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Abstract. Inverse models use observations of a system (ob-

servation vector) to quantify the variables driving that system

(state vector) by statistical optimization. When the observa-

tion vector is large, such as with satellite data, selecting a

suitable dimension for the state vector is a challenge. A state

vector that is too large cannot be effectively constrained by

the observations, leading to smoothing error. However, re-

ducing the dimension of the state vector leads to aggregation

error as prior relationships between state vector elements are

imposed rather than optimized. Here we present a method

for quantifying aggregation and smoothing errors as a func-

tion of state vector dimension, so that a suitable dimension

can be selected by minimizing the combined error. Reduc-

ing the state vector within the aggregation error constraints

can have the added advantage of enabling analytical solu-

tion to the inverse problem with full error characterization.

We compare three methods for reducing the dimension of

the state vector from its native resolution: (1) merging adja-

cent elements (grid coarsening), (2) clustering with princi-

pal component analysis (PCA), and (3) applying a Gaussian

mixture model (GMM) with Gaussian pdfs as state vector el-

ements on which the native-resolution state vector elements

are projected using radial basis functions (RBFs). The GMM

method leads to somewhat lower aggregation error than the

other methods, but more importantly it retains resolution of

major local features in the state vector while smoothing weak

and broad features.

1 Introduction

Inverse models quantify the state variables driving the evolu-

tion of a physical system by using observations of that sys-

tem. This requires a physical model F, known as the forward

model, that relates a set of input variables x (state vector) to

a set of output variables y (observation vector),

y = F(x) + ǫ. (1)

The observational error ǫ includes contributions from both

the forward model and the measurements. Solution to the

inverse problem involves statistical optimization to achieve

a best error-weighted estimate of x given y.

A critical step in solving the inverse problem is determin-

ing the amount of information contained in the observations

and choosing the state vector accordingly. This is a non-

trivial problem when using large observational data sets with

large errors. An example that will guide our discussion is

the inversion of methane emissions on the basis of satellite

observations of atmospheric methane concentrations (Turner

et al., 2015). Methane concentrations can be predicted on

the basis of emissions by using a chemical transport model

(CTM) that solves the 3-D continuity equation for methane

concentrations. Here the CTM is the forward model F, the

satellite provides a large observation vector y, and we need

to choose the resolution at which to optimize the methane

emission vector x.

The simplest approach would be to use the native resolu-

tion of the CTM in order to extract the maximum informa-

tion from the observations. However, the observations may

not be sufficiently dense or precise to optimize emissions at

that level of detail, resulting in an underdetermined problem.

Bocquet et al. (2011) refer to this as the “resolution prob-

lem”. The inverse solution must then rely on some prior es-

timate for the state vector and may not be able to depart suf-

ficiently from that knowledge. The associated error is known

as the smoothing error (Rodgers, 2000; von Clarmann, 2014)

and increases with size of the state vector (Bousquet et al.,

2000; Kaminski and Heimann, 2001; Kaminski et al., 2001;
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von Clarmann, 2014). Wecht et al. (2014) illustrate the sever-

ity of this problem in their inversion of methane emissions

using satellite data.

An additional drawback of using a large state vector is that

analytical solution to the inverse problem may not be compu-

tationally tractable. Analytical solution requires calculation

of the Jacobian matrix, ∇xF, and inversion and multiplica-

tion of the error covariance matrices (Rodgers, 2000). It has

the major advantage of providing complete error statistics as

part of the solution, but it becomes impractical as the state

vector becomes too large. Numerical solutions using varia-

tional methods circumvent this problem but do not provide

error characterization as part of the solution. Approximate

error statistics can be obtained (e.g., Bousserez et al., 2015),

but at the cost of additional computation.

Reducing the dimensionality of the state vector in the

inverse problem thus has two advantages. It improves the

observational constraints on individual state vector ele-

ments and it facilitates analytical solution. Reduction can be

achieved by aggregating state vector elements. For a state

vector of gridded time-dependent emissions, the state vector

can be reduced by aggregating grid cells and time periods.

However, this introduces error in the inversion as the underly-

ing spatial and temporal patterns of the aggregated emissions

are now imposed from prior knowledge and not allowed to

be optimized as part of the inversion. The resulting error is

called the aggregation error (Kaminski and Heimann, 2001;

Kaminski et al., 2001; Schuh et al., 2009).

