
Balancing Accuracy and Parsimony
in Genetic Programming

Byoung-Tak Zhang Heinz Miihlenbein
German National Research Center
for Computer Science (GMD)
Schloss Birlinghoven Schloss Birlinghoven
D-53754 Sankt Augustin
Germany Germany
zhang@gmd.de muehlenbein@gmd.de

German National Research Center
for Computer Science (GMD)

D-53754 Sankt Augustin

Abstract
Genetic programming is distinguished from other evolutionary algorithms in that it uses
tree representations of variable size instead of linear strings of fixed length. The flexible
representation scheme is very important because it allows the underlying structure of the
data to be discovered automatically. One primary difficulty, however, is that the solutions
may grow too bigwithout any improvement oftheir generalization ability. In this article we
investigate the fundamental relationship between the performance and complexity of the
evolved structures. The essence of the parsimony problem is demonstrated empirically by
analyzing error landscapes of programs evolved for neural network synthesis. We consider
genetic programming as a statistical inference problem and apply the Bayesian model-
comparison framework to introduce a class of fitness functions with error and complexity
terms. An adaptive learning method is then presented that automatically balances the
model-complexity factor to evolve parsimonious programs without losing the diversity
of the population needed for achieving the desired training accuracy. The effectiveness
of this approach is empirically shown on the induction of sigma-pi neural networks for
solving a real-world medical diagnosis problem as well as benchmark tasks.

machine learning, tree induction, genetic programming, minimum description length
principle, Bayesian model comparison, evolving neural networks

Keywords

1. Introduction

Machine learning has been a major research area since the birth of artificial intelligence as
a discipline (Samuel, 1963; Winston, 1975). Learning is not only an inalienable component
of human intelligence, but it also plays an important role in constructing high-performance
application systems (Carbonell, 1990). Recently, Koza introduced a new learning paradigm,
called genetic programming (Koza, 1992a), which extends conventional evolutionary algo-
rithms (Back & Schwefel, 1993; Goldberg, 1989; Muhlenbein & Schlierkamp-Voosen, 1993)
in that the structures undergoing adaptation are hierarchical computer programs instead of
bitstrings. Genetic programming has been successfully applied to learn computer programs
for solving many interesting problems in artificial intelligence and artificial life (Koza, 1992a;
Koza, 1994; Kinnear, 1994a).

As with other evolutionary algorithms, genetic programming starts with a population
of randomly generated individuals. Each individual is a program that, when executed, is the
candidate solution to the problem. Selection and crossover operators are used to produce

@ 1995 The Massachusetts Institute of Technology Evolutionary Computation 3(1): 17-38

Byoung-Tak Zhang and Heinz Miihlenbein

increasingly fit populations of computer programs. While most evolutionary algorithms are
based on chromosomes of fixed length, genetic programming uses hierarchical structures,
that is, trees of variable size and shape. In the most general case, the programs can be LISP
S-expressions representing a game-playing strategy, a set of production rules, a decision
tree, or a neural network. The structured representation scheme is particularly well suited
to problems in which the regularity of the underlying process must be discovered from
observed data.

One problem with the flexible size representation in genetic programming is tha t the
space and time requirements of the structures may become too great. Larger programs take
more execution time than smaller ones; when all the elementary operations take the same
time, the total execution time is proportional to the size of the program. In some applications
such as synthesis of logic circuits or neural networks, one may wish to implement the final
solutions in hardware. In this case, larger solutions also result in higher implementation costs.
In addition, as their size increases, the programs frequently become hopelessly opaque to
human understanding (Kinnear, 1993). One approach to dealing with this problem is to
define and reuse submodules. Koza suggests defining potentially useful subroutines called
automatically defined finctions (ADFs) during a run (Koza, 1992b). Genetic programming
with automatic function definition significantly reduces the average structural complexity
of the solutions and the computational effort as compared to genetic programming without
automatic function definition (Koza, 1993).

However, even with reusable submodules the program size may still grow without bound
if the training data is noisy or incomplete. Empirical studies report that, when their training
accuracy is comparable, smaller solutions usually demonstrate better generalization perfor-
mance than larger solutions. Tackett, for instance, observes in his pattern classification
experiments that a high degree of correlation exists between tree size and performance:
“among the set of ‘pretty good’ solutions, the smallest within the set usually achieved the
highest performance” (Tackett, 1993, p. 309). He also observed that, as the size and complex-
ity of trees grew, a point was eventually reached in most runs where performance dropped.
H e suggests that for an open-ended exploration of problem space, parsimony may be an
important factor not for aesthetic reasons or ease of analysis, but because there seems to
be a bound on the appropriate size of solution trees for a given problem. Kinnear reports
that as his programs grew, it became less and less likely for them to be general Wnnear,
1993). He questions whether there are other problems for which generalization is inversely
proportional to the program size.

In this article we show that the problem of parsimony is ubiquitous in genetic program-
ming from a theoretical point of view. In Section 2, we use the results from the statistics
literature to shed light on the fundamental relationship between accuracy and parsimony in
genetic programming. In Section 3, the essence of the problem is demonstrated empirically
when we analyze error landscapes of programs evolved for neural network synthesis. In
Section 4, a Bayesian model-comparison method is used to develop a framework in which
a class of fitness measures is introduced for dealing with problems of parsimony. We then
describe an adaptive technique for putting this fitness function into practice. It automatically
balances the ratio of training accuracy to solution complexity without losing the population
diversity needed to achieve a specified training accuracy. The effectiveness of the method is
shown in Section 6, where simulation results are presented demonstrating the induction of
neural networks using noisy training data. In Section 7 we discuss the relationship of this
work with other tree-based machine learning methods. Section 8 concludes by summarizing
the results and implications of this work.

18 Evolutionary Computation Volume 3, Number 1

W l I

Balancing Accuracy and Parsimony

Figure 1.
has a local

Tree representation of a sigma-pi neural network with six inputs and one
receptive field.

output. Each unit

2. Genetic Programming and the Bias-Variance Problem

Many seemingly different problems in artificial intelligence and artificial life can be viewed
as the problem of discovering a computer program that produces some desired output for
particular inputs. For instance, in visual pattern-recognition applications the input of a
program A is a vector x of features from a segmented image and each component yk of the
output vector y may represent the probability that the image belongs to category k.

The process of solving these problems can be formulated as a search for a highly fit
computer program, Abest, in the whole space of possible computer programs A:

The evolutionary approach differs from most other search techniques in that it makes a
parallel search simultaneously involving hundreds or thousands of points in the search space.
Genetic programming starts with an initial population A of randomly generated computer
programs composed of elementary functions and terminals chosen by the domain expert. The
elementary functions may be arithmetic operations, logical functions, standard programming
operations, or domain-specific functions.

In the synthesis of sigma-pi neural networks (Zhang & Muhlenbein, 1994), for instance,
the terminal set X consists of n input variables:

x = {x1,x2,. . . ,Xn} (4

u = {S ,P} . (3)

and the elementary function set U contains sigma (S) and pi (P) units:

An instance of the program consisting of the above elementary functions, that is, a sigma-pi
neural network, is shown in Figure 1. This program consists of three S units and two P units
in an embedded list structure

where Sj and Pi are realizations of a sigma and pi unit at ith node, respectively. Notice
that although the number of primitive functions and terminals is finite, any arbitrarily large
programs can be generated by recursive use of them.

