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Abstract

Navigators based on real-time traffic conditions achieve suboptimal results since, in

face of congestion, they greedily shift drivers to currently light-traffic roads and cause

new traffic jams. This article presents Themis, a participatory system navigating driver-

s in a balanced way. By analyzing time-stamped position reports and route decisions

collected from the Themis mobile app, the Themis server estimates both the current

traffic rhythm and the future traffic distribution. According to the estimated travel time

and a popularity score computed for each route, Themis coordinates the traffic between

alternative routes and proactively alleviates congestion. Themis has been implement-

ed and its performance has been evaluated in both a synthetic experiment using real

data from over 26,000 taxis and a field study. Results from both experiments demon-

strate that Themis reduces traffic congestion and average travel time at various traffic

densities and system penetration rates.

Keywords: Cooperative Routing, Participatory Sensing, Mobile Application, ITS.

1. INTRODUCTION

The widespread deployment of mobile devices has lead to many mobile apps for

traffic navigation. According to Ericsson ConsumerLab, 29% of smartphone users

in the U.S. used Google Maps or other smartphone navigation apps during morning

commute in 2011 [1], and this number has increased since then. Given the similar

number of dedicated navigation devices [2], the penetration rate of dynamic navigation

devices or apps is now considerable.

Modern drivers equipped with GPS-enabled devices not only use the traffic infor-

mation but also act as traffic information providers. Popular navigation apps, such as

Google Maps [3] and Waze [4], have been prevalently applying the location and event

reports from smartphone users to compute the estimated time of arrival (ETA) of the
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Figure 1: Four cars are about to choose route 1 or route 2 to go from left to right in (a). Due to no traffic, the

latest estimated travel times are three minutes and four minutes for two alternatives, respectively. However,

if each car greedily takes route 1, given the travel-delay model of the two routes in (b), the actual travel time

for route 1 will be nine minutes, three times of the estimated value.

alternative routes. Driving experience and fuel consumption are also shared in novel

systems [5, 6] to help users select among several route choices.

In spite of the progress, one strategic problem with the current navigators still ex-

ists: They greedily route drivers to the fastest path based on the periodically updated

traffic conditions. The high penetration of these navigators potentially leads to the

Braess’s paradox [7] caused by the coupled route choices. For instance, in Figure 1,

greedy routing leads all of the four vehicles to the same route. Since vehicles need

time to reach the bottleneck of the planned route, subsequent drivers may have already

made their decisions before the influence of previously routed cars is reflected in the

traffic conditions. The coupled “best” route choices actually lead the drivers to traffic

congestion and longer travel time instead of saving their travel time. Note that rerout-

ing is not expected to solve the problem, either because rerouting is too late or because

it leads all traffic to new “best” routes and causes new jams. Actually, agent based sim-

ulation has demonstrated that the average travel time increases when half of the drivers

follow the dynamic fastest path based on real-time traffic [8]. Roughgarden [9] has al-

so elaborated on the suboptimal global situation caused by the greedy routing without

coordination.

A few routing algorithms have been proposed to overcome the drawback of greedy

routing [10, 11, 12, 13, 14, 15]. These algorithms, employing cooperative routing,

plan routes based on anticipated traffic volume (ATV) and corresponding predicted

travel time (PTT) by assuming previously routed cars follow their suggested routes.

For example, in Figure 1, two cars may anticipate the future congestion on route 1 and

take route 2 instead, even if route 2 has longer ETA based on the real-time traffic. In

our prior work [16], we also presented a cooperative routing algorithm, EBkSP, to route

traffic based on both ETA and the popularity of the candidate routes.

Despite plenty of algorithmic studies, there are still no practical cooperative routing

services deployed in real life. We believe this is due to two types of challenges. First,

there are a number of practical aspects that have to be solved when building a cooper-

ative routing service: (1) What routing algorithm can be chosen and how can it work

at low penetration rates? (2) How to estimate the average speed accurately? (3) How
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to predict the future traffic flow? (4) Most importantly, how to incorporate the above

components in one system to provide cooperative routing services? Second, the service

has to be evaluated in a meaningful way before deployment: (1) How to realistically

evaluate the system without large-scale real-life experiments? (2) How to evaluate the

performance under different penetration rates? This article addresses both aspects.

In this article, we present a participatory cooperative navigation system, Themis,

which utilizes the data collected from road vehicles, such as location samples and route

choice decisions, to estimate the traffic speed as well as the future traffic flow at road

segment level. By learning and combining the multi-dimensional traffic information,

Themis applies a cooperative routing algorithm to route the participant drivers to routes

that are good for both the drivers and the traffic ecosystem to proactively alleviate

congestion.

Furthermore, we present a method to investigate how the performance of a partici-

patory navigation system scales at different penetration rates by meaningfully expand-

ing the real data collected from probe vehicles. We apply the method to the trajectory

data from over 26,000 taxis and demonstrate that Themis outperforms greedy naviga-

tion systems. We find that the benefits of Themis emerge even if the penetration rate is

as low as 7%.

Finally, we prototype Themis as a vehicular routing server and an Android smart-

phone app. The prototype system is validated in a field study with 16 cars and it

illustrates Themis’s benefits in terms of traffic distribution and travel time reduction in

real world when the penetration rate is almost 100%.

The remainder of the article is structured as follows: Section 2 reviews the re-

lated work. Section 3 describes the Themis architecture and elaborates on the algo-

rithms used by each component. Section 4 covers the implementation details of our

Themis prototype system. The evaluation using city-scale synthetic experiments and

neighborhood-scale field experiments are presented in Sections 5 and 6, respectively.

Section 7 discusses the lessons learned and the future work. The article concludes in

Section 8.

2. RELATED WORK

Several algorithms were designed to solve the cooperative routing problem, and

they can be divided into three categories.

