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Abstract 
Genetic programming is distinguished from other evolutionary algorithms in that it uses 
tree representations of variable size instead of linear strings of fixed length. The flexible 
representation scheme is very important because it allows the underlying structure of the 
data to be discovered automatically. One primary difficulty, however, is that the solutions 
may grow too bigwithout any improvement oftheir generalization ability. In this article we 
investigate the fundamental relationship between the performance and complexity of the 
evolved structures. The essence of the parsimony problem is demonstrated empirically by 
analyzing error landscapes of programs evolved for neural network synthesis. We consider 
genetic programming as a statistical inference problem and apply the Bayesian model- 
comparison framework to introduce a class of fitness functions with error and complexity 
terms. An adaptive learning method is then presented that automatically balances the 
model-complexity factor to evolve parsimonious programs without losing the diversity 
of the population needed for achieving the desired training accuracy. The effectiveness 
of this approach is empirically shown on the induction of sigma-pi neural networks for 
solving a real-world medical diagnosis problem as well as benchmark tasks. 

machine learning, tree induction, genetic programming, minimum description length 
principle, Bayesian model comparison, evolving neural networks 
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1. Introduction 

Machine learning has been a major research area since the birth of artificial intelligence as 
a discipline (Samuel, 1963; Winston, 1975). Learning is not only an inalienable component 
of human intelligence, but it also plays an important role in constructing high-performance 
application systems (Carbonell, 1990). Recently, Koza introduced a new learning paradigm, 
called genetic programming (Koza, 1992a), which extends conventional evolutionary algo- 
rithms (Back & Schwefel, 1993; Goldberg, 1989; Muhlenbein & Schlierkamp-Voosen, 1993) 
in that the structures undergoing adaptation are hierarchical computer programs instead of 
bitstrings. Genetic programming has been successfully applied to learn computer programs 
for solving many interesting problems in artificial intelligence and artificial life (Koza, 1992a; 
Koza, 1994; Kinnear, 1994a). 

As with other evolutionary algorithms, genetic programming starts with a population 
of randomly generated individuals. Each individual is a program that, when executed, is the 
candidate solution to the problem. Selection and crossover operators are used to produce 
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increasingly fit populations of computer programs. While most evolutionary algorithms are 
based on chromosomes of fixed length, genetic programming uses hierarchical structures, 
that is, trees of variable size and shape. In the most general case, the programs can be LISP 
S-expressions representing a game-playing strategy, a set of production rules, a decision 
tree, or a neural network. The structured representation scheme is particularly well suited 
to problems in which the regularity of the underlying process must be discovered from 
observed data. 

One problem with the flexible size representation in genetic programming is tha t  the 
space and time requirements of the structures may become too great. Larger programs take 
more execution time than smaller ones; when all the elementary operations take the same 
time, the total execution time is proportional to the size of the program. In some applications 
such as synthesis of logic circuits or neural networks, one may wish to implement the final 
solutions in hardware. In this case, larger solutions also result in higher implementation costs. 
In addition, as their size increases, the programs frequently become hopelessly opaque to 
human understanding (Kinnear, 1993). One approach to dealing with this problem is to 
define and reuse submodules. Koza suggests defining potentially useful subroutines called 
automatically defined finctions (ADFs) during a run (Koza, 1992b). Genetic programming 
with automatic function definition significantly reduces the average structural complexity 
of the solutions and the computational effort as compared to genetic programming without 
automatic function definition (Koza, 1993). 

However, even with reusable submodules the program size may still grow without bound 
if the training data is noisy or incomplete. Empirical studies report that, when their training 
accuracy is comparable, smaller solutions usually demonstrate better generalization perfor- 
mance than larger solutions. Tackett, for instance, observes in his pattern classification 
experiments that a high degree of correlation exists between tree size and performance: 
“among the set of ‘pretty good’ solutions, the smallest within the set usually achieved the 
highest performance” (Tackett, 1993, p. 309). He also observed that, as the size and complex- 
ity of trees grew, a point was eventually reached in most runs where performance dropped. 
H e  suggests that for an open-ended exploration of problem space, parsimony may be an 
important factor not for aesthetic reasons or ease of analysis, but because there seems to 
be a bound on the appropriate size of solution trees for a given problem. Kinnear reports 
that as his programs grew, it became less and less likely for them to be general Wnnear, 
1993). He  questions whether there are other problems for which generalization is inversely 
proportional to the program size. 

In this article we show that the problem of parsimony is ubiquitous in genetic program- 
ming from a theoretical point of view. In Section 2, we use the results from the statistics 
literature to shed light on the fundamental relationship between accuracy and parsimony in 
genetic programming. In Section 3, the essence of the problem is demonstrated empirically 
when we analyze error landscapes of programs evolved for neural network synthesis. In 
Section 4, a Bayesian model-comparison method is used to develop a framework in which 
a class of fitness measures is introduced for dealing with problems of parsimony. We then 
describe an adaptive technique for putting this fitness function into practice. It automatically 
balances the ratio of training accuracy to solution complexity without losing the population 
diversity needed to achieve a specified training accuracy. The  effectiveness of the method is 
shown in Section 6, where simulation results are presented demonstrating the induction of 
neural networks using noisy training data. In Section 7 we discuss the relationship of this 
work with other tree-based machine learning methods. Section 8 concludes by summarizing 
the results and implications of this work. 
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Figure 1. 
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Tree representation of a sigma-pi neural network with six inputs and one 
receptive field. 

output. Each unit 

2. Genetic Programming and the Bias-Variance Problem 

Many seemingly different problems in artificial intelligence and artificial life can be viewed 
as the problem of discovering a computer program that produces some desired output for 
particular inputs. For instance, in visual pattern-recognition applications the input of a 
program A is a vector x of features from a segmented image and each component yk of the 
output vector y may represent the probability that the image belongs to category k. 

