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Abstract

Social media has brought a revolution on how people are consuming news. Be-
yond the undoubtedly large number of advantages brought by social-media plat-
forms, a point of criticism has been the creation of echo chambers and filter bub-
bles, caused by social homophily and algorithmic personalization.

In this paper we address the problem of balancing the information exposure in
a social network. We assume that two opposing campaigns (or viewpoints) are
present in the network, and that network nodes have different preferences towards
these campaigns. Our goal is to find two sets of nodes to employ in the respec-
tive campaigns, so that the overall information exposure for the two campaigns
is balanced. We formally define the problem, characterize its hardness, develop
approximation algorithms, and present experimental evaluation results.

Our model is inspired by the literature on influence maximization, but there are
significant differences from the standard model. First, balance of information ex-
posure is modeled by a symmetric difference function, which is neither monotone
nor submodular, and thus, not amenable to existing approaches. Second, while
previous papers consider a setting with selfish agents and provide bounds on best-
response strategies (i.e., move of the last player), we consider a setting with a
centralized agent and provide bounds for a global objective function.

1 Introduction

Social-media platforms have revolutionized many aspects of human culture, among others, the way
people are exposed to information. A recent survey estimates that 62% of adults in the US get
their news on social media [15]. Despite providing many desirable features, such as, searching,
personalization, and recommendations, one point of criticism is that social media amplify echo
chambers and filter bubbles: users get less exposure to conflicting viewpoints and are isolated in their
own informational bubble. This phenomenon is contributed to social homophily and algorithmic
personalization, and is more acute for controversial topics [9, 12, 14].

In this paper we address the problem of reducing the filter-bubble effect by balancing information
exposure among users. We consider social-media discussions around a topic that are characterized
by two or more conflicting viewpoints. Let us refer to these viewpoints as campaigns. Our approach
follows the popular paradigm of influence propagation [18]: we want to select a small number
of seed users for each campaign so as to maximize the number of users who are exposed to both
campaigns. In contrast to existing work on competitive viral marketing, we do not consider the
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problem of finding an optimal selfish strategy for each campaign separately. Instead we consider a
centralized agent responsible for balancing information exposure for the two campaigns Consider
the following motivating examples.

Example 1: Social-media companies have been called to act as arbiters so as to prevent ideological
isolation and polarization in the society. The motivation for companies to assume this role could
be for improving their public image or due to legislation.1 Consider a controversial topic being
discussed in social-media platform X , which has led to polarization and filter bubbles. As part of
a new filter-bubble bursting service, platform X would like to disseminate two high-quality and
thought-provoking dueling op-eds, articles, one for each side, which present the arguments of the
other side in a fair manner. Assume that X is interested in following a viral-marketing approach.
Which users should X target, for each of the two articles, so that people in the network are informed
in the most balanced way?

Example 2: Government organization Y is initiating a program to help assimilate foreigners who
have newly arrived in the country. Part of the initiative focuses on bringing the communities of
foreigners and locals closer in social media. Organization Y is interested in identifying individuals
who can help spreading news of one community into the other.

From the technical standpoint, we consider the following problem setting: We assume that infor-
mation is propagated in the network according to the independent-cascade model [18]. We assume
that there are two opposing campaigns, and for each one there is a set of initial seed nodes, I1 and
I2, which are not necessarily distinct. Furthermore, we assume that the users in the network are
exposed to information about campaign i via diffusion from the set of seed nodes Ii. The diffusion
in the network occurs according to some information-propagation model.

The objective is to recruit two additional sets of seed nodes, S1 and S2, for the two campaigns, with
|S1| + |S2| ≤ k, for a given budget k, so as to maximize the expected number of balanced users,
i.e., the users who are exposed to information from both campaigns (or from none).

We show that the problem of balancing the information exposure is NP-hard. We develop different
approximation algorithms for the different settings we consider, as well as heuristic variants of the
proposed algorithm. We experimentally evaluate our methods, on several real-world datasets.

