rview	Balancing weights	Overlap weights	Examples	Summary

Balancing Covariates via Propensity Score Weighting

Kari Lock Morgan

Department of Statistics Penn State University klm47@psu.edu

Stochastic Modeling and Computational Statistics Seminar October 17, 2014

Joint work with Fan Li (Duke) and Alan Zaslavsky (Harvard)

Over

Overview ●oooooo	Balancing weights	Overlap weights	Examples 0000000	Summary 00
Outline				

- Causal inference in observational studies a brief overview
- Introduce a general class of balancing weights
- Propose new overlap weights and show some optimality properties
- Illustrate with examples

Overview oeooooo	Balancing weights	Overlap weights	Examples 0000000	Summary 00

Causal Inference in Observational Studies

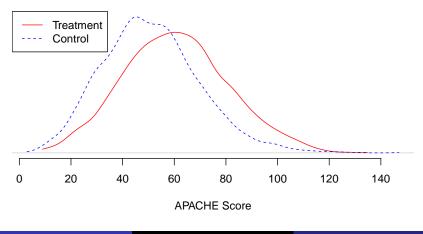
- Ideal goal: estimate the causal effect of a treatment using observational data
- Problem: Without randomization to treatment groups, severe covariate imbalance is likely
- Realistic goal: Balance observed covariates between treatment groups

E	Diabt Hoort Co			
	Balancing weights	Overlap weights	Examples 0000000	Summary 00

Example: Right Heart Catheterization

- Right heart catheterization (RHC) is an invasive diagnostic procedure to assess cardiac function
- What is the causal effect of right heart catheterization on survival?
- 2184 treatment (RHC), 3551 control (no RHC)
- Observational data (Murphy and Cluff, 1990)
- Covariate imbalance

Figure: Imbalance in APACHE, Acute Physiology and Chronic Health Evaluation Score, measured before procedure.



Overview	Balancing weights	Overlap weights	Examples	Summary		
0000000	00000		0000000	00		

Example: Right Heart Catheterization

- APACHE scores for a random subset of 20 patients:
 - Treatment: 34, 41, 42, 43, 49, 79, 80, 84
 - Control: 9, 19, 35, 40, 44, 45, 48, 50, 51, 53, 53, 60
- Get rid of units with no comparable units in other group?
 - Treatment: 34, 41, 42, 43, 49
 - Control: 35, 40, 44, 45, 48, 50, 51, 53, 53
- Options for covariate balance:
 - Matching match each unit in treatment group to similar unit(s) in control group, discard the rest

• (34, 35), (41, 40), (42, 44), (43, 45), (49, 48)

• Subclassification - compare units within similar subclasses, then take a (weighted) average across subclasses

• (34, 35), (40, 41, 42, 43, 44, 45), (48, 49, 50, 51, 53, 53)

• Weighting - weight each unit so the weighted covariate distributions are similar

Overview oooooooo	Balancing weights	Overlap weights	Examples 0000000	Summary 00
Propensity	y Scores			

- This gets much more complicated with many covariates.
- Wouldn't it be nice if we could just balance on a single number summarizing all covariates...
- The propensity score allows us to do this!
- The propensity score, *e*(*x*), is the probability a unit belongs to the treatment group, based on observed covariates:

$$e(x)=\Pr(Z_i=1|X_i=x),$$

where Z_i indicates treatment group ($Z_i = 1$ for treatment and $Z_i = 0$ for control) and X_i denotes the covariates.

 Amazing fact: balancing just the propensity score yields balance on all covariates included in the propensity score model!

Overview 000000	Balancing weights	Overlap weights	Examples 0000000	Summary 00
Covaria	te Distributions			

- Population density of the covariates X is f(x)
- Density for group Z = z is $f_z(x) = P(X = x | Z = z)$
- Then

$$f_{z}(x) = P(X = x \mid Z = z) = \frac{P(Z = z \mid X = x)P(X = x)}{P(Z = z)},$$

- So $f_1(x) \propto f(x)e(x)$ and $f_0(x) \propto f(x)(1-e(x))$
- <u>GOAL</u>: make $f_1(x) \propto f_0(x)$
- One solution: Use weights, $w_z(x)$, such that $f_1(x)w_1(x) \propto f_0(x)w_0(x)$

Overview	Balancing weights	Overlap weights	Examples	Summary
0000000	●0000		0000000	00
Balancir	ng weights			

• We propose the following class of balancing weights:

$$\left\{ egin{array}{l} w_1(x) \propto rac{h(x)}{e(x)}, \ w_0(x) \propto rac{h(x)}{1-e(x)}, \end{array}
ight.$$

where $h(\cdot)$ is a pre-specified function.

