
Balancing Computational Science
and Computer Science Research

on a Terascale Computing Facility

Calvin J. Ribbens, Srinidhi Varadarjan,
Malar Chinnusamy, and Gautam Swaminathan

Department of Computer Science, Virginia Tech,
Blacksburg, VA 24061

{ribbens, srinidhi, mchinnus, gswamina}@vt.edu

Abstract. The design and deployment of Virginia Tech’s terascale com-
puting cluster is described. The goal of this project is to demonstrate
that world-class on-campus supercomputing is possible and affordable,
and to explore the resulting benefits for an academic community consist-
ing of both computational scientists and computer science researchers
and students. Computer science research in high performance comput-
ing systems benefits significantly from hands-on access to this system
and from close collaborations with the local computational science user
community. We describe an example of this computer science research,
in the area of dynamically resizable parallel applications.

1 Introduction

The importance of high-performance computing to computational science and
engineering is widely recognized. Recent high-profile reports have called for
greater investments in HPC and in training the next generation of computational
scientists [1, 2]. Meanwhile, the raw power of the worlds fastest supercomputers
continues to grow steadily, relying primarily on Moores Law and increasing pro-
cessor counts. However, the appetite of computational science and engineering
(CSE) researchers for high-end computing resources seems to grow faster than
the ability of high performance computing (HPC) centers to meet that need.
Every science and engineering discipline is making greater use of large-scale
computational modeling and simulation in order to study complex systems and
investigate deep scientific questions. The number of CSE practitioners is grow-
ing, and the computational demands of the simulations are growing as well, as
more accurate simulations of more complex models are attempted.

Lack of access to the very high end of HPC resources is a challenge to the de-
velopment of a broad CSE community. Elite researcher groups will always have
access to the worlds most capable machines, and rightfully so; but identifying
which groups or problems deserve that access is an inexact science. Advances
often come from unexpected places. The CSE community would greatly benefit
if HPC resources were available to a much broader audience, both in terms of

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 60–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Balancing Computational Science and Computer Science Research on a TCF 61

solving important problems today and in terms of training the next generation
of CSE practitioners. Traditionally, the most powerful HPC resources have been
located at government laboratories or federally funded supercomputer centers.
Access to federal laboratory facilities generally requires collaboration with a
laboratory scientist. Access to supercomputer centers is by grant processes; but
these centers are often oversubscribed, and tend to favor capacity computing
rather than capability computing. Meanwhile, because the most capable HPC
resources are hidden behind a fence, and because the CSE practitioner commu-
nity is limited in its access, computer science research in HPC systems has often
been disconnected from real HPC facilities and practitioners. Although there
are several notable exceptions (e.g., vectorizing compilers, computer architec-
ture, grid computing), we believe that many areas of CS systems research have
not had close day-to-day contact with the wide range of resources and practi-
tioners in high-end CSE. None of this is surprising, of course. Historically, the
most powerful HPC resources have been extremely expensive to build and oper-
ate. Hence, it makes sense that supercomputers are located where they are, and
managed the way they are: they have been too precious to locate on a college
campus or to replicate across many campuses; and they have been too precious
to let CS systems researchers spend time on them exploring new programming
models and tools, communication layers, memory systems, runtime libraries, etc.

In this paper we describe an ongoing project at Virginia Tech which seeks to
address the problems described above. Our goal has been to demonstrate that
world-class on-campus supercomputing is possible and affordable, and to explore
the resulting benefits for our academic community—a community consisting of
both computational scientists and computer science researchers and students. In
Section 2 we describe the goals, design and implementation of System X. Section
3 describes one of the CS research projects that is motivated and enabled by
System X. We conclude with some lessons learned in Section 4.

2 System X

Planning for Virginia Tech’s Terascale Computing Facility (TCF) [3] began early
in 2003. The goal was to support a rapidly growing CSE program by bringing
high-end supercomputing to campus. The key challenge was affordability. While
supercomputers have been invaluable to numerous science and engineering fields,
their high cost—tens to hundreds of millions of dollars—has limited deployment
to a few national facilities. We sought to develop novel computing architectures
that reduce cost, time to build and maintenance complexity, so that institutions
with relatively modest budgets could acquire their own very high-end resource.