Although our approach is inspired by the large body of work on information propagation, and resem-
bles previous problem formulations for competitive viral marketing, there are significant differences.
In particular:

• This is the first paper to address the problem of balancing information exposure and breaking
filter bubbles, using the information-propagation methodology.

• The objective function that best suits our problem setting is related to the size of the symmetric
difference of users exposed to the two campaigns. This is in contrast to previous settings that
consider functions related to the size of the coverage of the campaigns.

• As a technical consequence of the previous point, our objective function is neither monotone
nor submodular making our problem more challenging. Yet we are able to analyze the problem
structure and provide algorithms with approximation guarantees.

• While most previous papers consider selfish agents, and provide bounds on best-response strate-
gies (i.e., move of the last player), we consider a centralized setting and provide bounds for a
global objective function.

Omitted proofs, figures, and tables are provided as supplementary material. Moreover, our datasets
and implementations are publicly available.2

2 Related Work

Detecting and breaking filter bubbles. Several studies have observed that users in online social
networks prefer to associate with like-minded individuals and consume agreeable content. This
phenomenon leads to filter bubbles, echo chambers [25], and to online polarization [1, 9, 12, 22].

1For instance, Germany is now fining Facebook for the spread of fake news.
2https://users.ics.aalto.fi/kiran/BalanceExposure/
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Once these filter bubbles are detected, the next step is to try to overcome them. One way to achieve
this is by making recommendations to individuals of opposing viewpoints. This idea has been
explored, in different ways, by a number of studies in the literature [13, 19]. However, previous
studies address the problem of breaking filter bubbles by the means of content recommendation. To
the best of our knowledge, this is the first paper that considers an information diffusion approach.

Information diffusion. Following a large body of work, we model diffusion using the independent-
cascade model [18]. In the basic model a single item propagates in the network. An extension is
when multiple items propagate simultaneously. All works that study optimization problems in the
case of multiple items, consider that items compete for being adopted by users. In other words, every
user adopts at most one of the existing items and participates in at most one cascade.

Myers and Leskovec [23] argue that spreading processes may either cooperate or compete. Com-
peting contagions decrease each other’s probability of diffusion, while cooperating ones help each
other in being adopted. They propose a model that quantifies how different spreading cascades in-
teract with each other. Carnes et al. [7] propose two models for competitive diffusion. Subsequently,
several other models have been proposed [4, 10, 11, 17, 21, 27, 28].

Most of the work on competitive information diffusion consider the problem of selecting the best
k seeds for one campaign, for a given objective, in the presence of competing campaigns [3, 6].
Bharathi et al. [3] show that, if all campaigns but one have fixed sets of seeds, the problem for
selecting the seeds for the last player is submodular, and thus, obtain an approximation algorithm
for the strategy of the last player. Game theoretic aspects of competitive cascades in social net-
works, including the investigation of conditions for the existence of Nash equilibrium, have also
been studied [2, 16, 26].

The work that is most related to ours, in the sense of considering a centralized authority, is the
one by Borodin et al. [5]. They study the problem where multiple campaigns wish to maximize
their influence by selecting a set of seeds with bounded cardinality. They propose a centralized
mechanism to allocate sets of seeds (possibly overlapping) to the campaigns so as to maximize the
social welfare, defined as the sum of the individual’s selfish objective functions. One can choose
any objective functions as long as it is submodular and non-decreasing. Under this assumption
they provide strategyproof (truthful) algorithms that offer guarantees on the social welfare. Their
framework applies for several competitive influence models. In our case, the number of balanced
users is not submodular, and so we do not have any approximation guarantees. Nevertheless, we can
use this framework as a heuristic baseline, which we do in the experimental section.

3 Problem Definition

Preliminaries: We start with a directed graph G = (V,E, p1, p2) representing a social network.
We assume that there are two distinct campaigns that propagate through the network. Each edge
e = (u, v) ∈ E is assigned two probabilities, p1(e) and p2(e), representing the probability that a
post from vertex u will propagate (e.g., it will be reposted) to vertex v in the respective campaigns.