Each unit, Si or Pi, has its own receptive field R(i), the set of incoming connections
from other units or from external inputs.’ Each input connection is associated with a weight

1 The bias or threshold can be treated as a weight connected to a special unit whose activation value is always 1. Thus, in the
following discussion we consider the bias as just another input to the unit.

Evolutionary Computation Volume 3 , Number 1 19

Byoung-Tak Zhang and Heinz Miihlenbein

value, wf, denoting the strength of the connection fromj to i. Neuron types differ in their
computation of activation values. Sigma units, S;, compute the weighted sum of these inputs

{ :: if CJERQ w&Y! > yj = Sj(X) =
otherwise,

while pi units, Pi, compute the product of their weighted inputs

(5)

The quality of each computer program in the population is measured in terms of how
well it performs in the particular problem environment. T h s measure is called the fitness
measure. Typically, each computer program in the population is run over a number of
different input-output cases so that its fitness is measured as a sum or an average over their
errors. The set of such cases is called the training set, D:

D = { (x E , Y c) E (7)

where x, E X and y, E Y. The domain X and the range Y are defined by the application.
The training set is assumed to be generated from an unknown relationshipf satisfymg

yc =i’ (xE>. (8)

Iff is stochastic, it is further assumed that the relationf can be described by a probability
density function defined over the space X x Y :

where Pf(x) defines the regon of interest in the input space, and Pf(y I x) describes the
statistical relation between the inputs and the outputs.

Given this, the goal of genetic programming is formulated as finding a program A E A
that computes the best approximationfA(x) tof based on the training set D. This is a typical
learning-from-examples problem. In order to choose the best available approximation, we
measure the discrepancy, or loss, Q(y,fA(x)) between the target response y to a given input x
and the actual responsefA(x) provided by the program. The loss function most commonly
used is the sum of squared errors:

Now that the similarity of genetic programming and learning from examples has been
established, we can analyze the process of genetic programming by means of the techniques
developed in statistical inference. The genetic-programming paradigm uses a training set of
fixed size to evolve the programs, but the eventual goal is the minimization of the error over
all possible data in the domain. In other words, we try to minimize the average error,

. N

20 Evolutionary Computation Volume 3 , Number 1

Balancing Accuracy and Parsimony

constructed on the basis of the training set D of size N , while the eventual goal of learning
is to minimize the expected value of the loss

But the joint probability distribution Pf(x,y) = Pf(y I x)Pf(x) is unknown, and the only
available information is contained in the training set D. Taking Q(yc,fA(q)) = 0. -fA(x))’,
the effectiveness off as a predictor of y, given D and a particular x, is measured by the
mean-squared error:

(13)

where E[.] is the expectation operator. Here we used the notationfA(x; 0) instead offA(x) to
denote explicitly the dependency of the function fA or the program A on the training data
D. Some manipulation of the formula shows that this can be decomposed into two terms
(Breiman, Friedman, Olshen, & Stone, 1984; Geman, Bienenstock, & Doursat, 1992):

m y -fA(x; m2 I x, DI.

E[(y-fA(x;D))2 I x,Dl = E[(y-E[Ylxl)21x,~l +(E[ylxl -fA(x;D))’. (14)

Here E[(y - E[y I XI)’ I x, D] does not depend on the data D, nor on the estimatorf. Hence
the squared distance to the regression function E[y I x], (E[y I x] -fA(x; D))2 measures in a
natural way the effectiveness off as a predictor of y. The mean-squared error off as an
estimator of the regression is

(1 5)

where ED represents expectation with respect to the training set D, that is, the average over
the ensemble of possible D (for fixed sample size N). This error can again be decomposed
into two terms:

E D [(E[y I XI -fA(x;D))2] 7

E D [(E[y I XI -h (x ; D))’] = (ED[fA(x; 011 - E[y I XI)’

-k E D [(fA(x; 0) - ED[fA(x; D)1l2] (16)

In essence, this states that there are two different kinds of errors. One is the error
caused when, on the average, fA(x; 0) is different from E[y 1 XI. This type of error is called
bias error. The second type of error, variance error, is caused iffA(x; 0) is hghly sensitive to
the data and far from the regression E [y I x] even with small bias or E~[fi(x;D)] = E[y I XI.
Thus either bias or variance can contribute to poor performance. Because complex models
can reduce bias error more easily (i.e., training error can be very small) than simpler ones
but will in general have large variance (i.e., the resulting model is very specific to the data
chosen for training), the theory suggests that smaller programs should be preferred to larger
ones, regardless of concrete description forms used. In the next section we empirically study
this phenomenon by examining the error landscape.

3. Generalization versus Complexity

In an attempt to examine the relationship between accuracy and structural complexity, we
analyzed the error landscape of sigma-pi neural networks (Zhang, 1994). Landscape analysis
techniques have also been used to characterize the difficulty of the tasks in genetic algorithms

Evolutionary Computation Volume 3 , Number 1 21

Byoung-Tak Zhang and Heinz Miihlenbein

(Manderick, de Weger, & Spiessens 1991) and in genetic programming @nnear, 1994b).
We used the parity problem with input size n = 7. We first generated a clean data set DN
of size N = z7. A noisy training set DN was then produced from DN by flipping the output
value of each example with 5% probability.

Approximately M = 20000 sigma-pi networks of differing size with binary-valued
weights were randomly generated. Each network Ai was then trained on the noisy data
DN using the error measure

where yc and f (~ ; A i) are the desired and actual output value of the ith network given the
input pattern q. The training was performed by a simple hill-climbing method in which a
new weight configuration is generated by mutating the existing configuration. After training,
the generalization performance E(DN I Ai) of the network was measured on the test set D N

of N clean examples. Two normalized performance measures were then produced for each
network:

(18)

(19)

1
T(i) = -Q@N I Ai), N

1
G(i) = EQ(DN I Ail.

The number of weights in each network is used as a complexity measure:

where the indexj runs over all the units in Ai, and k runs over the incoming units toj. Perfor-
mance is depicted as a function of the network complexity Wi. For different complexities w,
we compute the following values: the average number of training errors ET(w), the average
number of generalization errors EG(w), and their difference EG-T(w):

The resulting fitness landscape is depicted in Figure 2. The graphs are drawn for the w-
points where more than five Wi-instances were found in computing Equations (2 1) and (22) .

Similarly we computed the average generalization performance as a function of the
number of units v and the number of layers e:

22 Evolutionary Computation Volume 3, Number 1

Balancing Accuracy and Parsimony

0 4 -

F
' 0.3.
E
a

a
E
@ 0 2 -

5 0.1 -
L a

0.0 .

- 0 1 -
0 50 100 150 200 250

O 5 c 0.5

. . . . , . . . , , , . . . , I
3 50 100 150 200 250

0 5 -

0 4 -

F :

E :

@ 0 2 -

' 0.3 -
m

g
0 1 -

0 .

0.0 -
. generalization error (G)

-0.1 4

number of weights number of weights

Figure 2. Effect of the number of weights on generalization.

. . . . , , , , , , , , , , , , . . .

Figures 3 and 4 depict the generalization error as a function of the number of units and layers
in the network, respectively.