The process of solving these problems can be formulated as a search for a highly fit 
computer program, Abest,  in the whole space of possible computer programs A: 

The evolutionary approach differs from most other search techniques in that it makes a 
parallel search simultaneously involving hundreds or thousands of points in the search space. 
Genetic programming starts with an initial population A of randomly generated computer 
programs composed of elementary functions and terminals chosen by the domain expert. The 
elementary functions may be arithmetic operations, logical functions, standard programming 
operations, or domain-specific functions. 

In the synthesis of sigma-pi neural networks (Zhang & Muhlenbein, 1994), for instance, 
the terminal set X consists of n input variables: 

x = {x1,x2,. . . ,Xn} (4 

u = {S ,P} .  (3)  

and the elementary function set U contains sigma (S) and pi (P) units: 

An instance of the program consisting of the above elementary functions, that is, a sigma-pi 
neural network, is shown in Figure 1. This program consists of three S units and two P units 
in an embedded list structure 

where Sj and Pi are realizations of a sigma and pi unit at ith node, respectively. Notice 
that although the number of primitive functions and terminals is finite, any arbitrarily large 
programs can be generated by recursive use of them. 

Each unit, Si or Pi, has its own receptive field R(i), the set of incoming connections 
from other units or from external inputs.’ Each input connection is associated with a weight 

1 The  bias or threshold can be treated as a weight connected to a special unit whose activation value is always 1. Thus, in the 
following discussion we consider the bias as just another input to the unit. 
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value, wf, denoting the strength of the connection fromj to i. Neuron types differ in their 
computation of activation values. Sigma units, S;, compute the weighted sum of these inputs 

{ :: if CJERQ w&Y! > yj = Sj(X) = 
otherwise, 

while pi units, Pi, compute the product of their weighted inputs 

(5) 

The quality of each computer program in the population is measured in terms of how 
well it performs in the particular problem environment. T h s  measure is called the fitness 
measure. Typically, each computer program in the population is run over a number of 
different input-output cases so that its fitness is measured as a sum or an average over their 
errors. The set of such cases is called the training set, D: 

D = { ( x E , Y c ) E  (7) 

where x, E X and y, E Y.  The domain X and the range Y are defined by the application. 
The  training set is assumed to be generated from an unknown relationshipf satisfymg 

yc =i’ (xE>.  (8) 

Iff is stochastic, it is further assumed that the relationf can be described by a probability 
density function defined over the space X x Y :  

where Pf(x) defines the regon of interest in the input space, and Pf(y  I x) describes the 
statistical relation between the inputs and the outputs. 

Given this, the goal of genetic programming is formulated as finding a program A E A 
that computes the best approximationfA(x) tof based on the training set D. This is a typical 
learning-from-examples problem. In order to choose the best available approximation, we 
measure the discrepancy, or loss, Q(y,fA(x)) between the target response y to a given input x 
and the actual responsefA(x) provided by the program. The  loss function most commonly 
used is the sum of squared errors: 

Now that the similarity of genetic programming and learning from examples has been 
established, we can analyze the process of genetic programming by means of the techniques 
developed in statistical inference. The  genetic-programming paradigm uses a training set of 
fixed size to evolve the programs, but the eventual goal is the minimization of the error over 
all possible data in the domain. In other words, we try to minimize the average error, 

. N  
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constructed on the basis of the training set D of size N ,  while the eventual goal of learning 
is to minimize the expected value of the loss 

But the joint probability distribution Pf(x,y) = Pf(y I x)Pf(x) is unknown, and the only 
available information is contained in the training set D. Taking Q(yc,fA(q)) = 0. -fA(x))’, 
the effectiveness off as a predictor of y, given D and a particular x, is measured by the 
mean-squared error: 

(13) 

where E[.] is the expectation operator. Here we used the notationfA(x; 0) instead offA(x) to 
denote explicitly the dependency of the function fA or the program A on the training data 
D. Some manipulation of the formula shows that  this can be decomposed into two terms 
(Breiman, Friedman, Olshen, & Stone, 1984; Geman, Bienenstock, & Doursat, 1992): 

m y  -fA(x; m2 I x, DI. 

