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ABSTRACT 

Heart rate monitoring is widely used in clinical care, fitness 
training, and stress management. However, tracking 
individuals' heart rates faces two major challenges, namely 
equipment availability and user motivation. In this paper, 
we present a novel technique, LivePulse Games (LPG), to 
measure users’ heart rates in real time by having them play 
games on unmodified mobile phones. With LPG, the heart 
rate is calculated by detecting changes in transparency of 
users’ fingertips via the built-in camera of a mobile device. 
More importantly, LPG integrate users’ camera lens 
covering actions as an essential control mechanism in game 
play, and detect heart rates implicitly from intermittent lens 
covering actions. We explore the design space and trade-
offs of LPG through three rounds of iterative design. In a 
12-subject user study, we found that LPG are fun to play 
and can measure heart rates accurately. We also report the 
insights for balancing measurement speed, accuracy, and 
entertainment value in LPG.  
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Heart rate, mobile phone, multi-modal interface, game 
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INTRODUCTION 

Heart rate is one important vital sign in health care [6, 29]. 
For healthy people, resting heart rate (RHR) is also an 
essential physiological marker of physical fitness [7, 30, 
38], and expected life span [13]. Heart rate has been used in 
fitness training [19, 20] and competitive sports for 
managing work-out intensity and balancing physical 
exertion. Both continual readings of heart rates [5, 15, 37, 
33] and heart rate variability, a.k.a. HRV [27, 29, 32, 33], 

can predict a user’s physiological state, including cognitive 
workload and mental stress levels, in contexts such as 
computer user interfaces [29, 33], traffic control [29], 
longitudinal monitoring of emotion and food intake [5], and 
intelligent tutoring [15]. Therefore, the efficient 
measurement of heart rate can be of great significance 
across scenarios involving physical health, mental activities 
or a combination of both. 

Unfortunately, most heart rate measurement methods are 
either time-consuming 1 , or require special measurement 
equipment [25] that may not be available to a wide 
audience. For example, manual pulse counting with fingers 
may be tedious, and inaccurate. More precise methods 
include the Electrocardiograph (ECG) [22, 25] and pulse 
oximeters [25, 35]. These dedicated heart rate monitoring 
devices share at least three disadvantages. First, the costs of 
these devices could prevent wide adoption in everyday life. 
Second, it is not convenient to carry and use the devices “on 
the go”. Last but not least, existing methods provide little 
immediate benefits or intrinsic motivation to users and thus 
may be tedious to track heart rate in a longitudinal setting.   

 

Figure 1. Real-time heart rate measurement via LivePulse 

Games (left: City Defender, right: Gold Miner).  

To overcome the limitations of existing techniques, we 
have developed LivePulse Games (LPG, figure 1) to 
measure users’ heart rates in real time by having them play 
serious games on unmodified mobile phones. LPG calculate 
heart rates by detecting the transparency change of 
fingertips via the built-in camera (i.e. commodity camera 

                                                           

1 In both the preparation phase and the actual measurement stage.  
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based photoplethysmography (PPG) [2, 4, 12, 26]). More 
importantly, LPG integrate users’ camera lens covering 
actions as essential parts of the game so as to detect heart 
rate implicitly during game play. LPG combine unique 
designs in both algorithms and game play to achieve 
accurate and robust heart rate extraction through 
intermittent finger lens covering actions. With the 
increasing popularization of smartphones, LPG have the 
potential to measure heart rate longitudinally in a natural 
and enjoyable way.  

Different from biofeedback games [21, 23, 31] that use 
heart rates to augment game play, LPG is a game based 
approach for heart rate measurement. To avoid 
confounders, we intentionally choose not to use heart rates 
collected from LPG to change game states at this stage. 

This paper offers four important contributions: 

• Expanding the design space of camera based heart rate 
monitoring from continual, explicit signals to 
intermittent and implicit signals; 

• A robust and accurate algorithm with fast bootstrap 
time that can detect heart rate from noisy and 
intermittent signals in real time on mobile devices; 

• A set of insights and trade-offs learned from designing 
engaging LivePulse Games that integrate lens covering 
actions as an essential control mechanism; 

• A 12-subject user study that validates the reported 
approaches and clarifies the feasibility, usability, and 
design insights involved. 

In the following sections, we first explain in detail the 
algorithm for detecting human heart rate through 
intermittent camera lens covering actions; next, we discuss 
the trade-offs in game design when balancing detection 
accuracy, detection speed, and game intensity; after that, we 
share the insights and lessons learned from three rounds of 
iterative design. Finally, we report the results of a 12-
subject user study, including the accuracy of LPG and the 
impact of game intensity on the speed and accuracy of heart 
rate measurement.   

