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Multi-agent systems andmulti-robot systems have been recognized as unique solutions to
complex dynamic tasks distributed in space. Their effectiveness in accomplishing these
tasks rests upon the design of cooperative control strategies, which is acknowledged to be
challenging and nontrivial. In particular, the effectiveness of these strategies has been
shown to be related to the so-called exploration–exploitation dilemma: i.e., the existence of
a distinct balance between exploitative actions and exploratory ones while the system is
operating. Recent results point to the need for a dynamic exploration–exploitation balance
to unlock high levels of flexibility, adaptivity, and swarm intelligence. This important point is
especially apparent when dealing with fast-changing environments. Problems involving
dynamic environments have been dealt with by different scientific communities using
theory, simulations, as well as large-scale experiments. Such results spread across a
range of disciplines can hinder one’s ability to understand andmanage the intricacies of the
exploration–exploitation challenge. In this review, we summarize and categorize the
methods used to control the level of exploration and exploitation carried out by an
multi-agent systems. Lastly, we discuss the critical need for suitable metrics and
benchmark problems to quantitatively assess and compare the levels of exploration
and exploitation, as well as the overall performance of a system with a given
cooperative control algorithm.

Keywords: dynamic environment, exploration, exploitation, multi-agent systems, multi-robot systems, swarm
intelligence, swarm robotics

1 INTRODUCTION

In recent years, there has been an increasing interest in using multi-agent systems (MAS) to carry out
a wide array of complex tasks. In using such collaborative platforms, a large and challenging task can
be broken down into smaller tasks that can be tackled by agents with the ability to change their
actions based on their local environment (Dorri et al., 2018). This providesMAS with very high levels
of flexibility—i.e., adaptability to changing circumstances—thereby making them an attractive
solution to problems in fields ranging from traffic management (Rehman et al., 2018), to
machine learning (Madhushani and Leonard, 2020), and robotics (Quattrini Li, 2020; Schranz
et al., 2021).

A well-known challenge faced by all MAS is the exploration–exploitation dilemma. This dilemma
arises owing to the fact that gathering new information (i.e., exploration) andmaking use of currently
available information (i.e., exploitation) tend to be twomutually exclusive activities (Berger-Tal et al.,
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2014). Should a system be setup in favor of exploration, it would
be able to gather large amounts of knowledge without being fully
able to benefit from this knowledge. This may increase the time
required for the MAS to accomplish its task or prevent it from
achieving its goal altogether (Dadgar et al., 2016). On the other
hand, should a system be setup to favor exploitation, the system
may be unable to adapt to changes in the environment or may
find itself trapped in a local optimum (Azoulay-Schwartz et al.,
2004; Berger-Tal et al., 2014; Mehlhorn et al., 2015). Despite this
apparent trade-off between the two activities, both sets of actions
can be performed simultaneously (Stadler et al., 2014). As such,
one can expect that to maximize the performance of such a
system, there ought to be some sort of balance—most likely a
dynamic one—between the amount of exploration and
exploitation carried out.

Within the field of robotics, MAS have been studied for their
applications within Multi-Robot Systems (MRS) (Bayindir, 2016;
Schranz et al., 2020; Dias et al., 2021). The use of MRS, which can
either be controlled in a centralized or decentralized fashion
(Khan et al., 2015), has been demonstrated in a wide variety of
tasks, including area mapping (Okumura et al., 2018; Kit et al.,
2019), area characterization (Ebert et al., 2018; Ebert et al., 2020),
collective construction (Werfel et al., 2014), collective decision-
making (Valentini et al., 2017), collective transport (Takahashi
et al., 2014), perimeter defense or geofencing (Chamanbaz et al.,
2017; Shishika and Paley, 2019), as well as target search and
tracking (Kamimura and Ohira, 2010; Shah and Schwager, 2019;
Kwa et al., 2020a). The attractiveness of MRS in such tasks stem
from three key features: 1) flexibility—the ability for the to adapt
quickly to rapidly changing environments, 2) robustness—the
ability to cope with component failures within the system, and 3)
scalability—the ability to carry out tasks in systems comprised of
different number of agents (Dorigo et al., 2021).

For implementation of swarm strategies in MRS, agent
behaviors are largely developed in simulation before being
tested in physical systems. However, doing so inevitably leads
to the so-called reality gap, in which there is a difference between
the simulation models and the actual robots used (Francesca and
Birattari, 2016; Mouret and Chatzilygeroudis, 2017). This could
manifest as differences between the actual robot behaviors and
those predicted by simulations due to various factors such as
variations in robot kinematics, communications noise, and other
environmental factors affecting the robot’s movements. Given the
potentially large number of agents involved, this reality gap may
be further widened when modeling MRS. While this indeed poses
a unique problem for MRS practitioners, in this paper, we only
focus on the behavioral aspects of how robotic agents balance
their efforts in exploration and exploitation.

At this point, it should be noted that there is a marked
difference in the strategies that are employed for use in static
and dynamic tasks. While there is still the need to balance
exploration and exploitation when operating in static
environments, this balance tilts heavily in favor of
exploitation, especially during the latter stages of the task. For
example, in the search for a static target, Yang et al. (2019)
performed an initial random search before transitioning to a
Particle Swarm Optimization (PSO) algorithm to facilitate the

convergence of agents around the target’s position. Similarly,
Matignon and Simonin (2018) found that biasing the swarm
towards exploitation during the latter phases of a static target
search task greatly reduces the time taken to accomplish the given
mission. Tasks in slow-evolving environments can also be treated
as a quasi-static problem and be completed in the same manner.
Coquet et al. (2019) were able to demonstrate a simulated swarm
using a comparable algorithm to search for and track a slow-
moving target. Due to the focus on exploitation during the latter
stages of the tasks, research on MAS carrying out static or quasi-
static tasks tend to focus on convergence time and the accuracy of
the overall system (Zou et al., 2015; Ebert et al., 2018; Ebert et al.,
2020).

Given this critical distinction between static, quasi-static, and
fast-evolving tasks, we propose the following definition for the
latter: a task occurring in an environment that evolves at a rate at
which a single agent is unable to keep up. Examples include
tracking a target that can move faster than the agents (Janosov
et al., 2017; Kwa et al., 2020a), and dynamic features that lead to a
notable evolution in the optimum agent allocation of a task
assignment problem (Kazakova et al., 2020). For a system to
effectively carry out its assigned task in a fast-moving dynamic
environment, there must be some form of adjustment of the
balance between exploratory and exploitative actions throughout
the duration of the task. Should an MAS bias its actions towards
exploitation over time, such exploitative activity based on
outdated information will inevitably result in poorer system
performances (Jordehi, 2014; Pitonakova et al., 2018; Phan
et al., 2020). Despite this, there is still merit in studying the
methods used to control the level of exploration and exploitation
carried out in MAS operating in static and quasi-static
environments. This is because such systems still are
susceptible to being trapped in local optima during the initial
stages of the task (Leonard et al., 2011; Zou et al., 2015; Ghassemi
and Chowdhury, 2019) and variations of strategies employed in
static environments have been modified and applied for use in
fast-evolving environments (Senanayake et al., 2016).

Given the notable importance of the exploration vs.
exploitation balance in MAS, we present here a survey of the
methods and techniques used to control this balance. First, we
explore the concept of exploration and exploitation and the
common metrics that practitioners use to quantify the level of
exploration and exploitation carried out by their systems. Next,
we go through the methods used to control the exploration and
exploitation balance. An overview of the types of methods and
strategies explored within this review can be found in Figure 1. In
the conclusion, we present possible directions for future research
as well as summarizing remarks.

2 EXPLORATION AND EXPLOITATION

2.1 Characterizing Exploration and
Exploitation
Exploration and exploitation is a trans-disciplinary concept used
in a variety of fields and contexts. As such, there is no unique
definition that can be used to define these two behaviors.
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Nevertheless, these exploratory and exploitative actions can be
characterized by certain observable features. To this end
Mehlhorn et al. (2015), identifies three key distinct features
that distinguish between the two: 1) behavioral patterns, 2)
the uncertainties associated with an actor’s choices, and 3) the
expected outcomes as a result of an agent’s actions. It is
important to note at this point that while these three
features classify the actions of a single agent, a single
agent’s actions do not characterize the
exploration–exploitation dynamics (EED) of the entire
MAS. It is only through observing the actions of all or a
proportion of a system’s agents that one is able to
accurately characterize the exploration–exploitation balance
of an MAS.

An agent’s behavioral patterns are one of the most common
definitions of exploration and exploitation used as the
movements it carries out is a physical quantity that can be
directly observed and measured. Many MAS practitioners use
the agents’ movements and observed positions to determine the
system’s exploration-exploitation balance (see Section 2.2.1). For
example, in a target search context, when agents are close together
or traveling towards the same region of the area of operations, it
can be assumed that they are exploiting a common source of
information (Jordehi, 2014; Kwa et al., 2021b). Conversely, if
agents are moving away from each other or in a random fashion,
they can be assumed to be carrying out exploration.

The less tangible aspect of an agent’s behavioral patterns are its
intentions that drive the observed actions. While not as obvious
as an agent’s motions, these can still be easily determined by
querying the state of an individual agent in an engineered MAS.
In their review, Stadler et al. (2014) posited that exploration and
exploitation are associated with a certain level of learning.
Therefore it can be said that an agent is carrying out
exploitation if it uses previously acquired knowledge and
carrying out exploration if it is not doing so (Gupta et al.,
2006; Nauta et al., 2020b). Again, this is another common
method of defining exploration and exploitation in MAS,

where certain practitioners have developed dedicated behaviors
that facilitate exploration and exploitation separately (see Section
3.1.1.1).

Besides observing an agent’s behavioral patterns, the amount
of uncertainty associated with each action can also be used to
classify exploration and exploitation. With this characteristic,
exploratory actions are associated with those that have high levels
of uncertainty, while exploitative ones are associated with low
levels of uncertainty. In MAS operating in unknown
environments, these uncertainties are usually presented in the
form of a map that updates itself as the task progresses (Wolek
et al., 2020; Crosscombe and Lawry, 2021; Liu et al., 2021). Using
such maps allows an agent to move towards regions of different
levels of uncertainty based on its intentions to carry out either
exploration or exploitation. As such, an agent that moves towards
or gathers information in an area with high uncertainty is deemed
to be carrying out exploration, while an agent doing the same in
an region of low uncertainty can be said to be carrying out
exploitation.

Finally, the type of action an agent performs can be classified
based on the expected results of the said action. This is typically
exemplified by observe-or-bet tasks. In such a task, an agent is
given a chance to observe the environment and gain information
while not receiving any reward (exploration). Alternatively, the
agent may “bet” on an option and receive its associated reward
(exploitation), although the amount of reward received remains
hidden from the agent (Tversky and Edwards, 1966; Navarro
et al., 2016). While these tasks offer a very clear distinction
between exploration and exploitation, such contrasts are not
as explicit when observing real systems; agents tend to know
the quantity of a reward and the action that was performed that
led to the reward. These additional pieces of knowledge allow an
agent to obtain more information about its surrounding
environment and allow agents to simultaneously perform
exploration and exploitation (Gupta et al., 2006).