E[(y-fA(x;D))2 I x,Dl = E[(y-E[Ylxl)21x,~l +(E[ylxl -fA(x;D))’. (14) 

Here E[(y - E[y I XI)’ I x, D] does not depend on the data D, nor on the estimatorf. Hence 
the squared distance to the regression function E[y I x], (E[y I x] -fA(x; D))2 measures in a 
natural way the effectiveness off as a predictor of y. The mean-squared error off as an 
estimator of the regression is 

(1 5) 

where ED represents expectation with respect to the training set D, that is, the average over 
the ensemble of possible D (for fixed sample size N). This error can again be decomposed 
into two terms: 

E D  [(E[y I XI -fA(x;D))2] 7 

E D  [(E[y I XI -h (x ;  D))’] = (ED[fA(x; 011 - E[y I XI)’ 

-k E D  [(fA(x; 0) - ED[fA(x; D)1l2] (16) 

In essence, this states that there are two different kinds of errors. One is the error 
caused when, on the average, fA(x; 0) is different from E[y 1 XI. This type of error is called 
bias error. The  second type of error, variance error, is caused iffA(x; 0) is hghly sensitive to 
the data and far from the regression E [ y  I x] even with small bias or E~[fi(x;D)] = E[y I XI. 
Thus either bias or variance can contribute to poor performance. Because complex models 
can reduce bias error more easily (i.e., training error can be very small) than simpler ones 
but will in general have large variance (i.e., the resulting model is very specific to the data 
chosen for training), the theory suggests that smaller programs should be preferred to larger 
ones, regardless of concrete description forms used. In the next section we empirically study 
this phenomenon by examining the error landscape. 

3. Generalization versus Complexity 

In an attempt to examine the relationship between accuracy and structural complexity, we 
analyzed the error landscape of sigma-pi neural networks (Zhang, 1994). Landscape analysis 
techniques have also been used to characterize the difficulty of the tasks in genetic algorithms 
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(Manderick, de Weger, & Spiessens 1991) and in genetic programming @nnear, 1994b). 
We used the parity problem with input size n = 7. We first generated a clean data set DN 
of size N = z7. A noisy training set DN was then produced from DN by flipping the output 
value of each example with 5% probability. 

Approximately M = 20000 sigma-pi networks of differing size with binary-valued 
weights were randomly generated. Each network Ai was then trained on the noisy data 
DN using the error measure 

where yc and f ( ~ ; A i )  are the desired and actual output value of the ith network given the 
input pattern q. The training was performed by a simple hill-climbing method in which a 
new weight configuration is generated by mutating the existing configuration. After training, 
the generalization performance E(DN I Ai) of the network was measured on the test set D N  

of N clean examples. Two normalized performance measures were then produced for each 
network: 

(18) 

(19) 

1 
T(i) = -Q@N I Ai), N 

1 
G(i) = EQ(DN I Ail. 

The number of weights in each network is used as a complexity measure: 

where the indexj runs over all the units in Ai, and k runs over the incoming units toj. Perfor- 
mance is depicted as a function of the network complexity Wi. For different complexities w, 
we compute the following values: the average number of training errors ET(w), the average 
number of generalization errors EG(w), and their difference EG-T(w): 

The resulting fitness landscape is depicted in Figure 2. The graphs are drawn for the w- 
points where more than five Wi-instances were found in computing Equations ( 2  1) and (22) .  

Similarly we computed the average generalization performance as a function of the 
number of units v and the number of layers e: 
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Figure 2. Effect of the number of weights on generalization. 
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Figures 3 and 4 depict the generalization error as a function of the number of units and layers 
in the network, respectively. 

The results indicate the tendency for the relative generalization error to increase as the 
network size grows. For the problem studied here the minimal sigma-pi network solution is 
very small and thus we observe an increase of G - T from the start. But in general the curve 
will decrease first until the minimal solution complexity and then increase after that. This 
phenomenon is shown in Figure 5, which results from a similar analysis for the perceptron 
architecture, that is, the network consisting solely of sigma units. For this architecture, 
the parity problem requires a t  least two layers of sigma units and the best generalization 
is expected to be achieved with a two-layer structure. A larger or smaller network size 
accompanies more generalization error. 

Note, however, that if we compare some partial regions of the configuration space, this 
general tendency may be violated. For instance, in Figure 2 the average generalization error 
for networks with 90 weights is larger than that of networks with 250 weights. It is not 

I 
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difficult to imagne that the optimal complexity will also differ from one problem to another. 
However, the overall analysis suggests that small networks should be preferred to larger 
ones if no information is available about the configuration space, confirming the principle of 
Occam's Razor (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987; Zhang & Miihlenbein, 
1993a). 

4. Fitness Functions for Evolving Parsimonious Programs 

The Bayesian framework offers one approach to the bias-variance problem by formalizing 
the intuitive idea behind Occam's Razor. As described in Section 2, the goal of genetic 
programming is to find a model A whose evaluationfA(x) best approximates the underlying 
relation?(y) given an input x. The goodness of the program for the dataset D is usually 
measured by 

Considering the program as a Gaussian model of the data, the likelihood of the training data 
is described by 
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where Z(p) is a normalizing constant, and /3 is a positive constant determining the sensitivity 
of the probability to the error value. 