The first category of algorithms focus on user equilibrium [17], which computes

the PTT of road segments and plans the fastest path for a driver based on PTT. Since

PTTs increase with ATVs which include the previously routed cars, the algorithms

of this category automatically route subsequent traffic to the alternatives if previously

routed traffic have made current fastest path (i.e., fastest path based on real-time traffic)

suboptimal. Yamashita et al. [10] used Greenshield’s model [18] to relate PTT to ATV

and designed the Passage Weight heuristic to generate the contribution of each planned

path toward ATV. The work in [11] used a similar model to relate PTT and ATV except

that it assumed the traffic volume to be stochastic and determined by both historical

traffic and previously assigned traffic. In [14], the authors proposed to compute a few

alternative routes based on real-time traffic and then route the car to the path with the

shortest PTT based on encounter prediction.
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Figure 2: Themis System Architecture

Other studies aim to route the traffic to achieve system optimum of the transporta-

tion network, which does not necessarily minimize the individual driver’s travel time

but minimizes the average travel time of a group of users, e.g., all the drivers in a city

or the users of a certain navigation system. The routing algorithms based on system

optimum are also called social navigation [15]. Bosch et al. [15] proposed to handle a

routing request by searching a path minimizing the total PTT of all previously assigned

drivers. Lim et al. [12] proposed to compute a few route candidates based on real-time

traffic and investigate the mutual timing influence of users’ route choices based on the

BPR flow-delay model [19]. This work assigns a group of drivers to the combination

of paths that optimize the total travel time, and the algorithm was evaluated using taxi

trajectory data from Singapore [20].

Finally, Pan et al. proposed several heuristics to plan or to choose from the first-k

shortest paths (KSPs) based on previously assigned traffic [16]. The basic workflow

of these approaches is similar to aforementioned two categories. However, the criteria

used to compute or choose from KSPs in these approaches are not precisely computed

PTT but some heuristic functions. For example, the EBkSP algorithm computes the

KSPs according to real-time traffic and assigns the traffic to the least popular route

among KSPs to balanced the traffic volume distribution. The popularity heuristic is de-

fined based on both current traffic conditions and previously routed traffic (i.e., ATV).

Simulation result shows that the heuristic methods achieve substantial travel time re-

duction with very limited computation resources.

In this article, we address the challenges of implementing these algorithms in real

life. We present a participatory system, using up-to-present data collected from cars to

determine the traffic conditions, based on which cooperative routing algorithms make

decisions (i.e., real-time traffic and PTT or ATV). Compared with the taxi data evalua-

tion in [20], our synthetic evaluation method investigates the performance of coopera-

tive navigation at different penetration rates by meaningfully expanding the trajectory

data. In addition, we also include the real world evaluation results from field studies.
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3. PARTICIPATORY NAVIGATION SYSTEM

The Themis app is assumed to be installed in a mobile device, which is equipped

with GPS and wireless communication such as DSRC or cellular to connect with the

Themis server. The route computation is carried out at the Themis server using a coop-

erative routing algorithm. While the route suggestions are retrieved by the Themis app

to provide users with turn-by-turn directions, the app also uploads route confirmations

and time-stamped positions to help deal with subsequent navigation requests.

3.1. System Architecture

As illustrated in Figure 2, Themis consists of five executable entities: the Themis

app on mobile devices, the Portal server, the Traffic Sensing server, the Flow Monitor

server, and the Cooperative Routing server. While logically centralized, each server can

be implemented in a distributed fashion to provide scalability. The Themis app allows

the drivers to select from suggested routes, presents turn-by-turn driving directions,

and uploads time-stamped position reports as well as the route selection decisions. The

Portal server ensures the interaction between the Themis server and the Themis app

and meanwhile performs request dispatching and load balancing. The Traffic Sens-

ing server estimates the travel time at road segment level. The Flow Monitor server

supervises cars’ movement along its selected route, triggers rerouting if needed, and

estimates the future traffic that is scheduled to travel through each road segment. In

addition, it is responsible to update the traffic information (e.g., ETA) for users. The

Cooperative Routing server computes the route candidate(s) based on real-time speed,

PTT, and ATV.

The information used by the Cooperative Routing server is stored in two databases.

The Traffic database stores the static road map, the traffic-delay model, and the latest

estimated travel time of each road segment; it is updated by the Traffic Sensing server.

The Footprint database maintains the routes being taken by drivers and their status, such

as the timetables containing the ETA to each road segment included in the confirmed

routes. It also stores the short-term predictions of the traffic flow on each road segment

(i.e., how many cars will go through a road segment in the future) based on the routes

being taken and the latest traffic conditions. The Footprint database is updated by the

Flow Monitor server. The Sample database is only used to cache the position reports.

Navigation Process. When a user issues a new navigation request, the Themis app

contacts the Portal server with the origin-destination information. The Portal server for-

wards the routing request to the Cooperative Routing server, where route candidates are

calculated using data from the Traffic and Footprint databases. The routing results are

returned to the Themis app by the Portal server to generate alternative route previews.

The user chooses one of the alternatives, and the Themis app translates the selected

route into turn-by-turn directions. A confirmation of the selected route is meanwhile

sent back to the Flow Monitor server to update the Footprint database.

Position Report Process. During regular driving, the Themis app periodically re-

ports time-stamped positions (also called samples) to the Portal server, which are then

sent to the Flow Monitor server. If the position is successfully matched to the previ-

ously confirmed route, the Flow Monitor server will provide the user with the latest

ETA and earned route score (see Section 3.4) and update the timetable belonging to
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Figure 3: An example of participatory traffic sensing. Red and blue dots represent the trajectories from two

different cars in the same interval. Their movement directions are illustrated using arrows. After the map

matching process, the samples in each trajectory are matched to points along the roads shown with crosses.

Meanwhile, the inferred episode routes that connect the matched points (shown in dash lines) are used for

travel time allocation and aggregation.

this route in the Footprint database; otherwise, a detour is detected and the Flow Mon-

itor server will end the current confirmed route and issue a new routing request to the

Cooperative Routing server. Note that, no matter whether the route matching process is

successful or not, each position report handled by the Flow Monitor server will then be

stored in the Sample database, from which the Traffic Sensing server retrieves samples

to estimate the travel time of each road segment periodically.