As highlighted by Mehlhorn et al. (2015), these three
characteristics need not be used to define exploration and

FIGURE 1 | Classification of MAS exploration and exploitation control methods.
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exploitation in isolation. Multiple characteristics can be used to
determine the type of activity being carried out by an agent. For
example, when performing an area mapping task, Matignon and
Simonin (2018) proposed using anMRS that built an occupancy grid
map that increased in resolution as the task progressed. If a robot
chose to move into a previously unvisited cell (high uncertainty,
learning expected), it was determined to be exploring. If the robot
chose to move to a cell with a known object of interest or update its
map of the local area with a higher resolution (low uncertainty,
reward expected), it was determined to be exploiting.

2.2 Measuring Exploration and Exploitation
After selecting their definitions of exploration and exploitation,
practitioners next turn their attention to measuring the level and
quantifying the balance between the two activities. In the field of
computational optimization, a typical strategy in finding a global
optimum is through the use of an MAS consisting of many
candidate solutions searching the solution space. In this use
case, the quantification and monitoring of the system’s EED is
important as doing so permits it to autonomously detect if the
solutions have been trapped in a local optimum or have stagnated.
Doing so grants the system the ability to self-modify specified
parameters, allowing it to “jump out” and continue with its
optimization task (Palmieri and Marano, 2016; Bonyadi and
Michalewicz, 2017). Similarly in MAS operating in dynamic
environments, these measurements also allow a system to
monitor and prevent solution diversity loss, allowing systems to
track moving optima over time (Blackwell and Branke, 2006;
Leonard et al., 2011; Jordehi, 2014). At this point, it should be
noted that a system’s diversity is analogous to the amount of
exploration it carries out. These metrics mostly fall within the
categories of spatial distribution based metrics or probability based
metrics, although there are also other metrics that have been used
that do not fall within these two categories.

While most exploration and exploitationmetrics are measured
globally, i.e., a system-wide property that allows one to quantify a
system’s EED as a whole, some of these metrics can also be
measured locally by the individual agents, thereby allowing them
to adjust their actions appropriately. The use of globally and
locally computed metrics both have their associated advantages
and disadvantages. While the use of a system-wide EED metric
would allow for a more accurate quantification of the overall
balance between exploration and exploitation, it also entails that
this balance be controlled in a centralized fashion. This would
result in the loss of a certain degree of system scalability,
flexibility, and robustness. Conversely, if a locally computed
metric is used, the agents would be able to use this metric
during their operations, allowing them to influence the
behavior of the system through various feedback or
feedforward loops. While such agent-based metrics may not be
able to quantify a system’s EED as accurately as a global metric, it
allows the system to maintain a level of decentralization and
hence, scalability, flexibility, and robustness.

2.2.1 Spatial Distribution Based Metrics
Similar to classifying an agent’s actions based on its behavior and
movement patterns, the use of metrics based on the agents’ spatial

distribution is very popular as it is a physical quantity that can be
easily observed, measured, and calculated. As previously
mentioned, to quantify the level of exploration and
exploitation in computational MAS, the solution diversity of a
system is usually calculated. This solution diversity is a measure
of the spatial distribution of all candidate solutions within the
feasible region. Cheng et al. (2015) based their diversity metric on
the average distance of each solution from the mean. Hussain
et al. (2019) adapted this metric for use in their study of swarm-
based metaheuristic algorithms by using the median solution
instead of the mean as it reflected the population center of the
candidate solutions more accurately. In a similar fashion Zhan
et al. (2009), calculated a population standard deviation to
measure the solution spread. In summary, all these metrics are
essentially based on low-order indicators of the statistical
distribution.

Comparable metrics are in use to measure the amount of
exploration and exploitation carried out by agents within MRS.
As seen with the metrics used in computational optimization,
measuring the spatial distribution of agents is also used to
quantify the level of exploration and exploitation. In their
target search task Dadgar et al. (2017) and Dadgar et al.
(2020), measured the diversity of individual robots within
their MRS by calculating the amount of overlap between a
robot and its neighbors’ search areas. Agent sensor area
overlap was also used by Sardinha et al. (2020a) who
calculated the size of area covered by at least two agents as a
measure of the amount of effective exploration performed by
their swarm in a surveillance task. This metric is similar to the one
used by Esterle and Lewis (2017), Esterle and Lewis (2020) and
Frasheri et al. (2020) who used a k-coverage metric that calculated
the amount of time a target spent being tracked by at least k
agents.

Stogiannos et al. (2020) measured the level of exploration and
exploitation by tracking three metrics: 1) the minimum distance
between agent pairs, 2) the sum of the distances between detected
targets and their closest agents, and 3) the distance moved by each
agent over the course of one time-step. While often not explicitly
stated, the distance between a robot and its neighbors is the most
common measure of diversity as most control methods tend to
focus on preventing excessive aggregation or spatial distribution
(Hereford and Siebold, 2010; Meyer-Nieberg et al., 2013; Lv et al.,
2016; Meyer-Nieberg, 2017; Chen and Huang, 2019; Coquet et al.,
2019; Coquet et al., 2021).

The lack of distance measurements does not preclude the use
of spatial distribution metrics. As a proxy for the amount of
exploitation performed by each robot Yang et al. (2019),
calculated a communications-based aggregation degree from
the number of neighbors within visual range, with higher
numbers of agents within visual range suggesting a higher
amount of aggregation. This eliminates the need to share
positional information between agents, allowing an agent to
reduce the number of radio transmissions it needs to make. In
an adaptation to the BEECLUST algorithm, which was first
proposed by Kernbach et al. (2009), Schmickl et al. (2009) and
Wahby et al. (2019) determined the level of local aggregation, and
therefore the level of exploitation of individual agents, by

Frontiers in Robotics and AI | www.frontiersin.org February 2022 | Volume 8 | Article 7715204

Kwa et al. Balancing Collective Exploration and Exploitation

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


measuring the time interval between two consecutive neighboring
robot encounters.

The aggregation degree may not necessarily need to be
calculated with the use of spatial information. In performing a
search for multiple targets using several sub-swarms comprised of
leaders and followers Tang et al. (2020a), calculate the
aggregation of the sub-swarms by comparing the fitness value
of each sub-swarm leader to the mean fitness value of all the
leaders within the swarm. This is similar to the aggregation degree
proposed by Yang et al. (2007), who calculated the ratio between
the agent with the lowest fitness value and the agent with the
highest fitness value. A list of works using spatial metrics to
quantify an MAS’ EED can be found in Table 1.

2.2.2 Probability Based Metrics
While less popular than the use of spatial distance metrics, the
probability of actions carried out by individual agents can also be
used to quantify the level of exploration and exploitation
involved. The most common use of probability based metrics
can be found in the application of Lévy walks and flights. Lévy
walks are a class of randomwalks where the distance of the walk, l,
is taken from a heavy-tailed probability distribution function,
P(l). This probability distribution function is given by the
equation:

P l( ) ∼ l−μ, (1)

where μ is the Lévy parameter controlling the shape of the
probability distribution function. Lower values of μ close to unity
lead to a higher probability of longer walk lengths between
direction changes, which is associated with higher levels of
exploration. Conversely, higher values of μ cause an agent to
preferentially carry out shorter walks between changes of
direction, characteristic of higher levels of exploitation
(Viswanathan et al., 2000; Viswanathan et al., 2008). The use
of the Lévy parameter has been used as a method of quantifying
and controlling the level of exploration and exploitation of
various MRS applied in different tasks, ranging from foraging

(Zedadra et al., 2019; Nauta et al., 2020a; Nauta et al., 2020b;
Nauta et al., 2020c), to target search (Senanayake et al., 2016;
Harikumar et al., 2019; Pang et al., 2019), to area mapping
(Ramachandran, 2018; Kegeleirs et al., 2019; Ramachandran
et al., 2020).

In addition to the use of Lévy distributions, action probabilities
can be used to set the level of exploration and exploitation carried
out by an MRS. To search for a target Matignon and Simonin
(2018), used action probabilities to bias an agent in favor of
carrying out either exploratory or exploitative actions. In a similar
fashion, Falcón-Cortés et al. (2019), Nauta et al. (2020a) and
Nauta et al. (2020b) uses the probability of an agent using
information in its memory as means of determining and
controlling the level of exploration and exploitation of the
system. In their best-of-n problem Prasetyo et al. (2019), used
an opinion switching probability threshold as a proxy to measure
and control the exploration and exploitation dynamics of their
swarming system. With this, higher switching probabilities are
associated with exploration, while lower probabilities are
associated with exploitation. These probability thresholds are
also popular in the related field of task allocation to obtain the
optimal distribution of agents among all the tasks presented to the
MRS. In such scenarios, the use of probability thresholds allows
an agent to decide whether it should stay and continue with its
current task (exploitation) or move on and attempt to perform
another task within the environment (exploration) (de Lope et al.,
2015; Lee and Kim, 2019; Kazakova et al., 2020; Lee et al., 2020). A
list of works using such probability based metrics can be found in
Table 2 for different tasks.

2.2.3 Other Metrics
In addition to spatial and probability based metrics, other metrics
have also been used to quantify the level of exploration and
exploration carried out by MRS. These metrics are detailed and
listed in Table 3. To solve their Best-of-n problem Prasetyo et al.
(2018), Prasetyo et al. (2019) and De Masi and Ferrante (2020),
employed contrarian agents that do not change their opinion of

TABLE 1 | List of works using spatial distribution metrics to quantify MAS exploration and exploitation.

References Metric Task

Sardinha et al. (2020a) Area observed by at least two agents Area Coverage
Blackwell and Branke (2006), Hereford and Siebold (2010), Leonard et al.
(2011), Jordehi (2014)

Euclidean distance between solutions Optimization

Cheng et al. (2015) Euclidean distance between solution and mean system solution Optimization
Hussain et al. (2019) Euclidean distance between solution and median system solution Optimization
Zhan et al. (2009) Standard deviation of all candidate solutions Optimization
Tang et al. (2020a) Fitness value between sub-swarm leaders and mean fitness value Optimization
Schmickl et al. (2009), Wahby et al. (2019) Local agent density Optimal Area

Aggregation
Palmieri and Marano (2016), Dadgar et al. (2016), Dadgar et al. (2017),
Dadgar et al. (2020)

Agent sensor overlap region Target Search

Meyer-Nieberg et al. (2013), Lv et al. (2016), Meyer-Nieberg (2017), Chen and
Huang (2019), Coquet et al. (2019), Coquet et al. (2021)

Euclidean distance between agents Target Search

Yang et al. (2019) Number of agents within visual range Target Search
Esterle and Lewis (2017), Esterle and Lewis (2020), Frasheri et al. (2020) k-Coverage Target Tracking
Stogiannos et al. (2020) Distance between agents, distance between targets and agents &

distance moved by agents in one time-step
Target Tracking
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the best site. This use of stubborn agents are a method of
measuring and guaranteeing a minimum level of exploration
carried out by the system.

In their collective decision-making task Hornischer et al.
(2020), attempted to measure and maximize the diversity of
their MRS by counting the total number of unique messages
being broadcast, as well as the proportion of agents broadcasting
these messages within the system. Using this metric, a small
number of unique messages or a small proportion of agents
broadcasting a message indicated low levels of diversity.