The results indicate the tendency for the relative generalization error to increase as the
network size grows. For the problem studied here the minimal sigma-pi network solution is
very small and thus we observe an increase of G - T from the start. But in general the curve
will decrease first until the minimal solution complexity and then increase after that. This
phenomenon is shown in Figure 5, which results from a similar analysis for the perceptron
architecture, that is, the network consisting solely of sigma units. For this architecture,
the parity problem requires a t least two layers of sigma units and the best generalization
is expected to be achieved with a two-layer structure. A larger or smaller network size
accompanies more generalization error.

Note, however, that if we compare some partial regions of the configuration space, this
general tendency may be violated. For instance, in Figure 2 the average generalization error
for networks with 90 weights is larger than that of networks with 250 weights. It is not

I

Evolutionary Computation Volume 3 , Number 1 2 3

Byoung-Tak Zhang and Heinz Muhlenbein

F
' 0.3 I s :
$: E 0.2 -

E 0.1 I

m E

b

0 ' I;,'', , , , , I , , training error (T)
. generalization error (G)

-0.1
0 1 2 3 4 5 6 7 8 9

number of layers

0.5 -

..._. ...- __-. ___.- . ..-- ...
....__- ._ - ____....-

0.4

0.5

0 4 -

F
' 03: s :
$:

/

g 0.2:

0.1 - 5 0.1 I

m

U Z '
5

b :

0.0 - training error (T) 0.0 -

-0.1 7 , , , , , , , , , , , -0.1;

. generalization error (G)

/

, , ~ , , , , , , , ,

0 1 2 3 4 5 6 7 8

number of layers

difficult to imagne that the optimal complexity will also differ from one problem to another.
However, the overall analysis suggests that small networks should be preferred to larger
ones if no information is available about the configuration space, confirming the principle of
Occam's Razor (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987; Zhang & Miihlenbein,
1993a).

4. Fitness Functions for Evolving Parsimonious Programs

The Bayesian framework offers one approach to the bias-variance problem by formalizing
the intuitive idea behind Occam's Razor. As described in Section 2, the goal of genetic
programming is to find a model A whose evaluationfA(x) best approximates the underlying
relation?(y) given an input x. The goodness of the program for the dataset D is usually
measured by

Considering the program as a Gaussian model of the data, the likelihood of the training data
is described by

24 Evolutionary Computation Volume 3, Number 1

Balancing Accuracy and Parsimony

where Z(p) is a normalizing constant, and /3 is a positive constant determining the sensitivity
of the probability to the error value.

Bayed rule states that the posterior probability of a model is

where P(A) is the prior probability of the models and

P(D) = 1 P(D I A)P(A) dA. (3 5)

The most plausible model given the data is then inferred by comparing the posterior prob-
abilities of all models. Because P(D) is the same for all models, for the purposes of model
comparison, we need only compute

P(D IA)P(A). (3 6)

A complex model with many parameters will have a broad distribution of priors, that is, a
small P(A) value, and hence a small P(A I 0) value. A simpler, more constrained model
will have a sharper prior and thus a large P(A I 0) value. For the more complex model
to be favored over the simpler one, i t must achieve a much better fit to the data. Thus
Bayesian model-comparison techniques choose between alternative models by trading off
this measure of the simplicity of a model against the data misfit. Thus it is reasonable to
define the evolutionary process of genetic programming as the maximization of the posterior
probability:

Abest = arg max {P(A; 1 D)} = arg max {P(D 1 A;)P(A;)} . (3 7)
A,Ed A ,EA

Though the Bayesian inference is very useful in theory, it is not very convenient to deal
with in practice. Alternatively, we can use the model complexity; according to coding theory
(Rissanen, 1984), if P(x) is given, then its code length is given as L(P(x)) = - log(P(x)).
Maximizing P(D I A)P(A) is thus equivalent to minimizing the total code length:

L(A I 0) = L(P(D I A)P(A)) = - log (P(D I A)P(A)) = L(D I A) + L(A), (3 8)

where L(D I A) = - logP(D I A) and L(A) = - logP(A). Here L(D I A) is the code length
of the data when encoded using the model A as a predictor for the data D, and L(A) is the
length of the model itself. This leads to the minimum description length (MDL) principle
(Rissanen, 1986; Fogel, 1991) where the goal is to obtain accurate and parsimonious estimates
of the probability distribution. The idea is to estimate the simplest density that has high
likelihood by minimizing the total length of the description of the data:

Abest = arg min {L(A; I D)} = arg min {L(D I A,) + L(A,)}.
A,EA A,EA

(3 9)

Minimum complexity estimators are treated in this general form that can be specialized
to various cases. The specialization can be done by choosing a set of candidate probability
distributions and by choosing a description length for each of these distributions, subject to
information-theoretic requirements. If we assume that the squared errors for the data points
are independent and normally distributed about a zero mean, then the density function is

Evolutionary Computation Volume 3 , Number 1 25

Byoung-Tak Zhang and Heinz Mthlenbein

where I$ is the ith component of the squared error for the cth example, and u2 is the variance
of the Gaussian distribution. The cost of coding using this distribution can be computed
from the optimal coding theorem. The probability mass of < can be approximated as the
product of interval I around c and the height P (c) under the Gaussian density function a t <, that is, mass(c) M P(c)I. The code length is then:

where S is the product of the number of output components and data items. We can select an
optimal value of the variance of the Gaussian by minimizing the code length with respect to
u2. Note that S logl-' represents the complexity term; decreasing I increases the encoding
accuracy, thus increasing the code complexity.

As illustrated above, an implementation of MDL typically necessitates knowing the
true underlying probability distribution or an approximation of it. In general, however, the
distribution of underlying data structure is unknown and the exact formula for the fitness
function is impossible to obtain. The key point is that both the Bayesian model comparison
and the MDL principle reduced to the general criterion consisting of accuracy and parsimony
(or training error and model complexity) of models that should be balanced. We propose to
measure the fitness of a program A given a training set D in its most general form as

F(A I 0) = Fo +FA = PE(D I A) + aC(A), (42)
where the parameters (Y and P control the trade-off between complexity C(A) and fitting
error E(D I A) of the program. In this framework, genetic programming is considered as a
search for a program that minimizes F(A 1 D), or

(43) Abest = arg min {F(A; I D)} = arg min {PE(D I A,) + (rC(A,)} .
A , € d A , € A

The following section describes a general adaptive technique that balances (Y and 0 in un-
known environments.

5. Adaptive Balancing of Accuracy and Parsimony

As suggested by the statistical theory and the generalization analysis, too small a program
lacks the learning capability while too large a program may generalize poorly on unseen data.
A finite set of search points and the maximum depth of trees are usually set as user-defined
parameters in order to control tree sizes, but an appropriate depth is not known beforehand.
What we need in practice is a general mechanism that can flexibly control the program
complexity to find the most parsimonious program while satisfymg the desirable training
accuracy.

Our basic approach is to fix the error factor at each generation and to change the
complexity factor adaptively with respect to the error. Let Ei(g) denote the error defined by
some criterion, that is,

Ei(g) = E(D I A?). (4.4)
The training set D is assumed to be fixed with size N during evolution. For later use we
keep the error of the best individuals up to the gth generation:

Ebest<g) = Ei*(g) (45)

i* = argmjn{Fi(g) I : i = 1,. . . ,M} . (46)

26 Evolutionary Computation Volume 3 , Number 1

Balancing Accuracy and Parsimony

Here Fi(g) is the total fitness value of the ith individual at generationg used for reproduction
of the next population.