Cascade model: We assume that information on the two campaigns propagates in the network
following the independent-cascade model [18]. For instance, consider the first campaign (the process
for the second campaign is analogous): we assume that there exists a set of seeds I1 from which the
process begins. Propagation proceeds in rounds. At each round, there exists a set of active vertices
A1 (initially, A1 = I1), where each vertex u ∈ A1 attempts to activate each vertex v /∈ A1, such
that (u, v) ∈ E, with probability p1(u, v). If the propagation attempt from a vertex u to a vertex v
is successful, we say that v propagates the first campaign. At the end of each round, A1 is set to be
the set of vertices that propagated the campaign during the current round.

Given a seed set S, we write r1(S) and r2(S) for the vertices that are reached from S using the
aforementioned cascade process, for the respective campaign. Note that since this process is random,
both r1(S) and r2(S) are random variables. Computing the expected number of active vertices is a
#P-hard problem [8], however, we can approximate it within an arbitrary small factor ǫ, with high
probability, via Monte-Carlo simulations. Due to this obstacle, all approximation algorithms that
evaluate an objective function over diffusion processes reduce their approximation by an additive ǫ.
Throughout this work we avoid repeating this fact for the sake of simplicity of the notation.
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Heterogeneous vs. correlated propagations: We also need to specify how the propagation on the
two campaigns interact with each other. We consider two settings: In the first setting, we assume
that the campaign messages propagate independently of each other. Given an edge e = (u, v), the
vertex v is activated on the first campaign with probability p1(e), given that vertex u is activated on
the first campaign. Similarly, v is activated on the second campaign with probability p2(e), given
that u is activated on the second campaign. We refer to this setting as heterogeneous.3 In the second
setting we assume that p1(e) = p2(e), for each edge e. We further assume that the coin flips for
the propagation of the two campaigns are totally correlated. Namely, consider an edge e = (u, v),
where u is reached by either or both campaigns. Then with probability p1(e), any campaign that has
reached u, will also reach v. We refer to this second setting as correlated.

Note that in both settings, a vertex may be active by none, either, or both campaigns. This is in
contrast to most existing work in competitive viral marketing, where it is assumed that a vertex can
be activated by at most one campaign. The intuition is that in our setting activation means merely
passing a message or posting an article, and it does not imply full commitment to the campaign. We
also note that the heterogeneous setting is more realistic than the correlated, however, we also study
the correlated model as it is mathematically simpler.

Problem definition: We are now ready to state our problem for balancing information exposure
(BALANCE). Given a directed graph, initial seed sets for both campaigns and a budget, we ask to
find additional seeds that would balance the vertices. More formally:

Problem 3.1 (BALANCE). Let G = (V,E, p1, p2) be a directed graph, and two sets I1 and I2 of
initial seeds of the two campaigns. Assume that we are given a budget k. Find two sets S1 and S2,
where |S1|+ |S2| ≤ k maximizing

Φ(S1, S2) = E[|V \ (r1(I1 ∪ S1)△ r2(I2 ∪ S2))|] .

The objective function Φ(S1, S2) is the expected number of vertices that are either reached by both
campaigns or remain oblivious to both campaigns. Problem 3.1 is defined for both settings, het-
erogeneous and correlated. When we need to make explicit the underlying setting we refer to the
respective problems by BALANCE-H and BALANCE-C. When referring to BALANCE-H, we denote
the objective by ΦH . Similarly, when referring to BALANCE-C, we write ΦC . We drop the indices,
when we are referring to both models simultaneously.

Computational complexity: As expected, the optimization problem BALANCE turns out to be
NP-hard for both settings, heterogeneous and correlated. A straightforward way to prove it is by
setting I2 = V , so the problems reduce to standard influence maximization. However, we provide
a stronger result. Note that instead of maximizing balanced vertices we can equivalently minimize
the imbalanced vertices. However, this turns to be a more difficult problem.