3.2. Participatory Traffic Sensing

After collecting and preprocessing the position samples from multiple cars during

an interval, the Traffic Sensing server takes the following steps to estimate the travel

time on each road segment.

3.2.1. Map Matching

During the map matching process, samples are matched to the road map (i.e., to

the most likely position on road segments), and the possible episode routes (i.e., partial

routes) linking consecutive samples from each car are also inferred. Figure 3 shows

how the episode routes are constructed.

Themis map matching is based on the Hidden Markov Map Matching (HMMM)

method in [21], which considers both the distance to nearby roads and the context of

each sample. For example, although sample R2 in Figure 3 is closer to Lexington Ave,

it should be matched to East 37th St because it is unlikely for a driver to travel from R1

to R3 through Lexington Ave.

In [21], the context information used to compute the transition probability in HM-

MM is the length of the episode routes connecting adjacent samples. Themis enhances

it by defining the transition possibility based on Weighted Route Length (WRL). The

motivation for this change is the observation that people tend to take main roads in-

stead of lower-level (i.e., smaller) roads even if the length of low-level roads is shorter.
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Suppose pi is the i-th possible episode route between two matching samples, then:

WRL(pi) =
∑

e∈pi

lene ∗ weightl(e), (1)

where lene is the length of the road segment e and weightl(e) is the weight associated

with the level of the road segment e. The HMMM method essentially computes the

probability of several episode route candidates, each of which is a function using the

weights as its parameters. Therefore, the weight of each road level can be learned from

real data (i.e., training data). In our case, we set the objective function as maximizing

the sum of the probability differences between the ground truth path and all the other

paths. Then, we determine the value of weight using over 15,000 manually matched

samples.

3.2.2. Travel Time Allocation and Aggregation

The episode routes inferred through the map matching process may consist of mul-

tiple road segments and even partial road segments. Travel time allocation process

divides the travel time observed on an episode route to the road segments covered by

this route using the estimated travel time in the previous interval. For example, the trav-

el time from B2 to B3 in Figure 3 is distributed to the two fully covered road segments

and the two partially covered road segments.

Given an episode route pi and the travel time observation τi, the travel time allo-

cation process computes a travel time estimation for each road segment covered by pi,
defined as Rpi

(ei,1, ei,2, ..., ei,n). For a road segment ei,j partially covered by pi, we

define ρi,j as the fraction of covered length out of the total length of ei,j . We denote

the travel time estimation on road segment ei,j in previous interval (i.e., interval n− 1)

as t̄ n−1
i,j . The travel time on road segment ei,j estimated from the episode route pi,

denoted as τni,j , is computed as follows:

τni,j =
t̄ n−1
i,j∑

ei,k∈Rpi

ρi,k ∗ t̄ n−1
i,k

∗ τi (2)

Suppose p(p1, p2, ..., pn) is the collection of episode routes covering a specific road

segment within interval n. The aggregation process utilizes the time estimations for this

segment drawn from each pi ∈ p and aggregates them into one travel time expectation

value. As shown in Figure 3, by allocating the travel time of episode route (R3, R4),

episode route (R4, R5), and episode route (B2, B3), respectively, we have three travel

time estimations for the road segment from East 36th St to East 35th St on Park Av. The

estimations are aggregated to get t̄ n
e , the travel time estimation of edge e in interval n:

t̄ n
e =

∑
pi∈p,ei,j=e

τni,j ∗ ρi,j/τi

∑
pi∈p,ei,j=e

ρi,j/τi
(3)

The aggregation process smooths the influence of the non-traffic factors, such as

the driving style. Equation (3) calculates the weighted average value of individual

estimations, which biases the estimation in favor of the episode routes with longer

coverage and the episode routes with higher sampling rates.
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3.3. Flow Monitor

The basic function of the Flow Monitor server is to estimate ATVs on road seg-

ments such that PTTs could be inferred based on given traffic-delay models. Since

the penetration rate of Themis is not expected to be 100%, the ATV includes both the

controlled traffic and the unexposed background traffic.

The controlled traffic represents the cars that use Themis to plan paths and navigate

to destinations. This part of traffic can be determined easily. Once a route is confirmed

by the Themis app, the Flow Monitor server translates the planned path into a timetable,

in which the ETA to each road segment in the path is sequentially estimated starting

from the current location using the latest travel time estimations. The timetable is

updated when a new route confirmation or location report is received. Based on the

timetable, the controlled traffic volume can be estimated given a road segment and a

time-stamp.

The method used to estimate the background traffic in Themis is based on [22],

which proposed to extrapolate unexposed traffic volume based on some naturally dis-

tributed probes. In Themis system, we use the controlled traffic as the probes and

dynamically estimate the ratio of the controlled traffic volume to the background traf-

fic volume on each road segment based on the known ratios from baseline road seg-

ments and the similarity between the road segments. This algorithm has been proven

to have good performance given accurately estimated real-time speed and controlled

traffic volume generated by a large number of natural probes. In Themis, the estima-

tion of real-time speed is discussed in Section 3.2. However, we cannot directly use

the controlled traffic volume computed in the previous paragraph to infer the back-

ground traffic because the paths of controlled traffic are not “natural” (as expected by

the method in [22]) but influenced by the cooperative routing system. Currently, we

assume the natural path to be the fastest path and estimate the natural traffic volume by

assuming cars move using the latest estimated speed along the natural path. Although

there may be exceptions when users would not take the fastest path in the absence of

Themis, we leave more accurate natural path inference for future work.

3.4. Cooperative Routing Algorithm

Two routing algorithms are implemented in the Themis routing server, the Dijkstra

fastest path based on the real-time travel time estimation, and a balanced routing algo-

rithm. The basic workflow of the balanced routing algorithm is presented in Alg. 1.

Themis first computes the alternative routes based on real-time traffic, and then exe-

cutes a popularity scoring algorithm to evaluate the popularity of each possible route.

