
MATHEMATICS OF COMPUTATION
Volume 65, Number 216
October 1996, Pages 1387–1401

BALANCING DOMAIN DECOMPOSITION FOR PROBLEMS

WITH LARGE JUMPS IN COEFFICIENTS

JAN MANDEL AND MARIAN BREZINA

Abstract. The Balancing Domain Decomposition algorithm uses in each it-
eration solution of local problems on the subdomains coupled with a coarse
problem that is used to propagate the error globally and to guarantee that the
possibly singular local problems are consistent. The abstract theory introduced
recently by the first-named author is used to develop condition number bounds
for conforming linear elements in two and three dimensions. The bounds are
independent of arbitrary coefficient jumps between subdomains and of the
number of subdomains, and grow only as the squared logarithm of the mesh
size h. Computational experiments for two- and three-dimensional problems
confirm the theory.

1. Introduction

Domain decomposition methods for solving elliptic boundary value problems
have received much attention in the last few years. The main reason for the pop-
ularity of these methods is undoubtedly the need to take advantage of parallel
computers, but many domain decomposition methods are efficient solvers in a clas-
sical uniprocessor environment as well. This paper is concerned with a domain
decomposition preconditioner for linear, conforming finite elements for the elliptic
equation −∇· (σ∇u) = f with the coefficients σ changing between the subdomains
by orders of magnitude.

The main component of the domain decomposition algorithms of the type studied
here is an approximate solver based on the solution of local independent subprob-
lems on subdomains and a global coarse problem with one or a few unknowns for
each subdomain to effect a global exchange of information between the subdomain
solution. The composed approximate solver is then used as a preconditioner in the
conjugate gradients method. It is well known that the absence of a coarse problem
results in deterioration of convergence of the iterations with increasing number of
subdomains [11, 14].

The Balancing Domain Decomposition (BDD) was introduced by Mandel [20] by
adding a coarse problem to an earlier method of De Roeck and Le Tallec [11], known
as the Neumann-Neumann method, based in turn on earlier work for the case of two
subdomains [2] and on a closely related method of Glowinski and Wheeler for mixed
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1388 JAN MANDEL AND MARIAN BREZINA

problems [17]. The development of BDD was motivated by very good performance
of the Neumann-Neumann preconditioner for real-world problems with strongly dis-
continuous coefficients for a small number of subdomains [11]. Algorithms similar
to BDD but different in important aspects and convergence results also independent
of coefficient jumps between subdomains were recently obtained by Dryja and Wid-
lund [16], and by Sarkis [23]. For application of the BDD method to mixed finite
elements and computational results on a parallel computer, see Cowsar, Mandel,
and Wheeler [9]. For extensions of BDD to plate bending and performance results
on a shared-memory parallel machine, see Le Tallec, Mandel, and Vidrascu [19].

In this paper, we extend the abstract theory from [20] by an elementary argument
showing that the convergence of the BDD method is bounded independently on
coefficient jumps of arbitrary size between subdomains. We obtain new bounds on
convergence from the abstract theory by unifying the fundamental inequalities of the
Domain Decomposition theory by Dryja and Widlund [12, 13, 26, 27] and Bramble,
Pasciak, and Schatz [3, 5], and complementing them with some new results in the
2D case. In the 3D, we only need to use the inequalities from [5]. We show that the
condition number after preconditioning is bounded by C(1 + log2(H/h)), where H
is the characteristic subdomain size and h is the characteristic element size, both
in 2D and 3D. In the 3D case, such a bound was already given in [20] based on a
different estimate from [11]. The theory is confirmed by computational experiments.
Further numerical results, available in the technical report [21], demonstrate that
the method behaves very well even in the case of general discontinuities of the
coefficients and irregular subdomain shapes in 2D and in many cases in 3D as well.

The paper is organized as follows: §2 introduces the BDD algorithm. Abstract
bounds on the condition number are given in §3, relying only on algebraic argu-
ments. The assumptions of these bounds are verified for finite element discretiza-
tions in §4. Finally, §5 contains numerical results.