Proposition 1. Assume a graph G = (V,E, p1, p2) with two sets I1 and I2 and a budget k. It is
an NP-hard problem to decide whether there are sets S1 and S2 such that |S1| + |S2| ≤ k and
E[|r1(I1 ∪ S1)△ r2(I2 ∪ S2)|] = 0.

This result holds for both models, even when p1 = p2 = 1. This result implies that the minimization
version of the problem is NP-hard, and there is no algorithm with multiplicative approximation
guarantee. It also implies that BALANCE-H and BALANCE-C are also NP-hard. However, we will
see later that we can obtain approximation guarantees for these maximization problems.

4 Greedy algorithms yielding approximation guarantees

In this section we propose three greedy algorithms. The first algorithm yields an approximation
guarantee of (1 − 1/e)/2 for both models. The remaining two algorithms yield a guarantee for the
correlated model only.

Decomposing the objective: Recall that the objective function of the BALANCE problem is
Φ(S1, S2). In order to show that this function admits an approximation guarantee, we decompose it
into two components. To do that, assume that we are given initial seeds I1 and I2, and let us write

3Although independent is probably a better term than heterogeneous, we adopt the latter to avoid any con-
fusion with the independent-cascade model.
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X = r1(I1) ∪ r2(I2), Y = V \X. Here X are vertices reached by any initial seed in the two cam-
paigns and Y are the vertices that are not reached at all. Note that X and Y are random variables.
Since X and Y partition V , we can decompose the score Φ(S1, S2) as

Φ(S1, S2) = Ω(S1, S2) + Ψ(S1, S2), where

Ω(S1, S2) = E[|X \ (r1(I1 ∪ S1)△ r2(I2 ∪ S2))|] ,

Ψ(S1, S2) = E[|Y \ (r1(I1 ∪ S1)△ r2(I2 ∪ S2))|] .

We first show that Ω(S1, S2) is monotone and submodular. It is well-known that for maximizing
a function that has these two properties under a size constraint, the greedy algorithm computes an
(1− 1

e
) approximate solution [24].

Lemma 2. Ω(S1, S2) is monotone and submodular.

We are ready to discuss our algorithms.

Algorithm 0: ignore Ψ. Our first algorithm is very simple: instead of maximizing Φ, we maximize
Ω, i.e., we ignore any vertices that are made imbalanced during the process. Since Ω is submodular
and monotone we can use the greedy algorithm. If we then compare the obtained result with the
empty solution, we get the promised approximation guarantee. We refer to this algorithm as Cover.

Proposition 3. Let 〈S∗

1 , S
∗

2 〉 be the optimal solution maximizing Φ. Let 〈S1, S2〉 be the solution
obtained via greedy algorithm maximizing Ω. Then

max{Φ(S1, S2),Φ(∅, ∅)} ≥
1− 1/e

2
Φ(S∗

1 , S
∗

2 ).

Algorithm 1: force common seeds. Ignoring the Ψ term may prove costly as it is possible to
introduce a lot of new imbalanced vertices. The idea behind the second algorithm is to force Ψ = 0.
We do this by either adding the same seeds to both campaigns, or adding a seed that is covered
by an opposing campaign. This algorithm has guarantees only in the correlated setting with even
budget k but in practice we can use the algorithm also for the heterogeneous setting. We refer to this
algorithm as Common and the pseudo-code is given in Algorithm 1.

Algorithm 1: Common, greedy algorithm that only adds common seeds

1 S1 ← S2 ← ∅;
2 while |S1|+ |S2| ≤ k do
3 c← argmaxc Φ(S1 ∪ {c} , S2 ∪ {c});
4 s1 ← argmaxs∈I1 Φ(S1, S2 ∪ {s});
5 s2 ← argmaxs∈I2 Φ(S1 ∪ {s} , S2);
6 add the best option among 〈c, c〉, 〈∅, s1〉, 〈s2, ∅〉 to 〈S1, S2〉 while respecting the budget.