Let Ci(g) be the complexity value of ith individual in gth population. The complexity
of the program may be defined in several ways. For instance, in the case of neural-network
synthesis, shallow networks with a small number of units and weights should be preferred
to deep structures with a large number of units and weights. The total complexity of the
network can thus be defined as a linear sum:

ci(g) = C(AF) = W(A$) + U(Af> + L(AP), (47)

where W(Af), U(Af), and L(A:) denote the number of weights, units, and layers respectively.
More generally, complexity is defined in terms of a number of factors K,, which are weighted
according to the requirements of the application' :

At the end of each generation g we also keep the complexity of the best individual:

cbest(g) = ci*<g)
i' = argmin{Fi(g) : i = 1,. . . , M } .

2

(49)

(50)

Based on Cbest(g), the size of the best individual at the next generation is estimated as

t b e s t (g + 1) = cbest(g) + Acsum(g) , (5 1)

where ACsum(g) is a moving average that keeps track of the difference in the complexity
between the best individual of one generation and the best individual of the next:

(5 2)

with ACsum(0) = 0. At the beginning of generation g, the Occam factor, a(g), is computed
as a function of the best error Ebest(g - 1) of the last generation and the estimated best size
tbest(g) ofthe current generation:

1
ACsum(g) = 2 {Cbest(g) - c b e s d g - 1) + Acsum(g - 1))

where N is the size of training set. The Occam factor is then used in the fitness function as

Fi(g) = &(g) + a(g)Ci(g). (54)

This equation is a realization of the general form derived from the MDL approach (Equa-
tion (42)) where p is fixed and a is expressed as a function of g:

P = 1.0 and CY = a(g). (5 5)

Note that a(g) depends on Eb,,t(g
The user-defined parameter t in Equation (5 3) specifies the maximum training error

allowed for the final solution. When Ebest(g - 1) > 6 , a(g) decreases as the training error

1) and kbest(g).

2 As will be clear later, the applicability of the method is not limited by the coding scheme nor by the complexity definition.

Evolutionary Computation Volume 3, Number 1 27

Byoung-Tak Zhang and Heinz Muhlenbein

falls because ,?be,& - 1) < 1 is multiplied. This encourages fast error reduction at the early
stages of evolution. In contrast, for Eb,,,(g - 1) 5 E , as Eb,,(g) approaches 0 the relative
importance of complexity increases due to the division by a small value Eb,& - 1) < 1.
This encourages stronger complexity reduction at the final stages to obtain parsimonious
solutions. In both cases, the constant factor $ cares for the stability of this control method.
The experimental results will be given in the next section.

On the other hand, the Occam factor a (g) decreases as complexity Cbest(g) increases for
a fixed Ebe& - l), encouragng that once the size of the best program grows, the individuals
have increasingly higher chance of growth. This is intended to give counter effects to the
Occam's Razor to ensure growing if necessary. This method is applicable independent of
the complexity definition because the Occam factor is controlled by the ratio of the current
complexity to the estimated best complexity, not by the absolute value.

To see how the selection works based on this fitness evaluation scheme, we consider the
fitness difference of two individuals, i andj, for Eb,,,(g - 1) I E :

IFt(g) - F,(g)l = IEiW - Ej(g) + a(g>(Ci(g> - C,<g>>I * (56)

There are nine possible relationships between Fi(g) and $(g) as listed in the first column of
Table 1. Because the objective is to minimize the fitness, we are interested in the cases in
which Fi(g) is less than F,(g) and i is selected againstj. There are four of them as marked in
the rightmost column of the table.

Case 1: Ei(g) < Ej(g) and Ci(g) < q (g) . This is a trivial case; if i has less error and
lower complexity thanj, Fi(g) will be less than F,(g).

Case 2 : Ei(g) < Ej(g) and Ci(g) = q (g) . When both have the same complexity, i must
have less error thanj in order for Fi(g) to be less than F,(g).

Case 3 : &(g) = Ej(g) and Ci(g) < Cj(g). When the errors of both individuals are the
same, the complexity of i must be lower than that ofj.

0 Case 4: Ei(g) > $(g) and Ci(g) < C,(g). Although individual i has larger error thanj,
the fitness of i can be smaller than that o f j if the complexity of i is much smaller than
the complexity ofj.

The last case is worthy ofmore discussion. Here we haveEi(g) > Ej(g) and Ci(g) < C,(g)
and want to study the condition for F;(g) < F,(g), which can be rewritten as

4g)<C,(g) - Ci(g)> > W g) - E,(g)- (5 7)

q(g> - C&) (5 8)

By substituting Equation (5 3) for Eb,,t(g - 1) 5 E into this inequality, we get

> N2 ' Ebest(g - 1) ' Cbest(g) ' (Ei(g> - Ej(g))-
Let Ebest(g - 1) = e(g)/N, where N is the number of training examples and e(g) is the number
of mismatched examples for the best individual in generation g. Then we have

q (g) - Ci<g) > e(g) ' ' t b e s t k) . (Ei(g) - Ej(g))* (59)

q < g) - Ci(g) > e(g) ' ebest(g). (60)

Ln the case of E;(g) - $(g) = 1/N, that is, the ith program correctly classifies one more data
than thejth, the complexity reduction must satisfy the relation

28 Evolutionary Computation Volume 3, Number 1

Balancing Accuracy and Parsimony

Table 1. Effect of error and complexity terms on fitness values.

This means that a complexity reduction of at least e(g) . tbest(g) is required to compensate
for a loss of one more misclassification. The overall effect is to improve the probability
of generalization accuracy with possible loss of training errors, where the error tolerance
interval is specified by the user-defined parameter E.

6. Empirical Studies

6.1 Application Domains
Simulation has been performed on the synthesis of sigma-pi neural networks as described in
Section 2. While their necessity and usefulness have been recognized earlier in the neural
network community (Durbin & Rumelhart, 1989; Feldman & Ballard, 1982; Rumelhart,
Hinton, & McClelland, 1986), the pi-units have not been long used in practice. One main
reason was the difficulty of training. While some special class of networks consisting solely
of pi units can be trained by the gradient method, either the architecture should be very
simple (Giles & Maxwell, 1987) or the solution involves the manipulation of complex-valued
expressions (Durbin & Rumelhart, 1989). Another problem in using pi units is the combina-
torial explosion of the number of terms (Amari, 1991). The number of parameters necessary
for specifymg an order k neuron is rk = nC;, where n is the total number of inputs and
.C, are the binomial coefficients. We have used genetic programming to construct a higher
order neural network whose topology, size, and node type are adapted to the particular prob-
lem. The preliminary results have been reported in Zhang and Miihlenbein (1993b, 1994),
in which a small “constant” Occam factor was used in the fitness function.