Previous work by Bocquet (2009), Bocquet et al. (2011),

Bocquet and Wu (2011), Wu et al. (2011), and Koohkan

et al. (2012) developed optimal grids that allow the trans-

fer of information across multiple scales. These computa-

tionally efficient methods (Bocquet and Wu, 2011) gener-

ally require the use of the native-resolution grid to derive

the optimal representation. They also assume that the native-

resolution prior error covariance matrices can be accurately

constructed. However, in practice we are generally unable to

specify realistic prior error correlations and must resort to

simple assumptions.

Here we present a method for optimizing the selection of

the state vector in the solution of the inverse problem for

a given ensemble of observations without requiring an accu-

rate specification of the native-resolution prior error covari-

ance matrix. Instead, we use the expected error correlations

between native-resolution state vector elements as criteria in

the aggregation process. Relative to Bocquet et al. (2011),

our method is suboptimal but is more practical to implement.

As the dimension of the state vector decreases, the smoothing

error decreases while the aggregation error increases. There-

fore, there is potentially an optimum dimension where the

overall error is minimized. We derive an analytical expres-

sion for the aggregation error covariance matrix and show

how this can guide selection of a reduced-dimension state

vector where the aggregation error remains below an accept-

able threshold. We also show how intelligent selection of the

state vector can extract more information from the observa-

tions for a given state vector dimension.

2 Formulating the inverse problem

Inverse problems are commonly solved using Bayes’ theo-

rem,

P(x|y) ∝ P(y|x)P (x), (2)

where P(x|y) is the posterior probability density function

(pdf) of the state vector x (n × 1) given a vector of observa-

tions y (m × 1), P(x) is the prior pdf of x, and P(y|x) is

the conditional pdf of y given the true value of x. Assum-

ing Gaussian distributions for P(y|x) and P(x) allows us to

write the posterior pdf as

P(x|y) ∝ exp

{

−
1

2
(y − F(x))T S−1

O (y − F(x))

−
1

2
(xa − x)T S−1

a (xa − x)

}

, (3)

where xa is the n×1 prior state vector, SO is the m×m obser-

vational error covariance matrix, and Sa is the n×n prior er-

ror covariance matrix. Here and elsewhere, our notation and

terminology follow that of Rodgers (2000). The most proba-

ble solution x̂ (called the maximum a posteriori or MAP) is

defined by the maximum of P(x|y), i.e., the minimum of the

cost function J (x):

J (x) =
1

2
(y − F(x))T S−1

O (y − F(x))

+
1

2
(xa − x)T S−1

a (xa − x) . (4)

This involves solving

∇xJ = ∇xF(x)T S−1
O (F(x) − y) + S−1

a (xa − x) = 0. (5)

Solution to Eq. (5) can be done analytically if F is linear; i.e.,

F(x) = Kx + c where K ≡ ∇xF = ∂y/∂x is the Jacobian of

F and c is a constant that can be set to zero in the general

case by subtracting c from the observations. This yields

x̂ = xa + G(y − Kxa) , (6)

where G = ŜKT S−1
O is the gain matrix and Ŝ is the posterior

error covariance matrix,

Ŝ =
(

KT S−1
O K + S−1

a

)−1
(7)

The MAP solution can also be expressed in terms of the true

value x as

x̂ = xa + A(x − xa) + Gǫ, (8)
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where A is the averaging kernel matrix that measures the er-

ror reduction resulting from the observations

A = GK = I − ŜS−1
a (9)

and Gǫ is the observation error in state space with error co-

variance matrix GSOGT . We have assumed here that errors

are unbiased, as is standard practice in the inverse modeling

literature. An observational error bias bO would propagate as

a bias GbO in the solution x̂ in Eq. (8).

The analytical solution to the inverse problem thus pro-

vides full error characterization as part of the solution. It does

require that the forward model be linear. The Jacobian matrix

must generally be constructed numerically, requiring n sensi-

tivity simulations with the forward model. Subsequent matrix

operations are also of dimension n. This limits the practical

size of the state vector. The matrix operations also depend

on the dimension m of the observation vector, but this can

be easily addressed by splitting that vector into uncorrelated

packets, a method known as sequential updating (Rodgers,

2000).

The limitation on the state vector size can be lifted by find-

ing the solution to ∇xJ = 0 numerically, rather than analyt-

ically, for example by using the adjoint of the forward model

to calculate ∇xJ iteratively at successive approaches to the

solution (e.g., Henze et al., 2007). This variational method

allows for optimization of state vectors of any size because

the Jacobian is not explicitly constructed. But it only yields

the MAP solution, x̂, with no error statistics. Several ap-

proaches have been presented to obtain approximate error

characterization (e.g., Courtier et al., 1994; Desroziers et al.,

2005; Chevallier et al., 2007; Bousserez et al., 2015), but they

can be computationally expensive. An excessively large state

vector relative to the strength of the observational constraints

also incurs smoothing error, as discussed above.