We first show in the following lemma that adding common seeds may halve the score, in the worst
case. Then, we use this lemma to prove the approximation guarantee

Lemma 4. Let 〈S1, S2〉 be a solution to BALANCE-C, with an even budget k. There exists a solution
〈S′

1, S
′

2〉 with S′

1 = S′

2 such that ΦC (S′

1, S
′

2) ≥ ΦC (S1, S2)/2.

It is easy to see that the greedy algorithm satisfies the conditions of the following proposition.

Proposition 5. Assume an iterative algorithm where at each iteration, we add one or two vertices
to our solution until our constraints are met. Let Si

1, Si
2 be the sets after the i-th iteration, S0

1 =
S0
2 = ∅. Let ηi = ΦC (Si

1, S
i
2) be the cost after the i-th iteration. Assume that ηi ≥ ηi−1. Assume

further that for i = 1, . . . , k/2 it holds that ηi ≥ ΦC (Si−1
1 ∪ {c} , Si−1

2 ∪ {c}). Then the algorithm
yields (1− 1/e)/2 approximation.

Algorithm 2: common seeds as baseline. Not allowing new imbalanced vertices may prove to be
too restrictive. We can relax this condition by allowing new imbalanced vertices as long as the gain is
at least as good as adding a common seed. We refer to this algorithm as Hedge and the pseudo-code
is given in Algorithm 2. The approximation guarantee for this algorithm—in the correlated setting
and with even budget—follows immediately from Proposition 5 as it also satisfies the conditions.
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Algorithm 2: Hedge, greedy algorithm, where each step is as good as adding the best common
seed

1 S1 ← S2 ← ∅;
2 while |S1|+ |S2| ≤ k do
3 c← argmaxc Φ(S1 ∪ {c} , S2 ∪ {c});
4 s1 ← argmaxs Φ(S1, S2 ∪ {s});
5 s2 ← argmaxs Φ(S1 ∪ {s} , S2);
6 add the best option among 〈c, c〉, 〈∅, s1〉, 〈s2, ∅〉, 〈s2, s1〉, to 〈S1, S2〉 while respecting the

budget.

5 Experimental evaluation

In this section, we evaluate the effectiveness of our algorithms on real-world datasets. We focus
on (i) analyzing the quality of the seeds picked by our algorithms in comparison to other heuristic
approaches and baselines; (ii) analyzing the efficiency and the scalability of our algorithms; and
(iii) providing anecdotal examples of the obtained results. Although we setup our experiments in
order to mimic social behavior, we note that fully realistic experiments would entail the ability to
intervene in the network, select seeds, and observe the resulting cascades. This, however, is well
beyond our capacity and the scope of the paper.

In all experiments we set k to range between 5 and 50 with a step of 5. We report averages over
1 000 random simulations of the cascade process.

Datasets: To evaluate the effectiveness of our algorithms, we run experiments on real-world data
collected from twitter. Let G = (V,E) be the twitter follower graph. A directed edge (u, v) ∈ E
indicates that user v follows u; note that the edge direction indicates the “information flow” from
a user to their followers. We define a cascade GX = (X,EX) as a graph over the set of users
X ⊆ V who have retweeted at least one hashtag related to a topic (e.g., US elections). An edge
(u, v) ∈ EX ⊆ E indicates that v retweeted u.

We use datasets from six topics with opposing viewpoints, covering politics (US-elections,
Brexit, ObamaCare), policy (Abortion, Fracking), and lifestyle (iPhone, focusing on iPhone
vs. Samsung). All datasets are collected by filtering the twitter streaming API (1% random sample
of all tweets) for a set of keywords used in previous work [20]. For each dataset, we identify two
sides (indicating the two view-points) on the retweet graph, which has been shown to capture best
the two opposing sides of a controversy [12]. Details on the statistics of the dataset can be found at
the supplementary material.