Two data sets are used for the experiments. The one is an artificial data set generated
with noise from the parity function. The other is real-world data consisting of clinical
measurements for 345 different persons. The goal here is to diagnose a patient by the blood
test measurements whether his liver is in disorder or not. Each data item constitutes the
record of a single male individual and consists of six input values as listed in Table 2. The
first five variables of the input are all blood tests that are thought to be sensitive to liver
disorders that might arise from excessive alcohol consumption. The sixth input variable is
the number of half-pint equivalents of alcoholic beverages drunk per day. The original data

k

Evolutionary Computation Volume 3, Number 1 29

Byoung-Tak Zhang and Heinz Miihlenbein

Table 2. Attribute information in blood tests for liver diagnosis.

Attribute

x4

x5
x6

Name
mcv
alkphos
smt
sgot
gammagt
drinks

Description
mean corpuscular volume
alkaline phosphotase
alamine aminotransferase
aspartate aminotransferase
gamma-glutamyl transpeptidase
alcoholic beverages drunk per day

values (Murphy & Aha, 1994) were normalized into the interval [- 1,1] before being used
to train the networks.

6.2 Method
The algorithm is summarized in Figure 6. At the start, the initial population A(0) of M
networks is created at random. The random initialization includes the type and receptive
field of units, the depth of the network, and the weight values. For the gth population,
the fitness of each member network, Fj(g), is evaluated by the adaptive fitness function in
Equation (54).

Each member of the population undergoes a hill-climbing search in which a fixed num-
ber of local search steps are performed while the structure is fixed. Each local search step
consists of a random modification of the weight values, followed by its fitness evaluation, and
the acceptance or rejection of new configuration. The new configuration is accepted as the
current one if the new individual is fitter than the current one. Otherwise the previous one
is used as the current individual. Hill climbing turned out to be useful from our previous
observation that once the average size of individuals grows, it gets more difficult to find a
smaller solution, although the solutions exist in the smaller subspace.

The best 7% of the hill-climbed population of generationg are selected into the mating
pool D(g), where 7 E (0,1] is the truncation threshold (Miihlenbein & Schlierkamp-Voosen,
1993). The (g i 1)th generation of size M is produced by applying crossover and mutation
operators to the parent networks in the mating pool B(g). New populations are generated
until the variance of fitness values falls below the specified limit V- or the generation
number reaches gm,.

The crossover operator selects two parents, Bi and 4 at random, and exchanges their
subtrees to create two offspring B: and Bj (see Figure 7). In this way, the size, depth, and
receptive field shape of the network architecture are adapted. In Figure 7, for example, the
number of units of parent Bi has increased by replacing one of its pi-subtrees with the sigma-
sigma-pi-subtree of parent 4. The weights are adapted by repeatedly applying a mutation
operator to each individual. The mutation operator also changes the index for the input
units and the neuron type. For instance, a sigma unit is mutated to a pi unit and vice versa.
This flexibility gives the chance of evolving conventional neural network architectures as
well as networks consisting of any combinations of sigma and pi units.

6.3 Simulation Results
The performance of the method for solving the parity problem of seven inputs is shown
in Figure 8. The training set consists of 64 examples that were chosen randomly from

30 Evolutionary Computation Volume 3 , Number 1

Balancing Accuracy and Parsimony

irocedure BGP(M, 7 , V,in, g,,,)
population size: int M
truncation rate: real 7

fitness variance: real V,,,in, V(g)
generation: int g,,,, g
fimess values: real F,
population: array A = (Al, A 2 , . . . , AM)
mating pool: array B = (B , , B2, . . . , BT.M)
proc Initialize(), Evaluate(), Hillclimb(), Select(), Mate()

Figure 6. The top-level structure of the algorithm.

Bi Bj

I

Figure 7. Architecture adaptation by crossover.

Z 7 = 128 data points with noise inserted by changing the output value with 5 % probability.
The generalization performance of the best solution in each generation was measured by
the complete data set of 128 noiseless examples. The population was initialized for every
individual to contain sigma and pi units with 50% probability each. The depth of the
initialized network was limited to 3 . The truncation rate was 50%. The population size and

Evolutionary Computation Volume 3, Number 1 31

Byoung-Tak Zhang and Heinz Muhlenbein

200 -

150-
Y) .
x .
0 .

$ 100:

50 -

0

0.5

-

.. ---- _____----_____
7-- , - . I - - . - ' ' . - ' ~ l - I ,.,""-r---

----
:..,
,

.............. - - - - - ...--------.
___-_- -

training error
. generalization error ~~.

. -. . .. ,

0.0 rrrrT I . . . lrp ' ' ~ " " '

0 5 10 15 20 25 30 35 40 45 50

generation

Figure 8. Evolution of fitness value and network size of the best individuals.

0

I

0.5 4.. . . . , , , , , , , , ,A
0 5 10 15 20 25 30 35 40 45 50

generation

Figure 9. Error portion of the total fitness over generations.

the maximum generation limit were M = 40 and g,,, = 100. The parameter E was set to 0.1,
requiring that the training error should be at most 0.1 or, in other words, at least 90% of the
training examples are desired to be learned correctly.

Figure 8 (left) shows the performance evolution of the best individuals in each genera-
tion, in terms of training and generalization errors. The stability of the accuracy-parsimony
balancing can be seen by analyzing the error portion of the total fitness depicted in Figure
9. The graph shows that until the error falls below E = 0.1 at generation 26, the error term
dominates the fitness, while after that point the relative domination of error term goes down
under 1.0 to make stronger complexity reduction, though without riskmg too much error
increase.

The comparison of the fitness and network size confirms that the network size change,
that is, growing or pruning, has a very close relationship with the training error reduction.
For instance, from generation 6 to 7 during which the training error was reduced from 0.3 1
to 0.28, the network size increased from 3-18-105 (layers-units-weights) to 4-2 1-126. Other
examples of growing and pruning are listed in Table 3.

The close relationship between complexity and performance of the network has also
been observed for the medical data, as shown in Figure 10. One difference was the fact that
here a larger network was required than for solving the parity problem. Also shown in the

3 2 Evolutionary Computation Volume 3, Number 1

Balancing Accuracy and Parsimony

E b e s d g) Cbedg)
0.3 1 3- 18- 105
0.28 4-2 1 - 126
0.2 5 3-16-93
0.22 3 - 16-85
0.11 3-17-87
0.09 6-37-203

g
6

12
17
21
25
30

, Ehe& + l) c b e s t (g +

0.28 4-2 1 - 12 6 growing
0.25 3- 16-93 pruning
0.22 3-16-85 pruning
0.1 1 3-17-87 growing
0.09 8-42-241 growing
0.03 5-31-174 pruning

Table 3. Error update versus complexity change.

0.50 ~

0.40 .

Values at generation g I Values at generation g + 1 I Comments

population average
training error

layers _ _ _ _ - _
.... ~~ ~~...

-_--_-_ --.--
0.10, , ,..,..,.....I..---T-. , . . . , . . . , . , . . . ~

figure is the average fitness over the population. The average fitness was measured two times
for each generation, that is, before and after hill climbing. Thus the effect of hill climbing
can be observed in the graph. Hill climbing was especially helpful to find good weight
combinations when the network architecture was suitable. For this real-life data, the training
performance after 100 generations was approximately 85 % and the generalization accuracy
was about 10% less than this value. The population size was 100. Though this performance
is not appropriate for real application, there is still possibility for further improvement as the
generation goes on. Using the genetic programming paradigm without having a complexity
factor was almost impossible for this data, because of the rapid growth of the solution size.
This indicates another practical reason for parsimonious solutions.