3 Quantifying aggregation and smoothing errors

The resolution of the forward model (e.g., grid resolution of

the CTM) places an upper limit on the dimension for the state

vector, which we call the native dimension. As we reduce

the dimension of the state vector from this native resolution,

the smoothing error decreases while the aggregation error in-

creases. Here we present analytical expressions for the ag-

gregation and smoothing error covariance matrices and show

how they can be used to select an optimal state vector dimen-

sion.

3.1 Aggregation error

As in Bocquet et al. (2011), we define a restriction (aggrega-

tion) operator that maps the native-resolution state vector x

of dimension n to a reduced-resolution vector xω of dimen-

sion p. We assume a linear restriction operator Ŵω as a p×n

matrix relating xω to x:

xω = Ŵωx. (10)

Bocquet et al. (2011) provide a detailed analysis of ag-

gregation error for reduced-resolution state vectors. Their

analysis relies heavily on the construction of a prolongation

operator (Ŵ⋆) mapping xω back to x: x = Ŵ⋆xω. However,

construction of this prolongation operator is not unique. We

present here a simpler and more practical method.

Aggregation error is the error introduced by aggregating

state vector elements in the inversion. The relationship be-

tween the aggregated elements is not optimized as part of the

inversion anymore and instead becomes an unoptimized pa-

rameter in the forward model, effectively increasing the for-

ward model error and inhibiting the ability of the model to fit

the observations. The aggregation error is thus a component

of the observational error.

The aggregation error can be quantified by comparing the

observational error incurred by using the native-resolution

state vector,

ǫ = y − Kx, (11)

to that using the aggregated state vector,

ǫω = y − Kωxω. (12)

Here y is the observation vector (common in both cases), x

and xω are the true values of the native-resolution and aggre-

gated state vectors, and K and Kω are the native resolution

and the reduced-dimension Jacobians. The only difference

between ǫ and ǫω is the aggregation of state vector elements.

As such,

ǫω = ǫ + ǫA (13)

where ǫA is the aggregation error. Rearranging,

ǫA = (K − KωŴω)x. (14)

Obtaining the error statistics for ǫA requires knowledge of

the pdf of x for the ensemble of possible true states (cf.

Rodgers, 2000; von Clarmann, 2014). Let x represent the

mean value of this ensemble and Se the corresponding co-

variance matrix. The aggregation error covariance matrix is:

SA = E
[

(ǫA − E [ǫA])(ǫA − E [ǫA])T
]

(15)

where E [ ] is the expected value operator. E [ǫA] =

(K − KωŴω)x is the bias introduced by the aggregation. Re-

placing into Eq. (15):

SA = (K − KωŴω)E
[

(x − x)(x − x)T
]

(K − KωŴω)T

= (K − KωŴω)Se(K − KωŴω)T . (16)

In designing our inversion system we use xa as our best esti-

mate of x and Sa as our best estimate of Se. Indeed, if xa = x
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there would be no aggregation error since the prior relation-

ship assumed between state vector elements would be cor-

rect, thus K = KωŴω and the aggregation bias would be zero.

Assuming Sa = Se allows us to calculate the aggregation er-

ror covariance matrix as

SA = (K − KωŴω)Sa(K − KωŴω)T (17)

and we will use this expression in the analysis that follows.

Application of Eq. (17) requires computation of the native-

resolution Jacobian K, but this can be done for a limited test

period only. We will give an example below.

3.2 Smoothing error

Following Rodgers (2000), we can express the smoothing er-

ror on x̂ by rearranging Eqs. (6) and (1):

x̂ − x = (I − A)(xa − x) + Gǫ, (18)

where ǫS = (I − A)(xa − x) is the smoothing error. As

pointed out by Rodgers (2000), the smoothing error statis-

tics must be derived from the pdf of possible true states, in

the same way as for the aggregation error and characterized

by the error covariance matrix Se. For purposes of designing

the inverse system we assume that Se = Sa. Thus we have

SS = (I − A)Sa(I − A)T . (19)

We can also express the smoothing error in observation

space, ǫ∗
S, (i.e., as a difference between y and Kx̂) by multi-

plying both sides of Eq. (18) by the Jacobian matrix:

K
(

x̂ − x
)

= K(I − A)(xa − x) + KGǫ (20)

so that

ǫ∗
S = K(I − A)(xa − x) . (21)

The corresponding smoothing error covariance matrix in ob-

servation space is

S∗
S = K(I − A)Sa(I − A)T KT . (22)

This expression can be generalized to compute the smoothing

error covariance matrix in observation space for any reduced-

dimension state vector xω with Jacobian Kω, prior error co-

variance matrix Sa,ω, and averaging kernel matrix Aω:

S∗
S = Kω (I − Aω)Sa,ω(I − Aω)T KT

ω . (23)

3.3 Total error budget

From Eq. (18) we can see that the total error on x̂ with-

out aggregation is ǫT = ǫS + Gǫ in the state space, or ǫ∗
T =

ǫ∗
S + KGǫ in the observation space. The KG term in the ob-

servation space appears because we are interested in the error

on x̂. If x̂ = x then KG = I and A = I, thus ǫS = 0 and our

total error reverts to ǫ,

ǫ∗
T|x̂=x = K(I − A)(xa − x) + KGǫ = ǫ. (24)

Additional consideration of aggregation error for

a reduced-dimension state vector xω yields a total error in

the state space

ǫT = ǫS + Gωǫ + GωǫA (25)

where

Gω =
(

KT
ωS−1

O Kω + S−1
a,ω

)−1
KT

ωS−1
O (26)

is the gain matrix for the reduced-dimension state vector. In

the observation space we get

ǫ∗
T = ǫ∗

S + KωGωǫ + KωGωǫA. (27)

From these relationships we derive the total error covari-

ance matrix as

ST,ω = (I − Aω)Sa,ω(I − Aω)T
︸ ︷︷ ︸

Smoothing Error

+ Gω (K − KωŴω)Sa(K − KωŴω)T GT
ω

︸ ︷︷ ︸

Aggregation Error

+ GωSOGT
ω

︸ ︷︷ ︸

Observation Error

(28)

in the state space and

S∗
T,ω = Kω (I − Aω)Sa,ω(I − Aω)T KT

ω
︸ ︷︷ ︸

Smoothing Error

+ KωGω (K − KωŴω)Sa(K − KωŴω)T GT
ωKT

ω
︸ ︷︷ ︸

Aggregation Error

+ KωGωSOGT
ωKT

ω
︸ ︷︷ ︸

Observation Error

(29)

in the observation space. A bias term should exhibit similar

scale dependence to the observation error term and could be

included by following the derivation from Rodgers (2000).

Each of the three error terms above depends on state vector

dimension. Because the smoothing error increases with state

vector dimension while the aggregation error decreases, anal-

ysis of the error budget can potentially point to the optimal

dimension where the total error is minimum. It can also point

to the minimum state vector dimension needed for the aggre-

gation error to be below a certain tolerance, e.g., smaller than

the observation error. We give an example in Sect. 5.

A caveat in the above expressions for the aggregation and

smoothing error covariance matrices is that they are valid

only if the prior xa is the mean value x for the pdf of true

states and if the error covariance matrix Sa is the covariance

Atmos. Chem. Phys., 15, 7039–7048, 2015 www.atmos-chem-phys.net/15/7039/2015/
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matrix for that pdf (Se = Sa). Rodgers (2000, p. 49) and von

Clarmann (2014) provide a detailed discussion of the errors

induced by failing to meet this assumption. Since these as-

sumptions define our prior, they can be taken as valid for the

purpose of selecting an appropriate state vector dimension

in an inverse problem. However, they should not be used to

diagnose errors on the inversion results.

4 Aggregation methods

Aggregation of state vector elements to reduce the state vec-

tor dimension introduces aggregation error, as described in

Sect. 3.1. The aggregation error can be reduced by grouping

elements with correlated errors. Analyzing the off-diagonal

structure of a precisely constructed prior error correlation

matrix would provide the best objective way to carry out the

aggregation, as described by Bocquet (2009), Bocquet et al.

(2011), and Wu et al. (2011). We generally lack such infor-

mation but do have some qualitative knowledge of prior error

correlation that can be used to optimize the aggregation. By

aggregating regions that have correlated errors we can exploit

additional information that would otherwise be neglected in

a native-resolution inversion assuming (by default) uncorre-

lated errors.