After building the graphs, we need to estimate the diffusion probabilities for the heterogeneous
and correlated models. Note that the estimation of the diffusion probabilities is orthogonal to our
contribution in this paper. For the sake of concreteness we have used the approach described below.
One could use a different, more advanced, method; our methods are still applicable.

Let q1(v) and q2(v) be an a priori probability of a user v retweeting sides 1 and 2, respectively.
These are measured from the data by looking at how often a user retweets content from users and
keywords that are discriminative of each side. For example, for US-elections, the discriminative
users and keywords for side Hillary would be @hillaryclinton and #imwither, and for Trump, @re-
aldonaldtrump and #makeamericagreatagain. The probability that user v retweets user u (cascade
probability) is then defined as

pi(u, v) = α qi(v) + (1− α)

(

R(u, v) + 1

R(v) + 2

)

, i = 1, 2,

where R(u, v) is the number of times v has retweeted u, and R(v) is the total number of retweets
of user v. The cascade probabilities pi capture the fact that users retweet content if they see it from

their friends (term
R(u,v)+1
R(v)+2 ) or based on their own biases (term qi(v)). The additive terms in the

numerator and denominator provide an additive smoothing by Laplace’s rule of succession.

We set the value of α to 0.8 for the heterogeneous setting. For α = 0 the edge probabilities become
equal for the two campaigns, which is our assumption for the correlated setting.
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Figure 1: Expected symmetric difference n− ΦC as a function of the budget k. Top row, heteroge-
neous model, bottom row: Correlated model. Low values are better.

Baselines. We use 5 different baselines. The first baseline, BBLO, is an adaptation of the framework
by Borodin et al. [5]. This framework requires an objective function as input, and here we use our
objective function Φ. The framework works as follows: The two campaigns are given a budget k/2
on the number of seeds that they can select. At each round, we select a vertex v for S1, optimizing
Φ(S1 ∪ {v} , S2), and a vertex w for S2, optimizing Φ(S1, S2 ∪ {w}). We should stress that the
theoretical guarantees by [5] do not apply because our objective is not submodular.

The next two heuristics add a set of common seeds to both campaigns. We run a greedy algorithm
for campaign i = 1, 2 to select the set S′

i with the ℓ ≫ k vertices Pi that optimizes the function
ri(S

′

i ∪ Ii). We consider two heuristics: Union selects S1 and S2 to be equal to the k/2 first distinct
vertices in S′

1 ∪ S′

2 while Intersection selects S1 and S2 to be equal to k/2 first vertices in S′

1 ∩ S′

2.
Here the vertices are ordered based on their discovery time.

Finally, HighDegree selects the vertices with the largest number of followers and assigns them alter-
nately to the two cascades; and Random assigns k/2 random seeds to each campaign.

In addition to the baselines, we also consider a simple greedy algorithm Greedy. The difference
between Cover and Greedy is that, in each iteration, Cover adds the seed that maximizes Ω, while
Greedy adds the seed that maximizes Φ. We can only show an approximation guarantee for Cover

but Greedy is a more intuitive approach, and we use it as a heuristic.

Comparison of the algorithms. We start by evaluating the quality of the sets of seeds computed by
our algorithms, i.e., the number of equally-informed vertices.

Heterogeneous setting. We consider first the case of heterogeneous networks. The results for the
selected datasets are shown in Figure 1. Full results are shown in the supplementary material. Instead
of plotting Φ, we plot the number of the remaining unbalanced vertices, n−Φ, as it makes the results
easier to distinguish; i.e., an optimal solution achieves the value 0.

The first observation is that the approximation algorithm Cover performs, in general, worse than
the other two heuristics. This is due to the fact that Cover does not optimize directly the objective
function. Hedge performs better than Greedy, in general, since it examines additional choices to
select. The only deviation from this picture is for the US-elections dataset, where the Greedy

outperforms Hedge by a small factor. This may due to the fact that while Hedge has more options,
it allocates seeds in batches of two.