Bayed rule states that the posterior probability of a model is 

where P(A) is the prior probability of the models and 

P(D) = 1 P(D I A)P(A) dA. ( 3  5) 

The  most plausible model given the data is then inferred by comparing the posterior prob- 
abilities of all models. Because P(D) is the same for all models, for the purposes of model 
comparison, we need only compute 

P(D IA)P(A). ( 3  6) 

A complex model with many parameters will have a broad distribution of priors, that is, a 
small P(A) value, and hence a small P(A I 0) value. A simpler, more constrained model 
will have a sharper prior and thus a large P(A I 0) value. For the more complex model 
to be favored over the simpler one, i t  must achieve a much better fit to the data. Thus 
Bayesian model-comparison techniques choose between alternative models by trading off 
this measure of the simplicity of a model against the data misfit. Thus it is reasonable to 
define the evolutionary process of genetic programming as the maximization of the posterior 
probability: 

Abest = arg max {P(A; 1 D)} = arg max {P(D 1 A;)P(A;)} . ( 3 7 )  
A,Ed A ,EA 

Though the Bayesian inference is very useful in theory, it is not very convenient to deal 
with in practice. Alternatively, we can use the model complexity; according to coding theory 
(Rissanen, 1984), if P(x) is given, then its code length is given as L(P(x)) = - log(P(x)). 
Maximizing P(D I A)P(A) is thus equivalent to minimizing the total code length: 

L(A I 0) = L(P(D I A)P(A)) = - log (P(D I A)P(A)) = L(D I A)  + L(A), ( 3  8) 

where L(D I A) = - logP(D I A)  and L(A) = - logP(A). Here L(D I A)  is the code length 
of the data when encoded using the model A as a predictor for the data D, and L(A) is the 
length of the model itself. This leads to the minimum description length (MDL) principle 
(Rissanen, 1986; Fogel, 1991) where the goal is to obtain accurate and parsimonious estimates 
of the probability distribution. The  idea is to estimate the simplest density that has high 
likelihood by minimizing the total length of the description of the data: 

Abest = arg min {L(A; I D)}  = arg min {L(D I A,) + L(A,)}.  
A,EA A,EA 

( 3  9) 

Minimum complexity estimators are treated in this general form that can be specialized 
to various cases. The  specialization can be done by choosing a set of candidate probability 
distributions and by choosing a description length for each of these distributions, subject to 
information-theoretic requirements. If we assume that the squared errors for the data points 
are independent and normally distributed about a zero mean, then the density function is 
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where I$ is the ith component of the squared error for the cth example, and u2 is the variance 
of the Gaussian distribution. The cost of coding using this distribution can be computed 
from the optimal coding theorem. The probability mass of < can be approximated as the 
product of interval I around c and the height P ( c )  under the Gaussian density function a t  <, that is, mass(c) M P(c)I.  The code length is then: 

where S is the product of the number of output components and data items. We can select an 
optimal value of the variance of the Gaussian by minimizing the code length with respect to 
u2.  Note that S logl-' represents the complexity term; decreasing I increases the encoding 
accuracy, thus increasing the code complexity. 

As illustrated above, an implementation of MDL typically necessitates knowing the 
true underlying probability distribution or an approximation of it. In general, however, the 
distribution of underlying data structure is unknown and the exact formula for the fitness 
function is impossible to obtain. The key point is that both the Bayesian model comparison 
and the MDL principle reduced to the general criterion consisting of accuracy and parsimony 
(or training error and model complexity) of models that should be balanced. We propose to 
measure the fitness of a program A given a training set D in its most general form as 

F(A I 0) = Fo +FA = PE(D I A)  + aC(A), (42) 
where the parameters (Y and P control the trade-off between complexity C(A) and fitting 
error E(D I A )  of the program. In this framework, genetic programming is considered as a 
search for a program that minimizes F(A 1 D), or 

(43) Abest = arg min {F(A; I D)}  = arg min {PE(D I A,)  + (rC(A,)} . 
A , € d  A , € A  

The following section describes a general adaptive technique that balances (Y and 0 in un- 
known environments. 

5. Adaptive Balancing of Accuracy and Parsimony 

As suggested by the statistical theory and the generalization analysis, too small a program 
lacks the learning capability while too large a program may generalize poorly on unseen data. 
A finite set of search points and the maximum depth of trees are usually set as user-defined 
parameters in order to control tree sizes, but an appropriate depth is not known beforehand. 
What we need in practice is a general mechanism that can flexibly control the program 
complexity to find the most parsimonious program while satisfymg the desirable training 
accuracy. 

Our basic approach is to fix the error factor at  each generation and to change the 
complexity factor adaptively with respect to the error. Let Ei(g) denote the error defined by 
some criterion, that is, 

Ei(g) = E(D I A?). (4.4) 
The training set D is assumed to be fixed with size N during evolution. For later use we 
keep the error of the best individuals up to the gth generation: 

Ebest<g) = Ei*(g) (45) 

i* = argmjn{Fi(g) I : i = 1,. . . ,M} .  (46) 
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Here Fi(g) is the total fitness value of the ith individual at generationg used for reproduction 
of the next population. 

Let Ci(g) be the complexity value of ith individual in gth population. The  complexity 
of the program may be defined in several ways. For instance, in the case of neural-network 
synthesis, shallow networks with a small number of units and weights should be preferred 
to deep structures with a large number of units and weights. The total complexity of the 
network can thus be defined as a linear sum: 

ci(g) = C(AF) = W(A$) + U(Af> + L(AP), (47) 

where W(Af), U(Af), and L(A:) denote the number of weights, units, and layers respectively. 
More generally, complexity is defined in terms of a number of factors K,, which are weighted 
according to the requirements of the application' : 

At the end of each generation g we also keep the complexity of the best individual: 

cbest(g) = ci*<g) 
i' = argmin{Fi(g) : i = 1,. . . , M } .  