For the computation of alternatives (i.e., KSPs), we choose the Iterative Penalty

Method (IPM) [23] as simulation results showed that IPM could provide dissimilar

KSPs with small computational cost. We define the similarity between two paths as

the ratio of the length of the overlapped road segments out of the total length of the

shorter path. By setting a threshold of similarity, IPM terminates either when enough

dissimilar paths have been computed or when there have been too many iterations.

After computing the route alternatives, Themis associates a score with each alter-

native, which reflects the popularity of that route. The score is inversely related to the

route popularity. Given that traffic conditions are periodically updated, routing cars to
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Algorithm 1 Balanced Routing Algorithm

Input: origin, destination, traffic database, footprint database, similarity threshold,

number of paths, ǫ: max iteration

Output: alternative routes with scores

1: π = ∅; {initialize the set of alternative routes}

2: π = get_dissimilar_KSPs (origin, destination, traffic database, similarity threshold,

number of paths, ǫ);
3: for all πi ∈ π do

4: πi.score = compute_score(πi, traffic database, footprint database);

5: end for

a route πi results in lower score for any route that has overlapping road segments with

πi in a traffic condition update interval. Consequently, taking a route with a higher

score does not create congestion on this route, and this decision is expected to alleviate

congestion elsewhere. Themis leaves the route selection decision to the user, who will

attempt to find a balance between the estimated travel time and the score of each alter-

native. By selecting an alternative with a higher score and with a good, but perhaps not

the best ETA, a user will contribute to the global traffic ecosystem (i.e., the system’s

state will move closer to the system optimum).

To compute the popularity score, we applied the following equation based on the

popularity computed in EBkSP [16]. The score of an alternative route πi is defined as:

scoreπi
=

ETAavg

pop(πi)
, (4)

where ETAavg is the average ETA for all the alternative routes and pop(πi) is the

popularity of route πi. pop(πi) is determined by both the ETA of the route and ATV

that is scheduled to fully or partially travel through route πi. Including ETAavg in

the equation does not influence the route choice. We add this term only to scale the

magnitude of the scores.

4. PROTOTYPING

We implemented the Themis app on Galaxy Nexus (Android 4.3) based on an open-

source GPS navigator, OsmAnd [24]. The Themis app is implemented as a plugin,

together with a customized map layer, such that it can easily be switched on or off. We

inherit the interfaces of turn-by-turn driving assistance provided by OsmAnd and move

the route calculation to the Themis server. The user interface of Themis is shown in

Figure 4. Themis computes three alternative routes based on real-time traffic conditions

and associates each route candidate with the popularity score and its ETA. During the

navigation process, the app listens to position change events and routing requests from

the user. The former triggers a potentially new position update request, and the latter

directly starts generating a routing request. These requests are sent to and replied by

the Portal server via a JSON Interface.
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Figure 4: Themis application interface. The left screenshot shows three possible routes ordered by their

scores and ETAs. After choosing one route from the three alternatives, a user enters the navigation mode

(right screenshot), which provides turn-by-turn driving directions. During the navigation mode, the upper

left part of the screen displays the driving directions for the next two steps. The score that a user has earned

so far for taking the current route is shown below the driving directions. The labels in the upper right part

show the distance to the destination, estimated arrival time, and other route choices.

The Themis server is physically built on a Dell PowerEdge T110 server equipped

with Intel Xeon E3-1230 v2 3.30GHz Quad Core processor, 4×8GB 1600MHz DIMM-

s, and 2T 7200RPM SATA 3Gbps hard drive. The Portal server, Cooperative Routing

server, and Flow Monitor server are implemented using PHP scripts. The Cooperative

Routing server and Flow Monitor server expose their core functions to the Portal serv-

er. When a route confirmation, routing request, or location report request arrives, the

Portal server directly calls the corresponding functions in either the Cooperative Rout-

ing server or the Flow Monitor server to handle the request. The Traffic Sensing server

is implemented as three separate java programs (i.e., map matching, travel time allo-

cation, and travel time aggregation). As the location reports are stored in the Sample

DB, the Traffic Sensing server just takes the records from the database for processing.

For scalibility, in each interval, the server launches four instances for map matching

and travel time allocation; for the aggregation process, one instance is enough in our

experiments due to the low complexity of the task.

The implementation of the Themis server combines several open-source software

packages to provide cooperative routing. OpenStreetMap (OSM) [25] is imported into

PostgreSQL[26] database as the source of static map data by using osm2pgrouting

[27]. The traffic information estimations are also stored in the PostgreSQL database

as properties of each road segment. The two algorithms presented in Section 3.4 are

implemented based on the open-source routing library pgRouting [28].
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5. SYNTHETIC EVALUATION

This section analyzes the performances of Themis in synthetic scenarios modeling

a city-scale deployment in Beijing using trajectory data from 26,000 taxis. Specifically,

this experimental evaluation addresses the following questions:

1) How accurate is Themis’s participatory sensing in estimating the traffic charac-

teristics?

2) How does balanced routing compare with greedy routing in terms of traffic dis-

tribution and average travel time?

3) How do the traffic distribution and travel time vary with the system penetration

rate and the total traffic amount?

The baseline routing algorithm in the evaluation is greedy routing (i.e., fastest route

based on latest ETA) and for balanced routing, we assume that drivers choose the al-

ternative route with the highest score.

5.1. Experimental Methodology

5.1.1. Dataset

We use GPS trajectories from a 26,000 fleet of taxis in Beijing during three consec-

utive Tuesdays starting from April 6, 2010, which amount to approximately 58,000,000

valid data points. Each sample contains the taxi ID, the timestamp, the geo-location,

and the passenger status (i.e., free or occupied). They are sampled at intervals between

30 seconds and five minutes. To derive the total traffic, we use two other datasets: the

daily percentage of taxi traffic out of total traffic on 3981 main road segments, and the

citywide half-hour variation of taxi traffic out of total traffic. By checking both the cov-

ered area and the taxi penetration rate, we decided to carry out our experiment using

the data in a rectangle area covering the Beijing second ring area, which is about 65

square kilometers. In this area, our taxi data account for almost 7% of the total traffic.