 The weighted covariate distributions in the two groups have the same target density f(x)h(x):

$$f_1(x)w_1(x) \propto f(x)e(x)\frac{h(x)}{e(x)} = f(x)h(x),$$

 $f_0(x)w_0(x) \propto f(x)(1-e(x))\frac{h(x)}{1-e(x)} = f(x)h(x).$

Overview 0000000	Balancing weig o●ooo	ghts	Overlap weights	Examples 0000000	Summary 00
_			1.1.1		

Examples of target population and balancing weights

target population	h(x)	estimand	weight (w_1, w_0)
combined	1	ATE	$\left(\frac{1}{e(x)},\frac{1}{1-e(x)}\right)$ [HT]
treated	<i>e</i> (<i>x</i>)	ATT	$\left(1, \frac{e(x)}{1-e(x)}\right)$
control	1 – <i>e</i> (<i>x</i>)	ATC	$\left(\frac{1-e(x)}{e(x)},1\right)$
truncated	$1(\alpha < \boldsymbol{e}(\boldsymbol{x}) < 1 - \alpha)$	ATTrunc	$\left(rac{1(lpha < \boldsymbol{e}(\boldsymbol{x}) < 1 - lpha)}{\boldsymbol{e}(\boldsymbol{x})}, ight.$
combined			$\frac{1(\alpha < \mathbf{e}(x) < 1 - \alpha)}{1 - \mathbf{e}(x)}$
overlap	e(x)(1-e(x))	ATO	(1-e(x),e(x))

Overview 0000000	Balancing weights	Overlap weights	Examples	Summary 00
Estimands and Estimators				

- Potential outcome framework: $Y_i(1)$, $Y_i(0)$
- Conditional average treatment effect (ATE)

$$\tau(x) \equiv \mathbb{E}(Y(1)|X=x) - \mathbb{E}(Y(0)|X=x).$$

 Estimand is average (ATE) over a target population with density ∝ f(x)h(x):

$$\tau_h \equiv \frac{\int \tau(dx) f(x) h(x) \mu(dx)}{\int f(x) h(x) \mu(dx)}$$

τ_h can be estimated by weighted averages:

$$\hat{\tau}_h^w = \frac{\sum_{i:Z_i=1} Y_i w_1(x_i)}{\sum_{i:Z_i=1} w_1(x_i)} - \frac{\sum_{i:Z_i=0} Y_i w_0(x_i)}{\sum_{i:Z_i=0} w_0(x_i)}.$$

Overview 0000000	Balancing weights ooo●o	Overlap weights	Examples	Summary 00		
Asymptotic Variance of $\hat{\tau}_{h}$						

Theorem

Given the normalizing constraint $\int f(x)h(x)\mu(dx) = 1$, the large-sample variance of the estimator $\hat{\tau}_h$ is:

$$\mathbb{V}[\hat{\tau}_h] = \int f(x)h(x)^2 \left[\frac{v_1(x)}{e(x)} + \frac{v_0(x)}{1 - e(x)} \right] \mu(dx)/N,$$

where $v_z(x)$ is the variance of Y in a neighborhood dx of x in the Z = z group.

Minima inter			<	
Overview	Balancing weights	Overlap weights	Examples	Summary
0000000	0000●		0000000	00

Minimizing Asymptotic Variance of $\hat{\tau}_h$

Theorem

Assuming $v_0(x) \equiv v_1(x) \equiv v$, the function h(x) = e(x)(1 - e(x)) gives the smallest asymptotic variance for the weighted estimator $\hat{\tau}_h$, and

$$\min\{\mathbb{V}[\hat{\tau}_h]\} = \frac{v}{N} \int f(x) e(x) (1 - e(x)) \mu(dx).$$

Overview	Balancing weights	Overlap weights	Examples	Summary
0000000		●oo	0000000	00
Overlap v	veights			

• We propose a new weight by letting h(x) = e(x)(1 - e(x)), leading to the overlap weights:

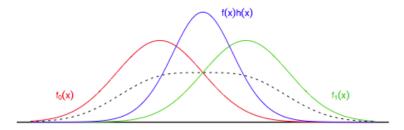
$$w_1(x) \propto 1 - e(x),$$

 $w_0(x) \propto e(x).$

- Target population f(x)e(x)(1 e(x))
 - "Marginal" units who may or may not receive the treatment (Rosenbaum, 2012).
 - Defined by overlap of covariates...

Overview 0000000	Balancing weights	Overlap weights ○●○	Examples	Summary 00
Overlap V	Veights			

Figure: Densities for the treatment group, $f_1(x)$, control group, $f_0(x)$, and overlap population, f(x)h(x).



Overview 0000000	Balancing weights	Overlap weights	Examples 0000000	Summary 00
Exact B	alance			

Theorem

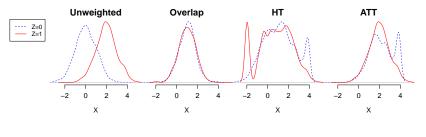
When the propensity scores are estimated from a logistic regression model with main effects, $logit\{e(x_i)\} = \beta_0 + \beta' x_i$, the overlap weights lead to exact balance in any included covariate between treatment and control groups. That is,

$$\frac{\sum_i x_{i,k} Z_i(1-\hat{e}_i)}{\sum_i Z_i(1-\hat{e}_i)} = \frac{\sum_i x_{i,k}(1-Z_i)\hat{e}_i}{\sum_i (1-Z_i)\hat{e}_i}.$$

Overview 0000000	Balancing weights	Overlap weights	Examples ●oooooo	Summary 00
Simulated	Example			

 $n_0 = n_1 = 1000$ units, with $X_i \sim N(0, 1) + 2Z_i$.