RELATED WORK 

Heart Rate Detection Techniques  

The most widely adopted approaches for detecting heart 
rate are based on Electrocardiography (ECG or EKG, 
usually in the form factor of chest band, wrist band, or 
watch) and pulse oximetry (i.e. blood oxygen saturation or 
blood oxygenation). Researchers have created highly 
portable, low power, wireless mobile ECG [22] and blood 
oxygen saturation measurement devices [35] in the past. A 
state-of-the-art device, the Berkeley Tricorder [22] by 
Naima and Canny, is capable of measuring a subject's ECG, 
EMG, respiration, and motion via a 2 by 2 inch Bluetooth 
device. Despite the steady drop on manufacturing costs [25] 
for such devices, they are still not readily available for most 

users in an everyday setting. For example, Depending on 
the brand, form factor, and communication interface 
supported, a heart rate monitoring watch (e.g. Omron HR-
100CN, MIO Alpha, Basis, or Apple Watch) costs from 
US$30 to US$350 as of September 2014. Low cost devices 
like Omron HR-100CN usually do not have digital 
interfaces for sending data to computers. 

LivePulse Games rely on photoplethysmography (PPG) 
[36] to detect heart rates. Although the fundamental 
mechanism of PPG through commodity built-in cameras on 
mobile phones has been explored by both commercial 
applications (e.g. Instant Heart Rate [12], Cardiograph [4]) 
and researchers [2, 26] in the past, all existing methods 
require users to cover and hold the mobile phone camera 
lens intentionally and steadily for an extended amount of 
time before receiving heart rate estimates. While these 
systems eliminated the equipment availability challenge, 
none of them attempted to address the human motivation 
challenge involved. In comparison, LPG explore the 
feasibility of extracting heart rates from implicit, 
intermittent lens covering actions during mobile game 
plays, and design engaging mobile games that balance 
measurement speed, accuracy and entertainment value.  

It's also possible to calculate heart rate by recording and 
analyzing thermal changes [10], color changes [27, 28], and 
involuntary motion [1] of human faces in video. However, 
such approaches are more sensitive to environmental 
illumination changes and the component analysis (PCA [1] 
or ICA [27, 28]) techniques used also require users to stay 
still for an extended amount of time (e.g. 60+ second). Still, 
facial video analysis from a mobile device’s front camera 
could be an interesting future direction to explore with 
LivePulse Games.  

Heart Rate in Interactions 

Heart rate has been used by researchers in fitness training, 
balancing exertion [19, 20] in social sports, measuring 
mental workload [29] and stress [32], and developing 
adaptive intelligent tutoring systems (ITS) [15].  

TripleBeat by Oliveira et al. [24] is a mobile fitness training 
application that uses heart rate measured from an ECG 
instrumented chestband to encourage runners to better 
achieve a predefined exercise goal. Nenonen et al. [23] 
allowed users to control parameters of video games (e.g. 
speed, slope of the road) by adjusting their heart rate. 
Mueller et al [19, 20] and Stach et al [31] leveraged the 
heart rate as an input to balance participants' performance in 
jogging to motivate people with lower fitness level to 
"exercise together". Instead of using heart rates as a 
supplemental input channel to control the in-game 
parameters adaptively, LivePulse Games motivate users to 
play games and heart rates are generated as an implicit 

output of game plays.  
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A user’s changing heart rhythms affect not only the heart 
itself but also the brain’s ability to process information and 
manage emotion. Researchers have discovered that both the 
heart rate [37] and heart rate variability (HRV) [32] have 
strong correlations with stress and persistently elevated 
heart rate is a sign of chronic stress [37]. It’s worth noticing 
that both heart rate and HRV can and are regularly used for 
short term stress measurements. In [33], heart rate was a 
more accurate marker of external stress than HRV. Heart 
rate will be confounded by physical activity but the user 
will be aware of whether or not they have been active, and 
elevated HR otherwise is a sign of stress. Rowe [29] 
investigated the use of heart rate signals to assess the 
impact of a monitoring interface on user mental effort. Poh 
et al [27] demonstrated the feasibility of extracting Heart 
rate variability (HRV) from 1 minute of continual color 
facial images 2 . We believe adaptive systems that infer 
cognitive workload [29], attention [15], or emotion [5] from 
heart rates could benefit from LivePulse Games’ pervasive, 
non-invasive real-time heart rate monitoring.  