2 

(49) 

(50) 

Based on Cbest(g), the size of the best individual at  the next generation is estimated as 

t b e s t ( g  + 1) = cbest(g) + Acsum(g) ,  ( 5  1) 

where ACsum(g) is a moving average that keeps track of the difference in the complexity 
between the best individual of one generation and the best individual of the next: 

( 5 2 )  

with ACsum(0) = 0. At the beginning of generation g, the Occam factor, a(g), is computed 
as a function of the best error Ebest(g - 1) of the last generation and the estimated best size 
tbest(g) ofthe current generation: 

1 
ACsum(g) = 2 {Cbest(g) - c b e s d g  - 1) + Acsum(g - 1)) 

where N is the size of training set. The  Occam factor is then used in the fitness function as 

Fi(g) = &(g) + a(g)Ci(g). (54) 

This equation is a realization of the general form derived from the MDL approach (Equa- 
tion (42)) where p is fixed and a is expressed as a function of g: 

P = 1.0 and CY = a(g). ( 5 5 )  

Note that a(g) depends on Eb,,t(g 
The user-defined parameter t in Equation ( 5 3 )  specifies the maximum training error 

allowed for the final solution. When Ebest(g - 1) > 6 ,  a(g) decreases as the training error 

1) and kbest(g). 

2 As will be clear later, the applicability of the method is not limited by the coding scheme nor by the complexity definition. 
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falls because ,?be,& - 1) < 1 is multiplied. This encourages fast error reduction at the early 
stages of evolution. In contrast, for Eb,,,(g - 1) 5 E ,  as Eb,,(g) approaches 0 the relative 
importance of complexity increases due to the division by a small value Eb,& - 1) < 1. 
This encourages stronger complexity reduction at the final stages to obtain parsimonious 
solutions. In both cases, the constant factor $ cares for the stability of this control method. 
The  experimental results will be given in the next section. 

On the other hand, the Occam factor a ( g )  decreases as complexity Cbest(g) increases for 
a fixed Ebe& - l), encouragng that once the size of the best program grows, the individuals 
have increasingly higher chance of growth. This is intended to give counter effects to the 
Occam's Razor to ensure growing if necessary. This method is applicable independent of 
the complexity definition because the Occam factor is controlled by the ratio of the current 
complexity to the estimated best complexity, not by the absolute value. 

To see how the selection works based on this fitness evaluation scheme, we consider the 
fitness difference of two individuals, i andj, for Eb,,,(g - 1) I E :  

IFt(g) - F,(g)l = IEiW - Ej(g) + a(g>(Ci(g> - C,<g>>I * (56) 

There are nine possible relationships between Fi(g) and $(g) as listed in the first column of 
Table 1. Because the objective is to minimize the fitness, we are interested in the cases in 
which Fi(g) is less than F,(g) and i is selected againstj. There are four of them as marked in 
the rightmost column of the table. 

Case 1: Ei(g) < Ej(g) and Ci(g) < q ( g ) .  This is a trivial case; if i has less error and 
lower complexity thanj, Fi(g) will be less than F,(g). 

Case 2 :  Ei(g) < Ej(g) and Ci(g) = q ( g ) .  When both have the same complexity, i must 
have less error thanj  in order for Fi(g) to be less than F,(g). 

Case 3 :  &(g) = Ej(g) and Ci(g) < Cj(g). When the errors of both individuals are the 
same, the complexity of i must be lower than that ofj. 

0 Case 4: Ei(g) > $(g)  and Ci(g) < C,(g). Although individual i has larger error thanj, 
the fitness of i can be smaller than that o f j  if the complexity of i is much smaller than 
the complexity ofj. 

The last case is worthy ofmore discussion. Here we haveEi(g) > Ej(g) and Ci(g) < C,(g) 
and want to study the condition for F;(g) < F,(g), which can be rewritten as 

4g)<C,(g)  - Ci(g)> > W g )  - E,(g)- (5 7) 

q(g> - C&) (5 8) 

By substituting Equation ( 5 3 )  for Eb,,t(g - 1) 5 E into this inequality, we get 

> N2 ' Ebest(g - 1) ' Cbest(g) ' (Ei(g> - Ej(g))- 
Let Ebest(g - 1) = e(g)/N, where N is the number of training examples and e(g) is the number 
of mismatched examples for the best individual in generation g. Then we have 

q ( g )  - Ci<g) > e(g) ' ' t b e s t k )  . (Ei(g) - Ej(g))* (59) 

q < g )  - Ci(g) > e(g) ' ebest(g). (60) 

Ln the case of E;(g) - $(g)  = 1/N, that is, the ith program correctly classifies one more data 
than thejth, the complexity reduction must satisfy the relation 
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Table 1. Effect of error and complexity terms on fitness values. 

This means that a complexity reduction of at least e(g) . tbest(g) is required to compensate 
for a loss of one more misclassification. The overall effect is to improve the probability 
of generalization accuracy with possible loss of training errors, where the error tolerance 
interval is specified by the user-defined parameter E. 