To measure the exploration and exploitation dynamics of an
MRS tracking a moving target Kwa et al. (2020a) and Kwa et al.
(2020b) proposed a metric based on an agent’s direction of travel
and its bearing to the target. This allowed for an individual agent’s
contribution, and hence the system’s overall exploration and
exploitation dynamic to be quantified. Kwa et al. (2021a) and
Kwa et al. (2021b) later identified that a metric based on an
agent’s position relative to a target was unable to function when
used in a scenario where multiple targets are to be tracked, such as
situations defined under the Cooperative Multi-Robot
Observation of Multiple Moving Targets (CMOMMT)
framework. This led to the introduction of an engagement
ratio, thereby allowing quantification of a swarm’s EED in the
presence of multiple targets by finding the proportion of agents
actively moving towards a target.

In their CMOMMT task Banfi et al. (2015), introduced a
metric known as the tracking fairness that measures the
monitoring effort of the MRS across all targets. Should a
target receive more attention from the MRS’s agents, the
system would have a high tracking fairness score, indicating
over-monitoring of a target or too much exploitation being
carried out by the system. Conversely, a low fairness score
indicates that the agents are monitoring all the targets evenly

and that there is a good balance between exploration and
exploitation.

To develop a tracking strategy for the same CMOMMT
problem using deep reinforcement learning Yan et al. (2021)
used an occupancy grid map (OGM) to characterize the
environment. A tracking fairness based metric was then used,
comparable to the one proposed by Banfi et al. (2015), as well as
an exploration metric based on the latest observation time of all
grid cells in the OGM.

3 AGENT RESPONSE METHODS

Once a system’s level of exploration and exploitation is able to be
quantified, the balance between the two activities can then be
controlled. The most common method of adjusting this balance
performed by an MAS is by changing an agent’s actions in
response to locally measured variations in the environment or
information originating from the agent’s neighbors. This method
of controlling exploration and exploitation can elicit two types of
response from an agent: 1) trigger a discrete change in state of an
agent, causing it to perform a predefined set of actions associated
to either exploration or exploitation, or 2) cause a small change in
an agent’s actions, resulting in a small change in bias of the agent’s
actions towards either end of the exploration or exploitation
spectrum.

3.1 Changes in State
When deploying changes in agent states, a large change in an
agent’s behavior is effected in response to a given stimulus
observed by either an agent, a subset of agents or the entire
MAS itself. This gives agents the ability to switch from an
exploratory to an exploitative behavior, and vice-versa allows

TABLE 2 | List of works using probability based metrics to quantify MAS exploration exploitation dynamics.

References Metric Task

Ramachandran (2018), Kegeleirs et al. (2019), Ramachandran et al. (2020) Lévy parameter Area Mapping
Prasetyo et al. (2018), Prasetyo et al. (2019) Opinion switching probability Best-of-n Problem
Zedadra et al. (2019), Nauta et al. (2020c) Lévy parameter Resource Foraging
Falcón-Cortés et al. (2019), Nauta et al. (2020a), Nauta et al. (2020b) Lévy parameter and memory utilization probability Resource Foraging
de Lope et al. (2015), Lee and Kim (2019), Kazakova et al. (2020), Lee et al. (2020) Task switching probability threshold Task Allocation
Viswanathan et al. (2000), Viswanathan et al. (2008), Harikumar et al. (2019), Pang et al. (2019) Lévy parameter Target Search

TABLE 3 | List of works using their own developed methods or metrics to quantify the level exploration and exploitation carried out by an MAS.

References Metric Task

Prasetyo et al. (2018), Prasetyo et al. (2019), De Masi and
Ferrante (2020)

Number of stubborn agents Best-of-n Problem

Hornischer et al. (2020) Number of unique messages broadcast & proportion of agents broadcasting
unique messages

Collective Decision-
Making

Kwa et al. (2020a), Kwa et al. (2020b) Correlation between an agent’s direction of travel and directional bearing to
target

Target Tracking

Banfi et al. (2015) Tracking fairness Target Tracking
Kwa et al. (2021a), Kwa et al. (2021b) Engagement ratio Target Tracking
Yan et al. (2021) Tracking Fairness and time-based occupancy grid map Target Tracking
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for them to better adapt to their local environment, with the aim
to improve the overall performance of the system. These
strategies tend to base their exploration strategies on random
walks (Zedadra et al., 2017), followed by information exploitation
driven by either a metaheuristic algorithm or direct travel towards
a point of interest should one be detected. A flowchart of such
changes in agent response can be seen in Figure 2.

These changes in response can either be triggered by an agent
itself as a reaction to its local environment or a coordinating agent
can trigger this response change in a certain subset of the MAS.
The latter set of strategies usually involves a centralized controller
or locally designated leader to determine which agents are to
change their response patterns. As can be expected, each set of
strategies comes with its own advantages and disadvantages. For
instance, while using decentralized strategies, an MAS is able to
retain its flexibility, robustness, and scalability. However, keeping

these properties of the system comes at the expense of more
precise control over the overall system’s EED. Using a set of
strategies involving a centralized controller, an MAS user is able
to exert greater and more accurate control over the system’s EED.
However, a trade-off must be found, which inevitably impacts one
of the system’s three key characteristics of flexibility, scalability,
and robustness.

3.1.1 Self-Determined State Changes
In decentralized systems, changes in an agent’s state stem from its
own reaction to changes in its local environment. Based on this
information, an agent decides for itself if it will carry out
exploratory or exploitative actions. When determining their
own state in response to their environment, an agent normally
takes into account local observations carried out by itself as well
as information originating from its neighbors. This allows an
agent to react quickly to any changes in its local environment,
allowing the MAS to retain its system flexibility. Agents are also
not reliant on a leader or central controller assigning it an
appropriate response, allowing the system to maintain its
scalability and robustness. However, given this decentralized
control strategy, the MAS will have less control over the
overall amount of exploration and exploitation carried out. A
list of such strategies and associated tasks can be found inTable 4.

3.1.1.1 Dedicated Exploration and Exploitation Strategies
In various systems, agents may switch between pre-programmed
exploratory and exploitative behaviors. To capture multiple static
targets, the approach proposed by Li et al. (2014) initialized their
agents with a random search behavior to explore the
environment. In most works involving simulations, a target
signal is modeled by using an objective value function,
representing the type of information to be exploited by the
MAS (e.g., radio signal intensity, chemical plume
concentration, etc.). When a target signal was encountered,
agents would then employ a PSO algorithm, allowing the
system to exploit the target signal and capture the target. After
capturing the target, the agents would revert to their original state
and resume their random environment search.

Similar changes in state and strategy have been utilized in
searching for and tracking dynamic targets. In the tracking of
multiple dynamic objects of interest under the CMOMMT
framework Esterle and Lewis (2017) and Esterle and Lewis
(2020) programmed their agents to initially explore the area
randomly. However when an object of interest was detected, it
would transition into a tracking mode, change its response, and
ultimately alter its velocity to follow that point of interest. The
authors were able to demonstrate that this mixed strategy of
random motion and following a target yielded better tracking
performances than an exploration-only strategy in which the
agents only move around randomly.

To track a fast moving target Kwa et al. (2020a), Kwa et al.
(2020b), Kwa et al. (2021a) and Kwa et al. (2021b), initially used
inter-agent repulsion to promote area exploration. When a target
was detected, an agent and its neighbors would activate a PSO-
based tracking behavior, allowing the target’s information to be
exploited, facilitating target tracking. This behavior would be

FIGURE 2 | Flowchart detailing how an agent deterministically decides
on its response when provoked by environmental stimuli.
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disabled once the target is no longer detected. The ability to
dynamically select between the use of exploratory and exploitative
strategies appropriately was demonstrated to be key in facilitating
the tracking of the target as it prevented over-exploitation of the
target and over-exploration of the search space.

Changes in state may also be triggered by signals originating
from neighboring agents. In their work Kolling and Carpin
(2006) and Kolling and Carpin (2007), explored the use of so-
called “help calls” broadcast from an agent when a target is
predicted to be leaving its observation range. Other robots that
receive this help call that are not involved in tracking a target
move towards the robot requesting help to assist with the tracking
task. The use of help calls is also explored by Esterle and Lewis
(2017) and Esterle and Lewis (2020) who studied their
applications in conjunction with various response and
communication models. Frasheri et al. (2020) expanded on
this work, incorporating a willingness to interact parameter
that determined the propensity of an agent to aid in the
tracking of a target.

Agents are also able to form dynamic groups dedicated to
exploiting information stemming from a point of interest. The
formation of groups is more commonly done together by means
of a central controller or through a locally designated leader.
However, these dynamic groups can still be formed using
decentralized decision-making. Zhang et al. (2014) proposed a
strategy to search for multiple targets in which agents are
initialized in the random-walk search mode. When a target is
found, a dynamic group comprised of a maximum of 10 agents is
formed. Agents in this group exploit the target’s emitted signal
through the use of a PSO algorithm. At each time-step, agents
broadcast their measured target signal strengths and individually
decide if they should join or leave the group.

The use of changes in agent response is not limited to
applications within the domain of target search and tracking.
In their foraging task Hecker et al. (2015), split their foraging task
into two separate phases. Initially, agents follow a search phase
guided by a random walk. After a specified amount of resources
has been gathered, agents are assigned to travel to specific regions

to exploit high rewarding resource clusters. During this
exploitation phase, the agents travel to their allocated locations
via a directed random walk. This path becomes straighter, and
hence more directed over time, allowing the agents to reduce the
amount of exploration carried out.

In a similar foraging task Nauta et al. (2020a) and Nauta et al.
(2020b), stored the location of resource patches in a limited
agent-based memory fashion. The authors used a truncation
probability that determined if an agent’s exploration via Lévy
walks are to be cut short. This allowed agents to randomly
transition between informed movements and random searches.
By increasing the truncation probability, agents of a system could
be made to use information from its memory more often, leading
to a system-level EED that favors exploitation. Kwa et al.
(2021a) and Kwa et al. (2021b) also made use of memory in
their target tracking task. However, instead of changing the
probability of an agent accessing information from its memory,
the system’s EED was tuned by changing the length of an agent’s
memory. A system can be made to favor exploitation with the
use of longer memory lengths and exploration with the use of
shorter memory lengths.

3.1.1.2 Artificial Immune System Strategies
The ability to change between distinct behaviors is also one of the
cornerstones of Artificial Immune System (AIS) strategies. First
proposed by Farmer et al. (1986), AIS was later defined by De
Castro et al. (2002) as an “adaptive system, inspired by theoretical
immunology and observed immune functions, principles and
models, which are applied to problem solving.” Such strategies are
commonly used in computational tasks such as computer
security, pattern recognition, and optimization (Liu et al.,
2006; Dasgupta, 2012), however they have also seen recent
applications in various MRS (Raza and Fernandez, 2015). In
this family of strategies, all agents are given a repository of
behaviors or rules. These behaviors are associated with state
values that are influenced by various stimuli in the
environment, such as the presence of tasks or targets, as well
as by the state values of encountered agents. The behavior with

TABLE 4 | List of works using self-determined state change strategies to influence a system’s exploration and exploitation dynamics.