Serious Games 

Many researchers have explored the use of games as a 
motivation mechanism for performing desirable but 
challenging/tedious activities such as education [34], fitness 
training, behavior change [5], and device calibration [8]. 
LivePulse Games are serious games designed from the 
ground up to balance the speed and accuracy of heart rate 
tracking with fun in game play.   

DESIGNING LIVEPULSE GAMES 

There are two main challenges in designing LivePulse 
Games. The first task is to formulate an algorithm that can 
detect human heart rate reliably and efficiently on 
unmodified mobile phones, even during noisy and sporadic 
activities. This task eliminates the need for specialized heart 
rate monitoring equipment, making it feasible to measure 

                                                           

2 In standardized clinical diagnosis [18], 24-hour is required for 

measuring long-term HRV. Malik et al [18] also suggested 5 min 
for reliable short-term HRV and 1-2 min as the minimal time 
HRV in clinical use.  

heart rate in different contexts. The second task consists of 
designing interactions that integrate the slightly “bizarre” 
requirement in PPG (i.e. covering the camera lens with 
fingertip and holding it steadily) naturally into mobile game 
play. The second task addresses the motivational challenges 
in heart rate monitoring, converting heart rate measurement 
from a dull routine into a fun and engaging activity.  

Camera Based Heart Rate Detection  

LivePulse Games rely on the back camera of mobile phones 
to detect heart rates. The underlining theory is: in every 
cardiac circle, the heart pumps blood to the capillary vessels 
of a human body, including fingertips.  The arrival of fresh 
blood changes the transparency of fingertips. Such 
transparency changes correlate directly with heart rates, and 
can be detected by the built-in camera when the user covers 
the lens of the camera with her finger tip.  

Although camera based heart rate detection algorithms have 
been reported before [2, 26], the previous algorithms were 
not optimized for extracting heart rates from noisy and 
intermittent covering actions and both algorithms require a 
long bootstrap time before generating the first estimate (20 
seconds in [2], 9 seconds in [26]) in clean and continual 
measurements.  For commercial products such as Instant 
Heart Rate [12], and Cardiograph [4], their algorithms were 
never disclosed and neither app could extract heart rates if 
there are finger movements during the measurement3. To 
achieve better robustness and shorter bootstrap time for 
noisy, intermittent signals from implicit user interactions, 
we designed our own algorithm that meets the speed, 
accuracy and robustness requirements of LPG.  

Instead of using component analysis and then transforming 
signals to the frequency domain [1, 27, 28], the LivePulse 
algorithm extracts heart rate information directly from the 
relatively noisy temporal signal. We made this decision for 

                                                           

3 According to the authors’ experiments in July 2014, the minimal 

bootstrap time for the 4.0 version of Instant Heart Rate [12] is 7 
seconds and 15 seconds of uninterrupted holding is required for a 
reliable estimate. The app resets its progress when there is 
significant finger movement during the measurement.  

       

                                             

Figure 2. Major steps of the LivePulse algorithm (a. signal preprocessing; b. locating raw local peaks & valleys; c. locating valid 

peaks & valleys; d. locating raw zero-crossings; e. locating valid zero-crossings; f. calculating heart rate). 

-
∑

Local Minimum (Trough)

Local Maximum (Peak)

amp1

amp2

amp3

P1

P2

P3

P4

Valid Peak

Valid Trough

Removed
H1: amp2 < ¼ amp1 => remove P3

H2: amp2 < amp3 => remove P4

½ amp

½ amp

Zero Crossing

N1

N2

amp1

amp2
amp3

Z1

Z2

Z3

Removed

Valid Zero Crossing

H1: amp2 < ½ amp1 & (Tz2 – Tz1) < 1000 =>  remove Z2

H2: amp3 ≥ ½ amp1 => Z3 is valid

Tz1
Tz2 Tz3

RR1 RR2 RRi RRi+n-1RRi+n

Last 5 seconds

RR Distribution
|RRi - RRMedium| ≤ 200

≥ 80%?

HR = 60000(ms)/RRMean

(c) 

(d) 

(a) (b) 

(f) 

(e) 

Health Sensors & Monitoring CHI 2015, Crossings, Seoul, Korea

849



 

two reasons: 1) Given the intermittent nature of the 
envisioned usage scenario, we do not assume that 
consistent, uninterrupted signals will arrive for an extended 
amount of time, which is usually necessary for 
transformations such as PCA/ICA; 2) We expect the 
LivePulse algorithm could run efficiently on mobile devices 
in real-time and leave enough CPU power to handle the 
graphics and multimedia effects during game plays.  