Previous work by Bocquet et al. (2011), Wu et al. (2011),

and Koohkan et al. (2012) used tiling and tree-based ag-

gregation methods, while Wecht et al. (2014) used a hier-

archal clustering method based on prior error patterns. Boc-

quet and Wu (2011) also used principal component analysis

(PCA) coupled to the hierarchal grid to compute an optimal

grid. Here we compare three aggregation methods: (1) sim-

ple grid coarsening, (2) PCA clustering, and (3) a Gaussian

mixture model (GMM) with radial basis functions (RBFs)

to project native-resolution state vector elements to Gaussian

pdfs. A qualitative illustration of these methods is shown in

Fig. 1 for the aggregation of a native-resolution state vector

of methane emissions with 1
2

◦
× 2

3

◦
native grid resolution over

North America (Turner et al., 2015). We focus here on spatial

aggregation and assume that the state vector has no tempo-

ral dimension. However, the same methods can be used for

temporal aggregation.

The simplest method for reducing the dimension of the

state vector is to merge adjacent elements, i.e., neighboring

grid cells. This method considers only spatial proximity as

a source of error correlation. It may induce large aggrega-

tion errors if proximal, but otherwise dissimilar regions are

aggregated together. In the case of methane emissions, ag-

gregating neighboring wetlands and farmland would induce

large errors because different processes drive methane emis-

sions from these two source types.

The other two methods enable consideration of additional

similarity factors besides spatial proximity when aggregating

state vector elements. These similarity factors are expressed

by vectors of dimension n describing correlative properties

Table 1. Similarity vectors for inverting methane emissions in North

Americaa.

Similarity Weighting

vector factorb

1. Latitudec 1.00

2. Longituded 1.00

3. Initial scaling factorse 0.15

4. Wetland 0.31

5. Livestock 0.22

6. Oil/gas 0.16

7. Waste 0.15

8. Coal 0.06

9. Soil absorption 0.05

10. Termites 0.02

11. Biomass burning 0.02

12. Biofuel 0.01

13. Rice 0.01

14. Other 0.01

a The K = 14 similarity vectors describe prior error correlation criteria for the

native-resolution state vector, representing here the methane emission in North

America at the 1
2

◦
× 2

3

◦
resolution of the GEOS-Chem chemical transport model.

The criteria are normalized and then weighted (weighting factor). Criteria 4–14 are

prior emission patterns used in the GEOS-Chem model (Wecht et al., 2014; Turner

et al., 2015).
b The weighting factors (dimensionless) measure the estimated relative importance of

the different similarity criteria in determining prior error correlations in the state

vector. For the prior emission patterns these weighting factors are the fractional

contributions to total prior emissions in North America.
c Distance in kilometers from the equator.
d Distance in kilometers from the prime meridian.
e Initial scaling factors from one iteration of an adjoint inversion at the native

resolution.

of the original native-resolution state vector elements. In the

case of a methane source inversion, for example, we can

choose as similarity vectors latitude and longitude to account

for spatial proximity, but also wetland fraction to account

for error correlations in the bottom-up wetland emission es-

timate used as prior.

4.1 Similarity matrix for aggregation

Table 1 lists the similarity vectors chosen for our exam-

ple problem of estimating methane emissions (Turner et al.,

2015). The first two vectors account for spatial proximity,

the third represents the scaling factors from the first itera-

tion of an adjoint-based inversion at native resolution (Wecht

et al., 2014), and the others are the source type patterns from

the bottom-up inventories used as prior. All similarity vec-

tors are normalized and then weighted by judgment of their

importance. We choose here to include initial scaling fac-

tors from the adjoint-based inversion because we have them

available and they can serve to correct any prior patterns that

are grossly inconsistent with the observations, or to identify

local emission hotspots missing from the prior. One iteration

of the adjoint-based inversion is computationally inexpensive

and is sufficient to pick up major departures from the prior.

www.atmos-chem-phys.net/15/7039/2015/ Atmos. Chem. Phys., 15, 7039–7048, 2015
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Grid

Coarsening

a

PCA

Clustering

b

GMM

Clustering

c

GMM

with RBFs

d

Figure 1. Illustration of different approaches for aggregating a state vector. Here the native-resolution state vector is a field of gridded

methane emissions at 1
2

◦
× 2

3

◦
resolution over North America. Extreme reduction to eight state vector elements is shown with individual

elements distinguished by color.