The effect of Occam’s Razor was studied by comparing the performance of the runs
with the adaptive Occam method (Equation (54)) with those of the baseline fitness function
Fi(g) = E,(g) = E(DN I Ai). Both methods used the same parity data as before. For each
method, 20 runs were executed to observe the complexity of the best solution and its training
and generalization performance.

The first three bar graphs in Figure 11 compare the average network size measured
at the g,,,th generation. The corresponding learning and generalization performance of
both methods are also compared in the next two graphs. The results show that applying
the adaptive Occam method achieves significantly better generalization performance, as was
expected by the theory and landscape analysis. Whereas the solution size in the baseline
method increased without bound, controlling the Occam factor as described in the last

Evolutionary Computation Volume 3 , Number 1 3 3

Byoung-Tak Zhang and Heinz Miihlenbein

250 0

2w 0 r
f 1600

6 1wo

0

-

50 0

00

weights

generalization

units

training

5 0

E 40

3 0
3

s
5 2 0

1 0

00

layers

learning time

Figure 11. Comparison of performance with and without complexity penalty.

section could prune inessential substructures to get parsimonious solutions but without
losing the training performance. It is interesting to note that the evolution with Occam's
Razor achieved better learning performance than without it. This is because the search
with complexity penalty focuses more on a smaller search space while the search without it
may explore too large a space to be practical. Because the evolution time is limited to the
maximum of g,, generations, using Occam's Razor can find a solution faster than without
it.

We also measured the convergence time to local minima up to g,,, generations, that is,
the total learning time until the generation from which there is no improvement in the size
and performance of the best individual. Figure 1 1 shows the convergence time as measured in
millions of evaluations of arithme tic operations associated with calculating activation values
of neural units. Compared with the standard method, the adaptive Occam method converged
more than three times faster for this problem.

7. Discussion

The minimum description length principle has also been used in other tree-based learning
algorithms such as Classification and Regression Trees (CART) (Brieman et al., 1984) and
ID3 (Quinlan & Rivest, 1989). For the induction of parsimonious decision trees, both CART
and ID3 use a two-step process. In the first step, tree size only grows by starting with a single
leaf node and expanding the leaf nodes until the tree perfectly classifies the given training set
or until further growing is impossible. During the second step, the tree is repeatedly pruned
back by replacing decision (nonterminal) nodes by leaves, whenever the total description

34 Evolutionary Computation Volume 3 , Number 1

Balancing Accuracy and Parsimony

length is reduced. The total description length is defined as the sum of the tree coding
length and the error coding length in bits. Note that in this two-step induction, the tree
complexity is considered only in the pruning phase. This is equivalent to a strategy of first
reducing the error and then reducing the complexity.

One fundamental difference between the genetic programming approach (including
our method) and conventional tree-induction methods is that a population of trees is used
instead of a single tree. In the genetic programming approach, pruning and growing are
interleaved during the learning process. This is primarily done by the crossover operator,
which generates new trees that can be larger or smaller than their parents.

Iba et al. have used the MDL principle in genetic programming to evolve GMDH
networks (Ivakhnenko, 1971) and decision trees (Iba, Kurita, de Garis, & Sato, 1993; Iba,
de Garis, & Sato, 1994). As in ID3, the code length (CL) is defined as the total sum of
description lengths:

cLi(g) = E(D I A;) + C(A$), (61)

where C(A$) is the description length for the tree A$ and E(D 1 A$) is the coding length for
the classification error of the tree for the training set D. The description lengths are defined
with respect to a specific encoding scheme chosen by the author. Due to the unknown
range3 of the total coding length, a scaling window of size Wsize is used to determine a
normalization factor, CL,,,(g). CL,,x(g) is defined as the largest code length during the last
Wsize generations. The fitness value of the tree is then defined as

Notice that the fitness is defined here as simply the sum of error and complexity costs,
followed by a normalization of the total costs. Therefore, the complexity value C(Ak) is as
important as the error value E(D I A?) in determining the total fitness value of an individual.
This works perfectly when the coding scheme exactly reflects the true probability distribution
of the environment. One possible drawback in this implementation of the MDL principle
in genetic programming is the lack of flexibility in balancing accuracy with parsimony in
unknown environments. That is, there is a risk that the network size may be penalized too
much, resulting in premature convergence in spite of other diversity-increasing measures,
such as a large crossover rate. In fact, the authors remark that this kind of MDL approach
should be used carefully when evolving general programs with genetic programming (Iba
et al., 1994). Note also that this strategy is far from the two-step approach of ID3, taken to
ensure parsimonious solutions without losing good performance.

Premature convergence in the direct MDL approach can be avoided by introducing a
small Occam factor a(,):

where Ei(g) and Ci(g) are the error and complexityvalues normalized separately, and a(g) is a
constant expressed as a function of the training set size (Zhang & Miihlenbein, 1993a; Zhang
& Miihlenbein, 199313). In this MDL approach, the complexity cost influences the selection
process only when the candidates for selection have comparable performance. That is, a tree
wins the selection only if its error is smaller than that of its competitors, or its error is the
same as its competitors but its size is smaller. Note that this is an evolutionary equivalent
of the strategy of first reducing the error and then reducing the complexity. Experimental

3 The range of the coding length vanes from --oc to cy. due to the use of logarithms in calculating the length in bits.

Evolutionary Computation Volume 3, Number 1 3 5

Byoung-Tak Zhang and Heinz Muhlenbein

evidence shows this method is robust and effective for a wide class of tasks. However, this
balancing mechanism is very conservative and can still be speeded up by making the control
of the Occam factor more flexible.

The adaptive Occam method described in this article improves the fixed Occam ap-
proach by changing the ratio of error to complexity in the course of the run. In early stages
of learning, a strong increase in tree complexity is allowed by keeping the Occam factor small,
which usually results in fast error reduction. The small Occam factor also results in robust
convergence to the desired training accuracy, because premature convergence is avoided due
to increased diversity. In later stages, that is, after the desired level of training performance
is achieved, the adaptive Occam approach enforces a strong complexity penalty, which en-
courages parsimony. Overall, this has the effect of increasing generalization performance
without getting stuck in local minima due to premature convergence. The control of the
phase transition is not difficult because it is defined by the desired training accuracy that the
user requires. Though other MDL-based tree induction methods also reward parsimony,
the adaptive Occam approach is different in that it dynamically balances error and complexity

While proposed in a different context, the adaptive fitness function presented in this
article has some similarity in spirit to cornpetitiveJihzessJicnctions (Angeline & Pollack, 1993).
Standard fitness functions return the same fitness for an individual regardless of what other
members are present in the population, demanding an accurate and consistent fitness measure
throughout the evolutionary process. While the global accuracy can be easily computed when
evolving solutions for many simple problems, it is often impractical for problems with greater
complexity. In contrast, competitive fitness functions evaluate the fitness values depending
on the constituents of the population. Angeline argues that competitive fitness functions
provide a more robust training environment than independent fitness functions.

A final comment is in order on the applicability of this approach to the more general
classes of programs that can be developed by genetic programming. The general method
of balancing accuracy and parsimony can be used for the genetic induction of other classes
of tree-structured programs as well. This is because the error and complexity values are
normalized separately and the same adaptive balancing mechanism can be used for different
definitions of error and complexity.

costs.