In the LivePulse algorithm, the camera is set in preview 
mode, capturing 176x144 pixel color images at a rate of 30 
frames per second (a minimal frame rate of 15 fps is 
required). We disable the automatic focus function and the 
automatic white balance function to avoid interference with 
our algorithm. Optionally, we can turn the built-in flashlight 
on to improve performance in low illumination conditions. 

When a lens covering action is detected (LPG uses the 
Static LensGesture detection algorithm in [40]), the 
LivePulse algorithm extracts heart rates via a 6-step, 
heuristic based process detailed below. 

 

Figure 3. A prototype of LivePulse running on a mobile phone 

with real-time heart-rate signals shown in a PC application.  

Step 1: The LivePulse algorithm first converts each frame 
into one time-stamped heart beat sample point via equal 
distance sampling and the summation of 800 points on the 
Y channel in each frame (Figure 2.a). The signal is flipped 
in y-axis to match waveform output tradition of existing 
PPG techniques [36]. Step 2: The algorithm then detects all 
the local peaks and valleys in the converted temporal 
sequence signal by measuring the local curvature changes 
(Figure 2.b). Step 3: Adjustable threshold based heuristics 
are applied to eliminate small and noisy local 
minima/maxima points (Figure 2.c). Step 4 and 5: Instead 
of estimating heart rates from two adjacent peaks/valleys 
directly, we found that it is more reliable to estimate and 
interpolate the time stamps of zero-crossing points 4 
between peaks and valleys and then derive heart rates from 
the time differences between two adjacent time stamps of 
zero-crossing points (Figure 2.d 2.e). Step 6: To further 
improve the robustness of LivePulse, we save and sort the 
time stamp distances between adjacent zero-crossing points 

                                                           

4 The zero crossing line is dynamic, defined as the line with the 

mean Y values between two adjacent valley and peak (figure 2.d). 
The time stamps of zero crossing points (i.e. z1, z2, z3 in figure 
2.e) are linear interpolated values between two adjacent time 
stamps. 

during the past five seconds. Real time heart rate is reported 
when at least 80% of the time-stamp distances are within a 
given variation range (25%) (Figure 2.f). Since the heuristic 
in step 6 doesn’t rely on hard coded parameters for noise 
filtering, it worked robustly in LivePulse Games involving 
frequent motion gestures. 

LivePulse can extract heart rates from people with different 
skin melanin levels (e.g. white, yellow, black) when the 
flash is on according to our informal tests.   

Figure 3 shows a tool we created for debugging the 
LivePulse algorithm. Finger transparency information are 
collected on mobile phones and streamed to a PC for 
visualization and analysis. After debugging, the actual 
LivePulse Games run solely on mobile devices in real time. 

Intermittent Lens Covering Actions 

The above method requires users to cover the camera lens 
with their fingers for an extended duration. When there are 
breaks in the heart beat input (caused by releasing the finger 
from the camera lens), our algorithm suspends updating 
zero-crossing intervals until a finger covering action is 
detected. The LivePulse algorithm then applies heuristic 
steps 1 - 4 on temporal samples after the new covering 
action, concatenates the first newly detected zero-crossing 
point, and updates the time stamps for all the follow-up 
zero-crossing points by subtracting the time gap lapsed 
between adjacent camera lens covering actions. When 
compared with existing frequency domain techniques [27, 
28], our technique has a short bootstrap latency (mostly 2-3 
seconds), and is capable of extracting heart rates from 
intermittent covering scenarios that existing systems [4, 12] 
couldn’t handle. 

From LivePulse to LivePulse Games 

In order to make the heart rate monitoring task more 
engaging, we have designed games that leverage the 
LivePulse algorithm and integrate heart beat measurement 
implicitly in the game play. 

Two major concerns arise when designing LivePulse 
Games. First, what is the best trade-off in balancing the 
fun/engaging factor and the measurement accuracy during a 
game play? Second, what are the effective techniques to 
integrate lens covering actions required by LivePulse 

naturally into the games? 

We clarify the first concern with a thought experiment. 
According to the working mechanism of LivePulse, the 
algorithm works best when a user covers the camera lens 
completely and steadily all the time. Following this trait, in 
one extreme situation, we could use the camera lens as a 
“power switch”, i.e. the game continues when a user covers 
the camera lens, and pauses when the finger leaves the lens. 
Although heart rates can be measured with minimal 
interruptions, such scenario will lead to bad game playing 
experiences for two reasons: 1) the lens covering action is 
actually isolated from the actual in-game interactions; and 
2) the finger covering action needed becomes an extra 
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burden rather than an entertaining factor. As a result, users 
could feel bored and start to look for equivalent games that 
do not require lens covering.  