References Strategy Task

Razali et al. (2010), Razali et al. (2012) Agent behaviors selected using AIS Dynamic Shepherding
Hecker et al. (2015) Random walk search phase & agent assignment exploitation

phase
Resource Foraging

Nauta et al. (2020a), Nauta et al. (2020b) Lévy Walk exploration & memory driven exploitation Resource Foraging
Zedadra et al. (2018), Zedadra et al. (2019) Dedicated exploration & exploitation Lévy parameters Resource Foraging
Li et al. (2014), Zhang et al. (2014) Random search & PSO tracking strategy Target Capture
Kolling and Carpin (2006), Kolling and Carpin (2007), Esterle and Lewis (2017),
Esterle and Lewis (2020)

Random search & target following strategy Target Tracking
(CMOMMT)

Frasheri et al. (2020) Pattern search & target following strategy Target Tracking
(CMOMMT)

Kwa et al. (2020a), Kwa et al. (2020b) Repulsion based exploration & PSO tracking strategy Target Tracking
Kwa et al. (2020a), Kwa et al. (2020b) Repulsion based exploration, PSO tracking strategy &

adjustable memory length
Target Tracking

Stogiannos et al. (2020) Agent behaviors selected using AIS Target Tracking
Harikumar et al. (2019) Dedicated exploration & localization Lévy parameters Target Suppression
Lee and Sim (1997), Jun et al. (1999) Agent behaviors selected using AIS Task Assignment
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the highest state variable at a given time-step is the one chosen to
be carried out.

Initial adaptations of AIS for use in MRS were mostly limited
to the domain of task search and allocation. In the initial work
done by Lee and Sim (1997); Jun et al. (1999), the repository of
behaviors consisted of four strategies: 1) aggregation, 2) random
search, 3) dispersion, and 4) homing to carry out a target tracking
task. When a robot encounters another robot, each robot re-
evaluates its behavioral state values. Subsequently, the behavior
with the largest state value is the one chosen to be activated. Using
a similar strategy Sun et al. (2001), also demonstrated the AIS’s
potential in situations where is a large influx in quantity of tasks
to be performed by the system. The same strategy was applied by
Razali et al. (2010) and Razali et al. (2012) in a dynamic
shepherding scenario, as well as by Stogiannos et al. (2020) in
a dynamic target tracking task.

3.1.1.3 Lévy Parameter Changes
Instead of using vastly different movement policies to effect
changes in the response of agents, agents using Lévy walks can
vary their Lévy parameter. As explained in Section 2.2.2,
changing the Lévy parameter μ can be used to influence the
overall EED of an MAS; higher Lévy parameter values are used to
shorten the walk lengths of agents, prioritizing exploitation, while
conversely lower μ values increase walk lengths and hence favor
exploration. As such, several MAS make use of changing their
Lévy parameter to influence its EED instead of using dedicated
exploration and exploitation algorithms.

For a system carrying out a destructive foraging task Zedadra
et al. (2018), Zedadra et al. (2019), used a time-based system
paired with a “satisfaction” parameter to determine the transition
from the exploitation mode to the exploration mode. When
exploring, the MAS used a small Lévy parameter to generate
long-step sizes. This was changed to favor smaller steps when a
target was found to encourage exploitation. While in the
exploitation mode, an agent’s satisfaction parameter value was
increased for each time-step a target was encountered and
decreased when no target was met. An agent would only
transition from the exploitation to exploration when both the
satisfaction value reached zero and the minimum time limit for
the exploitation mode was reached.

To determine the location of forest fires Harikumar et al.
(2019), proposed using a temperature threshold to determine an
agent’s state. In their MAS, all agents are initialized in a searching
state, using a low μ value to direct area exploration. Should an
agent detect a temperature higher than a specified threshold
value, it would transition to a more exploitation-focused
strategy by employing either a directional-driven Brownian
search or regular Brownian search strategy, drawing from a
Lévy probability distribution function with a higher μ value.

3.1.2 Assigned State Changes
While self-determined changes in state are mostly found in fully
decentralized systems, assigned state changes can be found in
fully centralized systems (i.e., systems where the movement of all
agents is dictated by a central controlled) and hierarchical
systems (i.e., systems with designated ‘leader’ agents

determining the actions of a small proportion of agents).
Using assigned state changes, when a stimulus is found, only a
specific subset of the system comprised of a fixed number or
predefined subset of agents is assigned to exploit the new stimulus
information. This is in contrast to the responses seen in the
previous section in which agents are able to decide for themselves
if they should switch behaviors. Using such behaviors allows for
greater and more precise control over an MAS′ EED. However
due to the more centralized nature of such strategies, an MAS
must sacrifice a certain degree of flexibility, scalability, and
robustness. Using this class of strategies, the assignment of
roles and responses to agents can either be done dynamically
as the task progresses, or during the initialization process. A list of
works assigning agent response patterns can be found in Table 5.

3.1.2.1 Dynamic Agent Assignment
While using assigned state changes does indeed reduce a system’s
flexibility, a certain degree of flexibility can still be retained by
having agents assigned to tasks while a mission is being carried
out. Ni and Yang (2011) demonstrated a dynamic agent
assignment strategy in a 2D environment. In their target
search scenario, agents were initialized with a random walk to
explore the environment. When a target is found, a leader agent is
designated to coordinate a dynamic alliance comprised of four
agents. While these agents carry out the target pursuit task, the
rest of the agent continue with exploring the environment. Ni
et al. (2018) later built on this work and demonstrated this type of
strategy for finding targets in an underwater 3D environment.
The agents employed initially used a Lévy flight-based cruise
phase to search for one of multiple targets. When a target is
found, a sub-swarm is formed using a centralized self-organizing
map (SOM), which are also used in transfer learning neural
networks (Karimpanal and Bouffanais, 2019). Only members of
this sub-swarm carry out exploitation of the target’s signal
through the use of the Dolphin Swarm Algorithm (DSA)
while the rest of the agents continue exploring the search area.
In both strategies, after successfully capturing the target, the
pursuing sub-swarm’s agents disband and continue with the
search process by reverting to the cruise phase. Important to
this strategy is the dynamic nature of the sub-swarm’s
membership, meaning that agents in the sub-swarm may be
substituted should it stray too far from the target.

In their work done on tracking and monitoring of multiple
dynamic targets with UAVs in a 3D environment Farid et al.
(2018), employed a strategy where all agents carried out a patrol
phase based on the Lévy flight. When a target is detected, the
agent closest to the target is designated as leader. The leader
selects the next two agents that are nearest to the target’s location
to form a sub-swam comprising of three agents. Only members of
this sub-swarm would transition to a PSO-based tracking mode
to exploit this information and pursue the target until the target
leaves the surveillance area. The leader is also able to substitute
agents within the sub-swarm with other agents should the
original agents move too far away from the target.

Similar techniques that assign agents to targets have also been
demonstrated by Ge et al. (2018) in aquatic surface operations
and by Cao and Sun (2017), Cao and Sun (2018) in underwater
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operations. Instead of using a random walk, the authors generate
a potential field fitness function based on unexplored areas of the
environment and the location of obstacles within the operating
area. Exploration is carried out through the use of a PSO
algorithm that makes use of this potential field by driving
agents towards unexplored regions of the environment. When
a target is found, the four agents nearest to the target enter a
tracking mode and are assigned to pursue that target until it is
caught by using the PSO algorithm on the target’s emitted signal.
Upon a successful target capture, these agents revert to the search
mode to look for more targets. In another study done on search
and rescue strategies by Wang and Meghjani (2020), searcher
strategies are assigned to an agent based on the agent’s distance to
a potential target and the ratio of searchers to targets.

The size of the sub-swarms need not be fixed. In Couceiro et al.
(2011a),Couceiro et al. (2011b), Couceiro et al. (2014) and
Couceiro and Portugal (2018), work is done on a Robotic
Darwinian PSO (RDPSO), adapted for use with ground robots
from the original Darwinian PSO by Tillett et al. (2005). Sánchez
et al. (2018) later expanded on this work with applications using
underwater robots carrying out exploration in a 3D environment.
This strategy balances the swarm’s EED through social exclusion
or inclusion of agents and is done by splitting the MRS into
multiple sub-swarms and independent “wanderers” that search
for the solution individually. All of these sub-swarms execute the
same target tracking strategy independently and there is no direct
information transfer between different sub-swarms. However,
there are some system-level rules applied during each iteration
that serve to keep the membership of the sub-swarms evolving,
thereby facilitating indirect information transfer.

The system level rules that govern this social exclusion or
inclusion of the RDPSO algorithm is the “punish-reward” rule, as
well as the sub-swarm creation and deletion mechanisms. If a
sub-swarm improves its best fitness value, it will add the best
performing wanderer from the excluded agents into its sub-
swarm membership. However if a sub-swarm has not
improved on its fitness value, it will exclude its worst

performing agent, which becomes an independent “wanderer”
itself. If after a specified period of time, a sub-swarm has been
rewarded more times than it has been punished, it is allowed to
generate a new sub-swarm. This new sub-swarm will be
composed of best performing agents among the wanderers.
However, if the sub-swarm has been punished more times
than it has been rewarded, its population will be reduced, and
upon reaching the minimum number of agents, disbanded and all
member agents will be socially excluded. These two mechanisms
are key to the dynamic nature of the system’s sub-swarms and
provide a method of indirect information transfer between the
groups. The exploration carried out by the independent
wanderers and the indirect information transfer facilitated by
the dynamic properties of the sub-swarms’ membership
guarantees a minimum amount of exploration carried out by
the overall system.

In numerical optimization, where it is easier to control the
movement of individual agents, it may be decided that sub-
swarms may not be needed. As such, a common strategy
observed in this field is to trigger the re-initialization of
particles within the search space (Carlisle and Dozier, 2000;
Hu and Eberhart, 2002; Zhan et al., 2009). Using these
strategies, a central controller will command the agents to
reset their positions to a random location within the search
space after a predefined time period or when a large change is
detected in the environment. The strategy was adapted for use in
robotics by Yan et al. (2018) for leak source detection. In their
proposed strategy, the average fitness value of each agent was
calculated and a subset of agents that had a fitness value less than
the system mean were instructed to restart their search process
from a different location.

3.1.2.2 Preassigned Roles
Besides dynamic response assignment, agents can be assigned a
response pattern during their initialization. Doing so allows for
greater control over the system’s behavior and exploration and
exploitation balance in exchange for less system flexibility. In

TABLE 5 | List of works using assigned agent responses to influence a system’s exploration and exploitation dynamics.