2. Formulation of the problem and algorithms

We will recall the notation and formulation of the algorithm, following [20].
Consider a system of linear algebraic equations

Ax = f,(1)

with the m × m, symmetric positive definite matrix A arising from a finite ele-
ment discretization of a linear, elliptic, self-adjoint boundary value problem on a
domain Ω. We assume the domain Ω to be split into nonoverlapping subdomains
Ω1, . . . ,Ωk, each of which is the union of some of the elements. Let Ai be the
local stiffness matrix corresponding to subdomain Ωi, xi be the vector of degrees
of freedom corresponding to all elements in Ωi, and let Ni denote the matrix with
entries 0 or 1 mapping the degrees of freedom xi into global degrees of freedom, i.e.,
xi = NT

i x. Then the stiffness matrix A is obtained by the standard subassembly
process,

A =
k∑
i=1

NiAiN
T
i .

Each xi is split into degrees of freedom x̄i that correspond to ∂Ωi, called interface
degrees of freedom, and the remaining interior degrees of freedom ẋi. The degrees of
freedom on ∂Ω∩∂Ωi are assigned to the interiors. The subdomain stiffness matrices
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BALANCING DOMAIN DECOMPOSITION 1389

and the 0-1 matrices Ni are then split accordingly:

xi =

(
x̄i
ẋi

)
, Ai =

(
Āi Bi
BTi Ȧi

)
, Ni = (N̄i, Ṅi).

Assume the subdomain matrices Ai to be symmetric and positive semidefinite and
the submatrices Ȧi nonsingular. Without loss of generality, let the interface degrees
of freedom be numbered first and the interior degrees of freedom second in the global
numbering. Let

Γ =
k⋃
i=1

∂Ωi,

Vi be the space of the interface degrees of freedom for the subdomain Ωi and
V denote the space of all degrees of freedom on Γ, in a global numbering. After
elimination of the interior degrees of freedom, the problem (1) reduces to a problem
posed on the interface space V ,

Su = g,(2)

where S is the Schur complement

S =
k∑
i=1

N̄iSiN̄
T
i , Si = Āi −BiȦ−1

i BTi .(3)

The local Schur complements Si are symmetric positive semidefinite and S is pos-
itive definite. Interpreting matrices as mappings, we have

S : V → V, Si : Vi → Vi, N̄i : Vi → V.(4)

Throughout this paper, we denote 〈u, v〉 = uT v and, for symmetric positive semi-
definite B, 〈u, v〉B = 〈Bu, v〉 and ‖u‖B = (〈u, u〉B)1/2. The notation u ⊥ v means
〈u, v〉 = 0.

Much of the benefit of domain decomposition is obtained already by solving the
reduced problem (2) by conjugate gradients with simple preconditioners such as
an approximation to the diagonal of S, cf. [6, 7, 18]. Evaluation of the action of
Si can be implemented by solving a Dirichlet problem on Ωi. The BDD method
is based on the Neumann-Neumann preconditioner [11, 10], which requires the
solution of a Neumann problem on every subdomain Ωi (named so in contrast to
the Neumann-Dirichlet preconditioner, which requires solving Neumann problems
on some subdomains and uses the original Dirichlet problem on others).

An important design choice for the Neumann-Neumann preconditioner is the
selection of weight matrices Di that form a decomposition of unity on the interface
space V ,

k∑
i=1

N̄iDiN̄
T
i = I.(5)

A straightforward choice for Di is a diagonal matrix with the diagonal elements
being the reciprocal of the number of subdomains the degree of freedom is associated
with. A better choice, which also guarantees a convergence bound independent of
coefficient jumps between subdomains, is given in Theorem 3.3 below. For other
possibilities, see [11] and §5 below.

The following algorithm defines a linear operator M−1
N-N for use as a precondi-

tioner.
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1390 JAN MANDEL AND MARIAN BREZINA

Algorithm 2.1 (Neumann-Neumann preconditioner, [11]). Given r ∈ V , compute
z = M−1

N-Nr as follows. Distribute r to subdomains,

ri = DT
i N̄

T
i r,

solve the local problems

Siui = ri(6)

on the subdomains, and average the results by

z =
k∑
i=1

N̄iDiui.