In the other extreme situation, if the lens covering action is 
used as a high frequency input channel, e.g. directly 
controlling missile firing in a “shoot-em-up” video game, 
the game play could be engaging and satisfying, but the 
underlying algorithm may have trouble in getting reliable 
readings from extremely brief and unstable finger touches.  

As illustrated by the two extreme situations, there exists a 
performance/reliability vs. fun trade-off highlighted in 
designing LPG. We keep this trade-off in mind and we also 
run controlled experiments to quantify the trade-offs by 
manipulating the intensity of games in our user study.  

In addition to the brute-force “power switch” metaphor, the 
lens covering gesture can serve as a “trigger” to activate an 
in-game event. In this scenario the camera lens is no 
different5 from a push button mounted on the back of the 
mobile phone. In this mode, the timing and frequency of 
covering are used in game control. The lens covering 
gesture can also be used as a “clutch” or a gas pedal. In this 
paradigm, covering the lens steadily will switch certain in-
game object into a different mode (e.g. charging, 
accelerating etc). In the “clutch” mode, players use the 
timing and duration of covering as the primary control 
mechanism. With these observations in mind, we explore 
the design space of using lens covering actions by 
integrating diversified lens control mechanisms in different 
LivePulse Games.  

 

Figure 4. Screenshots of the three games: City Defender (left), 

Gold Miner (middle), and Bug Defender (right). 

There are two supplementary benefits for integrating the 
unique affordance of users’ lens covering gestures in game 
play. First, this approach could free a user's index finger in 
the hand holding the phone for game play. This index finger 
stays idle during most interactions. Second, the edge and 
bezel of cameras are usually made of different materials 
and on different surface levels, which could provide natural 
tactile feedback for direct touch operations on the lens.   

When designing LPG, we also explore different 
combinations of input modalities (touch screen, 

                                                           

5 Despite the 33 ms latency caused by the camera frame rate and 

the 2.7 ms latency for detecting a lens covering action [40]. 

accelerometer), and interaction types (one-hand, two-hand) 
in game design. These intentional design space variations 
allow us to explore the impact of lens covering frequency to 
heart rate measurement accuracy, as well as the impact of 
device motion in game play (e.g. wrist rotation, screen 
tapping) to heart rate measurements. 

Through three rounds of iterative design, we created three 
LivePulse Games: City Defender, Gold Miner, and Bug 
Defender (figure 4) to test pervasive, non-invasive heart 
rate monitoring on mobile phones.  

City Defender 

The City Defender game (figure 4, left) allows users to 
protect a city by controlling a powerful, but slow anti-
aircraft artillery.  Users tap on the screen to fire bullets from 
artillery, move the artillery and collect rescue packages. 
Each user action costs a certain amount of energy and users 
lose the ability to fire or move when the energy bar is 
empty. Users can cover and hold the lens to recharge the 
energy bar gradually. However, the antiaircraft artillery 
cannot be moved or fired when the energy bar is charging. 
Destroying all the enemy fighters clears a stage and being 
hit by five bombs loses the game. 

In order to get high scores in City Defender, users need to 
make strategic plans on the timing and frequency of four 
mutually exclusive activities (i.e. firing, charging, 
collecting rescue packages, and dodging enemy attacks) and 
execute them properly. For example, collecting a rescue 
package may not be the right choice if such action moves 
the artillery to a disadvantaged position.  

 

       

Figure 5. Play workflows for CityDefender (top) and Gold 

Miner (bottom). 

City Defender requires users to perform coordinated actions 
with both hands.  The charging action is completed by the 
user’s index finger on the hand holding the phone, and the 
firing/moving actions are completed on the touch screen by 
the other hand. Figure 5 (top) shows the play workflow of 
City Defender. 

Gold Miner 

Gold Miner (Figure 4, middle) is similar to the classic 
snake game on Nokia phones with unique tweaks. In this 
game, users control an explorer to collect randomly placed 
coins in the scene. Users tilt the phone in different 
directions (i.e. left, right, up, and down) to move the 
explorer. The explorer cannot hit bushes (staying still) or 
enemy worms (chasing the explorer when the exploring is 
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moving) during movements. Worms start chasing the 
explorer only when the explorer is moving. The camera lens 
is used as a clutch to initiate motion gestures for controlling 
the explorer in Gold Miner. Releasing the finger from the 
camera lens will stop both the explorer and the chasing 
worm. 