8. Conclusion

We have investigated the theoretical relationship between the complexity of a solution and its
generalization ability in genetic programming. An analysis of the fitness landscape was made
in the context of inferring sigma-pi neural networks from data. The comparison of learning
and generalization performance as a function of network size suggests the effectiveness of
minimal-complexity approaches.

We presented an adaptive method that obtains parsimonious solutions while guarantee-
ing the specified minimal training accuracy with a high probability. The method implements
a kind of dynamic search where the focus of attention depends on the structure of the current
and past fitness landscapes, that is, the distribution of error and complexity of the individuals
in the recent populations. Whereas pruning is always encouraged by the nonzero Occam
factor, the adaptive fitness function simultaneously promotes growing if it is necessary for
significant error reduction.

Though our experiments were performed in the context of neural network synthesis, the
underlying principle of balancing accuracy with parsimony applies to all genetic program-

36 Evolutionary Computation Volume 3, Number 1

Balancing Accuracy and Parsimony

ming applications in which the structural complexity, as well as the structures themselves,
should be optimized on the basis of noisy or incomplete data.

Acknowledgment
This research was supported in part by the Real-World Computing Program under the
project SIFOGA. We thank Jiirgen Bendisch, Gerd PaaB, Mark Rmg, and Dirk Schlierkamp-
Voosen for helpful discussions.

References
Amari, S.-I. (1991). Dualistic geometry of the manifold of higher-order neurons. Neural Networks, 4,

4 4 3 4 5 1.

Angeline, P. J., & Pollack, J. B. (1993). Competitive environments evolve better solutions for complex
tasks. In S. Forrest (Ed.), Proceedings of the Fijih International Conference on GeneticAlgorithms (ICGA-
93) (pp. 264-270). San Mateo, CA: Morgan Kaufmann.

Back, T., & Schwefel, H.-P. (1993). An overview of evolutionary algorithms for parameter optimization.
Evolutiona7y Computation, 1(1), 1-23.

Blumer, A,, Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s Razor. Information
Processing Letters, 24, 377-380.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classzjication and regression trees.
Belmont, CA: Wadsworth International Group.

Carbonell, J. G. (1990). Introduction: Paradigms for machine learning. In J. G. Carbonell (Ed.),
Machine learning: Paradigms and methods (pp. 1-9). Cambridge, MA: MIT Press.

Durbin, R., & Rumelhart, D. E. (1989). Product units: A computationally powerful and biologically
plausible extension to backpropagation networks. Neural Computation, 1, 133-142.

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science,
6,205-254.

Fogel, D. B. (1991). An information criterion for optimal neural network selection. IEEE Transactions
on Neural Networks, 2(5), 490-497.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the biaslvariance dilemma.
Neural Computation, 4 , 1-58.

Giles, C. L., & Maxwell, T. (1987). Learning, invariance, and generalization in high-order neural
networks. Applied Optics, 26(23), 4972-4978.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization & machine learning. Reading, MA:
Addison-Wesley.

Iba, H., de Garis, H., & Sato, T. (1994). Genetic programming using a minimum description length
principle. In K. E. Kinnear (Ed.), Advances in genetic programming (pp. 265-284). Cambridge, MA:
MIT Press.

Iba, H., Kurita, T., de Garis, H., & Sato, T. (1993). System identification using structured genetic
algorithms. In S. Forrest (Ed.), Proceedings of the FiBh International Conference on Genetic Algorithms
(ZCGA-93) (pp. 279-286). San Mateo, CA: Morgan Kaufmann.

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE Transactions on Systems, Man,
and Cybernetics, 1(4), 364-378.

Kinnear, K. E. (1993). Generality and difficulty in genetic programming: Evolving a sort. In S. Forrest
(Ed.), Proceedings of the Fi$h International Conference on Genetic Algorithms (ICGA-93) (pp. 287-294).
San Mateo, CA: Morgan Kaufmann.

Kinnear, K. E. (Ed.). (1994a). Advances in geneticprogvamming. Cambridge, MA: MIT Press.

Evolutionary Computation Volume 3, Number I 37

Byoung-Tak Zhang and Heinz Miihlenbein

Kinnear, K. E. (1994b). Fitness landscapes and difficulty in genetic programming. In Proceedings of
ZEEE International Confrence on Evolutionary Computation (ICEC-94), World Congress on Computational
Intelligence (pp. 142-147). New York: IEEE Computer Society Press.

Koza, J. R. (1992a). Genetic programming: On the programming of computers by means of natural selection.
Cambridge, MA. MIT Press.

Koza, J. R. (1992b). Hierarchical automatic function definition in genetic programming. In D. Whitley
(Ed.), Foundations of Genetic Algorithms (FOGA-92) (pp. 24-29). San Mateo, CA: Morgan Kaufmann.

Koza, J. R. (1993). Simultaneous discovery of reusable detectors and subroutines using genetic pro-
gramming. In S. Forrest (Ed.), Proceedings of the Fij?h International Coizference on Genetic Algorithms
(pp. 29.5-302). San Mateo, CA: Morgan Kaufmann.

Koza, J. R. (1994). Genetic programming ZZ: Automatic discovery of reusable programs. Cambridge, MA:
MIT Press.

Manderick, B., de Weger, M., & Spiessens, P. (1991). The genetic algorithm and the structure of
the fitness landscape. In R. K. Belew and L. B. Booker (Eds.), Proceedings of the Fourth Znternational
Conference on Genetic Algorithms (pp. 143-1 S O) . San Mateo, CA: Morgan Kaufmann.

Miihlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic algo-
rithm I: Continuous parameter optimization. Evolutionary Computation, I (I), 2 S49 .

Murphy, P. M., & Aha, D. W. (1994). UCZrepository ofmachine learning databases. [Electronic database]
Department of Information and Computer Science, University of California, Irvine.

Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the minimum description length
principle. Znfrmation and Computation, 80,227-248.

Rissanen, J. (1984). Universal coding, information, prediction, and estimation. ZEEE Transations on
Infmation Theory, ?0(4), 629-636.

Rissanen, J. (1986). Stochastic complexity and modeling. The Annals of Statistics, 14, 1080-1 100.

Rumelhart, D. E., Hinton, G. E., & McClelland, J. L. (1986). A general framework for parallel
distributed processing. In D. E. Rumelhart and J. L. McClelland (Eds.), Parallel distributedprocessing,
Vol. I (pp. 45-76). Cambridge, MA: MIT Press.

Samuel, A. L. (1 963). Some studies in machine learning using the game of checkers. In E. Feigenbaum
and J. Feldman (Eds.), Computers and thought (pp. 71-105). New York: McGraw-Hill.

Tackett, W. A. (1993). Genetic programming for feature discovery and image discrimination. In
S. Forrest (Ed.), Proceedings of the F$h International Conference on Genetic Algorithms (ICGA-93)
(pp. 303-309). San Mateo, CA: Morgan Kaufmann.

Winston, P. (1975). Learning structural descriptions from examples. In Patrick H. Winston (Ed.), The
psychology of computer vision (pp. 157-209). New York: McGraw-Hill.