During the synthetic experiments, we imported the above datasets into the databas-

es used by the Themis sever and processed them using our Themis service described in

Section 4, including the Traffic Sensing server, the Flow Monitor server and the Coop-

erative Routing server. As a result, even though with historical data, the Themis server

is thoroughly evaluated with large amounts of real data.

5.1.2. Modeling Trips and Penetration Rates

The first problem we solved in the synthetic evaluation is how to extract routing

requests from the dataset and manipulate them to get different penetration rates. First,

we identify passenger-on-board (POB) trips. The time-stamped location where the

passenger status of the taxi changes to POB is recognized as the origin of a POB trip.

The time-stamped location where the POB status is reset to a different status is con-

sidered as the destination. Since the number of POB trips is limited, especially during

late-night hours, we also include non-passenger (NP) trips, which are those trips hap-

pening between POB trips. We limit the max duration of NP trips to five minutes to

avoid the influence of vacant wandering taxis. The routing requests generated in this

way could be used to evaluate Themis when the penetration rate is no more than the

original percentage of the taxis in traffic.
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For the sensitivity analysis at higher penetration rates, we built a threefold and a

sixfold routing request set. The threefold routing request set is generated by proposing

each original routing request three times and adding a random in-between delay within

five minutes. The sixfold routing request set is generated likewise. Therefore, the

penetration rate can be increased to approximately 20% and 40%, respectively.

Note that the global penetration rate is carefully bounded by 40% such that, on any

road segment, the traffic generated by the amplified routing request set does not exceed

the total traffic estimated using the original routing request set (this will be presented

in Section 5.1.3). Different penetration rates only change the proportion of the con-

trolled traffic but do not influence any global traffic features such as traffic volumes

and average speeds. The essence of amplifying the request set is that we extract some

background traffic on consecutive road segments and use it to generate new trips based

on real previous trips. Comparing to the methods that randomly choose the routing

requests and expand them, our method preserves the traffic conditions implied in the

taxi trajectories dataset. Therefore, it is a more persuasive setup to show the realistic

influences of balanced routing in the targeted city. There are other alternatives to adjust

the penetration rate such as modeling the traffic demand based on the original routing

request set and then generating the amplified request set based on the traffic demand

model. Due to the complexity of such methods, we leave them as future work.

5.1.3. Background Traffic Estimation

At each penetration rate, the background traffic volume equals to the original total

traffic volume minus the controlled traffic determined by different routing request sets

(origin, threefold, or sixfold) under the original traffic condition. Based on the method

from [22] (also described in Section 3.3) and our taxi ratio statistical data, we can

derive the background traffic volume if we know the movement of the controlled traffic

on the road segment.

Given any routing request set with original routes, the movement of the controlled

traffic can be simulated at the original average speed, which can be estimated by ap-

plying our traffic sensing algorithm (Section 3.2) to the taxi trajectory dataset. After

each 15-min interval, we directly estimate the average travel speed on a road segment if

there are at least two taxi trajectories passing through the segment during the interval.

For the road segments that do not have direct estimations, we derive the estimated av-

erage speed using the speed of their joint road segments. As discussed in Section 5.1.2,

the estimated speed when the penetration rate is 7% can also be used for the other two

penetration rates (i.e., 20% and 40%). We call the speed estimated using participatory

traffic sensing the sensed speed.

5.1.4. Learning the Traffic-Delay Model

If every car takes its original route, the average travel speed on each road segment

would be the original sensed speed. However, to evaluate the travel time of the trips

after rerouting, this original sensed speed is not useable as reroutings dramatically

change the traffic distribution. Therefore, we use a traffic-delay model [19] to infer

the travel time of a road segment based on the traffic volume on it during a given time

interval, which is determined as described in Section 5.1.3. The speed derived based on
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the traffic-delay model is called the inferred speed, with the inferred travel time derived

from it. The function used for the traffic-delay model is:

te(fe) = T 0
e (1 + α(

fe
Ce

)
β

) (5)

T 0
e is the free-flow speed (i.e., speed limit). Ce is the capacity of the road segment e

and fe is the average traffic volume. te(fe) is the inferred speed based on the traffic

volume fe.

Using a similar method as [20], we learn the parameters α and β for 7,411 road

segments from the total of 11,450 road segments. These segments were used because

they have good direct travel time estimation. Fortunately, these models cover most

main roads. During the evaluation, we only route traffic over road segments that have

traffic-delay models such that we are able to measure travel time changes. For the

comparison between the actual travel time of the original routes and the inferred travel

time using the traffic-delay models, we also only use the routes fully covered by the

traffic-delay models.

5.1.5. Traffic Movement Simulation

Given the route and the average speeds in each interval, we simply simulate the trip

by assuming a car travels through each road segment included in the route using the

average speed of the current interval. As we know the starting time of the trip, we can

compute the starting time of each road segment step-by-step. When the time reaches a

new interval, we use the average speeds for this new interval.

One difficult issue is how to simulate the rerouted trips. After rerouting, the move-

ment simulation must be done using the speeds inferred based on the traffic-delay mod-

el. However, the traffic-delay model needs the traffic volumes to derive speeds. This is

a chicken-and-egg problem because the traffic volume is determined by the movement

of the traffic within the 15-min interval. To solve it, we use an iterative method to com-

pute the speeds within each interval. In the first iteration, we use the sensed speeds to

simulate the traffic movement. This step will end with new inferred speeds on the road

segments. In the next iteration, we used the inferred speeds from the first iteration to

update the speeds in the same interval. The process goes on iteratively until no speed

changes on any road segment. Fortunately, the process converges very quickly because

small speed changes do not influence the traffic volume distribution significantly.