To become a successful player of Gold Miner, users need to 
1) decide wisely on when to move and when to stop 
(associated with using the lens covering action as a clutch); 
2) planning long and feasible moving trajectories and move 
in-game explorer timely via phone tilting. Figure 5 (bottom) 
shows the play workflow of Gold Miner.  

Bug Defender 

Bug Defender (Figure 4, right) is a farming game where 
users aim to kill worms in their farms. Users cover the 
camera lens to charge a water gun and tap on the screen fire 
the water gun and shot at the location tapped. Worms can 
only be killed when the worm color matches the 
corresponding screen orientation, i.e. when red worms 
appear, users need to put the mobile phone in landscape 
mode and shoot; when blue worms appear, users need to 
put the mobile phone to portrait mode. 

Implementation 

LivePulse Games were written in Java running on the 
Android 4.0 operating system. We used the AndEngine 
(http://www.andengine.org/) for OpenGL ES encapsulation 
and game scene management. Excluding third party 
libraries, the three LivePulse Games have a total of 10,398 
lines of code in Java. Our games have been tested on 
Google Nexus S, Galaxy Nexus, and Nexus 4 smart phones. 

Iterative Design Process 

LivePulse Games went through three rounds of iterative 
design. Major design changes were made based on users’ 
comments and feedback in two pilot studies (six subjects 
and four subjects respectively). LPG were able to extract 
heart rate information from all the game play sessions, the 
mean error rate (MER) in the pilot study sessions were 
satisfactory (< 7%). 

In addition to bug fixes, and adding additional in-game 
feedback (e.g. the low energy alarm, lens covering state), 
major usability issues identified and addressed through pilot 
studies include:  

Engaging both causal users and “hard-core” players. Pilot 
study users have highly diversified experiences in mobile 
game play.  While it could take a non-gamer a couple of 
minutes and a few rounds of trial-and-error to learn to 
survive in LPG, some “hard-core” players had already felt 
“not challenging enough” within the same amount of time. 
To address this issue, we revised LPG to provide multiple 
levels of intensity under the same play workflow by varying 
the frequency, number, appearance pattern of enemies (e.g. 
enemy fighters, coins, and bugs) on screen. We also added 
the Producer-Consumer pattern [3] to the play flow of each 
game to increase the diversity of game play and give “hard-
core” players opportunities to devise and execute wise 

strategic plans to unlock higher score and achievements in 
the game.  

Avoiding modality overloading. For example, the initial 
design of Bug Defender requires input from three different 
modalities, i.e. screen tapping, lens covering, and screen 
orientation change.  While participants found the idea of 
multiple input modalities exciting, pilot study results 
showed that it was also challenging to coordinate three 
modalities accurately in parallel at the learning stage, even 
for “hard-core” players. As a result, when adopting multiple 
input modalities as an engaging factor, we enforce the rule 
of “no more than two parallel modalities” in initial levels 
for all the updated LPG.  

USER STUDY 

Although we have confirmed the feasibility of LivePulse 
Games in the two pilot studies, a formal user study was 
necessary to understand the capabilities and limitations of 
LPG as a new mechanism for implicit heart rate 
measurement. We had three goals for the study.  One was to 
quantify the accuracy of LPG and observe the impact of 
LPG play on heart rate (i.e. will playing LPG confound a 
user’s resting heart rate?); The second goal was to 
quantitatively investigate the trade-offs between game 
playing intensity, entertainment and the accuracy of heart 
rate monitoring. Lastly, we were interested in collecting 
subjective feedback and observing how users play LPG. 

Experimental Design 

The study consisted of four parts: 

Overview. We first gave participants a brief introduction to 
LivePulse Games and then collected background 
information of participants. We demonstrated City 
Defender and Gold Miner to the participants and explained 
the working mechanisms behind these games.  

Measuring Heart Rate Accuracy. We measured 
participants’ heart rates in both resting condition and two 
gaming settings. In the resting condition, we used a 
standalone LivePulse application running on a mobile 
phone (Figure 3) and a pulse oximeter. We let participants 
sit comfortably in a chair, holding the mobile phone with 
their left hands, and using the index finger of the left hand 
to cover the camera lens. We instructed participants to 
apply comfortable pressure when covering the lens. We 
attached the pulse oximeter on the index fingers of the 
participants’ right hands. The measurement setting of Gold 
Miner was the same as the resting condition, because Gold 
Miner supports one handed game play. Since City Defender 
requires both hands, we attached the pulse oximeter to the 
ring finger of the right hand.  