Since the matrices Si are typically singular, De Roeck and Le Tallec [11] used
a pseudoinverse obtained by replacing zero pivots in the Gaussian decomposition
by positive values.

The BDD method adds a coarse problem as follows. Let ni = dimVi, 0 ≤ mi ≤
ni, and Zi be ni ×mi matrices of full column rank such that

Ker Si ⊂ Range Zi, i = 1, . . . , k,(7)

and let W ⊂ V be defined by

W = {v ∈ V | v =
k∑
i=1

N̄iDiui, ui ∈ Range Zi}.

The space W will play the role of a coarse space just as in variational multigrid
methods [22]. We say that s ∈ V is balanced if

ZTi D
T
i N̄

T
i s = 0, i = 1, . . . , k.(8)

The process of replacing r by a balanced s = r − Sw, w ∈ W , will be called
balancing. We are now ready to define the action r 7→ z = M−1u of the BDD
preconditioner.

Algorithm 2.2 (BDD preconditioner, [20]). Given r ∈ V , compute M−1r as fol-
lows. Balance the original residual by solving the auxiliary problem for unknown
vectors λi ∈ Rmi ,

ZTi D
T
i N̄

T
i

(
r − S

k∑
j=1

N̄jDjZjλj
)

= 0, i = 1, . . . , k,(9)

and set

s = r − S
k∑
j=1

N̄jDjZjλj , si = DT
i N̄

T
i s, i = 1, . . . , k.(10)

Find any solution ui for each of the local problems

Siui = si, i = 1, . . . , k,(11)

balance the residual by solving the auxiliary problem for µi ∈ Rmi ,

ZTi D
T
i N̄

T
i

(
r − S

k∑
j=1

N̄jDj(uj + Zjµj)
)

= 0, i = 1, . . . , k,(12)
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BALANCING DOMAIN DECOMPOSITION 1391

and average the result on the interfaces according to

z =
k∑
i=1

N̄iDi(ui + Ziµi).(13)

If some mi = 0, then Zi as well as the block unknowns µi and λi are void and the
ith block equation is taken out of (9) and (12). The presence of the coarse problem
now guarantees that the possibly singular local problems (11) are consistent, and
the result of the algorithm does not depend on the choice of the solutions of (11),
see [20].

In practice, the residual of the initial approximation should be balanced first as
in (12); then the first balancing step (9) in every iteration can be omitted since the
residual r received from the conjugate gradients algorithm is already balanced.

3. Algebraic theory

In this section, we give bounds on the condition number, relying on algebraic ar-
guments only. These results apply to arbitrary linear systems of the form described
in the preceding section. Their assumptions will be verified in the following section
for systems obtained from a particular variant of the Finite Element Method.

The following theorem was proved in [20, Theorem 3.2] in the case when Range Zi
= Ker Si, but the same proof applies here.

Theorem 3.1. Algorithm 2.2 returns z = M−1r, where M is symmetric positive
definite and cond (M,S) = λmax(M−1S)/λmin(M−1S) ≤ C, where

C = sup

{∑k
j=1 ‖N̄T

j

∑k
i=1 N̄iDiui‖2Sj∑k

i=1 ‖ui‖2Si
| ui ∈ Vi, ui⊥ Ker Si, Siui⊥ Range Zi

}
.

To motivate the bound given in Theorem 3.1, we need the concepts of glob and
glob projection, defined as follows.

Definition 3.2. Any vertex, edge, and, in the 3D case, face, of Γ will be called a
glob. A glob is understood to be relatively open; for example, an edge does not
contain its endpoints. We will also identify a glob with the set of the degrees of
freedom associated with it. The set of all globs will be denoted by G. For a glob
G ∈ G, define the glob projection as follows: for a vector u ∈ V , EGu ∈ V is
the vector that has the same values as u for all degrees of freedom in G, and all
other degrees of freedom of EGu are zero. The glob projection in terms of the local
degrees of freedom is EjiG = N̄T

j EGN̄i : Vi → Vj .