References Strategy Task

Sánchez et al. (2018) Dynamic sub-swarm membership Area Exploration
Prasetyo et al. (2018), Prasetyo et al. (2019), De Masi and Ferrante (2020) Stubborn agents that do not change opinion of site Best-of-n Problem
Thenius et al. (2016), Donati et al. (2017), Hamann (2018), Varughese et al.
(2018)

Dedicated environment exploration and long term monitoring
(exploitation) agents

Environment Monitoring

Carlisle and Dozier (2000), Hu and Eberhart (2002), Zhan et al. (2009) Forced re-initialization of a subset of candidate solutions Optimization
Blackwell and Bentley (2002), Blackwell and Branke (2006), Blackwell
(2007)

Dedicated exploratory and exploitative particles Optimization

Chira et al. (2008), Pintea et al. (2009) Ant Colony System paired with agents with preset pheromone
sensitivity

Optimization (Traveling
Salesman Problem)

Couceiro et al. (2011a), Couceiro et al. (2011b), Couceiro et al. (2014),
Couceiro and Portugal (2018)

Dynamic sub-swarm membership Target Search

Wang and Meghjani (2020) Search strategies assigned based on agent’s distance to
target and target-to-searcher ratio

Target Search

Yan et al. (2018) Forced re-initialization of robots Target Search
Wang and Cavallaro (2016), Schranz and Andre (2018) Predetermined static agents for target search and mobile

agents for target tracking
Target Tracking (CMOMMT)

Ni and Yang (2011), Cao and Sun (2017), Cao and Sun (2018), Ni et al.
(2018), Ge et al. (2018), Farid et al. (2018)

Specified number of agents closest to target chosen to utilize
a target tracking strategy

Target Tracking
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numerical optimization Blackwell and Bentley (2002), Blackwell
and Branke (2006), Blackwell (2007), proposed a PSO swarm
inspired by the atomic model, consisting of agents clustered close
to each other dedicated to solution exploitation and agents
surrounding the central cluster dedicated to exploration.

To solve the Traveling Salesman Problem (TSP) Chira et al.
(2008), Pintea et al. (2009), proposed using an Ant Colony System
in conjunction with two sets of agents associated with two
different levels of pheromone sensitivity. Agents more sensitive
to pheromones are more likely to be influenced by environmental
stimuli and are therefore able to exploit information stemming
from marked search areas. Conversely, less sensitive agents are
more likely to be independent explorers, allowing the discovery of
potential search regions. The use of Ant Colony System that
requires agents to modify and exploit their operating
environment will be elaborated upon further in Section 4.2.

This use of dedicated agents has also seen applications in the
particular class of dynamic best-of-n problems. In this scenario, an
MAS is tasked with coming to a consensus on which option out of n
possible options offers the best conditions to satisfy the needs of the
system (Valentini et al., 2017). Prasetyo et al. (2018), Prasetyo et al.
(2019), DeMasi and Ferrante (2020) introduced dedicated “stubborn”
agents to their system. These agents did not change their opinion of a
given site while other agents were allowed to change their opinion
based on interactions with other agents using the voter model. These
stubborn agents guaranteed a minimum amount of exploration
carried out by the MAS and allowed the system to respond more
quickly when there were sudden large changes in site quality.

Similar dedicated agents have also been used in various MRS.
In the subCULTron project, a heterogeneous swarm of robots was
developed and built for the monitoring of an underwater
environment (Thenius et al., 2016; Donati et al., 2017;
Hamann, 2018; Varughese et al., 2018). This system relied on
a more mobile set of agents, the “aFish”, for exploration of areas
within the environment, and a less mobile set of agents with
higher sensor capabilities, the “aMussel”, to exploit the local
environment and collect data over long periods of time.

Similar heterogeneous MRS have been used for tracking of
mobile targets in hybrid camera systems consisting of mobile and
static cameras (Wang and Cavallaro, 2016; Schranz and Andre,
2018). However, in contrast to the subCULTron MRS, static
cameras serve as the dedicated exploratory agents, identifying
targets within the coverage area. The mobile cameras are then
assigned to pursue the detected targets by a central controller.

3.2 Small Response Changes
In contrast to the large changes in state that result in drastic changes
in an agent’s behavior and response, an MAS′ agents may choose
effect smaller changes in its response patterns. While these minor
adjustments in an agent’s behavior may not result in such extreme
changes in a system’s overall EED, they allow for more precise
adjustments of the level of exploration and exploitation carried out
by an MAS. A list of such strategies can be seen in Table 6.

3.2.1 Attraction-Repulsion Dynamics
Effecting changes to an agent’s attraction and repulsion strength
with respect to its neighbors or specified points in the

environment is one of the more common small response
changes used. Increasing an agent’s repulsion strength has the
effect of augmenting the amount of exploration carried out by
that agent. Conversely, increasing an agent’s level of attraction
favors more exploitative actions. Done across an entire MAS, this
allows for regulation of a system’s EED. When applied within an
MRS context, the inter-agent repulsion also generates a collision
avoidance behavior as a byproduct of this mechanism. Most
repulsion vectors are calculated as follows:

Vi � a

‖xi,t‖d
xi,t

‖xi,t‖, (2)

where a is the set repulsion parameter, d is a constant, and xi,j is
the vector from an agent i to a point of repulsion j. This point of
repulsion is usually a neighboring agent and using an equation
similar that seen in Eq. 2 results in higher repulsion strengths
being generated when two agents are close together. Hence, when
using such repulsion equations, agents are strongly repelled from
each other when they are immediately next to each other (see
Figure 3), discouraging excessive exploitation of the
environment.

In a swarming MRS developed to find the source of a dynamic
odor plume, Jatmiko et al. (2007), inspired by the Charged PSO
algorithm developed by Blackwell and Bentley (2002), increased
the strength of an inter-agent repulsion parameter when robots
came within a predefined distance of each other to avoid high
levels of clustering within too small an area. It should be noted
that in the experiments done by Jatmiko et al. (2007), the size of
the environment and the number of robots in operation, and
hence the global average swarm density, are known a priori. This
allowed for the authors to tailor the repulsion parameters and
optimize the robot’s search behavior accordingly (Hayes et al.,
2002). A similar repulsion scheme was adapted by Coquet et al.
(2019) for use in their dynamic target tracking swarm. Similarly,
to prevent excessive agent clustering while carrying out a target
tracking task Kwa et al. (2020a), Kwa et al. (2020b), Kwa et al.
(2021a), Kwa et al. (2021b) employed an adaptive repulsion
algorithm that gradually increased the strength of inter-agent
repulsion while agents were exploring the area. This repulsion
strength was also gradually decreased while agents were
attempting to move towards a target. In these works, a
repulsion equation similar to that seen in Eq. 2 was used.

In addition to inter-agent repulsion to prevent excessive
aggregation when tracking multiple mobile targets Parker and
Emmons (1997), also varied an agent’s attraction strength to a
target based on the distance between an agent and the target, with
targets further away triggering a weaker attraction response.
Furthermore, the authors also implemented agent-target
repulsion when an agent moved too close to a target to
prevent excessive exploitation. Developing this strategy further
Parker (2002), Kolling and Carpin (2006), Kolling and Carpin
(2007) reduced the weight of the point of attraction generated by
targets already being tracked, preventing the overlap of robot
sensing areas, further reducing the over-exploitation of a target.
In these works, a linear repulsion function was used, as seen in
Figure 3, instead of the exponential function that is
normally used.
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In a target search task, Sutantyo et al. (2013) ignored inter-
agent repulsion and focused only on the use of attraction by
combining the Lévy walk together with a Firefly Optimization
algorithm to generate a velocity vector for each agent at each
time-step. An agent’s velocity is influenced by the attractiveness
value of other agents within its communications range,
encouraging exploitation, and a random point within the
environment obtained from a Lévy distribution, encouraging
exploration. Using the proposed strategy, an agent’s
attractiveness is based on a function on the amount of time

elapsed since it last encountered a target. An agent that sees a
neighbor with a high level of attractiveness will bias its
movements more towards its neighbor than towards the point
of exploration.

Besides the inter-agent repulsion behavior more commonly
utilized Zhang et al. (2019), also implemented an inter-agent
short range repulsion and long range attraction (SRLA)
component within their strategy based on inter-agent
distances, effectively preventing excessive exploration for their
k-capture game carried out by an MAS. In addition to this, they
developed a Short Range Repulsion Long Range Attraction
Medium Range Repulsion (SRLAMR) scheme where the inter-
agent force transitioned between repulsion and attraction
depending on the inter-agent distance. These two attraction
and repulsion schemes were derived from the work done by
Gazi and Passino (2004), Chen et al. (2011) and can be seen in
Figure 3. Comparing these schemes with the exponential
repulsion schemes, the authors found that using the
exponential repulsion scheme resulted in too much
exploration, preventing targets from being captured, while the
SRLA and SRLAMR schemes promoted agent clustering,
facilitating the capture of targets. However, the SRLAMR
scheme outperformed the SRLA scheme due to the former
resulting in the dynamic formation and dissolution of agent
clusters over time. These clusters were also distributed across
the search space, demonstrating a balance between exploration
and exploitation, allowing the system to capture fast-moving
targets. By combining and adjusting the strength of separate
inter-agent attraction and repulsion fields Coquet et al. (2021),
has demonstrated that a stable equilibrium position can be
attained where agents maintain a fixed relative position to
each other even though the entire swarm may be in motion.
This allowed for the overall surface of an MRS, and hence the

TABLE 6 | List of works using small response changes to influence the level of exploration and exploitation of an MAS.

References Strategy Task

Howard et al. (2002) Exponential inter-agent repulsion strength Area Coverage
Vallegra et al. (2018), Zoss et al. (2018) Exponential inter-agent repulsion & attraction gradient Area Coverage
Ganganath et al. (2016) Exponential inter-agent repulsion with “selfishness” term to drive

exploration
Area Coverage

Ebert et al. (2020) Varying agent environment sampling time Area Characterization
Okumura et al. (2018) Varying time interval at which robots regroup to trade map information Area Exploration
Schumer and Steiglitz (1968), Azad and Hasançebi (2014), Hansen and
Ostermeier (2001), Hansen (2006)

Adaptive step size Optimization

Blackwell and Bentley (2002) Exponential inter-agent repulsion strength Optimization
Kernbach et al. (2009), Schmickl et al. (2009), Bodi et al. (2012), Hereford
(2013), Bodi et al. (2015), Kengyel et al. (2016), Wahby et al. (2019)

Varying agent wait time based on local fitness value Optimal Area
Aggregation

Pang et al. (2019), Nauta et al. (2020c) Variable Lévy parameter Resource Foraging
Sardinha et al. (2020b) Variable Lévy parameter & interruption of Lévy walks Resource Foraging
Hecker et al. (2015) Random walk that gradually becomes more directed Resource Foraging
Jatmiko et al. (2007) Exponential inter-agent repulsion strength Target Search
Sutantyo et al. (2013) Using Lévy walks and Firefly optimization algorithm to generate points of

attraction for each agent with different attraction weights
Target Search

Zhang et al. (2019) SRLA and SRLAMR agent interaction schemes Target Search
Coquet et al. (2019), Coquet et al. (2021), Kwa et al. (2020a),Kwa et al.
(2020b), Kwa et al. (2021a),Kwa et al. (2021b)

Exponential inter-agent repulsion and attraction strength Target Tracking

Parker and Emmons (1997), Parker (2002), Kolling and Carpin (2006),
Kolling and Carpin (2007)

Linear inter-agent repulsion strength & variable target attraction strength Target Tracking
(CMOMMT)

FIGURE 3 | Inter-agent interaction forces generated by various repulsion
and attraction schemes. Positive values indicate an attractive force and
negative values indicate a repulsive force.
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overall EED of the swarm, to be controlled even though the entire
system may be moving.

Inter-agent attraction and repulsion is also commonly used in
MAS tasked with area coverage and monitoring, which is a task
that requires the prioritization of exploration over exploitation.
Howard et al. (2002) demonstrated how agents of an MRS can be
distributed and deployed across a search space through the use of
an exponential repulsion scheme. In addition to inter-agent
repulsion, robots were also repelled by obstacles in the
environment, allowing robots in their MRS to distribute
themselves evenly across complex environment shapes.