Playing Games at Different Intensity Levels. Participants 
played the City Defender game and the Gold Miner game 
with three different intensity levels (i.e. 2 games*3 intensity 
levels = 6 conditions). Different intensities were achieved 
by manipulating the quantity and appearance frequency of 
in-game enemies. Participants spent roughly two minutes in 
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up rows show the covering states of the lens, major user 
input, and the major events in the game respectively. As 
illustrated in Figure 8, finger transparency readings showed 
up immediately after each lens covering action. The first 
valid heart rate estimation appeared roughly 20 seconds 
after the game began. Interestingly, the first one or two raw 
finger transparency readings (i.e. within 30-60ms) after a 
lens covering action were usually noisy. The LPG MER can 
be further reduced by 1% by simply removing the first 
transparency reading associated with each lens covering 
action. 

 

Figure 8. A 2-minute session in City Defender. 

In City Defender, with the increase of the in-game intensity, 
the ratios of valid lens covering sessions6 and valid lens 
covering durations7 decreased consistently (figure 9). The 
increase of in-game difficulty level led to more frequent 
switches between lens covering/uncovering actions, as a 
result, the quality of finger transparency signal drops. In 
general, around 28% - 37% of lens covering time, or 33% - 
43% of the lens covering sessions could generate valid 
heart rate estimations.  

 

Figure 9. Heart rate estimation quality by difficulty levels in 

City Defender. 

Figure 10 shows the histogram of the covering time needed 
to generate valid heart rate estimates. In most sessions, LPG 
generated effective heart rate estimates 2 to 4 seconds after 

                                                           

6 Defined as the number of covering sessions that generated heart 
rate estimates divided by total number of lens covering sessions. 

7 Defined as the total duration of covering sessions that generated 

heart rate estimates divided by the total duration of lens being 
covered by finger. 

covering the lens. Lens covering actions shorter than 2 
seconds were less likely to generate valid heart rate 
estimates. As a result, when designing a new LivePulse 
Game, it is imperative to design the game dynamics in a 
way that a major portion of the in-game lens covering 
actions are longer than 2 seconds. This empirical parameter 
also provides an upper bound of game intensity for the 
current LPG algorithm.  

 

Figure 10. Histogram of time needed to generate the first heart 

rate estimation in City Defender. 

Gold Miner 

In Gold Miner, the lens covering action was used as a 
clutch rather than a trigger. As a result, the lens covering 
sessions in Gold Miner were fewer but had much longer 
durations than those in City Defender.  

 

Figure 11: Heart rate estimation quality by difficulty levels in 

Gold Miner. 

Figure 11 shows the impact of game intensity on numbers 
of rotational gestures detected, and the quality (i.e. number 
of valid estimates per minute) of heart estimates. Thanks to 
the strategic planning mechanism in Gold Miner, more 
intensive levels did not necessarily lead to more frequent 
rotational gestures and reduced heart rate quality. Although 
changing intensity level from easy to medium led to more 
rotational gestures, the number rotational gestures dropped 
when the intensity level changed from medium to hard. 
This is because participants started to change game playing 
strategy when the game intensity reached a certain level. 
Instead of simply moving the in-game character more 
frequently, participants started to devise a strategy with less 
frequent movement but better timing and planning.  

DISCUSSIONS 

The participants reported highly favorable experiences with 
LPG. When asked how satisfied with the games overall, the 
average rating was 4.25 (σ = 0.60) using a five-point Likert 
scale (5 = strongly favorable, 3 = neutral, 1 = strongly 
negative). Participants gave an average rating of 4.17 (σ = 
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0.80) on the “fun” factor. The average rating was 4.67 (σ = 
0.47) on ease of learning.  

Sample comments from users include: 

‘I can get my heart rate after a relaxing game, which is 

better than barely using the mobile app.’ 

‘I play games frequently and could easily fit a ‘healthy’ 

game in. Using an app feels like work’. 

‘If I do nothing but to wait for a long time, it’s boring. But 

playing game is interesting.’ 

‘I like City Defender. Because ‘war game’ is more 

attractive for me. And the difficulty of the game is 

reasonable, not trivial, but not extremely hard to make me 

frustrated.’ 

A few participants commented that the camera lens became 
a little bit hot after extended game play. This temperature 
increase was actually caused by heat generated by the LED 
flash of Google Galaxy Nexus. Interestingly, the flash in 
Google Nexus S did not have this heating problem. We 
recommend device manufacturers take the heat emitting 
ratio into account when choosing LED flash components. 
Turing on the LED Flash can improve the finger 
transparency readings in dark environments, but it is not 
required in indoor conditions with sufficient illumination. 
One user suggested the idea of changing the bezel of back 
camera to improve tactile feedback in game play - “It is 

better to have a stopper like there are two stoppers on F 

and J on Query keyboard”.  