Correlated setting. Next we consider correlated networks. We experiment with the three approx-
imation algorithms Cover, Common, Hedge, and the heuristic Greedy. The results are shown in
Figure 1. Cover performs again the worst since it is the only method that introduces new unbalanced
vertices without caring about their cardinality. Its variant, Greedy, performs much better in practice
even though it does not provide an approximation guarantee. The algorithms Common, Greedy, and
Hedge perform very similar to each other without a clear winner.

7



0

2

4

6

×103

Abortion Brexit Fracking iPhoneObamaCare US

sy
m

m
.

d
if

f.

Heterogeneous

0

1

2

3

4

×103

H
e

d
g

e
B

B
L

O
In

te
rs

e
c
ti
o

n
U

n
io

n
H

ig
h

D
e

g
re

e
R

a
n

d
o

m

Abortion Brexit Fracking iPhoneObamaCare US

sy
m

m
.

d
if

f.

Correlated

Figure 2: Expected symm. diff. n− Φ of Hedge and the baselines. k = 20. Low values are better.

Comparison with baselines. Our next step is to compare against the baselines. For simplicity, we
focus on k = 20; the overall conclucions hold for other budgets. The results for Hedge versus the
five baselines are shown in Figure 2.

From the results we see that BBLO is the best competitor: its scores are the closest to Hedge, and
it receives slightly better scores in 3 out of 12 cases. The competitiveness is not surprising because
we specifically set the objective function in BBLO to be Φ(S1, S2). The Intersection and Union

also perform well but are always worse than Hedge. Random is unpredictable but always worse
than Hedge. In the case of heterogeneous networks, Hedge selects seeds that leave less unbalanced
vertices, by a factor of two on average, compared to the seeds selected by the HighDegree method.
For correlated networks, our method outperforms the two baselines by an order of magnitude. The
actual values of this experiment can be found in the supplementary material.

Running time. We proceed to evaluate the efficiency and the scalability of our algorithms. We
observe that all algorithms have comparable running times and good scalability. More information
can be found in the supplementary material.

Use case with Fracking. We present a qualitative case-study analysis for the seeds selected by our
algorithm. We highlight the Fracking dataset, even though we applied similar analysis to the other
datasets as well (the results are given in the supplementary material of the paper). Recall that for
each dataset we identify two sides with opposing views, and a set of initial seeds for each side (I1
and I2). We consider the users in the initial seeds I1 (side supporting fracking), and summarize the
text of all their Twitter profile descriptions in a word cloud. The result, contains words that are used
to emphasize the benefits of fracking (energy, oil, gas, etc.). We then draw a similar word cloud
for the users identified by the Hedge algorithm as seed nodes in the sets S1 and S2 (k = 50). The
result, contains a more balanced set of words, which includes many words used to underline the
environmental dangers of fracking. We use word clouds as a qualitative case study to complement
our quantitative results and to provide more intuition about our problem statement, rather than an
alternative quantitative measure.

6 Conclusion

We presented the first study of the problem of balancing information exposure in social networks
using techniques from the area of information diffusion. Our approach has several novel aspects. In
particular, we formulate our problem by seeking to optimize a symmetric difference function, which
is neither monotone nor submodular, and thus, not amenable to existing approaches. Additionally,
while previous studies consider a setting with selfish agents and provide bounds on best-response
strategies (i.e., move of the last player), we consider a centralized setting and provide bounds for a
global objective function.

Our work provides several directions for future work. One interesting problem is to improve the
approximation guarantee for the problem we define. Second, we would like to extend the problem
definition for more than two campaigns and design approximation algorithms for that case. Finally,
we believe that it is worth studying the BALANCE problem under complex diffusion models that
capture more realistic social behavior in the presence of multiple campaigns. One such extension
is to consider propagation probabilities on the edges that are dependent in the past behavior of the
nodes with respect to the two campaigns, e.g., one could consider Hawkes processes [28].
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