Note that any two distinct globs from G are disjoint, and Γ =
⋃k
i=1 ∂Ωi =⋃

G∈G G. The mappings EG, EijG correspond to zero-one matrices and satisfy∑
G∈G

EG = I, N̄T
j N̄i =

∑
G∈G

EjiG , EjiG = EjiGE
ii
G,(14)

and

G ⊂ ∂Ωi ∩ ∂Ωj ⇐⇒ EjiG 6= 0, G ⊂ ∂Ωi ⇐⇒ EiiG 6= 0.(15)

We are now ready for an abstract bound in the case when the matrices Si are scaled
by arbitrary positive numbers αi, which corresponds to coefficient discontinuities
of arbitrary size between the subdomains. The theorem is formulated and proved
in terms of properties of matrices only.
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1392 JAN MANDEL AND MARIAN BREZINA

Theorem 3.3. Let αi > 0, i = 1, . . . , k, t ≥ 1/2, and EjiG , N̄i, Si, and Zi sat-
isfy (3), (14), and (7). Define Di as the diagonal matrices

Di =
∑

G:EiiG 6=0

d(i, G)EiiG, d(i, G) =
αti∑

j:EjiG 6=0

αtj
,(16)

and assume that there exists a number R so that for all i, j = 1, . . . , k and all G,

1

αj
‖EjiGui‖2Sj ≤

1

αi
R‖ui‖2Si(17)

for all ui such that ui ⊥ Ker Si, Siui ⊥ Range Zi. Then the weight matrices Di

form a decomposition of unity (5), and the preconditioner defined by Algorithm 2.2
satisfies

cond (M,S) ≤ K2L2R,(18)

where K = maxi |{j | N̄T
j N̄i 6= 0}|, and L = maxi,j |{G | EjiG 6= 0}|.

Proof. The property (5) follows from the definition (16) and from (14),

k∑
i=1

N̄T
i DiN̄i =

k∑
i=1

∑
G:EiiG 6=0

d(i, G)EG =
∑
G∈G

EG = I .

Let j be fixed. Since there are at mostK nonzero terms in the sum
∑k
i=1 N̄

T
j N̄iDiui,

it follows by the triangle inequality and the Cauchy inequality that

‖
k∑
i=1

N̄T
j N̄iDiui‖2Sj ≤

( k∑
i=1

‖N̄T
j N̄iDiui‖Sj

)2

≤ K
k∑
i=1

‖N̄T
j N̄iDiui‖2Sj ,

and
k∑
j=1

‖
k∑
i=1

N̄T
j N̄iDiui‖2Sj ≤ K

2
k∑
i=1

max
j
‖N̄T

j N̄iDiui‖2Sj .(19)

If EjiG 6= 0, the coefficient d(i, G) from (16) satisfies d(i, G) ≤ αti/(α
t
i + αtj), and it

follows from (14) and from (17) that

‖N̄T
j N̄iDiui‖Sj ≤

∑
G:EjiG 6=0

αti
αti + αtj

‖EjiGui‖Sj ≤
∑

G:EjiG 6=0

α
t−1/2
i α

1/2
j

αti + αtj
R1/2‖ui‖Si

≤ LR1/2 sup
ρ>0

ρ1/2

1 + ρt
‖ui‖Si ≤ LR1/2‖ui‖Si .

Now by (19),
k∑
j=1

‖
k∑
i=1

N̄T
j N̄iDiui‖2Sj ≤ K

2L2R‖ui‖2Si ,

which concludes the proof, owing to Theorem 3.1.

Note that the constant K is the maximal number of adjacent subdomains Ωj
to any subdomain Ωi plus one, and L is the maximal number of globs in any
∂Ωi ∩ ∂Ωj. If t > 1/2, the estimate (18) can be slightly improved; in particular,
if t = 1, analogously to the method of De Roeck and Le Tallec [11], one has
cond (M,S) ≤ K2L2R/2.
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The related method of Dryja and Widlund [16] uses the coarse space W with
t = 1/2 in (16), and the matrices Si in (11) replaced by Si + ciMi, Mi positive
definite, to avoid solving singular problems. Sarkis [23] obtained an estimate for a
similar method for nonconforming elements with any t ≥ 1/2.