6. Empirical Studies 

6.1 Application Domains 
Simulation has been performed on the synthesis of sigma-pi neural networks as described in 
Section 2. While their necessity and usefulness have been recognized earlier in the neural 
network community (Durbin & Rumelhart, 1989; Feldman & Ballard, 1982; Rumelhart, 
Hinton, & McClelland, 1986), the pi-units have not been long used in practice. One main 
reason was the difficulty of training. While some special class of networks consisting solely 
of pi units can be trained by the gradient method, either the architecture should be very 
simple (Giles & Maxwell, 1987) or the solution involves the manipulation of complex-valued 
expressions (Durbin & Rumelhart, 1989). Another problem in using pi units is the combina- 
torial explosion of the number of terms (Amari, 1991). The number of parameters necessary 
for specifymg an order k neuron is rk = nC;, where n is the total number of inputs and 
.C, are the binomial coefficients. We have used genetic programming to construct a higher 
order neural network whose topology, size, and node type are adapted to the particular prob- 
lem. The preliminary results have been reported in Zhang and Miihlenbein (1993b, 1994), 
in which a small “constant” Occam factor was used in the fitness function. 

Two data sets are used for the experiments. The one is an artificial data set generated 
with noise from the parity function. The other is real-world data consisting of clinical 
measurements for 345 different persons. The goal here is to diagnose a patient by the blood 
test measurements whether his liver is in disorder or not. Each data item constitutes the 
record of a single male individual and consists of six input values as listed in Table 2. The 
first five variables of the input are all blood tests that are thought to be sensitive to liver 
disorders that might arise from excessive alcohol consumption. The sixth input variable is 
the number of half-pint equivalents of alcoholic beverages drunk per day. The original data 

k 
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Table 2. Attribute information in blood tests for liver diagnosis. 

Attribute 

x4 

x5 
x6 

Name 
mcv 
alkphos 
smt 
sgot 
gammagt 
drinks 

Description 
mean corpuscular volume 
alkaline phosphotase 
alamine aminotransferase 
aspartate aminotransferase 
gamma-glutamyl transpeptidase 
alcoholic beverages drunk per day 

values (Murphy & Aha, 1994) were normalized into the interval [ - 1,1] before being used 
to train the networks. 

6.2 Method 
The algorithm is summarized in Figure 6. At the start, the initial population A(0) of M 
networks is created at random. The  random initialization includes the type and receptive 
field of units, the depth of the network, and the weight values. For the gth population, 
the fitness of each member network, Fj(g), is evaluated by the adaptive fitness function in 
Equation (54). 

Each member of the population undergoes a hill-climbing search in which a fixed num- 
ber of local search steps are performed while the structure is fixed. Each local search step 
consists of a random modification of the weight values, followed by its fitness evaluation, and 
the acceptance or rejection of new configuration. The new configuration is accepted as the 
current one if the new individual is fitter than the current one. Otherwise the previous one 
is used as the current individual. Hill climbing turned out to be useful from our previous 
observation that once the average size of individuals grows, it gets more difficult to find a 
smaller solution, although the solutions exist in the smaller subspace. 

The  best 7% of the hill-climbed population of generationg are selected into the mating 
pool D(g), where 7 E (0,1] is the truncation threshold (Miihlenbein & Schlierkamp-Voosen, 
1993). The  (g i 1)th generation of size M is produced by applying crossover and mutation 
operators to the parent networks in the mating pool B(g). New populations are generated 
until the variance of fitness values falls below the specified limit V- or the generation 
number reaches gm,. 

The crossover operator selects two parents, Bi and 4 at random, and exchanges their 
subtrees to create two offspring B: and Bj (see Figure 7). In this way, the size, depth, and 
receptive field shape of the network architecture are adapted. In Figure 7, for example, the 
number of units of parent Bi has increased by replacing one of its pi-subtrees with the sigma- 
sigma-pi-subtree of parent 4. The weights are adapted by repeatedly applying a mutation 
operator to each individual. The  mutation operator also changes the index for the input 
units and the neuron type. For instance, a sigma unit is mutated to a pi unit and vice versa. 
This flexibility gives the chance of evolving conventional neural network architectures as 
well as networks consisting of any combinations of sigma and pi units. 

6.3 Simulation Results 
The performance of the method for solving the parity problem of seven inputs is shown 
in Figure 8. The training set consists of 64 examples that were chosen randomly from 
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irocedure BGP(M, 7 ,  V,in, g,,,) 
population size: int M 
truncation rate: real 7 

fitness variance: real V,,,in, V(g)  
generation: int g,,,, g 
fimess values: real F, 
population: array A = (Al, A 2 ,  . . . , AM) 
mating pool: array B = (B ,  , B2,  . . . , BT.M)  
proc Initialize( ), Evaluate( ), Hillclimb( ), Select( ), Mate( ) 

Figure 6. The top-level structure of the algorithm. 

Bi Bj 

I 

Figure 7. Architecture adaptation by crossover. 

Z 7  = 128 data points with noise inserted by changing the output value with 5 %  probability. 
The generalization performance of the best solution in each generation was measured by 
the complete data set of 128 noiseless examples. The  population was initialized for every 
individual to contain sigma and pi units with 50% probability each. The depth of the 
initialized network was limited to 3 .  The truncation rate was 50%. The population size and 
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Figure 8. Evolution of fitness value and network size of the best individuals. 
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Figure 9. Error portion of the total fitness over generations. 

the maximum generation limit were M = 40 and g,,, = 100. The parameter E was set to 0.1, 
requiring that the training error should be at most 0.1 or, in other words, at least 90% of the 
training examples are desired to be learned correctly. 