When deployed in November 2003, the original System X consisted of 1100
Apple G5 nodes, each with two 2 GHz IBM PowerPC 970 microprocessors.
That machine was ranked #3 in the 22nd Top 500 list. In October 2004 the
system was upgraded, with 2.3 GHz dual Xserve G5s replacing the original
nodes. This system ranks 7th on the 24th Top 500 list; it is the worlds most
powerful academic machine. The system has 4.4 TB of main memory and 88 TB

62 C.J. Ribbens et al.

of hard disk storage. The cluster nodes are interconnected with two networks: a
primary InfiniBand network and a secondary Gigabit Ethernet fabric.

System X is enabling computational science and engineering researchers to
tackle a wide variety of fundamental research problems, including molecular
modeling, quantum chemistry, geophysics, fluid dynamics, computational biology
and plasma physics. System X also provides a versatile environment for research
in supercomputer systems design. Experimental cycles are set aside to enable
researchers to study programming models, operating systems design, memory
models, high performance networking, fault tolerance and design of distributed
data storage systems.

2.1 Originality

System X was novel in several ways. First, although large-scale clusters are
not new, achieving our price/performance design goals required an architecture
based on untested cutting-edge technologies. None of System X’s components—
the Apple G5, the IBM PowerPC 970 processor, the Infiniband interconnect,
the OS X operating system, and the Liebert hybrid liquid air cooling system—
had ever been deployed at this scale. Furthermore, new systems software had
to be written to enable the individual nodes to act in concert to form a tightly
coupled supercomputer. The second novel aspect of System X is the speed at
which it was constructed. Typical supercomputers of this class take eighteen
months in the design and construction phases. Since our goal was to improve
price/performance, we had to significantly reduce the design and build time
in order to get the best performance for our limited budget. System X was
designed, built and operational within three months. The third novel aspect is
the cooling system. Typical supercomputing facilities and large data centers use
air-conditioning technology to cool their facilities. Since the original System X
consisted of 1100 nodes in a 3000 sq. ft. area, it generated a very high heat
density making an air-conditioning based cooling technology very inefficient.
Researchers from Liebert and Virginia Tech developed and deployed a liquid/air
cooling system that uses chilled water and a refrigerant piped through overhead
heat-exchangers. In this domain, the liquid air cooling technology is significantly
cheaper and easier to deploy and maintain when compared to air-conditioned
systems. This is the first deployment of this cooling technology.

Finally, as todays computational clusters evolve into tomorrows national cy-
ber infrastructure, a key issue that needs to be addressed is the ability to mask
component failures endemic to any large-scale computational resource. While
previous generations of supercomputers engineered reliability into systems hard-
ware, todays largest HPC platforms are based on clusters of commodity compo-
nents, with no systemic solution for the reliability of the resource as a whole. For
instance, if a supercomputer design is based on thousands of nodes, each of which
fails only once a year, the system as a whole will fail multiple times per day. We
have developed the first comprehensive solution to the problem of transparent
parallel checkpointing and recovery, which enables large-scale supercomputers to
mask hardware, operating system and software failures—a decades old problem.

Balancing Computational Science and Computer Science Research on a TCF 63

Our system, Deja vu, supports transparent migration of subsets of a parallel
application within cluster and Grid infrastructures. This enables fluid control of
dynamic computational resources, where subsets of jobs transparently migrate
under the control of resource aware scheduling mechanisms and distributed ad-
ministrative control.

2.2 Successes and Challenges

System X achieved its design goals: price, performance, and design/construction
time. The system began operations exactly three months from the Apple G5
product announcement and within three weeks of actual delivery of the nodes.
The systems software stack, developed over a period of six weeks, involved re-
searchers at Virginia Tech, Ohio State University, Israel and Japan. The com-
pleted software now provides an environment similar to other world-class super-
computers at a fraction of the cost ($5.2M), enabling researchers to port their
CSE applications to System X.