4. Theory for a finite element discretization

Let Ω be a bounded domain in Rd (d = 2 or d = 3) with a piecewise smooth
boundary ∂Ω, and ∂Ω = Γ1 ∪Γ2 with Γ1,Γ2 disjoint, |Γ1| > 0. Consider the model
problem

Lu = f in Ω, u = g on Γ1,
∂u

∂n
= 0 on Γ2,(20)

where

Lv = −
d∑

r,s=1

∂

∂xr

(
α(x)βrs(x)

∂v(x)

∂xs

)
,(21)

with the coefficient matrix (βrs) uniformly positive definite, bounded and piecewise
smooth on Ω, and α(x) a positive constant in each subdomain Ωi, i.e.,

α(x) = αi > 0 for x ∈ Ωi.

Let Ω̂ denote a reference domain of diameter O(1) (e.g., square or cube in 2D
or 3D, respectively) and assume that the subdomains Ωi are of diameter O(H) and
shape regular, i.e.,

Ωi = Fi(Ω̂), ‖∂Fi‖ ≤ CH, ‖∂F−1
i ‖ ≤ CH−1,(22)

with ∂Fi the Jacobian and ‖ · ‖ the Euclidean Rd matrix norm.
Let Vh(Ω) be a conforming linear finite element space on a triangulation of Ω

such that each subdomain Ωi is the union of some of the elements, and the usual
shape regularity and inverse assumption hold [8]. All functions v ∈ Vh(Ω) satisfy
homogeneous boundary condition u = 0 on Γ1.

Let Vh(Ωi) be the space of the restrictions of functions in Vh(Ω) to Ωi. In all
the estimates below, C and c denote generic positive constants independent of the
shape or size of Ω and Ωi. Note that these constants may depend on the constant
in (22) or on the regularity of the triangulation, but they are independent of h and
H.

Following [4], [12] or [25], we define the scaled Sobolev norms

‖u‖21,Ωi = | u |21,Ωi +
1

H2
| u |20,Ωi , ‖u‖21/2,∂Ωi

= |u |21/2,∂Ωi
+

1

H
|u |20,∂Ωi ,

where

| u |21,Ωi=
∫

Ωi

|∇u(x)|2dx, | u |21/2,∂Ωi
=

∫
∂Ωi

∫
∂Ωi

| u(t)− u(s) |2
| t− s |d dtds.

The advantage of this definition is that it allows us to restrict all of our consid-
erations to the reference domain Ω̂ and use the mappings Fi to obtain the results
for each Ωi from the obvious norm equivalence

c ‖u‖21,Ωi ≤ ‖u ◦ Fi‖
2
1,Ω̂
Hd−2 ≤ C‖u‖21,Ωi ,

c ‖u‖21/2,∂Ωi
≤ ‖u ◦ Fi‖21/2,∂Ω̂

Hd−2 ≤ C‖u‖21/2,∂Ωi
.

(23)
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Assume that for each Ωi, Γ1∩∂Ωi is either empty or a part of ∂Ωi of size bounded
below by a fixed proportion of the size of ∂Ωi so that the Poincaré inequality holds
uniformly for all Ωi and with the constant C independent of h and H,

|u|20,Ωi ≤ CH|u|
2
1,Ωi , |u|20,∂Ωi ≤ CH

1/2|u|21/2,∂Ωi
(24)

for all u ∈ Vh(Ωi) if Γ1 ∩ ∂Ωi 6= ∅ and for all u ∈ Vh(Ωi),
∫
∂Ωi

u ds = 0 if
Γ1 ∩ ∂Ωi = ∅.

To apply Theorem 3.1, we first need to replace the Si norm by the scaled H1/2

norm. This is a standard result [3, 13, 26], which we state here for reference in a
form suitable for our purposes. The scaling by αi is obvious.

Lemma 4.1. There exist constants c > 0, C independent of H or h so that

c|u|21/2,∂Ωi
≤ 1

αi
‖u‖2Si ≤ C|u|

2
1/2,∂Ωi

, ∀u ∈ Vh(∂Ωi).