This area coverage task was expanded on by Vallegra et al.
(2018), Zoss et al. (2018) who demonstrated the use of an physical
MRS system for a dynamic area coverage problem: i.e., covering
an area that changed shape over time. To achieve this, they
augmented inter-agent repulsion together with a potential field
gradient attracting agents outside the designated monitoring area
towards the area perimeter. This was done to limit unnecessary
exploration and encourage exploitation in the correct areas.

Comparable attraction-repulsion dynamics were also
demonstrated by Ganganath et al. (2016). In their area
coverage strategy inter-agent repulsion was used to prevent
coverage area overlap, therefore stopping over-exploitation of
the environment. This was supplemented with an agent-based
“selfishness” term that directs the agents towards less visited
areas, thereby promoting system exploration.

3.2.2 Random Walks
In environments where there is a lack of information, strategies
based on attraction-repulsion dynamics may not be viable due to
the lack of stimuli to drive agent activity. To operate in such
information sparse environments, random walks, such as Lévy
walks, are a popular strategy to promote area exploration.
However, the use of Lévy walks may result in inefficient
searching due to possible inter-robot collisions and
coincidental clustering of robots. As such Pang et al. (2019),
developed a random walk in which agents determine their walk
sizes based on a local swarm density estimation. This allows an
agent to carry out longer random walks—and hence carry out
exploration when in a less crowded areas and shorter
walks—while allowing the agents to carry out more
exploitation when in areas with higher agent densities. The
use of an adaptive step size is a common class of strategies in
computational optimization algorithms (Schumer and Steiglitz,
1968; Hansen and Ostermeier, 2001; Hansen, 2006; Azad and
Hasançebi, 2014). In such strategies the step size is varied based
on the path taken by the solution; the step size is decreased should
the solution stay around the same region of the search space for
several iterations, enabling better exploitation, and increased
should the solution move in the same direction for several
consecutive time-steps, facilitating exploration.

Similarly Nauta et al. (2020c), also varied the Lévy parameter,
μ, of individual agents using a parameter based on the amount of
time elapsed since an agent’s last target encounter. Using this
strategy, an agent’s Lévy parameter value continuously decreases
towards unity while an agent does not encounter any targets.
Doing so allowed for an agent to gradually prioritize exploration

if it does not encounter a target for long periods of time. In
addition to adjusting an agent’s Lévy parameter based on the
number of resource encounters within a given time-frame.
Similar to this Sardinha et al. (2020b), also explored varying a
parameter that determines an agent’s propensity of prematurely
interrupting a Lévy walk should the agent experience a decreasing
number of resource encounters. By increasing the chances of
interruption, the agent is more likely to change its search path and
explore the search area.

During their exploration phase while carrying out a foraging
task Hecker et al. (2015), used an informed random walk that is
initially undirected and localized to look for patches of resources.
As an agent gathers information about resource locations, these
walks become more directed as agents tend to move directly
towards higher yielding patches. This allows agents to exploit
high rewarding resource patches while retaining some ability to
explore the environment for better locations.

3.2.3 Time Intervals
The use of environment sampling intervals as well as
communication time intervals is also a method that can be
used to control the level of exploration and exploitation
carried out by an MAS. This is the primary method used by
the BEECLUST algorithm first proposed by Kernbach et al.
(2009), Schmickl et al. (2009), Bodi et al. (2012). This
algorithm was formulated after observing bees tending to
cluster in regions of higher temperature and in regions where
clusters are already present. When implemented in an MRS,
agents attempted to find an area illuminated by the source with
the highest light intensity where the light intensity of the sources
varied over time. Using this algorithm, agents measure their local
environment’s light intensity only when they collide with other
agents and proceed to wait in position for a period of time. This
waiting time is determined by each agent individually and
increases with the measured light intensity. This leads to a
positive feedback loop where longer wait times lead to more
aggregation in areas with higher light intensity. This
phenomenon is known as Motility-Induced phase Separation
(MIPS) (Cates and Tailleur, 2015) and eventually results in
higher levels of exploitation carried out by the system in areas
of high agent density. Algorithms making use of MIPS were later
studied by Bodi et al. (2015) for use in underwater environments
and demonstrated in physical robot platforms by Kengyel et al.
(2016).

While effective, the positive feedback loop caused by MIPS
may cause the system to over-exploit a specific area and result in
lower levels of responsiveness in the presence of a highly dynamic
light source. As such Wahby et al. (2019), modified algorithm to
account for an agent’s local swarm density when determining its
wait time. This modification allowed an agent to move off earlier
when located in an area of high swarm density, preventing over-
exploitation and improving the system’s ability to respond and
adapt to a highly dynamic environment.

In their area exploration task using agents with very low
communication ranges Okumura et al. (2018), varied the time
interval at which robots regrouped to trade map information at a
predefined position. Using this strategy, shorter time intervals
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forced agents to regroup more often, favoring exploitation.
Conversely, longer intervals allowed agents to move further
before regrouping, allowing for more exploration. The
simulation results obtained suggested that shorter time
intervals and higher levels of exploitation performed better in
smaller environments while longer time intervals and more
exploration yielded better results in larger environments.

Sampling time intervals were also studied by Ebert et al. (2020)
in their area characterization and collective decision-making task.
The authors developed an algorithm that caused agents to sample
their environment and communicate with their immediate
neighbors only after specific time intervals. In changing these
observation time intervals, it was shown that shorter intervals
result in agents taking more measurements, increasing their rate
of exploitation, and being able to accurately characterize their
local area. However, the overall system displays lower decision
accuracy when characterizing the entire area. As with the work
done by Okumura et al. (2018), this is the result of over
exploitation done by the agents due to multiple measurements
being taken of the same region of the environment, leading to a
high level of spatial correlation between the robots’ location and
the MRS consensus. In contrast, longer observation intervals lead
to less samples being taken. However, since the robots sample
over a larger distribution of tiles, a higher level accuracy obtained
by the system when attempting to characterize the whole
environment.

3.3 Area and Task Assignment
In addition to the previously mentioned methods, agents can also
be assigned to a specific area or task to manage the overall EED of
an MAS. Doing so usually requires an estimation of where points
of interest are expected to be and the location of agents at any
given point in time. Also, doing so allows for a belief map of to be
generated that maps both the estimated demand for and supply of
agents. Moving agents from areas of high supply and low demand
allows for more exploration to be carried out by an MAS and
prevents the over-exploitation of certain areas. These maps can be
generated by individual agents themselves based on local
measurements or be done on a global level and transmitted
down to the agents. A list of such strategies is summarized in
Table 7.

Using independently maintained agent supply and demand
estimation maps in their target tracking task Jung and Sukhatme
(2006), derived a utility distribution to drive robots towards areas
of the search space in which they would provide the highest
amount of utility to the entire system. Similarly Alvarenga et al.
(2020), in their patrolling task used a central controller to
partition a search area into multiple sub-regions that were

assigned to individual agents. Doing this allowed areas that
saw more target visits to be partitioned into smaller sub-
regions, thus facilitating the assignment of more agents and
higher levels of exploitation in that specific area. Belief maps
were also used by Lee and Kim (2019), Lee et al. (2020) in a
dynamic task assignment scenario in conjunction with task
transition probabilities. Using their strategy, agents would
increase their probability of performing tasks with higher
demand but low agent supply.

In situations where communications are denied in the
operating environment or when belief maps are not used,
agents can be activated probabilistically to carry out a task
based on their level of experience. Such strategies are usually
carried out through the use of probability thresholds, with less
experienced agents being more likely to be deployed to carry out
their own exploration of the environment. Wu et al. (2020)
utilized this type strategy in a resource foraging scenario
where agents with less map information had a higher
probability of being deployed in the environment to gather
resources, giving them the chance to build up their personal
maps of the operating environment. While this type of strategy
does not yield the best performance, it allows the system to
maintain a level of robustness by having a large pool of
experienced agents. This in turn enables the system to
continue with its task in the event where its most experienced
agents are lost.

4 INFORMATION DISSEMINATION
METHODS

The second broad category of approaches towards controlling the
exploration and exploitation dynamics of an MAS is based on
adapting the way information is disseminated across the system.
This system-wide information transfer can be achieved by means
of direct or indirect communication strategies. Indirect methods
are often observed in nature with agents altering the environment
to convey information to fellow agents: this process is known as
stigmergy. For example, some ant colonies use pheromones to
guide worker ants to various food sources (Sumpter, 2010; Perna
et al., 2012). Direct methods can be observed in colony of bees
when the dancer bee dances to signal the onlooking bees on the
quality of the food sources found. With engineered systems, radio
transmissions offer a direct means of communication that is the
most common among MRS for dissemination of information.
These methods are generally used in tandem with an agent
response method that controls the amount of information an
agent has access to. By doing so, an agent’s actions and responses

TABLE 7 | List of works using agent area and task assignments to influence the level of exploration and exploitation of an MAS.

References Strategy Task

Alvarenga et al. (2020) Area partitioning Patrolling
Wu et al. (2020) Agent deployment probability threshold Resource Foraging
Jung and Sukhatme (2006) Agent utility distribution to drive robot movement Task Allocation
Lee and Kim (2019), Lee et al. (2020) Belief maps & task transition probability Task Allocation
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can be influenced indirectly and can have large effects on the
system’s collective response to the environment (Bouffanais,
2016). A list of main strategies that influence an MAS EED
through changing the level of communications between agents
can be found in Table 8.

4.1 Changes in Network Topology
MAS that use direct communication methods can control the
information flow within the system by varying several possible
communication network parameters, such as number of
neighbors (for individual agents), agent’s communication
range, and various techniques like sub-swarm assignment and
forced network change. These are further elaborated in the
following sub-sections.

4.1.1 Number of Neighbors
One of the network parameters that can affect the dissemination
of information is the number of direct (or immediate) neighbors
that each agent possesses. It is worth stressing that the concept of
“neighbor” shall not be limited to classical definition according to
a metric or Euclidean distance. Instead, this concept should be
considered in its most general form, which is conveniently
captured by the network theoretic concept of node degree
(Shang and Bouffanais, 2014). In general, most of the studies
consider the number of neighbors as a system-level
parameter—i.e., all the agents i have the same number of
neighbors ki � k—although it is absolutely possible to envisage
a heterogeneous system, in which the ki values are different.
When considering this parameter k, it is crucial to distinguish
between directed and undirected networks. Specifically, with a
directed network, the information flows across the system in one
direction, i.e., if agent A is a neighbor of agent B then the
information flows from A to B, but not necessarily the other
way round. Directed networks make the relationship between

agents asymmetric in terms of information flow. On the other
hand, with undirected networks, that relationship is symmetric,
meaning that the information flows in both directions when two
agents are connected.

Through these repeated local information exchanges, an agent
is able to form local decisions based on the information gathered
by itself and its immediate neighbors—still in the network sense.
For instance, using the PSO algorithm, changing the number of
neighbors an agent communicates with is one of the key methods
for controlling the level of exploration and exploitation carried
out by the system (Janson and Middendorf, 2005; De Oca et al.,
2009; Liu et al., 2016; Blackwell and Kennedy, 2018; Kwa et al.,
2020a; Kwa et al., 2020b; Kwa et al., 2021a; Kwa et al., 2021b). By
increasing k, information about the global “best” solution can be
propagated more swiftly around the system, thereby encouraging
exploitation. Conversely, by reducing the degree k, information
propagation is slowed down. This prevents agents from over-
exploiting the same information, thereby increasing system
exploration.