Let {c1, . . .,cK} represent the K similarity vectors chosen

for the problem (K = 14 in our example of Table 1). We as-

semble them into a n × K similarity matrix C. We will also

make use of the ensemble of similarity vector values for indi-

vidual state vector elements, which we assemble into vectors

{c′
1, . . .,c

′
n} representing the rows of C. Thus:

C =













...

c1

...













...

c2

...







· · ·







...

cK

...













=








(

· · ·c′
1· · ·

)

(

· · ·c′
2· · ·

)

...
(

· · ·c′
n· · ·

)








(30)

In this work all of the aggregation methods except for grid

coarsening will use the same similarity matrix to construct

the restriction operator.

This approach of using a similarity matrix C to account

for prior error covariances bears some resemblance to the

geostatistical approach for inverse modeling (e.g., Michalak

et al., 2004, 2005; Gourdji et al., 2008; Miller et al., 2012).

The geostatistical approach specifies the prior estimate as

xa = Cβ, where β is a vector of unknown drift coefficients to

be optimized as part of the inversion. Here we use the similar-

ity matrix to reduce the dimension of the state vector, rather

than just as a choice of prior constraints.

4.2 Clustering with principal component analysis

In this method we cluster state vector elements following the

principal components of the similarity matrix. It is generally

not practical to derive the principal components in state vec-

tor space because the n-dimension is large. Instead we de-

rive them in similarity space (dimension K) as the eigenvec-

tors of CT C sorted in order of importance by their eigenval-

ues. The leading j principal components are kept for cluster-

ing. The reduced state vector is then constructed by group-

ing state vector elements that have the same sign patterns for

all j principal components. Each unique j -dimensional sign

pattern constitutes a cluster. The number of clusters defined

in that way ranges between j and 2j . Figure 1b shows an

example of applying this method to methane emissions in

North America with reduction of the state vector to n = 8.

The separation into four quadrants reflects the importance of

latitude and longitude as error correlation factors. The ad-

ditional separation within each quadrant isolates large from

weak sources as defined by the prior.

4.3 Gaussian mixture model (GMM)

Here we use a Gaussian mixture model (GMM; Bishop,

2007) to project the native-resolution state vector onto p

Gaussian pdfs using radial basis functions (RBFs). Mixture

models are probabilistic models for representing a popula-

tion comprised of p subpopulations. Each subpopulation is

assumed to follow a pdf, in this case Gaussian. The Gaus-

sians are K-dimensional where K is the number of similar-

ity criteria. Each native-resolution state vector element is fit

to this ensemble of Gaussians using RBFs as weighting fac-

tors.
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The first step in constructing the GMM is to define a p ×

n weighting matrix W = [w1,w2, . . .,wp]T . Each element

wi,j of this weighting matrix is the relative probability for

native-resolution state vector element j to be described by

Gaussian subpopulation i; i.e., “how much does element j

look like Gaussian i?”. It is given by

wi,j =
πiN (c′

j |µi,3i)
∑p

k=1πjN (c′
j |µk,3k)

. (31)

Here c′
j is the j th row of the similarity matrix C, µi is a 1×K

row vector of means for the ith Gaussian, 3i is a K ×K co-

variance matrix for the ith Gaussian, and π =
[

π1, . . .,πp

]T

is the relative weight of the p Gaussians in the mixture.

N
(

c′
j |µi,3i

)

denotes the probability density of vector c′
j

on the normal distribution of Gaussian i. We define a p × K

matrix M with rows µi and a K ×K ×p third-order tensor

L = [31, . . .,3p] as the set of covariance matrices.

Projection of the native-resolution state vector onto the

GMM involves four unknowns: W, π , M, and L. This is

solved by constructing a cost function to estimate the param-

eters of the Gaussians in the mixture model using maximum

likelihood:

JGMM(C|π ,M,L) =

n∑

j=1

ln

{
p∑

i=1

πiN (c′
j |µi,3i)

}

(32)

Starting from an initial guess for π , M, and L we compute

the weight matrix W using Eq. (31). We then differentiate

the cost function with respect to π , M, and L, and set the

derivative to zero to obtain (see Bishop, 2007)

µi = 9i

n∑

j=1

wi,jc
′
j , (33)

3i = 9i

n∑

j=1

wi,j

(

c′
j − µi

)T (

c′
j − µi

)

, (34)

πi =
1

n9i

, (35)

where

9i =

n∑

j=1

1

wi,j

. (36)