Figure: Original covariate distributions within each treatment group, and weighted covariate distributions with overlap, HT, ATT weights.



	Unweighted	Overlap	HT	ATT
\overline{x}_1	1.98	1.01	0.74	1.98
\overline{x}_0	0.03	1.01	1.19	2.22

Overview 0000000	Balancing weights	Overlap weights	Examples 000000	Summary 00
Simulate	d Example			

- A single covariate: $X_i \sim N(0, 1) + 2Z_i$.
- Outcome model with additive treatment effect: $Y_i \sim X_i + \tau Z_i + N(0, 1)$, with $\tau = 1$.
- Use the nonparametric estimator $\hat{\tau}_h^w$ with different weights:

	Unweighted	Overlap	HT	ATT
$\hat{ au}$	2.945	1.000	0.581	0.640
$SE(\hat{\tau})$	0.054	0.038	0.386	0.402

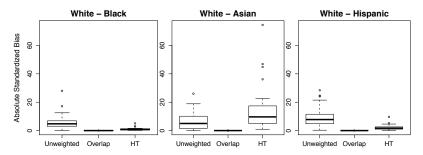
Overview 0000000	Balancing weights	Overlap weights	Examples ○○●○○○○	Summary 00

Racial Disparity in Medical Expenditure

- Goal: estimate racial disparity in medical expenditures after balancing covariates (Le Cook et al., 2010)
- Race is not manipulable so comparisons are descriptive, not causal
- Data: 2009 Medical Expenditure Panel Survey: 9830 non-Hispanic Whites, 4020 Blacks, 1446 Asians, 5280 Hispanics
- Three independent comparisons; comparing non-Hispanic Whites to each minority group
- Logistic regression to estimate propensity scores, 31 covariates (5 continuous, 26 binary)
- Ignore survey weights here, but weighting allows easy incorporation of survey weights

Overview 0000000	Balancing weights	Overlap weights	Examples 000e000	Summary 00
Racial Dis	parity in Medic	cal Expendit	ture	

Figure: Covariate balance (absolute standardized bias) with no weights, overlap weights, and HT weights.



Overview 0000000	Balancing weights	Overlap weights	Examples ○○○○●○○	Summary 00
Racial [Disparity in Me	dical Expendi	ture	

- One Asian woman has over 30% of the weight! (out of 1446 Asians)
- 78 year old Asian lady with a BMI of 55.4: e(x) = 0.9998
- Common practice:
 - Eliminate cases with propensity scores close to 0 or 1
 - Truncate propensity scores or weights
 - Can lead to ad hoc changes to target population
 - Results can be very sensitive to truncation choice
- The overlap weights avoid these extreme weights and avoid an abrupt threshold for elimination or truncation

Overview	Balancing weights	Overlap weights	Examples	Summary		
0000000		000	○○○○○●○	00		
Desiel Discovity in Medical Europe diture						

Racial Disparity in Medical Expenditure

Table: Unweighted, overlap weights, and HT weighting estimates (SE) for difference in yearly medical expenditure.

	Unweighted	Overlap	HT
White - Black	\$786 (222)	\$824 (185)	\$856 (200)
White - Asian	\$2764 (209)	\$1227 (205)	\$2167 (640)
White - Hispanic	\$2599 (174)	\$1212 (171)	\$596 (323)

Overview 0000000	Balancing weights	Overlap weights	Examples	Summary 00	
Right heart catheterization (RHC)					

RHC vs. non RHC

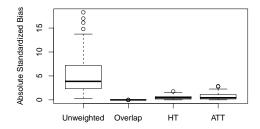


Table: Estimated treatment effect (in %) with different weights

	unweighted	overlap	ΗT	ATT
$\hat{\tau}_h$	7.36	6.54	5.93	5.81
$SE(\hat{\tau}_h)$	1.27	1.32	2.46	2.67

Statistical advantages

- Minimizes asymptotic variance of the weighted average estimator among all balancing weights.
- Perfect (exact small-sample) balance for means of included covariates in logistic propensity score model.
- Weights are bounded (unlike HT, etc.).
- Avoids artificially truncating weights or eliminating cases.

Scientific advantages

- Clinical equipoise.
- The "marginal units" are likely the group who are responsive to policy intervention.

Overview 0000000	Balancing weights	Overlap weights	Examples 0000000	Summary ⊙●
Summarv				

- Unified framework for use of weighting to balance covariates for any target population.
- The general class of balancing weights balance covariates and include many of the existing weights.
- A new weighting method, the overlap weights, have desirable properties

Arxiv: http://arxiv.org/abs/1404.1785