To prevent agents from being trapped in local optima, Tang
et al. (2020a) developed a robotic PSO strategy using a
synthesized dynamic neighborhood. In this framework, an
agent expands its neighborhood should it be determined to be
trapped in a local optimum. By using such expanding
neighborhoods, trapped agents have a chance to find and
follow a “leader” with a better fitness value, thereby
progressing towards the global optimum. This concept was
further explored in Mateo et al. (2017), Kit et al. (2019),
Mateo et al. (2019), Kwa et al. (2020a), Kwa et al. (2020b),
Kwa et al. (2021a), Kwa et al. (2020b), where various k-nearest
neighbor systems were evaluated in multiple targets tracking and
multi-robot mapping operations. It was observed that system
performance tends to improve as k increases to an optimal value
(Mateo et al., 2017; Mateo et al., 2019; Kwa et al., 2020a; Kwa

TABLE 8 | List of works using different information dissemination strategies to influence the level of exploration and exploitation of an MAS or MRS.

References Strategy Task

Rausch et al. (2019) Adjusting communications range Collective Decision
Making

Crosscombe and Lawry (2021) Changing number of communication neighbors Distributed Consensus
Rahmani et al. (2020) Changing attention limit of agents Distributed Consensus
Strömbom (2011) Changing interaction radius and field of vision angle Distributed Consensus
Mateo et al. (2017) Changing interaction radius Distributed Consensus
Kuan (2018) Forced switching network model Distributed Consensus
Janson and Middendorf (2005), De Oca et al. (2009), Liu et al. (2016), Blackwell
and Kennedy (2018)

Changing number of communication neighbors Optimization

Tillett et al. (2005) Dynamic sub-swarm membership Optimization
Talamali et al. (2021) Adjusting communications range Optimal Size

Aggregation
Pitonakova et al. (2016) Adjusting communications range Resource Foraging
Kano et al. (2020) Adjusting communications range based on internal workload

state
Task Allocation

Tang et al. (2020a) Changing an agent’s number of neighbors in network based on
fitness value

Target Search

Mateo et al. (2019), Kwa et al. (2020a), Kwa et al. (2020b), Kwa et al. (2021a),
Kwa et al. (2021b)

Changing number of communication neighbors Target Tracking

Esterle and Lewis (2017) Varying communication link strength and number of
communication neighbors

Target Tracking
(CMOMMT)
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et al., 2020b; Kwa et al., 2021a; Kwa et al., 2021b). Beyond this
optimum, increasing k yields detrimental effects to the system
performance due to the MAS’ tendency to over-exploit
information at higher levels of connectivity. This optimal level
of connectivity was also found to be dependant on the rate at
which the environment evolves; within a fast changing dynamic
environment, a system with lower k performs better due to the
slower spread of outdated information across the system, thereby
promoting exploratory behavior.

Such observations have also been made when observing MAS
in static environments. Crosscombe and Lawry (2021) observed
an optimal k when attempting to obtain multi-agent consensus in
a noisy static environment and reduce the error between this
consensus and the ground truth. The simulations also
demonstrate a well-known result in network science where
efficient and well connected networks result in better short-
term results to the detriment of long-term performance while
more diverse and less connected networks result in poorer short-
term results and better performances in the long-term (Lazer and
Friedman, 2007; Judd et al., 2010; Lorenz et al., 2011). When
attempting to reach a consensus on the best direction of
movement Rahmani et al. (2020), demonstrated that there was
an ideal attention limit, the number of stimuli an agent can
process at any given point in time, at which the accuracy of the
system consensus was maximized. This occurs because a large
attention span results in strongly connected flocks that tend to
converge and exploit a single source of information very quickly
while a small attention span leaves the system vulnerable to small
variations in an individual’s movement. Due to the rapid
convergence on a single source of information—i.e., over-
exploitation, it is very difficult for informed individuals to
inject new sources of information to the system and promote
further exploration, resulting in low system accuracy. However,
when agents have a very low attention limit, the system becomes
susceptible to noise and variations in the movement of individual
agents, causing the system to explore many different potential
sources of information, also leading to the degradation of the
system’s performance (Mateo et al., 2017).

Kit et al. (2019) also used this method of control by changing
the number of neighbors in the network to perform collective
mapping operations. In this work, the individual robotic units get
access to sensor information based on the k-nearest-neighbor
network. This information, in the form of occupancy grid maps,
is used by the agents to form localized decisions about the next
waypoint. This allows for a fully decentralized control of the
agents to move towards unexplored spaces via Frontier
exploration (Yamauchi, 1997).

4.1.2 Communication Range
For the operation of MRS, the maximum communications range
between two robots is of significant interest as it is one of the key
factors that determines the maximum number of neighbors in an
agent’s communications network. As such, many studies carefully
focus their investigations on the limitations associated with the
communication range.

Pitonakova et al. (2016) studied the swarming system
behavioral plasticity at the collective level in dynamic

environments with a class of foraging problems. The nature of
the changes occurring in the environment is associated with the
quality of food sources in the environment—i.e., at each food
patch quality change interval, the deposited quality changes.
Various strategies have been explored in these dynamic
environments. Some strategies are based on the idea of
exploration-exploitation by tuning two parameters: the
probability of switching to an exploring agent and the
communication range. It is interesting to note that in static
environments, a “maximum” information sharing rate is
beneficial when the system makes collective decisions.
However, when the swarm operates in a dynamic
environment, information transfer needs to be carefully
controlled to achieve a balance between exploration and
exploitation. This balance is essential for the system to achieve
high levels of adaptivity to find new and possibly better quality
foraging sites, instead of constantly exploiting the same foraging
site(s).

Along the same vein Rausch et al. (2019), worked on finding
andmaintaining a balance between peer agreement (exploitation)
and exploration of new solutions. Their simulated swarm is
modeled after locusts in a two-dimensional space and their
movement is restricted to either clockwise or counter-
clockwise. The agents use information available to them (e.g.,
neighbors and its own information) and taking into account
system noise to locally decide whether to move in a clockwise or
counter-clockwise direction. This work analyzed the relation
between social feedback and noise, and collective coherence.
The method aims to minimize the number neighborhood
connections while maximizing the system’s collective
coherence and response to the sudden addition or removal of
agents (i.e., changing swarm sizes). Classically, the global
agreement is an emergent behavior resulting from the sum of
local coordination efforts. However, if the neighborhood is small,
the agents are more willing to adapt their actions to the local
environment, a result also demonstrated by Strömbom (2011),
Talamali et al. (2021) in a movement consensus task and in a
dynamic optimum area aggregation task respectively. However,
this over-willingness to adapt leaves an agent vulnerable to
random fluctuations of its neighbors’ output—i.e., the swarm
becomes undecided, with a low degree of coherence (Czirók and
Vicsek, 1999; Buhl et al., 2006). This is similar to using too little
neighbors in an agent’s communications network as explained in
the previous section. Therefore the strategy deployed controls the
swarm by changing the size of its neighborhood, and hence its
level of exploration and exploitation.

Kano et al. (2020) proposed a Non-Reciprocal-Interactive-
Based (NRIB) model based on the idea of “exploration-
exploitation.” Essentially, a non-reciprocal interaction
network is directed. Initially, the homogeneous agents are
spatially distributed in thefield. Once an agent enters an
area of tasks, its workload increases, while the area tasks
decreases at a constant rate. As the neighbors detect this
increase in workload within its network, they will approach
it and execute it cooperatively, effectively exploiting this new
source of information. When the tasks are completed, the
workload of the robots will naturally decrease and they will
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start repelling one another, exploring the area and seeking out
other tasks.

Similar to the work done by Rausch et al. (2019), the improved
NRIBmodel includes a key parameter to better direct the system’s
exploitative activities: the radius of communication range. The
intention is for the agents to look for other agents that need help
outside of their initial neighborhood. In case where there are too
many agents with a high workload, it could create confusion for
the agent to determine its next waypoint. Therefore, reducing the
radius of communication range can help the agents find the
nearest neighbor with the highest workload, allowing exploitative
actions to be better directed. An automatic tuning mechanism is
implemented to adjust the radius of communication range based
on the workload of the neighborhood.

4.1.3 Forced Network Changes
Should a fixed level of connectivity be desired, changes can be
made to the network’s structure by changing an agent’s
communications neighbors. This allows an agent to maintain
the same communication range or number of neighbors, while
allowing for more information diversity in the agent’s network.
Esterle and Lewis (2017) dealt with online multi-object k-
coverage. The strategy is inspired by an ant foraging method
that consists in both negative and positive feedback loops. When
two cameras are connected to each other, this is connection is
considered as a link and that will be reinforced as long as the
cameras continue to “see” the same object. The strategy also
allows for the weakening of this connection as all link strengths
decay over time. This decay opens the possibility for it to be used
in dynamic environments as the system can unlearn the links,
preventing the over-exploitation of outdated information
sources.

In the work by Esterle and Lewis (2017), various network
structures are used, namely the k-nearest, k-furthest, and k-
random networks. The k-nearest and k-furthest networks are
based on Euclidean distance, while the k-random network is
based on a set of randomly chosen neighbors across the entire
system, allowing the communication to gradually expand to “all”

cameras. Using topologies such as the k-furthest or k-random
networks essentially allowed the agents to explore a larger area by
permitting the gathering of information from neighboring agents
further away. This increased amount of exploration was studied
while using various response models (e.g., moving to assist in the
tracking of the closest target, moving to assist in the tracking of
the target with the lowest number of pursuing agents, etc.). Using
wider networks paired with the response model increased the
level of exploration of an agent as well as allowed the agents to
select the most appropriate source of information to exploit that
will benefit the system the most.

Kuan (2018) demonstrated a “Forced-Switching” network
model for their distributed consensus task, where an agent
switches its ks nearest neighbors to a more distant set of
neighbors with a given probability, p (see Figure 4). This
allows agents to obtain a wider, yet still local, information set.
Similar to the k-furthest and k-random network structures used
in Esterle and Lewis (2017), this network topology essentially
allows an agent to explore the environment more by allowing an
agent to sample from a larger set of information. This in turn
leads to higher levels of consensus, especially in slow evolving
environments.

Lastly, Sekunda et al. (2016) analyzed the influence of
switching agents on the topology of the network of interaction
when considering simulations of self-propelled particles. The
overall coherence of the swarm—measured through its
polarization—was found to increase with agent switching.

4.2 Stigmergy
Should anMAS operate in an environment where direct agent-to-
agent communications are denied, indirect methods, such as
stigmergy, can be used. In this framework, an agent is able to
elicit a response from other agents in the system by leaving traces
in the environment (Theraulaz and Bonabeau, 1999). This
concept was first introduced in Grassé (1959) and has been
applied in various MAS.

The most notable application of stigmergy is the Ant Colony
Optimization (ACO) algorithm, first proposed by Dorigo (1992).