To derive the fundamental inequality (17) assumed in Theorem 3.3, we identify
(by abuse of notation) V with Vh(Γ) and Vi with Vh(∂Ωi). Then the glob projections
are EG : Vh(Γ) → Vh(Γ), and (17) becomes a bound on the increase of the H1/2

norm when a function in Vh(∂Ωi) is changed by setting its values to zero on all
nodes of ∂Ωi \G.

We first consider the two-dimensional case, Ω⊂R2. Since ∂Ωi is one-dimensional,
we may use the properties of the space Vh(0, H) of piecewise linear functions on
a uniform mesh with step h on the interval [0, H]. The following form of Discrete
Sobolev Inequality was proved by Dryja [12].

Lemma 4.2. There exists a constant C such that

‖u‖2L∞(0,H) ≤ C
(

1 + log
H

h

)
‖u‖2H1/2(0,H), ∀u ∈ Vh(0, H).

We will also need the following bound for the H1/2 norm of the extension by
zero from an interval to the whole R, proved by Bramble, Pasciak, and Schatz [3,
Lemma 3.5].

Lemma 4.3. There exists a constant C such that for all u ∈ Vh(0, H) satisfying
u(0) = u(H) = 0, u = 0 outside (0, H),

|u|21/2,R ≤ C
(

1 + log
H

h

)
‖u‖2L∞(0,H) + |u|21/2,(0,H).

An estimate of the H1/2 norm of a “spike” function, obtained by sampling the
value of a given function at one point, follows easily.

Lemma 4.4. There exists a constant C such that for all u ∈ Vh(0, H), 0 ≤ h ≤ 1,
and v0 ∈ Vh(R) defined by v0(0) = u(0), v0(x) = 0 for |x| ≥ h,

|v0|21/2,R ≤ C
(

1 + log
H

h

)
‖u‖21/2,(0,H).

Proof. Let L = ‖u‖L∞(0,H) . It follows from Lemma 4.3 that

|v0|21/2,R ≤ C
(

1 + log
2h

h

)
‖v0‖2L∞(−h,h) + |v0|21/2,(−h,h).(25)
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Using linearity of v0, we obtain

|v0|21/2,(−h,h) =

∫ h

−h

∫ h

−h

|v0(s)− v0(t)|2
|s− t|2 dsdt ≤ 4 L2,(26)

because ‖v0‖2L∞(−h,h) = |v0(0)|2 ≤ L2. Thus, |v0|21/2,(−h,h) ≤ CL2. But L2 ≤
C(1 + log H

h )‖u‖21/2,(0,H) by Lemma 4.2, which concludes the proof.

By subtracting such spikes at the endpoints, we can extend Lemma 4.3 to the
case when the values of u at the endpoints are nonzero.

Lemma 4.5. There exists a constant C so that for u ∈ Vh(0, H) and w ∈ Vh(R)
such that w = u on [h,H − h], andw(x) = 0 for x ≤ 0, x ≥ H,

|w|21/2,R ≤ C
(

1 + log
H

h

)2

‖u‖21/2,(0,H).

Proof. Define u(x) to be zero for x ∈ (−∞,−h)∪ (H + h,∞), and linear in [−h, 0]
and [H,H + h]. Further, define v0 and vH by

v0(x) =

{
u(0), x = 0,
0, |x| ≥ h,

v0 linear in [−h, 0] and in [0, h],

vH(x) =

{
u(H), x = H,
0, |x−H| ≥ h,

vH linear in [H − h,H] and in [H,H + h]. Writing w as w = u − v0 − vH , and
applying Lemma 4.3 and Lemma 4.4, we obtain

|w|21/2,R ≤ C
(

1 + log
H

h

)
||w||2L∞(0,H) + |w|21/2,(0,H)

= C

(
1 + log

H

h

)
||u||2L∞(0,H) + |w|21/2,(0,H)

≤ C
(

1 + log
H

h

)
||u||2L∞(0,H) + 3

(
|u|21/2,(0,H) + |v0|21/2,R + |vH |21/2,R

)
≤ C

((
1 + log

H

h

)
||u||2L∞(0,H) + |u|21/2,(0,H) + (1 + log

H

h
)||u||21/2,(0,H)

)
.