Although not directly used in the actual game play, 
participants strongly preferred LPG designs with a small 
preview window of the back camera. Participants reported 
that the preview window improved the positioning of 
fingers on the camera lens when they were concentrating on 
the game screen. Interestingly, participants believed that the 
preview window improved their perceived fluency and 
responsiveness of game play.   

Both non-gamers and frequent mobile game players 
appreciated the fun factors and the depth of LPG. In 
addition to the design of game workflows, fun factors also 
came from the alternation of input modalities (touch, lens-
covering, motion sensing, and orientation matching) as well 
as the diversity of control paradigms (trigger vs. clutch). 
The effective mapping of input modalities and control 
paradigms to in-game challenges is a rich design space for 
creating engaging games. While increasing the quantity and 
frequency of enemies was an easy choice for improving the 
intensity and depth of game play, this approach had 
limitations on human motor control skills and can also have 
a negative impact on the quality of heart rate tracking. As 
demonstrated in the user study, it's important to design LPG 
such that proficient gamer can discover and leverage 
winning strategies that rely on better timing and better 
strategic planning rather than solely on higher response 

frequency. We hope the depth of LPG perceived by 

participants could translate to sustained motivation in a 
longitudinal setting.  

Based on both quantitative analysis of game playing logs 
and qualitative feedback collected from the iterative design 
process and the formal user study, we’d like to recommend 
the following preliminary design suggestions for 
researchers and practitioners to who are interested in 
designing similar LPG. 

• Accuracy Guarantee. It’s imperative to design the 
game playing logic such that there are sufficient lens 
covering sessions longer than 2 seconds, ideally 4 
seconds. 

• Satisfactory Intensity. Enabling 10 - 15 lens covering 
actions per minute is a good balance between accuracy 
and intensity. 

• Alternative Strategy for Hardcore Players. To achieve 
a good balance between accuracy and fun in high 
intensity levels, it's important to design LPG such that 
proficient gamer can discover and leverage winning 
strategies that rely on better timing and long-term 

planning rather than higher response frequency. 

CONCLUSION AND FUTURE WORK 

We presented LivePulse Games (LPG), a novel technique 
to measure users’ heart rates in real time through serious 
games on unmodified mobile phones. Major contributions 
of this paper include: 1) We demonstrated the feasibility of 
real-time, non-invasive heart rate monitoring during mobile 
game play; 2) Through a 12-subject user study, we 
quantified the accuracy of LivePulse in both resting 
condition and game playing sessions; 3) We studied the 
impact of game intensity on LPG based heart rate 
monitoring; 4) We explored the design space and trade-offs 
of LPG through iterative design.  

Our current research has only scratched the surface of 
LivePulse based heart rate measurement on mobile devices. 
For example, better algorithms, such as unsupervised 
Hidden Markov Models [9], can be designed to improve the 
signal utilization ratio. Output from built-in motion sensors 
can be leveraged as indicators to signal quality or even 
compensate noise caused by motions [14].  

LPG are not intended for uninterrupted full day heart rate 
tracking for clinical use. Nevertheless, LPG can still open 
exciting opportunities on collecting, interpreting and using 
physiological signals. For example, physical exertion games 
by Mueller et al [19, 20] can be recreated as a software only 
solution after certain design changes (e.g. using the “clutch 
metaphor” for a walkie-talkie style speech interface, 
touching the camera lens of the phone mounted on the arm 
or belt to issue voice commands, or talk with other players). 

According to a survey by comScore in 2013, 39% of time 
spent on smartphones was devoted to gaming [17]. Given 
the preference and popularity of mobile gaming, LPG have 
the potential to lower the tracking burden of the “quantified 

Health Sensors & Monitoring CHI 2015, Crossings, Seoul, Korea

855



 

self” movement [11], where participants track physiological 
signals longitudinally, for both wellness improvement and 
self reflection. The pervasive monitoring of personal 
physiological signals in non-game settings, e.g. when using 
LensGesture apps [40], via technologies invented in LPG, 
can also provide interesting research opportunities for 
healthcare, personal well-being [5], and adaptive learning 
[15] in the future. 

LivePulseGames are open source software released under 
BSD license. The current implementation can be 
downloaded from http://mips.lrdc.pitt.edu/livepulsegames. 
We hope LPG can inspire research prototypes and 
commercial products that change how people collect, 
understand, and consume physiological signals. 
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