5.2. Evaluation of Travel Time Estimations

The accuracy of either the sensed speed or the inferred speed is evaluated by a

comparison between the average ground truth trip travel time and the average simu-

lated trip travel time based on the corresponding speed estimations. To get the sensed

speed, we apply the participatory traffic sensing algorithm (Section 3.2) to our taxi tra-

jectory dataset. For the inferred speed, we apply the method in Section 5.1.5 to the 7%

penetration routing requests set based on the learned traffic-delay model.

In the evaluation, we choose 100 random trips from the original request set in each

15-minute interval from 1:00 to 13:00 on April 6, 2010. We choose this period as it

contains both peak hours and low-traffic hours. In addition, the number of taxis in
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Figure 5: The accuracy of trip travel time estimation.

operation changes greatly during this period so that we can analyze the sensitivity of

Themis participatory traffic sensing. At 4:00, only 7647 taxis (30% in our dataset)

are running, while over 95% taxis operate between 9:00 and 9:30. For sensed speed

evaluation, we use “leave-one-out” validation by not including the estimations from the

car under evaluation into the aggregation step. However, the “leave-one-out” validation

is not used for the inferred speed evaluation because the traffic-delay models are built

using the data from three days, not specifically optimized for our evaluation set.

Figure 5 shows that the actual time and the simulated travel time computed based on

sensed speed are closely matched, which means that the accuracy of our participatory

sensing is high. During the period from 6:30 to 10:30, the relative error is less than 3%.

The highest error comes during late-night hours when the participants are extremely

sparse. However, even in this case, the relative error is below 12%. The results show

that our participatory sensing algorithm has good accuracy and is robust to varying

numbers of participants.

The travel time simulated using the inferred speed also matches the ground truth

well. During the period from 6:30 to 13:00, the relative error is less than 10%. Similar

to participatory sensing, the inferred speed also has a higher error rate during late night,

which is less than 15%. These results prove that our traffic-delay model is acceptable.

In order to get the accurate evaluation of the balanced navigation system, we only

carry out the following evaluation experiments between 6:30 and 13:00. Another rea-

son to abandon the period between 1:00 and 6:30 is that during this period the traffic

load is too low to generate traffic congestion.

5.3. Evaluation of Traffic Distribution

The average traffic volume is used as a global measure of congestion in the road

network and is computed over all road segments that are traversed by at least one car.

The higher the traffic volume, the less distributed the traffic; consequently, it is more

likely to experience congestion in the network.

14



Figure 6: Traffic volume comparison at different penetration rates.

Figure 6 presents the comparison of the navigated traffic volume between two im-

plemented routing algorithms in Themis (i.e., balanced routing and greedy routing, see

Section 3.4) at different penetration rates. The balanced routing results in a lower traf-

fic volume at each interval for each penetration rate. These results demonstrate that

balanced routing distributes the traffic better than the greedy routing. Furthermore,

the traffic volume is reduced more substantially for higher penetration rates. We al-

so observe that, during the experimental period, the relative traffic volume reduction

is steady at each penetration rate regardless of congestion levels. Another interesting

finding is that the relative traffic volume reduction tends to increase more slowly as the

penetration rate increases. This implies that, as the penetration rate rises above a cer-

tain threshold, the balanced routing’s function to reduce global traffic congestion will

linearly increase with the penetration rate.

5.4. Evaluation of Trip Travel Time

One danger of the balanced routing algorithm used in Themis system is that it could

lead to longer trips when distributing traffic to unpopular routes. We define two criteria

to compare the performances of balanced routing and greedy routing in terms of trip

travel time in each 15 minutes interval:

FR =
Number(A′s travel time < B′s travel time)

Number(all the routing requests)
(6)

RTTR =
B′s travel time−A′s travel time

B′s travel time
(7)

Faster Rate (FR) reflects the percentage of routes suggested by A that are faster than

those suggested by B. Relative Travel Time Reduction (RTTR) reflects to what extent

the routes suggested by A are faster than those suggested by B. In both definitions, A

refers to Themis balanced routing while B is the greedy routing (i.e., fastest path based

on real-time traffic sensing).
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Figure 7: Comparison of FRs at different penetration rates.

Figure 7 shows that over 50% of routes suggested by the balanced routing have

shorter travel time than the greedy routing at any interval for any penetration rate in

our experiment. Specifically, the average FR for 7%, 20%, and 40% penetration are

55%, 58%, and 61%, respectively. The results demonstrate that the balanced routing

provides users with a higher chance to achieve shorter travel time. As the penetration

rate increases, FR also rises. Thus, the more users adopt Themis, the higher the prob-

ability that users will reduce their trip travel time. Another finding is that even at 7%

penetration rate, Themis users could still expect lower travel time, which could be a

motivation to change the greedy routing behavior during the bootstrapping stages of

Themis.

Figure 8 shows that the balanced routing reduces the average trip travel time sub-

stantially, e.g., as much as 15% at 40% penetration rate. As expected, the higher the

penetration rate is, the lower the trip travel time. Another significant trend of travel

time reduction is that RTTR is determined by both the traffic density and the penetra-

tion rate. During moderate-traffic hours (10:00 to 12:00), Themis averagely reduces

travel time by 8.2% for 40% penetration, 4.0% for 20% penetration, and 2.7% for 7%

penetration. These results illustrate that the RTTR achieved by Themis over greedy

routing is substantial and increases with the penetration rate for moderate traffic. In

addition, the relative travel time reduction increases faster when the penetration rate

rises from 20% to 40%. Therefore, better RTTR can be expected when the penetration

keeps rising beyond 40%.

During morning commute (6:30 to 9:30) and lunch time (12:30 to 13:00), though

the balanced routing still leads to lower average travel time, it is less significant than

that in moderate-traffic hours. Moreover, the penetration rate does not have much in-

fluence during these intervals. One reason for this result is that these periods represent

rush hours in Beijing when most road segments are crowded and there are not many

better options to choose even for the balanced routing algorithm. Another reason is

that the number of taxis in operation is small at 6:30 and gradually increases to normal

level until 9:00, which implies the actual penetration during this period can be lower
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Figure 8: Comparison of RTTRs at different penetration rates.