Figure 8 (left) shows the performance evolution of the best individuals in each genera- 
tion, in terms of training and generalization errors. The stability of the accuracy-parsimony 
balancing can be seen by analyzing the error portion of the total fitness depicted in Figure 
9. The  graph shows that until the error falls below E = 0.1 at generation 26, the error term 
dominates the fitness, while after that point the relative domination of error term goes down 
under 1.0 to make stronger complexity reduction, though without riskmg too much error 
increase. 

The comparison of the fitness and network size confirms that the network size change, 
that is, growing or pruning, has a very close relationship with the training error reduction. 
For instance, from generation 6 to 7 during which the training error was reduced from 0.3 1 
to 0.28, the network size increased from 3-18-105 (layers-units-weights) to 4-2 1-126. Other 
examples of growing and pruning are listed in Table 3. 

The close relationship between complexity and performance of the network has also 
been observed for the medical data, as shown in Figure 10. One difference was the fact that 
here a larger network was required than for solving the parity problem. Also shown in the 
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E b e s d g )  Cbedg) 
0.3 1 3- 18- 105 
0.28 4-2 1 - 126 
0.2 5 3-16-93 
0.22 3 - 16-85 
0.11 3-17-87 
0.09 6-37-203 

g 
6 

12 
17 
21 
25 
30 

, Ehe& + l )  c b e s t ( g  + 

0.28 4-2 1 - 12 6 growing 
0.25 3- 16-93 pruning 
0.22 3-16-85 pruning 
0.1 1 3-17-87 growing 
0.09 8-42-241 growing 
0.03 5-31-174 pruning 

Table 3. Error update versus complexity change. 

0.50 ~ 

0.40 . 

Values at generation g I Values at generation g + 1 I Comments 

population average 
training error 

layers _ _ _ _ - _  
.... ~~ ~~... 

-_--_-_ --.-- 
0.10, , ,..,..,.....I..---T-. , . . . , . . . , . , . . .  ~ 

figure is the average fitness over the population. The average fitness was measured two times 
for each generation, that is, before and after hill climbing. Thus the effect of hill climbing 
can be observed in the graph. Hill climbing was especially helpful to find good weight 
combinations when the network architecture was suitable. For this real-life data, the training 
performance after 100 generations was approximately 85 % and the generalization accuracy 
was about 10% less than this value. The population size was 100. Though this performance 
is not appropriate for real application, there is still possibility for further improvement as the 
generation goes on. Using the genetic programming paradigm without having a complexity 
factor was almost impossible for this data, because of the rapid growth of the solution size. 
This indicates another practical reason for parsimonious solutions. 

The  effect of Occam’s Razor was studied by comparing the performance of the runs 
with the adaptive Occam method (Equation (54)) with those of the baseline fitness function 
Fi(g) = E,(g) = E(DN I Ai). Both methods used the same parity data as before. For each 
method, 20 runs were executed to observe the complexity of the best solution and its training 
and generalization performance. 

The  first three bar graphs in Figure 11 compare the average network size measured 
at the g,,,th generation. The  corresponding learning and generalization performance of 
both methods are also compared in the next two graphs. The  results show that applying 
the adaptive Occam method achieves significantly better generalization performance, as was 
expected by the theory and landscape analysis. Whereas the solution size in the baseline 
method increased without bound, controlling the Occam factor as described in the last 
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Figure 11. Comparison of performance with and without complexity penalty. 

section could prune inessential substructures to get parsimonious solutions but without 
losing the training performance. It is interesting to note that the evolution with Occam's 
Razor achieved better learning performance than without it. This is because the search 
with complexity penalty focuses more on a smaller search space while the search without it 
may explore too large a space to be practical. Because the evolution time is limited to the 
maximum of g,, generations, using Occam's Razor can find a solution faster than without 
it. 

We also measured the convergence time to local minima up to g,,, generations, that is, 
the total learning time until the generation from which there is no improvement in the size 
and performance of the best individual. Figure 1 1 shows the convergence time as measured in 
millions of evaluations of arithme tic operations associated with calculating activation values 
of neural units. Compared with the standard method, the adaptive Occam method converged 
more than three times faster for this problem. 

7. Discussion 

The minimum description length principle has also been used in other tree-based learning 
algorithms such as Classification and Regression Trees (CART) (Brieman et al., 1984) and 
ID3 (Quinlan & Rivest, 1989). For the induction of parsimonious decision trees, both CART 
and ID3 use a two-step process. In the first step, tree size only grows by starting with a single 
leaf node and expanding the leaf nodes until the tree perfectly classifies the given training set 
or until further growing is impossible. During the second step, the tree is repeatedly pruned 
back by replacing decision (nonterminal) nodes by leaves, whenever the total description 
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length is reduced. The  total description length is defined as the sum of the tree coding 
length and the error coding length in bits. Note that in this two-step induction, the tree 
complexity is considered only in the pruning phase. This is equivalent to a strategy of first 
reducing the error and then reducing the complexity. 

One fundamental difference between the genetic programming approach (including 
our method) and conventional tree-induction methods is that a population of trees is used 
instead of a single tree. In the genetic programming approach, pruning and growing are 
interleaved during the learning process. This is primarily done by the crossover operator, 
which generates new trees that can be larger or smaller than their parents. 

