mn!
− k(p − 1)!

m0!m1! · · ·mn!
,

(p − 1)!

m0!m1! · · ·mn!

)
· · ·

C

(
(p − 1)!

m0!m1! · · ·mn!
,

(p − 1)!

m0!m1! · · ·mn!

)
.

By Lemma 2, this product can be written as

( p!
m0!···mn! )!

(( (p−1)!
m0!···mn! )!)

p
.

In conclusion, we get our main result of this section.
Theorem 1: Let N be the number of n-variable balanced

symmetric functions over GF (p). If mi < p, for all i (or
gcd(n, p) = 1), then

N ≥
∏

∑n
j=0 mj=p∑n

j=0 jmj=n

( p!
m0!···mn! )!

(( (p−1)!
m0!···mn! )!)

p
.

To illustrate the previous theorem, we take the following
example, p = 3, n = 4. It is rather straightforward to
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check that the only solutions (m0,m1,m2,m3,m4) for (1) are
(2, 0, 0, 0, 1), (1, 1, 0, 1, 0), (0, 2, 1, 0, 0), (1, 0, 2, 0, 0). Thus,
the bound of Theorem 1 implies (we ignore the factors 1!
or 0!) that the number of balanced symmetric functions on
GF (3)4 is

N ≥
(

3!
2!

)
!(

2!
2!

)
!3
· (3!)!
(2!)!3

·
(

3!
2!

)
!(

2!
2!

)
!3
·

(
3!
2!

)
!(

2!
2!

)
!3

= 19440 ≈ 38.988.

Next, since the linear balanced symmetric polynomials over
GF (p) have the form a(x1+ · · ·+xn)+b, where a ∈ GF (p)∗

and b ∈ GF (p), we get that the number of such functions is
p(p − 1). Since (pa)!

(a!)p = a!
a!

(2a)!
a!a! · · ·

(pa)!
a!((p−1)a)! > 1 · 2 · · · p =

p! ≥ p(p− 1), we have the next corollary.
Corollary 2: If n is not divisible by p, there exists a non-

linear n-variable balanced symmetric polynomial over GF (p).

IV. THE BALANCEDNESS OF ELEMENTARY SYMMETRIC
POLYNOMIALS OVER GF (2)

In this section we consider the binary case, that is, p = 2.
Here, we shall try to find all nonlinear balanced elemen-
tary symmetric polynomials. Throughout this section, x =
(x1, . . . , xn).

Definition 2: For integers n and d, 1 ≤ d ≤ n we define
the elementary symmetric polynomial by

X(d, n) =
∑

1≤i1<i2<···<id≤n

xi1xi2 · · ·xid
. (2)

By abuse of notation, we let X(d, n)(j) be the value of
X(d, n) when wt(x) = j. Since X(d, n)(j) ≡ C(j, d)
(mod 2), we get

X(d, n)(j) =
1− (−1)C(j,d)

2
.

Because there are C(n, j) many vectors with weight j, we
have the following result.

Lemma 6: The elementary symmetric polynomial X(d, n)
is balanced if and only if∑

0≤j≤n

C(n, j)(−1)C(j,d) = 0.

Theorem 2: If X(d, n) is balanced, then d ≤ dn/2e.
Proof: If n is even and d ≥ n

2 + 1, then∑
C(j,d)≡0 (mod 2)

C(n, j) > C(n, 0) + C(n, 1)

+ · · ·+ C(n, n/2) > 2n−1.

If n is odd and d ≥ n+1
2 + 1, then∑

C(j,d)≡0 (mod 2)

C(n, j) > C(n, 0) + C(n, 1)

+ · · ·+ C(n, (n + 1)/2) > 2n−1.

In both cases, we have∑
0≤j≤n

C(n, j)(−1)C(j,d)

=
∑

C(j,d)≡0 (mod 2)

C(n, j) −
∑

C(j,d)≡1 (mod 2)

C(n, j)

=
∑

C(j,d)≡0 (mod 2)

C(n, j) −

2n −
∑

C(j,d)≡0 (mod 2)

C(n, j)


= 2

 ∑
C(j,d)≡0 (mod 2)

C(n, j) − 2n−1

 > 0,

contradicting Lemma 6.
Therefore, we see from Lemma 6 that the existence of

balanced elementary symmetric polynomials is related to the
problem of bisecting binomial coefficients (defined below). In
[4], two of us found some computational results about such
bisections, which results we shall describe below. (We mention
here that the authors of [18] found the number of solutions
but without the explicit solutions.) It was suspected that the
existence of nontrivial binomial coefficient bisections (as in
[4]) may cause difficulties in the study of the existence of
balanced symmetric polynomials, but we conjecture that this
is not true for the elementary symmetric case.

We begin with
Definition 3: [4] If

∑n
i=0 δiC(n, i) = 0, δi ∈ {−1, 1}, i =

0, 1, . . . , n, we call (δ0, . . . , δn) a solution of the equation

n∑
i=0

xiC(n, i) = 0, xi ∈ {−1, 1}. (3)

In fact, whenever we get a solution of (3), we get a
bisection of binomial coefficients, that is, we find A, B such
that A ∪ B = {0, 1, . . . , n}, A ∩ B = ∅,

∑
i∈A C(n, i) =∑

i∈B C(n, i) = 2n−1.
Obviously, if n is even, then ±(1,−1, 1,−1, . . . , 1)

are two solutions of (3). If n is odd, then
(δ0, . . . , δn−1

2
,−δn−1

2 −1, . . . ,−δ0) are 2
n+1

2 solutions of
(3). We call these trivial solutions.