Figure 9: Distribution of RTTRs at 7% penetration.

than daily average value.

After separately analyzing the average values of FR and RTTR in each interval, we

combined them by studying the distribution of RTTRs. Figures 9, 10 and 11 illustrate

the distribution of RTTRs for all the trips during the experiment period (from 6:30 to

13:00) at different penetration rates.

The common feature of these three histograms is that they are right-skewed, mean-

ing that balanced navigation averagely has higher probability to reduce the trip travel

time. The most likely result for a driver using balanced navigation is to achieve slightly

lower travel time. This is implied by the location of the peak density, which is to the

right of the benefit boundary (i.e., RTTR = 0) for each penetration rate. In addition, as

the penetration rate rises, the right skew of the histograms tend to be more significant

and the peak density tends to move to the right. This means that a higher penetration

rate improves both the probability of lowering the travel time and the magnitude of the

travel time savings.

We already showed that not all the trips suggested by balanced routing achieve
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Figure 10: Distribution of RTTRs at 20% penetration.

Figure 11: Distribution of RTTRs at 40% penetration.
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Figure 12: The map of the neighborhood for field experiments.

shorter travel time. However, from the distribution of RTTRs, we found that even

if balanced routing sometimes leads to longer travel time, the probability of having

a substantial time increase is very small because the density on the left side of the

benefit boundary starts from a relatively high value but it drops sharply as RTTR keeps

decreasing. In contrast, the density on the right side of the benefit boundary maintains

high values until the peek density and then drops at a slower rate than the decreasing

rate on the left side of the benefit boundary. This explains why balanced routing has a

higher probability to save the drivers’ travel time and implies that the magnitude of the

savings are fairly distributed across a large number of vehicles.

6. FIELD EVALUATION

We carried out the field study for cooperative routing by scaling down the exper-

imental area to a small neighborhood with sparse background traffic. Compared with

the synthetic experiments, the field experiments are capable of evaluating the real in-

fluence on traffic rather than the estimated one. The field experiments also have the

ability to test the Themis app when users are driving on the roads.

6.1. Experimental Setup and Methodology

During our field study, we recruited 16 volunteers to drive their cars using the

Themis app installed on their Android phones. Due to the limited control traffic, one

critical issue was how to design the experiment scenarios such that routing with dif-

ferent algorithms (i.e., balanced routing vs. greedy routing) would show representa-

tive results. We chose a neighborhood shown in Figure 12 to solve this issue: First,

the neighborhood provided multiple alternative routes with similar distances, i.e., four

possible routes existed between positions A and B. Second, the background traffic was

low such that the background traffic conditions were almost identical during the exper-

iments for balanced routing and greedy routing. Finally, the majority of road segments
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Synchronous Experiments Asynchronous Experiments

Number of Trips 83 86

Mean of the relative errors -0.025 0.003

SD of the relative errors 0.039 0.013

Table 1: The statistic summary of the relative sensing error in the field study

in this neighborhood were one lane and around 50 meters long with stop signs at all

intersections. This layout made the average travel delay on the road segments highly

depend on the traffic volume even if the number of cars was small. As a result, the

experiments conducted in this neighborhood allowed us to observe the performance

differences between balanced routing and greedy routing for both traffic distribution

and average trip travel time.

We believed that traffic density (i.e., congestion or not) is essentially determined

by the vehicles’ arrival rate at a road segment. Therefore, we designed two groups

of experiments, synchronous and asynchronous, to mimic high-traffic scenarios and

low-traffic scenarios, respectively. During synchronous experiments, all participants

submitted routing requests simultaneously to get to B from A. After all the cars had

arrived at B, they requested to come back to A simultaneously. The synchronization

ensured higher vehicle arrival rate even if the total number of vehicles was small. In the

asynchronous experiments, all the setups were the same except that the drivers freely

drove from A and B and then came back without synchronization at either positions.

For both groups of experiments, we started with the balanced navigation mode and

after 15 minutes switched to greedy routing mode. Out of the 16 experimental cars,

14 submitted routing requests and followed the navigation while the other two traveled

around the neighborhood to collect traffic reports from the road segments where no

experimental vehicle traveled. The position report frequency was set to 30 seconds.

The Traffic Sensing server updated the traffic information every 5 minutes (i.e., traffic

estimation interval was 5 minutes).

We defined the trip from A to B as to-trip, and the trip from B to A as return-

trip. For both to-trips and return-trips, there were four possible routes (as shown in

Figure 12). We named the eight routes using the route id and direction; for example,

“route_1_to” referred to the trip from A to B taking route 1.

6.2. Sensing Accuracy

Similar to the synthetic experiments, we first tested the accuracy of the participatory

traffic sensing. We compared the ETA of a path shown to the drivers with the actual

travel time (ATA) of the same path in the previous interval, as ETA is computed based

on the location reports from the previous interval. For each pair of ATA and ETA, we

computed the relative error.

The statistics summary for each group of experiments (i.e., synchronous and asyn-

chronous) is presented in Table 1. These results confirm the results from the synthetic

experiment: a low relative error is observed, which proves the high accuracy of the

Themis participatory sensing algorithm. Note that the synchronous experiments show

slightly higher error rate. This is due to the fact that the variation of the actual travel
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Figure 13: Distribution of total travel time in the synchronous experiment

Figure 14: Distribution of total travel time in the asynchronous experiment

times of different cars is larger in synchronous experiments because of the stronger

queueing effect at each intersection or stop sign.

6.3. Traffic Distribution and Trip Travel time

Figure 13 and Figure 14 compare the total travel time of all the cars as well as the

travel time distribution on each route under balanced routing and greedy routing for the

synchronous and asynchronous experiments, respectively. In each interval, the first bar

indicates the results of balanced routing, while the second bar represents the results of

greedy routing.