The recent upgrade to the Xserve nodes has had several advantages. First, it
reduces the size of the supercomputer by a factor of three, so that the machine
now requires only about 1000 sq. ft. of area. Secondly, the new system consumes
significantly less power than its predecessor. Third, it generates less heat, thereby
reducing our cooling requirements. Fourth, the Xserve platform has automatic
error correcting memory which can recover from transient bit errors. Finally,
it has significant hardware monitoring capabilities—line voltages, fan speeds,
communications—which allows real-time analysis of the health of the system.

Building any supercomputer presents severe logistical challenges in managing
multiple aspects of the design and installation. First, funds have to be raised
to finance the project. We had to articulate the research needs of the academic
community and the benefits of on-campus supercomputing capabilities and make
a case to administrators at Virginia Tech and the National Science Foundation
to fund the project. Furthermore, with our limited track record in this area, we
had to present a groundbreaking design that had the potential to succeed.

The construction of System X required detailed logistical planning and sub-
stantial infrastructure. Construction involved installing additional power and
electrical equipment and cabling, bringing an additional 1.5MW of power into
the facility, building and installing new cooling facilities (featuring two 125 ton
water chillers), modifying the compute nodes to add communications equipment,
installing communications switches and writing software to integrate the nodes
into a supercomputer. In all, five equipment vendors, 80+ construction staff and
160+ student volunteers worked very hard to complete the project within three
months.

Over 160 student volunteers helped in testing the nodes of the supercom-
puter and installing a communications card in each node. Five systems support
staff helped in installing over 10 miles of high speed communications cables to
interconnect the nodes. This work was completed within three weeks. Finally,
we spent five weeks stabilizing and optimizing the supercomputer and writing
systems software to integrate the nodes into a tightly coupled system.

64 C.J. Ribbens et al.

3 Dynamically Resizable Parallel Applications

One of the computer science research topics we are investigating is that of dynam-
ically resizable parallel applications. This work is directly motivated and enabled
by access to an extremely large cluster such as System X. In this context, we
are developing a programming model and API, data redistribution algorithms
and a runtime library, and a scheduling framework. The motivation for this work
stems from observations about usage of the terascale system. Given the scale of
System X and the wide and unpredictable variety of jobs submitted, effective
job scheduling is a challenging problem. Conventional schedulers are static, i.e.,
once a job is allocated a set of resources, it continues to use those resources
until the end of execution. It is worth asking whether a dynamic resource man-
ager, which has the ability to modify resources allocated to jobs at runtime,
would allow more efficient resource management. In related contexts, dynamic
resource management has resulted in better job and system performance (e.g.,
[4, 5]). Dynamic resource management enables more fine-grained control over
resource usage. With dynamic resource management, resources allocated to a
job can change due to internal changes in the job’s resource requirements or
external changes in the systems overall resource availability. In our context, dy-
namic resource management would extend flexibility by enabling applications
to expand to a greater set of resources to take advantage of unused processors.
Running applications could also shrink to a smaller subset of resources in order
to accommodate higher priority jobs. The system could change the resources al-
located to a job in order to meet a QoS deadline. Such a system, which enables
resizing of applications, can benefit both the administrators and the users. By
efficiently utilizing the resources, jobs could be completed at a faster rate, thus
increasing system throughput. At the same time, by enabling applications to
utilize resources beyond their initial allocation, individual job turnaround time
could be improved. With this motivation in mind, the focus of our research is
on dynamically reconfiguring parallel applications to use a different number of
processes, i.e., on “dynamic resizing” of applications.