Mitchell [17] mentioned the nontrivial solutions for n =
8, 13. In [4], two of us found all solutions of (3) when
n ≤ 28, and, it turns out, nontrivial solutions exist if and
only if n = 8, 13, 14, 20, 24, 26 in this range. In [9], using
a computer search, von zur Gathen and Roche found all
nontrivial solutions for n ≤ 128. It turns out that nontriv-
ial solutions up to 128 exist for odd n if n belongs to
{13, 29, 31, 33, 35, 41, 47, 61, 63, 73, 97, 103} and for even n
if n belongs to {24, 34, 48, 54}, plus the values n = 6t+2, 1 ≤
t ≤ (n− 4)/4.

We note that the authors of [18], [19] also found lower
bounds for the case p = 2 on the number of balanced symmet-
ric Boolean functions. For n even, there was no improvement
on the trivial bound, namely 2, but for n odd, the bound
1.125·2(n+1)/2 (strictly larger than the simple bound 2(n+1)/2)
was determined. So, here we ask the question of determining
necessary and sufficient conditions on the parameter n such
that there exist nonlinear balanced symmetric polynomials on
GF (2)n.
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First, we recall a known result that enables one to find
residues of binomial coefficients modulo a prime p.

Lemma 7 (Lucas’ Theorem): Let n = ampm +
am−1p

m−1 + · · · + a1p + a0 with 0 ≤ ai ≤ p − 1 and
k = bmpm + bm−1p

m−1 + · · ·+ b1p+ b0 with 0 ≤ bi ≤ p−1,
then C(n, k) ≡ C(am, bm) · · ·C(a1, b1) (mod p)
The next lemma can be derived from [1]. However, here we
give a direct proof.

Lemma 8: For any integer d ≥ 2, the sequence
{(−1)C(j,d)}∞j=0 is periodic of least period 2blog2 dc+1.

Proof: First, recall that d has at most blog2 d] + 1 bits.
For 0 ≤ i ≤ 2blog2 dc+1 − 1, according to Lemma 7, we have
C(i + 2blog2 dc+1, d) ≡ C(1, 0)C(i, d) ≡ C(i, d) (mod 2), so
the least period is a divisor of 2blog2 dc+1. On the other hand,
1 = C(d, d) and C(d + 2blog2 dc, d) ≡ C(1, 0)C(0, 1) · · · ≡ 0
(mod 2), which implies that 2blog2 dc cannot be a period. The
lemma is proved.

With the help of Lemma 8, we get the following computa-
tional results. The list could easily be extended. The notation
abc . . . stands for an infinite sequence with period abc . . ..

Lemma 9: We have
{ 1−(−1)C(j,2)

2 }∞j=0 = 0011

{ 1−(−1)C(j,3)

2 }∞j=0 = 0001

{ 1−(−1)C(j,4)

2 }∞j=0 = 00001111

{ 1−(−1)C(j,5)

2 }∞j=0 = 00000101

{ 1−(−1)C(j,6)

2 }∞j=0 = 00000011

{ 1−(−1)C(j,7)

2 }∞j=0 = 00000001

{ 1−(−1)C(j,8)

2 }∞j=0 = 0000000011111111

{ 1−(−1)C(j,9)

2 }∞j=0 = 0000000001010101

{ 1−(−1)C(j,10)

2 }∞j=0 = 0000000000110011

{ 1−(−1)C(j,11)

2 }∞j=0 = 0000000000010001

{ 1−(−1)C(j,12)

2 }∞j=0 = 0000000000001111

{ 1−(−1)C(j,13)

2 }∞j=0 = 0000000000000101

{ 1−(−1)C(j,14)

2 }∞j=0 = 0000000000000011
Theorem 3: If t, ` are positive integers, then X(2t, 2t+1`−

1) is balanced.
Proof: First, C(j, 2t) = 0 when 0 ≤ j ≤ 2t − 1. By

Lucas’ Theorem, we have

C(j, 2t) ≡ 1 (mod 2) when 2t ≤ j ≤ 2t+1 − 1.

By Lemma 8, the period of {(−1)C(j,2t)}∞j=0 is 2t+1.
Hence, we get the sequence {(−1)C(j,2t)}2t+1`−1

j=0 by re-
peating + + · · ·+︸ ︷︷ ︸

2t

−− · · ·−︸ ︷︷ ︸
2t

exactly ` times. Obviously

{(−1)C(j,2t)}2t+1`−1
j=0 is a (trivial) solution of the equation∑n

i=0 xiC(n, i) = 0 when n = 2t+1` − 1. Using Lemma 6
we obtain our result.

Finally, we conjecture that the functions in Theorem 3 are
the only balanced ones.
Conjecture 1. There are no nonlinear balanced elementary
symmetric polynomials except for X(2t, 2t+1` − 1), where t
and ` are any positive integers.
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