Iba et al. have used the MDL principle in genetic programming to evolve GMDH 
networks (Ivakhnenko, 1971) and decision trees (Iba, Kurita, de Garis, & Sato, 1993; Iba, 
de Garis, & Sato, 1994). As in ID3, the code length (CL) is defined as the total sum of 
description lengths: 

cLi(g) = E(D I A;) + C(A$), (61) 

where C(A$) is the description length for the tree A$ and E(D 1 A$) is the coding length for 
the classification error of the tree for the training set D. The description lengths are defined 
with respect to a specific encoding scheme chosen by the author. Due to the unknown 
range3 of the total coding length, a scaling window of size Wsize is used to determine a 
normalization factor, CL,,,(g). CL,,x(g) is defined as the largest code length during the last 
Wsize generations. The  fitness value of the tree is then defined as 

Notice that the fitness is defined here as simply the sum of error and complexity costs, 
followed by a normalization of the total costs. Therefore, the complexity value C(Ak) is as 
important as the error value E(D I A?) in determining the total fitness value of an individual. 
This works perfectly when the coding scheme exactly reflects the true probability distribution 
of the environment. One possible drawback in this implementation of the MDL principle 
in genetic programming is the lack of flexibility in balancing accuracy with parsimony in 
unknown environments. That is, there is a risk that the network size may be penalized too 
much, resulting in premature convergence in spite of other diversity-increasing measures, 
such as a large crossover rate. In fact, the authors remark that this kind of MDL approach 
should be used carefully when evolving general programs with genetic programming (Iba 
et al., 1994). Note also that this strategy is far from the two-step approach of ID3, taken to 
ensure parsimonious solutions without losing good performance. 

Premature convergence in the direct MDL approach can be avoided by introducing a 
small Occam factor a(,): 

where Ei(g) and Ci(g) are the error and complexityvalues normalized separately, and a(g)  is a 
constant expressed as a function of the training set size (Zhang & Miihlenbein, 1993a; Zhang 
& Miihlenbein, 199313). In this MDL approach, the complexity cost influences the selection 
process only when the candidates for selection have comparable performance. That is, a tree 
wins the selection only if its error is smaller than that of its competitors, or its error is the 
same as its competitors but its size is smaller. Note that this is an evolutionary equivalent 
of the strategy of first reducing the error and then reducing the complexity. Experimental 

3 The range of the coding length vanes from --oc to cy. due to the use of logarithms in calculating the length in bits. 
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evidence shows this method is robust and effective for a wide class of tasks. However, this 
balancing mechanism is very conservative and can still be speeded up by making the control 
of the Occam factor more flexible. 

The adaptive Occam method described in this article improves the fixed Occam ap- 
proach by changing the ratio of error to complexity in the course of the run. In early stages 
of learning, a strong increase in tree complexity is allowed by keeping the Occam factor small, 
which usually results in fast error reduction. The small Occam factor also results in robust 
convergence to the desired training accuracy, because premature convergence is avoided due 
to increased diversity. In later stages, that is, after the desired level of training performance 
is achieved, the adaptive Occam approach enforces a strong complexity penalty, which en- 
courages parsimony. Overall, this has the effect of increasing generalization performance 
without getting stuck in local minima due to premature convergence. The control of the 
phase transition is not difficult because it is defined by the desired training accuracy that the 
user requires. Though other MDL-based tree induction methods also reward parsimony, 
the adaptive Occam approach is different in that it dynamically balances error and complexity 

While proposed in a different context, the adaptive fitness function presented in this 
article has some similarity in spirit to cornpetitiveJihzessJicnctions (Angeline & Pollack, 1993). 
Standard fitness functions return the same fitness for an individual regardless of what other 
members are present in the population, demanding an accurate and consistent fitness measure 
throughout the evolutionary process. While the global accuracy can be easily computed when 
evolving solutions for many simple problems, it is often impractical for problems with greater 
complexity. In contrast, competitive fitness functions evaluate the fitness values depending 
on the constituents of the population. Angeline argues that competitive fitness functions 
provide a more robust training environment than independent fitness functions. 

A final comment is in order on the applicability of this approach to the more general 
classes of programs that can be developed by genetic programming. The general method 
of balancing accuracy and parsimony can be used for the genetic induction of other classes 
of tree-structured programs as well. This is because the error and complexity values are 
normalized separately and the same adaptive balancing mechanism can be used for different 
definitions of error and complexity. 

costs. 

8. Conclusion 

We have investigated the theoretical relationship between the complexity of a solution and its 
generalization ability in genetic programming. An analysis of the fitness landscape was made 
in the context of inferring sigma-pi neural networks from data. The comparison of learning 
and generalization performance as a function of network size suggests the effectiveness of 
minimal-complexity approaches. 

We presented an adaptive method that obtains parsimonious solutions while guarantee- 
ing the specified minimal training accuracy with a high probability. The method implements 
a kind of dynamic search where the focus of attention depends on the structure of the current 
and past fitness landscapes, that is, the distribution of error and complexity of the individuals 
in the recent populations. Whereas pruning is always encouraged by the nonzero Occam 
factor, the adaptive fitness function simultaneously promotes growing if it is necessary for 
significant error reduction. 

Though our experiments were performed in the context of neural network synthesis, the 
underlying principle of balancing accuracy with parsimony applies to all genetic program- 
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ming applications in which the structural complexity, as well as the structures themselves, 
should be optimized on the basis of noisy or incomplete data. 
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