Zhang, B.-T. (1994). Effects of Occam’s razor in evolving sigma-pi neural networks. In Y. Davidor,
H.-P. Schwefel, and R. Manner (Eds.), Lecture notes in computer science 866: Parallel problem solving

f;om nature (pp. 462471). London: Springer-Verlag.

Zhang, B.-T., & Miihlenbein, H. (1993a). Evolving optimal neural networks using genetic algorithms
with Occam’s razor. Complex Systems, 7(3), 199-220.

Zhang, B.-T., & Miihlenbein, H. (1993 b). Genetic programming of minimal neural nets using Occam’s
razor. In S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA-
93) (pp. 342-349). San Mateo, CA: Morgan Kaufmann.

Zhang, B.-T, & Muhlenbein, H. (1994). Synthesis of sigma-pi neural networks by the breeder genetic
programming. In Proceedings of ZEEE International Conference on Evolutionary Computation QCEC-
94), World Congress on Computational Intelligence (pp. 3 18-32 3). New York: IEEE Computer Society
Press.

38 Evolutionary Computation Volume 3, Number 1

This article has been cited by:

1. Riccardo Poli, Leonardo Vanneschi, William B. Langdon, Nicholas Freitag McPhee. 2010. Theoretical
results in genetic programming: the next ten years?. Genetic Programming and Evolvable Machines
11:3-4, 285-320. [CrossRef]

2. David Kinzett, Mark Johnston, Mengjie Zhang. 2009. Numerical simplification for bloat control and
analysis of building blocks in genetic programming. Evolutionary Intelligence 2:4, 151-168. [CrossRef]

3. Peyman Kouchakpour, Anthony Zaknich, Thomas Bräunl. 2009. A survey and taxonomy of
performance improvement of canonical genetic programming. Knowledge and Information Systems 21:1,
1-39. [CrossRef]

4. Sara Silva, Ernesto Costa. 2009. Dynamic limits for bloat control in genetic programming and a
review of past and current bloat theories. Genetic Programming and Evolvable Machines 10:2, 141-179.
[CrossRef]

5. Ekaterina J. Vladislavleva, Guido F. Smits, Dick den Hertog. 2009. Order of Nonlinearity as a
Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming.
IEEE Transactions on Evolutionary Computation 13:2, 333-349. [CrossRef]

6. Bart Wyns, Luc Boullart. 2009. Efficient tree traversal to reduce code growth in tree-based genetic
programming. Journal of Heuristics 15:1, 77-104. [CrossRef]

7. Mengjie Zhang, Phillip Wong. 2008. Genetic programming for medical classification: a program
simplification approach. Genetic Programming and Evolvable Machines 9:3, 229-255. [CrossRef]

8. Xiao-Bing Hu, Ezequiel Di Paolo, Shu-Fan Wu. 2008. A comprehensive fuzz-rule-based self-adaptive
genetic algorithm. International Journal of Intelligent Computing and Cybernetics 1:1, 94-109.
[CrossRef]

9. Andrew Kusiak, Filippo A. Salustri. 2007. Computational Intelligence in Product Design Engineering:
Review and Trends. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and
Reviews) 37:5, 766-778. [CrossRef]

10. Sean Luke, Liviu Panait. 2006. A Comparison of Bloat Control Methods for Genetic ProgrammingA
Comparison of Bloat Control Methods for Genetic Programming. Evolutionary Computation 14:3,
309-344. [Abstract] [PDF] [PDF Plus]

11. Chi Zhou, Weimin Xiao, T.M. Tirpak, P.C. Nelson. 2003. Evolving accurate and compact
classification rules with gene expression programming. IEEE Transactions on Evolutionary
Computation 7:6, 519-531. [CrossRef]

12. Riccardo Poli , Nicholas Freitag McPhee . 2003. General Schema Theory for Genetic Programming
with Subtree-Swapping Crossover: Part IIGeneral Schema Theory for Genetic Programming with
Subtree-Swapping Crossover: Part II. Evolutionary Computation 11:2, 169-206. [Abstract] [PDF]
[PDF Plus]

13. Sean Luke . 2003. Modification Point Depth and Genome Growth in Genetic
ProgrammingModification Point Depth and Genome Growth in Genetic Programming. Evolutionary
Computation 11:1, 67-106. [Abstract] [PDF] [PDF Plus]

14. N.Y. Nikolaev, H. Iba. 2001. Regularization approach to inductive genetic programming. IEEE
Transactions on Evolutionary Computation 5:4, 359-375. [CrossRef]

15. Ricardo S. Zebulum , Marley Vellasco , Marco Aurélio Pacheco . 2000. Variable Length Representation
in Evolutionary ElectronicsVariable Length Representation in Evolutionary Electronics. Evolutionary
Computation 8:1, 93-120. [Abstract] [PDF] [PDF Plus]

16. S. Luke. 2000. Two fast tree-creation algorithms for genetic programming. IEEE Transactions on
Evolutionary Computation 4:3, 274-283. [CrossRef]

http://dx.doi.org/10.1007/s10710-010-9110-5
http://dx.doi.org/10.1007/s12065-009-0029-9
http://dx.doi.org/10.1007/s10115-008-0184-9
http://dx.doi.org/10.1007/s10710-008-9075-9
http://dx.doi.org/10.1109/TEVC.2008.926486
http://dx.doi.org/10.1007/s10732-007-9060-0
http://dx.doi.org/10.1007/s10710-008-9059-9
http://dx.doi.org/10.1108/17563780810857149
http://dx.doi.org/10.1109/TSMCC.2007.900669
http://dx.doi.org/10.1162/evco.2006.14.3.309
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2006.14.3.309
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.2006.14.3.309
http://dx.doi.org/10.1109/TEVC.2003.819261
http://dx.doi.org/10.1162/106365603766646825
http://www.mitpressjournals.org/doi/pdf/10.1162/106365603766646825
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365603766646825
http://dx.doi.org/10.1162/106365603321829014
http://www.mitpressjournals.org/doi/pdf/10.1162/106365603321829014
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365603321829014
http://dx.doi.org/10.1109/4235.942530
http://dx.doi.org/10.1162/106365600568112
http://www.mitpressjournals.org/doi/pdf/10.1162/106365600568112
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106365600568112
http://dx.doi.org/10.1109/4235.873237

17. A.E. Eiben, R. Hinterding, Z. Michalewicz. 1999. Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 3:2, 124-141. [CrossRef]

18. Donald S. Burke, Kenneth A. De Jong, John J. Grefenstette, Connie Loggia Ramsey, Annie S.
Wu. 1998. Putting More Genetics into Genetic AlgorithmsPutting More Genetics into Genetic
Algorithms. Evolutionary Computation 6:4, 387-410. [Abstract] [PDF] [PDF Plus]

19. Terence Soule, James A. Foster. 1998. Effects of Code Growth and Parsimony Pressure on Populations
in Genetic ProgrammingEffects of Code Growth and Parsimony Pressure on Populations in Genetic
Programming. Evolutionary Computation 6:4, 293-309. [Abstract] [PDF] [PDF Plus]

http://dx.doi.org/10.1109/4235.771166
http://dx.doi.org/10.1162/evco.1998.6.4.387
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.1998.6.4.387
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.1998.6.4.387
http://dx.doi.org/10.1162/evco.1998.6.4.293
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.1998.6.4.293
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.1998.6.4.293