Application of Lemma 4.2 to ||u||L∞,(0,H) concludes the proof.

We are now ready for the estimate of the H1/2 norm of the glob projections EG,
which shows that an arbitrary function in Vh(∂Ωi) can be decomposed into its glob
parts with only a small increase in the H1/2 norm.

Theorem 4.6. Let Ω ⊂ Rd, d = 2 or d = 3. Then there exists a constant C not
dependent of h or H, so that for any glob G ∈ G and for all u ∈ Vh(∂Ωi),

‖EGu‖21/2,∂Ωi
≤ C

(
1 + log

H

h

)2

‖u‖21/2,G.

Proof. In the 2D case, the proposition follows by using a mapping of ∂Ωi onto an
interval so that G maps to (0, H), from Lemma 4.5 for G being an edge, and from
Lemma 4.4 for G being a vertex.
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In the 3D case, the proposition was proved for the case of G being a face of ∂Ωi
as Lemma 4.3 in [5]. In the case of G being an edge or a vertex of ∂Ωi, the proof
follows from Lemma 4.2. and the proof of Lemma 4.1 of [5].

The bound on the condition number of the BDD algorithm follows.

Theorem 4.7. Let Ω ⊂ Rd, d = 2 or d = 3, and the weight matrices Di be diagonal
with the entries given by (16). Then there exists a constant C independent of H, h
and αi, so that the condition number of the BDD method satisfies

cond (M,S) ≤ C
(

1 + log2 H

h

)
.

Proof. We only need to verify the assumption (17) of Theorem 3.3. Lemma 4.1
allows to replace the Si norms by the H1/2(∂Ωi) seminorms, which may in turn be
replaced by the H1/2(∂Ωi) norms, owing to the Poincaré inequality (24). It remains
to use Theorem 4.6.

5. Computational results

The purpose of our computational tests was to demonstrate the fast convergence
of the BDD method on complicated problems with varying coefficients.

In all of the following examples, the space Vh of the piecewise linear functions
defined on a uniform rectangular mesh of stepsize h in 2D or 3D was used for the
solution of the elliptic problem of the form (20),

−div(σ∇u) = 1 in Ω, u = 1 on Γ1,
∂u

∂n
= 0 on Γ2,

with ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅. The coefficient σ is an elementwise constant
function, and k is the number of subdomains.

We have compared three algorithms: conjugate gradients applied to the reduced
system (2) without preconditioning (denoted as CG in the tables), conjugate gra-
dients with Neumann-Neumann preconditioner and the local singular problems (6)
solved using the Moore-Penrose pseudoinverse (Algorithm 2.1, denoted as N-N),
and conjugate gradients with the BDD preconditioner using Range Zi = Ker Si
(Algorithm 2.2, denoted as BDD).

The stopping criterion for the iterations was based on

λmax(M−1S)

λmin(M−1S)

〈M−1r, r〉
〈M−1b, b〉 ≤ ε

2,(27)

with r the current residual and b the right-hand side, which guarantees the rel-
ative precision of ε in the energy norm, cf. Ashby, Manteuffel, and Saylor [1].
The condition number λmax(M−1S)/λmin(M−1S) reported in the tables and also
used in (27) was estimated as the ratio of the extreme Ritz values for the Krylov
space, computed from the eigenvalues of a tridiagonal matrix constructed from the
Lanczos recursion in conjugate gradients. Number of iterations with ∗ means that
the criterion (27) was not satisfied when the maximum number of iterations was
reached.

The 2D examples were computed by a prototype implementation of the BDD
method programmed using the CLAM package [24]. In the two-dimensional test
BDD implementation, the weights Di were based on the diagonal entries of the
Schur complements, as suggested in [11], because we had the diagonal entries of the
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Table 1. 2D results for Poisson equation on unit square (Fig. 1,
σ1 = σ2 = 1)

CG N-N BDD
h k iterations cond. iterations cond. iterations cond.