The weights are re-calculated from the updated guesses of

W, π , M, and L from Eqs. (33) to (36), and so on until con-

vergence. The final weights define the restriction operator as

Ŵω = W. The computational complexity for the expectation-

maximization algorithm is O(nK +pn2) (Chen et al., 2007);

however, the actual runtime will be largely dictated by the

convergence criteria. Here we use an absolute tolerance of
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Figure 2. Gaussian mixture model (GMM) representation of

methane emissions in Southern California with Gaussian pdfs as

state vector elements. The Gaussians are constructed from a simi-

larity matrix for methane emissions on the 1
2

◦
× 2

3

◦
horizontal res-

olution of the GEOS-Chem CTM used as forward model for the in-

version. The figure shows the dominant three Gaussians for South-

ern California with contours delineating the 0.5, 1.0, 1.5, and 2.0σ

spreads for the latitude–longitude dimensions. The RBF weights

w1, w2, and w3 of the three Gaussians for each 1
2

◦
× 2

3

◦
grid square

are also shown along with their sum.

τ < 10−10 where

τ =
∑

i

∑

j

∣
∣
∣Mi,j −M⋆

i,j

∣
∣
∣

+
∑

i

∑

j

∑

k

∣
∣
∣Li,j,k −L⋆

i,j,k

∣
∣
∣

+
∑

i

∣
∣πi − π⋆

i

∣
∣ , (37)

and the superscript star indicates the value from the previous

iteration.

The GMM allows each native-resolution state vector ele-

ment to be represented by a unique linear combination of the

Gaussians through the RBFs. For a state vector of a given

dimension, defined by the number of Gaussian pdfs, we

can achieve high resolution for large localized sources by

sacrificing resolution for weak or uniform source regions

where resolution is not needed. This is illustrated in Fig. 2
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with the resolution of Southern California in an inversion

of methane sources for North America. The figure shows

the three dominant Gaussians describing emissions in South-

ern California and the corresponding RBF weights for each

native-resolution grid square. Gaussian 1 is centered over

Los Angeles and is highly localized, Gaussian 2 covers the

Los Angeles Basin, and Gaussian 3 is a Southern Califor-

nia background. The sum of these three Gaussians accounts

for most of the emissions in Southern California and Nevada

(which is mostly background). Additional Gaussians (not

shown) resolve the southern San Joaquin Valley (large live-

stock and oil/gas emissions) and Las Vegas (large emissions

from waste).

5 Application

We apply the aggregation methods described above to our ex-

ample problem of estimating methane emissions from satel-

lite observations of methane concentrations, focusing on se-

lecting a reduced-dimension state vector that minimizes ag-

gregation and smoothing errors. The inversion is described

in detail in Turner et al. (2015) and uses GOSAT satellite

observations for 2009–2011 over North America. The for-

ward model for the inversion is the GEOS-Chem CTM with
1
2

◦
× 2

3

◦
grid resolution. The native-resolution state vector of

methane emissions as defined on that grid includes 7366 ele-

ments.

For the purpose of selecting an aggregated state vector

for the inversion, we consider a subset of observations for

May 2010 (m = 6070) so that we can afford to construct the

corresponding Jacobian matrix K at the native resolution;

this is necessary to derive the aggregation error covariance

matrix following Eq. (17). The prior error covariance ma-

trix is specified as diagonal with 100 % uncertainty at the

native resolution, decreasing with aggregation following the

central limit theorem (Turner et al., 2015). The observational

error covariance matrix is also diagonal and specified as the

scene-specific retrieval error from Parker et al. (2011), which

dominates the total observational error as shown by Turner

et al. (2015). We compare the three methods presented in

Sect. 4 for aggregating the state vector in terms of the im-

plications for aggregation and smoothing errors for different

state vector dimensions. In addition to the GMM with RBFs,

we also consider a “GMM clustering” method where each

native-resolution state vector element is assigned exclusively

to its dominant Gaussian pdf. This yields sharp boundaries

between clusters (Fig. 1) as in the grid coarsening and PCA

methods.

Figure 3 shows the mean error standard deviation in the

aggregation and smoothing error covariance matrices, com-

puted as the square root of the mean of the diagonal terms, as

a function of state vector dimension. The aggregation error

is zero by definition at the native resolution (7366 state vec-

tor elements), and increases as the number n of state vector
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Figure 3. Aggregation and smoothing error dependences on the

aggregation of state vector elements in an inverse model. The ap-

plication here is to an inversion of methane emissions over North

America using satellite methane data with 7366 native-resolution

state vector elements (Sect. 5 and Turner et al., 2015). Results are

shown as the square roots of the means of the diagonal terms (mean

error standard deviation) in the aggregation and smoothing error co-

variance matrices. Different methods for aggregating the state vec-

tor (Sect. 4) are shown as separate lines. Note the log scale on the

x axis.

elements decreases, following a roughly n−0.7 dependence.