Additional infrastructure is required in order to enable resizing. Firstly, we
need a programming model that supports resizing. This programming model
needs to be simple enough so that existing code can be ported to the new sys-
tem without an unreasonable re-coding burden. Secondly, runtime mechanisms
to enable resizing are required. This includes support for releasing processors or
acquiring new processors, and for redistributing the application’s state to the
new set of processors. Algorithms and a library for process and data re-mapping
are described in detail in [6]. Thirdly, we require a scheduling framework that
exploits resizability to increase system throughput and reduce job turn around
time. The framework should support intelligent decisions in making processor
allocation and reallocation in order to utilize the system effectively—by growing
jobs to utilize idle processors, shrinking jobs to enable higher priority jobs to
be scheduled, changing resource allocations to meet QoS deadlines, etc. In our
approach the application and the scheduler work together to make resizing deci-
sions. The application supplies preferences for the number of processors and for

Balancing Computational Science and Computer Science Research on a TCF 65

processor topology; the scheduler records performance data for this application
and other applications running on the system. We have extended an existing
parallel scheduler [7] to interact with applications to gather performance data,
use this data to make decisions about processor allocation, and adjust processor
allocations to maximize system utilization. The new components in our schedul-
ing framework include a Job Monitor, Remap Scheduler (RS), Performance Data
Gatherer (PDG), and a Resize Library.

Or prototype implementation targets applications whose computation time
are dominated by large ScaLAPACK [8] matrix operations. The BLACS com-
munication layer of ScaLAPACK was modified to support dynamic process man-
agement (using MPI-2) and data and processor topology remapping. We assume
that the computation is iterative, with one or more large numerical linear al-
gebra computations dominating each iteration. Our API gives programmers a
simple way to indicate “resize points” in the application, typically at the end of
each iteration of an outer loop.

At resize points, the application contacts the scheduler and, if possible, pro-
vides performance data to the scheduler. Currently the metric used to measure
performance is the time taken to compute each iteration. The PDG, which stores
performance information for all applications currently running in the system,
gathers the performance data provided by the application. This data is used to
make resizing decisions. When the application contacts the scheduler, the RS
makes the decision of whether to allow the application to grow to a greater
number of processors, shrink the set of processors allocated to a job and reclaim
the processors to schedule a different application, or permit the application to
continue at its current processor allocation. A decision to shrink may be made if
the application has grown to a size that has not provided a performance benefit,
and hence the RS asks the application to shrink back to its previous size. An
application can also be asked to shrink if there are applications waiting to be
scheduled. The RS determines which running applications it needs to shrink so
that an estimate of the penalty to system throughput is minimized. The RS can
also allow the application to expand to a greater number of processors if there
are idle processors in the system. If the RS cannot provide more processors for
the application, and it determines that the application does not need to shrink,
it allows the application to continue to run at its current processor allocation.
The resize library, which is linked to the application, is used to perform data
redistribution and construction of new processor topologies when the RS asks
the application to shrink or expand. After the resize library has performed the
resizing of the application, the application can perform its computation on the
new set of processors. This process continues for the lifetime of the application.

We are exploring various heuristics for deciding when to resize an application,
and by how much. One simple idea is to use dynamic resizing to determine a
“sweet spot” for a given application. The optimal number of processors on which
to run a given application is almost never known a priori. In fact, the definition
of “optimal” depends on whether one cares more about throughput for a mix of
jobs or turn-around time for a single job. We have implemented a job resizing

66 C.J. Ribbens et al.

algorithm that gradually donates idle processors to a new job and measures
the relative improvement in performance (measured by iteration time), in an
effort to estimate the marginal benefit (or penalty) of adding (or subtracting)
processors for a given application. Given this information about several long-
running jobs in the system, the scheduler can than expand or contract jobs as
needed, either to efficiently soak up newly available processors, or to free up
under-used processors for new jobs. Simple experiments show at least a 20%
improvement in overall throughput, as well as improved turn-around time for
at least half of the individual jobs (none took longer) [9]. These results are
highly dependent on application characteristics and job mixes of course. But
the intuition behind the improvements is clear: individual jobs benefit if they
would otherwise have been running on too few processors, and the entire job set
benefits because the machine is utilized more effectively.

4 Conclusions

Although System X has only been in full production mode since January of 2005,
we are already seeing evidence of the benefits for computer science and computa-
tional science research and graduate education. An interdisciplinary community
of researchers is emerging, including both core CS investigators and applications
specialists from a wide range of disciplines, including computational biology,
chemistry, mechanics, materials science, applied mathematics and others. The
four most important benefits are listed below, none of which would likely occur
without the on-campus availability of System X:

1. Closing the loop. Bringing CSE practitioners and CS systems researchers
together around a single high-profile resource leads to useful synergies among
the two groups. CSE researchers communicate their needs to computer sci-
entists and benefit from new systems and algorithms; CS investigators use
real CSE problems and codes as motivation and test-cases for new research.