1/20 4 31 63.426 10 45.592 6 1.231
1/40 16 65 338.008 38 3,190.710 13 2.004
1/50 25 82 555.515 58 8,691.200 13 2.046

Table 2. 2D checkerboard pattern (Fig. 1, σ1 = 103, σ2 = 10−3)

CG N-N BDD
h k σ1 σ2 iter cond. iter cond. iter cond.

1/30 9 103 10−3 61 866.051 10 16.145 4 1.555
1/40 16 103 10−3 130* 6.89 107 49 5.61 106 11 1.941
1/50 25 103 10−3 116 1,571.66 25 63.939 7 1.629

Table 3. 2 x 2 checkerboard pattern for various σ1, σ2

CG N-N BDD
h k σ1 σ2 iter cond. iter cond. iter cond.

1/40 4 101 10−1 30* 220 10 268 7 1.22
1/40 4 102 10−2 30* 436 9 2,574 5 1.04
1/20 4 104 10−4 30* 506 7 10,280 4 1.00045

Schur complement available: Denote sill the diagonal entry of Schur complement Si
corresponding to global degree of freedom l. For subdomain Ωi, the weight matrix
Di was constructed as diagonal with diagonal elements diψi(l), where ψi(l) is the

local number in ∂Ωi associated with the global degree of freedom l,

diψi(l) =
sill∑

j:l∈∂Ωj

sjll
,

which is essentially (16) computed node by node with the diagonal entries of Si used
instead of the scalars αi. This choice of the weights was found to give good results
[11]. The domain Ω was chosen to be the unit square and Γ1 was the left-hand side
of Ω.

The tests show that unlike for the CG and N-N method, the condition number
and the number of iterations of the BDD method does not deteriorate for increasing
number of subdomains (Table 1, Fig. 1), the coefficient σ varying by orders of
magnitude between the subdomains (Table 2, Fig. 1), and increasing jumps in the
coefficients (Table 3).
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σ1 σ2 σ1 σ2 σ1

σ2 σ1 σ2 σ1 σ2

σ1 σ2 σ1 σ2 σ1

σ2 σ1 σ2 σ1 σ2

σ1 σ2 σ1 σ2 σ1

Γ1 Γ2

Γ2

Γ2

Figure 1. 2D checkerboard pattern

Table 4. 3D Poisson’s equation, various h and number of subdomains

hx hy hz k dof iter cond.

1/15 1/15 1/20 36 5376 25 3.5375
1/20 1/25 1/30 120 9246 37 4.6354
1/30 1/30 1/30 27 29791 22 4.8000

A FORTRAN implementation was used for the 3D experiments, with the action
of Si implemented in a straightforward way following the definition of the Schur
complement (3). The implementation of the action of the inverse, that is, the
solution of Siy = x, relies on the obvious fact that y may equivalently be computed,
using notation of §2, as solution of the sparse system(

Āi Bi
BTi Ȧi

)(
y
z

)
=

(
x
0

)
,
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Table 5. 3D checkerboard pattern with alternating σ

h k σ1 σ2 dof iter cond.

1/25 125 100 100 17576 22 3.1154
1/25 125 101 10−1 17576 19 2.4893
1/25 125 102 10−2 17576 18 2.2071
1/25 125 103 10−3 17576 16 2.0211
1/25 125 104 10−4 17576 16 2.0023
1/25 125 105 10−5 17576 16 2.0002
1/25 125 106 10−6 17576 15 2.0000
1/25 125 107 10−7 17576 15 2.0000

discarding z afterwards. Since the diagonal entries of Si are not available, the
weights were defined from αi = σi by (16) with t = 1. The problem was set on unit
cube Ω, with zero Dirichlet boundary condition on the whole ∂Ω, and ε = 10−18

was used for the stopping criterion (27). Again, the results confirm the theory.
Finally, one should note that the l2 norm of residual of the global solution was

never larger than 20 times the l2 residual of the reduced solution. For further
numerical results, see [21].

FORTRAN 77 code that implements the method is available from MGNET by
anonymous ftp to casper.cs.yale.edu in the directory /mgnet/jmandel. The
code invokes user-supplied subroutines that implement the matrix-vector multipli-
cations Sixi and solution of the possibly singular systems Sizi = ri.
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