FIGURE 4 | (Left) A standard communication model with an agent in communication with its 10 nearest neighbors. (Right) A forced switching communicationmodel
where ks � 5 of the nearest neighbors are substituted with a more distant set of neighbors within the black circle with a probability of p. (Kuan, 2018).
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It has been used in various optimization tasks ranging from
vehicle routing problems to electrical grid management (Mohan
and Baskaran, 2012). Using the ACO algorithm, agents deposit
markers, also known as pheromones, as they traverse the
environment. These pheromones are most commonly used
attractively, drawing agents to points of interest, with most
commonly used pathways being reinforced with higher
pheromone concentrations, hence resulting in a positive
feedback loop encouraging exploitation A list of works that
influence a system’s EED through the use of stigmergy can be
found in Table 9. To prevent over-exploitation and encourage
exploration, these pheromones are subject to evaporation,
causing the attractive strength of a given pathway to decrease
over time (Dorigo et al., 2006). In addition, pheromones can also
be subject to diffusion, allowing agents to explore adjacent
solutions (Ji et al., 2008; Krynicki et al., 2013). As previously
mentioned in Section 3.1.2, Ant Colony algorithms can also be
used in systems comprised of two different levels of pheromone
sensitivity (Chira et al., 2008; Pintea et al., 2009). This allows for a
dedicated sub-group tasked with exploration and another for
exploitation.

In addition to computational optimization tasks, these
algorithms have also been implemented in various MRS.
Santos et al. (2020) simulated the ACO algorithm’s use in a
robot swarm tasked with finding the shortest path between two
points in a dynamic environment. However, in addition to the
rate of pheromone evaporation, they also re-initialize the system
and erases the existing pheromone trail when the system is
determined to be approaching stagnation. This strategy
essentially triggers a large increase in the amount of
exploratory activity carried out by the system’s agents. During
this period, the system re-explores the solution domain before it is
able to exploit a new set of information gathered through the
exploration process and finally converges on a new solution. This
is similar to the re-initi alizing of PSO strategies seen previously in
Section 3.1.2.

Several groups have worked to bring the ACO algorithm
from the virtual to the physical world, showing the feasibility of
using such exploration and exploitation control strategies in
real-world problems. While using robots to carry out a target
search task, (Herianto et al., 2007; Herianto and Kurabayashi,
2009; Johansson and Saffiotti, 2009), spread out RFID data

carrier tags around the physical operating space to act as
pheromones within the environment. A similar strategy was
also employed by (Khaliq et al., 2014; Khaliq, 2018), who used a
physical RFID grid to generate a map exploitable by a swarm of
robots, guiding them towards a target. Using this type of
strategy, robots are equipped with an RFID writer/reader and
update the pheromone levels of the tags when they are
encountered. Doing so allows an agent to exploit the
environmental information by following a gradient descent
algorithm towards the target. Similar to their counterparts in
computational optimization, these pheromones are also subject
to evaporation, preventing the robots from exploiting outdated
information. Tang et al. (2019) and Tang et al. (2020b) later
built on this work by supplementing the strength of the
pheromone with a vector pointing the direction of areas with
higher pheromone concentrations. This allows an agent to carry
out more effective (targeted) exploitative actions, improving
search efficiency and success rates when searching for both
dynamic and static targets.

Instead of using pheromones attractively, (Schroeder et al.,
2017; Hunt et al., 2019), have also shown that they may be used in
a repulsive manner in their area mapping and exploration
scenarios. Similar to “no-entry” signals in ant foraging
patterns (Robinson et al., 2005), these negative pheromones
facilitate area coverage and exploration by preventing agents
from taking overlapping paths, thereby encouraging agents to
take paths not previously explored. However Hunt et al. (2019),
has shown that agent exploration is limited using this strategy
when there is an agent located in an area with higher swarm
densities. This is because the large amounts of repellent
pheromone in the vicinity of an agent limits its movement,
preventing it from carrying out any useful exploration.

5 CONCLUSION

The so-called exploration–exploitation dilemma is a common
challenge faced by many systems operating on the basis of
collective decision-making, including those encountered by
various multi-agent and multi-robot systems. This dilemma
stems from the fact that, in general, exploration and
exploitation tend to be mutually exclusive tasks.

TABLE 9 | List of works using stigmergy to influence the level of exploration and exploitation carried out by an MAS.

References Strategy Task

Schroeder et al. (2017), Hunt et al. (2019) Repulsive pheromones Area Exploration
Dorigo (1992) Ant Colony Optimization with pheromone

evaporation
Optimization

Ji et al. (2008), Krynicki et al. (2013) Ant Colony Optimization with pheromone diffusion Optimization
Chira et al. (2008), Pintea et al. (2009) Ant Colony System with agents of different

pheromone sensitivities
Optimization (Traveling
Salesman Problem)

Santos et al. (2020) ACO with solution re-initialization Path Finding
Herianto et al. (2007), Herianto and Kurabayashi (2009), Johansson and Saffiotti
(2009), Khaliq et al. (2014), Khaliq (2018)

Gradient decent with physical data carriers Target Search

Tang et al. (2019), Tang et al. (2020b) Gradient decent with vectorial pheromones and
physical data carriers

Target Search
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The allocation—be it automated or human driven—of agents
to these exploration and exploitation tasks is nontrivial; a large
proportion of agents carrying out exploration would indeed result
in many points of interest being identified, however, the system
would not be able to fully benefit from these points. Conversely,
while a large proportion of agents carrying out exploitation would
increase the rate at which the system profits from the information
currently available, the system would not be able to adapt to a
dynamic environment—in particular a rapidly evolving one—and
may not be able to maximize the amount it profits from the
environment.

Given the challenging nature of this problem and the diverse
range of applications for MAS and MRS systems, there is a large
body of literature dedicated to studying the balance between
exploration and exploitation in such systems. These studies and
works often originate from different disciplines (e.g., autonomous
multi-agent dynamics, field robotics, and service robotics) and
utilize various tools and methods to develop solutions and
strategies in relation with their specific problems (e.g., control
theory, simulations of self-organized behaviors, and physical
experimentation). Given the multidisciplinary nature of this
problem and the large body of work reported in the literature
over the past decade, in this review, we identify and classify the
commonalities among different solutions and frameworks, as well
as between the different definitions of exploration and
exploitation.

To this end, we have categorized the methods used to control
the level of exploration and exploitation carried out by an MAS
into two broad categories, namely “agent response methods” and
“information dissemination methods.” The latter can be further
broken down into “network topology methods”, where a system’s
communications network parameters are changed to regulate the
flow of information across the MAS, and stigmergy, where an
agent is able to indirectly elicit a response from other agents in the
system by leaving behind a signal in the environment. Similarly,
the broad category of “agent response methods” can be further
broken down into: 1) methods that cause an agent to display large
and drastic changes in the way it deals with the environment, 2)
methods that result in smaller changes in an agent’s response to
its environment, and 3) the assignment of agents to areas of
interest or tasks found in the environment.

In addition, we have also summarized the methods used in
various studies to quantify the level of exploration and
exploitation carried out by an MAS. Such quantitative
analyses rest upon the proper definition of metrics, which are
key to estimating an MAS’ exploration–exploitation balance,
thereby allowing one to see if a proposed strategy is working as
intended, and make adjustments as needed. However, as is
apparent in this review, metrics tend to be closely tied to
their specific applications/problems and there is no
generalized metric available to measure exploration and
exploitation. This important point has also been raised in
previous reviews, and a similar observation was also made in
reviews about swarm robotics (Brambilla et al., 2013) as well as
human-swarm interaction (Kolling et al., 2016). The lack of a
single/absolute metric applicable to different problems limits
our ability to truly rank different approaches and strategies.

Even if there is no guarantee that such a universal metric exists,
we strongly believe that the community working on these
problems would benefit from ways to compare and rank
current MAS strategies.

On top of the metric issue just discussed, it is worth stressing
that the fact that most methods/strategies are developed for a
specific problem is also an issue. The effectiveness of any
approach should clearly be scenario independent. A swarm’s
flexibility and adaptivity—i.e., swarm intelligence—is the key
concept underpinning this, and it has never been understood as
limited to one particular task. In our view, a true swarm should
exhibit flexibility and adaptability in vastly different scenarios.
Although, seeking swarm intelligence in its most general aspect
is a laudable objective, it is still an extremely challenging task in
practice, and multi-agent reinforcement learning (MARL) is
attempting to do just that (Kouzehgar et al., 2020; Leonardos
and Piliouras, 2021). Nonetheless, the design of a benchmark
problem would offer the possibility to quantitatively compare
the various approaches considered for this problem of
exploration–exploitation balance. In the process of designing
such a benchmark problem, one can also identify a range of
scenarios where swarm intelligence is advantageous for the task.
In other words, it is critical to determine the set of
environmental parameters that calls for the deployment of a
swarm, and for swarm intelligence to enable the effective
cooperation of the MAS. For instance, it could be debated if
swarm intelligence would really be necessary when dealing with
a static problem.

We argue that to probe and quantify swarm intelligence, an
MAS has to be subjected to challenging circumstances, which
would be equivalent to some sort of “stress test” for flexibility and
adaptivity. It is only then can one assess and comment on the level
of swarm intelligence demonstrated by a system.We propose that
such a “stress test” could take the form a benchmark problem
with a range of specific features. As previously explained, the
environment in which the MAS is operating should be dynamic
and preferably with a relatively fast rate of evolution when
compared to the dynamics of a single agent. Specifically, a
single-agent system should be unable to cope with the pace of
changes in the environment, whereas an MAS made of several of
these agents could cooperate to navigate such fast-evolving
circumstances by almost continuously adapting its
exploration–exploitation balance. The system’s exploratory
behavior can be evaluated as it attempts to find or accomplish
multiple objectives (e.g., tracking of multiple targets, mapping of
multiple areas). The system’s exploitative behavior can be
evaluated as it attempts to exploit multiple spatial
objectives—i.e., objectives with spatially distributed tasks
within the environment. Indeed, a single spatial objective can
conveniently be tackled with reduced exploration since the
exploitation is highly localized within the environment. From
the perspective of a virtual MAS, it is possible to consider ideal
sensors (without noise), localization, and inter-agent
communication. This therefore eliminates a number of
unknowns as the MAS algorithm is being evaluated on a
selected benchmark problem, allowing for a more accurate
evaluation of the algorithm’s true flexibility.
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In this review, we deliberately avoided making a distinction
between theoretical analysis, simulations, and actual robotic
experiments. However, it is important stressing that performing
large-scale experiments with a large number of robots still remain a
challenging and complex task (Francesca and Birattari, 2016). While
an ideal robotic system will act in the same way as its simulated
counterpart, various factors (e.g., robot kinematics, environmental
conditions, and noise) will affect the final behavior of an MRS. The
differences between simulated and physical systems will only grow as
the number of MRS agents increase. Currently, a large proportion of
experimental results available tend to be limited in size, scope, and
robustness. This highlights the need for more extensive
experimentation involving larger systems operating in more
complex environments (Hasselmann et al., 2021).

Obviously, this particular area of research is a fast-moving one,
given the ever increasing technological readiness level of MRS. As
detailed in two recent comprehensive reviews (Dorigo et al., 2021;
Schranz et al., 2021), one can expect to see a growth in the number
of large-scale MRS deployed to tackle a number of tasks requiring
a fine balance between exploration and exploitation, which has
been shown throughout this review to be rather complex and
challenging.
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