2. Opportunities for CS research. Research in systems and algorithms for
highly scalable computing requires flexible access to a machine of such scale.
Without the affordability and accessibility of Systems X, work such as that
described in Section 3 would not be happening.

3. Capability computing. We have maintained our emphasis on capability
computing, as opposed to pure capacity computing. We reserve time on
the system for applications that require a substantial part of the machine
for a substantial amount of time—computations that simply could not be
done without this resource. The affordability and the relatively small user
community, compared to national computing centers, makes this possible.

4. Opportunities for students. Dozens of graduate and undergraduate stu-
dents are gaining valuable experience with HPC and CSE research and oper-
ations. The system provides a unique training opportunity for these students.

Despite these encouraging signs, there are still challenges facing us as we
pursue the original goals of System X. In the first place, preserving the dual

Balancing Computational Science and Computer Science Research on a TCF 67

mission of the facility (both computer science research and CSE applications) is
not always easy, both politically and technically. Politically, we have to continue
to demonstrate that experimental computer science research is as important as
traditional CSE applications, both as quality research and for its benefits to fu-
ture HPC applications. Technically, the challenge is to develop job management
strategies and infrastructure to support both modes. For example, experimental
computer science research projects may need many processors for a short period
of time, while CSE applications may need a modest number of processors for a
very long time. We are leveraging our fault-tolerance work to enable a sophisti-
cated suspend/resume mechanism which allows very long-running applications
to be suspended briefly, to allow experimental jobs to access the machine.

A second challenge is in finding the appropriate level of support for users. We
have intentionally kept the TCF’s staffing level low, in part to keep cost-recovery
needs low. This means that relatively experienced HPC users get the support
they need, but we do not provide extensive application-level help or help in
parallelizing existing sequential codes. We do provide basic training in MPI and
in using the system. Since parallelization is usually best done by someone who
knows the code already, we are working to equip Virginia Tech CSE research
groups to parallelize their own codes, if they so desire. This is not always an
easy argument to make, however. For example, some science and engineering
disciplines are slow to give credit to graduate students for writing parallel codes.

References

1. Report of the High End Computing Revitalization Task Force (HECRTF),
http://www.itrd.gov/hecrtf-outreach/

2. Science and Engineering Infrastructure for the 21st Century, National Science
Board, http://www.nsf.gov/nsb/documents/2003/start.htm

3. Terascale Computing Facility, Virginia Tech, http://www.tcf.vt.edu/
4. Moreira, J.E., Naik, V.K.: Dynamic Resource Management on Distributed Systems

Using Reconfigurable Applications. IBM Research Report RC 20890, IBM Journal
of Research and Development 41 (1997) 303–330

5. McCann, C., Vaswami, R., and Zahorjan, J.: A Dynamic Processor Allocation Policy
for Multiprogrammed Shared-Memory Multiprocessors. ACM Trans. Comput. Syst.
11 (1993) 146–178

6. Chinnusamy, M.: Data and Processor Re-mapping Strategies for Dynamically Re-
sizable Parallel Applications. MS Thesis, Virginia Tech, Dept. of Comp. Sci., 2004.

7. Tadepalli, S., Ribbens, C. J., Varadarajan, S.: GEMS: A job management system
for fault tolerant grid computing. In: Meyer, J. (ed.): Proc. HPC Symposium. Soc.
For Mod. and Simula. Internat., San Diego, CA (2004) 59–66

8. ScaLAPACK Project, http://www.netlib.org/scalapack/
9. Swaminathan, G.: A Scheduling Framework for Dynamically Resizable Parallel Ap-

plications. MS Thesis, Virginia Tech, Dept. of Comp. Sci., 2004.

	Introduction
	System X
	Originality
	Successes and Challenges

	Dynamically Resizable Parallel Applications
	Conclusions