In each figure, since traffic conditions are not recomputed within each interval,

greedy navigation assigns traffic to only one to- or return- route with the lowest ETA.

On the other hand, balanced navigation reduces the travel time significantly by bal-

ancing the traffic load on different alternatives. By checking the ETA of each route

in Themis, we also find the balanced navigation to favor the routes with shorter ETA
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or the routes sharing less road segments with the other alternatives. Compared with

the results from the synthetic experiments, both groups of field experiments got higher

time savings under relatively low traffic density. This is partly due to the fact that the

neighborhood we choose has the ideal layout for balanced routing, i.e., it has multiple,

almost equivalent routes between the origin and the destination. In addition, the high

penetration rate also help to bring about better time savings.

The comparison between Figure 13 and Figure 14 shows that the ratio of reduced

travel time shrinks from 32% to 13.5%. This can be explained by the fact that the

congestion induced by the greedy routing in the asynchronous experiments is alleviated

by the lower traffic density (i.e., lower traffic arrival rate than that in the synchronous

experiments).

7. LESSONS LEARNED AND FUTURE WORK

Scalability. The Themis system is designed to work in real time. The position

samples are processed in every time interval to update the travel speed estimations.

The flow-estimation algorithm re-estimates the traffic volume when cars change their

travel plans. The cooperative routing module performs the route planning in real time

once it receives a new routing request. As a result, the scalability issue is critical.

In the Themis prototype system, since there is one physical server, the request dis-

patching of routing and flow monitoring tasks relies primarily on the PHP concurrency.

For the traffic sensing task, we launches multiple map-matching and travel time alloca-

tion instances to parallelize these two processes. During the synthetic experiment, the

server was barely powerful enough to provide real time computation for the experimen-

tal area. When the penetration rate is 40%, the average computation time of routing is

less than 0.8s. For traffic sensing, as penetration rate does not influence global traffic

features (explained in Section 5.1.2), we tested the 7% penetration. The average com-

putation time for traffic sensing in an interval is 878s, slightly shorter than the length of

the interval, i.e., 900s. While these performance results prove that city-scale balanced

routing is not intractable on a single server, the settings in our prototype system will

face scalability issues, especially for the traffic sensing tasks, if the covered area or

the penetration goes beyond the values we tested (i.e., 65 square kilometers with 7%

penetration rate).

Therefore, we plan to explore a parallel implementation for Themis and dispatch

the tasks onto multiple machines. The participatory traffic sensing is an ideal “map-

reduce” model, where the map-matching and travel time allocation process for each

car are the “map” tasks and travel time aggregation for groups of cars are the “reduce”

tasks. The flow estimation is done on each road segment, and thus, the map could be

partitioned and processed in parallel. In addition, each component is isolated, with

data being exchanged only through the shared databases. For instance, the cooperative

routing algorithm executes merely on the data from the traffic database and the footprint

database. Therefore, the scalability of the balanced routing system mainly relies on

the concurrency of the databases, which has been extensively studied (e.g., NoSQL

databases).

Balanced Routing Algorithms. The Themis system implemented the EBkSP algo-

rithm as a first step, and we used this algorithm as an example to compare the perfor-
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mance of the balanced routing and the greedy routing. As discussed in Section 2, most

cooperative routing algorithms require similar information as EBkSP. Consequently,

they can also be implemented into Themis easily and evaluated using the same meth-

ods described in Section 5.

By choosing the least popular route, EBkSP increases the entropy of the sub traffic

system containing only the planned alternative routes, and consequently, increases the

entropy of the whole system, which relates to the system-wide degree of balance. Based

on this heuristic, EBkSP is lightweight and performs well. However, during our field

study, we found it difficult to translate the meaning of each score into a simple metric

understood by drivers. Our test drivers believed this was critical in the successful

adoption of the system. In addition, the optimality of EBkSP is not proven even if

100% penetration rate is assumed. We plan to investigate more human acceptable

solutions to solve the balanced routing problem. For example, the additional delay

incurred to other drivers could be defined as a more meaningful score to minimize the

global travel time. Moreover, frequent taxi trajectories could be used as alternatives to

incorporate taxi drivers’ intelligence.

Bootstrapping the system. During the initial deployment of Themis, there might not

be enough users to sense the city-scale traffic conditions or to collect plenty of routing

requests. However, the participatory traffic sensing algorithm in Section 3.2 and the

background traffic estimation algorithm in Section 3.3 can also be used in conjunction

with external datasets. For example, many taxi companies sell their real-time trajectory

data. For the traffic sensing task, the Themis system can also utilize popular online

services such as Google Maps [3] or Waze [4] to get their ETAs.

Since Themis reduces the global traffic volume and travel time, it could be useful

to prevent congestion and reduce pollution. The governments may want to incentivize

drivers to participate by rewarding the users who contribute to a better traffic ecosys-

tem. For instance, drivers who usually take high-scored route may receive discounts

for their vehicle registration. We believe this approach will help build a friendly traffic

ecosystem and ideally lead the traffic system to its system optimum.

8. CONCLUSION

This article presents the design, implementation, and evaluation of Themis, a practi-

cal balanced traffic routing system that supports cooperative routing algorithms. To the

best of our knowledge, Themis is the first stand-alone navigation system & phone app

providing cooperative routing services. Themis collects traffic data from the participat-

ing drivers and accurately estimates the real-time traffic conditions and the anticipated

traffic volume.

We build a Themis prototype, consisting of an Android app and a backend serv-

er, and carry out field studies to validate its feasibility. More importantly, a synthetic

evaluation method is presented to investigate the performance of Themis at different

penetration rates based on real-life trajectory dataset. The city-scale synthetic experi-

ments using data from 26,000 taxis demonstrate that balanced routing can reduce the

average travel time in the road network and alleviate congestion. The benefits of bal-

anced routing over greedy routing emerge even at low penetration rates. In addition,
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the performance variations at different penetration rates consolidate the hypothesis that

cooperative routing provides more benefits when the penetration rates are higher.
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