Conversely, the smoothing error increases as the number of

state vector elements increases, following roughly a log(n)

dependence. The different aggregation methods of Sect. 4

yield very similar smoothing errors, suggesting that any rea-

sonable aggregation scheme (such as k means clustering;

c.f. Bishop, 2007) would perform comparably. The aggre-

gation error is somewhat improved using the GMM method.

RBF weighting performs slightly better than GMM cluster-

ing (sharp boundaries). As discussed above, a major advan-

tage of the GMM method is its ability to retain resolution of

large localized sources after aggregation.

Figure 4 shows the sum of contributions from aggrega-

tion, smoothing, and observational error standard deviations
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Figure 4. Total error budget from the aggregation of state vector el-

ements in an inverse model. The application here is to an inversion

of methane emissions over North America using satellite methane

data with 7366 native-resolution state vector elements (Sect. 5 and

Turner et al., 2015). Results are shown as the square roots of the

means of the diagonal terms (mean error standard deviation) in the

aggregation, smoothing, and observational error covariance matri-

ces, and for the sum of these matrices. Aggregation uses the GMM

with RBF weighting (Sect. 4). There is an optimum state vector

size for which the total error is minimum and this is shown as the

circle. Gray shading indicates the 90 % range for the total error on

individual elements as diagnosed from the 5th and 95th quantiles of

diagonal elements in the total error covariance matrix. Note the log

scale on the x axis.

as a function of state vector aggregation using the GMM with

RBF weighting. In this application, aggregation error domi-

nates for small state vectors (n < 100), but drops below the

observation error for n > 100 and below the smoothing error

for n > 1000. The smoothing error remains smaller than the

observational error even at the native resolution (n = 7366).

The observational error is not independent of aggregation, as

shown in Eq. (29), but we find here that the dependence is

small.

From Fig. 4 we can identify a state vector dimension for

which the total error is minimum (n = 2208; circle in Fig. 4).

However, error growth is small until n ≈ 200, below which

the aggregation error grows rapidly. A state vector of 369 el-

ements, as adopted by Turner et al. (2015), does not incur

significant errors associated with aggregation or smoothing,

and enables computation of an analytical solution to the in-

verse problem with full error characterization.

Previous work by Bocquet (2009), Bocquet et al. (2011),

Bocquet and Wu (2011), Wu et al. (2011), and Koohkan et al.

(2012) analyzed the scale dependence of different grids us-

ing the degrees of freedom for signal: DFS = Tr(I−S−1
a,ωŜω).

These past works found this error metric to be monotonically

increasing. This implies that the native-resolution grid will

have the least total error and there is no optimal resolution,

except from a numerical efficiency standpoint. Here we find

a local minimum that is, seemingly, at odds with this previ-

ous work. However, the reasoning for this local minimum is

that we have allowed the aggregation to account for spatial

error correlations that we are unable to specify at the native

resolution. As such, we are taking more information into ac-

count and obtaining a minimum total error at a state vector

size that is smaller than the native resolution. If the native-

resolution error covariance matrices were correct, then, as

previous work showed, the only reason to perform aggrega-

tion would be to reduce the computational expense and the

grid used here would be suboptimal because it does not de-

pend on the native-resolution grid.

6 Conclusions

We presented a method for optimizing the selection of the

state vector in the solution of the inverse problem for a given

ensemble of observations. The optimization involves mini-

mizing the total error in the inversion by balancing the ag-

gregation error (which increases as the state vector dimen-

sion decreases), the smoothing error (which increases as the

state vector dimension increases), and the observational er-

ror. We further showed how one can reduce the state vector

dimension within the constraints from the aggregation error

in order to facilitate an analytical solution to the inverse prob-

lem with full error characterization.

We explored different methods for aggregating state vec-

tor elements as a means of reducing the dimension of the

state vector. Aggregation error can be minimized by group-

ing state vector elements with the strongest correlated prior

errors. We showed that a Gaussian mixture model (GMM),

where the state vector elements are multi-dimensional Gaus-

sian pdfs constructed from prior error correlation patterns,

is a powerful aggregation tool. Reduction of the state vector

dimension using the GMM retains fine-scale resolution of

important features in the native-resolution state vector while

merging weak or uniform features.
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