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ABSTRACT 

Designing a visualization system capable of processing, 

managing, and presenting massive data sets while maximizing the 

user’s situational awareness (SA) is a challenging, but important, 
research question in visual analytics. Traditional data management 

and interactive retrieval approaches have often focused on solving 

the data overload problem at the expense of the user’s SA. This 
paper discusses various data management strategies and the 

strengths and limitations of each approach in providing the user 

with SA. A new data management strategy, coined Smart 
Aggregation, is presented as a powerful approach to overcome the 

challenges of both massive data sets and maintaining SA. By 

combining automatic data aggregation with user-defined controls 
on what, how, and when data should be aggregated, we present a 

visualization system that can handle massive amounts of data 

while affording the user with the best possible SA. This approach 
ensures that a system is always usable in terms of both system 

resources and human perceptual resources. We have implemented 

our Smart Aggregation approach in a visual analytics system 
called VIAssist (Visual Assistant for Information Assurance 

Analysis) to facilitate exploration, discovery, and SA in the 

domain of Information Assurance. 
 

CR Categories and Subject Descriptors: H.1.2 [Models and 

Principles]: User/Machine Systems — Human information 
processing; I.3.6 [Computer Graphics]: Methodology and 

Techniques — Interaction techniques  

Additional Keywords: Data management, visual analytics, 
data retrieval, information visualization, smart aggregation, 

situational awareness. 

1 INTRODUCTION 

As a result of exponential growth in the collection and storage 
of data, government and commercial organizations are finding it 

increasingly difficult to efficiently analyze and obtain useful 

intelligence about the data being collected. Many of these 
organizations are turning to visual analytics to help in the 

discovery of useful information that is typically buried within the 

data collection. However, Information Technology (IT) systems 
have finite amounts of resources, such as processor power, 

memory, and monitor real estate. In addition to the finite 

limitations of system resources, humans’ perceptual capabilities 
also have limitations. Information visualization can take 

advantage of human perceptual capabilities by displaying 

information in graphical, interactive computer systems. However, 
not all visualization techniques can scale to the massive data sets 

now common, both in terms of what a system can process and 
display, and what a human can perceive. Thus, visual analytics 

technologies must employ a data management strategy to 

successfully process and retrieve data that is often in excess of the 
system’s or human’s resource capabilities. 

Some data management strategies focus on the reduction of 

data by enforcing specific criteria to be applied to every data 
request; others may truncate results after a certain maximum 

record count is exceeded. Some strategies make use of database 

cursors that help the user access only a portion of the result set at 
a time. Still others attempt to cluster results set data based upon 

uniqueness. In addition to each strategy having its own set of 

advantages and disadvantages in terms of data reduction 
capability, each strategy also has implications on the level of 

Situational Awareness (SA) that is afforded to the user.  

An effective visual analytics system should strive to maximize 
users’ SA by avoiding automatically hiding, truncating, or 

transforming data without the user’s knowledge. Systems should 

offer multiple simultaneous ways to represent the data and display 
data in an unambiguous manner. Systems should also provide 

mechanisms to allow users to drill into the data to facilitate further 

exploration. 
Users of visual analytics technologies are often required to be 

intimate with the underlying data sets in order to avoid 

overloading the system with data that is returned from an arbitrary 
request. However, this requirement is antithetical to one of the 

primary strengths and purposes of visual analytics systems – these 

tools enable exploration of the data that facilitate new insights into 
data, and enable users to answer questions they didn’t even know 

they had. Users should be exploring the data to generate new 

insights; they should not need to understand the data beyond their 
domain knowledge. Many systems today rely on users knowing 

what data requests are “safe” and what requests may cause the 

system to become unresponsive. Others provide the capability for 
users to make use of aggregation functions at the time of data 

request, but depend on users to recognize when such actions are 

required to keep the system responsive. Rather, effective visual 
analytics systems should be designed to automatically determine 

when a particular data request is going to exceed the system’s 

resources and automatically take the necessary actions to ensure 
the system remains functional. This automation should be 

combined with user-driven awareness of when and how these 

automated actions will occur. 
In this paper we present the Smart Aggregation data 

management approach that automatically determines when data 

reduction is required and aggregates the data as needed while 
preserving SA. The approach we propose has been implemented 

in a visual analytics system for Information Assurance, VIAssist 

(Visual Assistant for Information Assurance Analysis). The 
system always remains functional regardless of the users’ 

(potentially damaging) data requests. This is accomplished by 

intelligently selecting specific fields for aggregation from the data 
request followed by selection and application of a user ranked 

cardinality reducing function for each selected field in order to 

control the amount of data returned from the data request. This 
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approach ensures that users do not need to know the details of the 

data while still maintaining SA. 

2 SITUATIONAL AWARENESS 

Considerable research on Situational Awareness has been 

published in the psychology and human factors literature. Endsley 

describes SA as simply “knowing what is going on around you,” 
and within that knowledge of your surroundings knowing what is 

important [3]. One doesn’t need to know everything, only those 

things necessary to make accurate, timely decisions.  
In order to maintain SA, it is important to avoid “black box” 

approaches in visual analytics systems. Defined as the “Rational 

Gap” in information visualization [1], the disconnect between 
perception and explanation makes maintaining SA impossible. An 

effective visual analytics system should maximize users’ SA by 

avoiding approaches that make explanation problematic. 
Automatically transforming data without the user’s knowledge or 

transforming data in ways a user cannot understand impedes SA. 

The deluge of data in many domains – including Information 
Assurance, where analysts regularly examine multiple gigabytes 

worth of data at a time – often results in the need to reduce or 

aggregate data to provide an overview of the entire data set. Even 
with advanced information visualization techniques, this data 

reduction is often required to gain the big picture comprehension 

that is crucial to SA. The challenge discussed in this paper is to 
identify data management methods that balance this necessary 

data reduction with the need to maintain SA. 

3 INTERACTIVE DATA MANAGEMENT STRATEGIES 

When dealing with data volumes that are measured in gigabytes 

or more, how does a system designer prevent users from 
requesting more data than the system is capable of handling and 

what are the implications on the user’s SA? Choosing a data 

retrieval strategy that will safeguard users from overloading the 
available, finite system resources while simultaneously providing 

the best possible SA should be done with the clear understanding 

of what implications come with each strategy.  
The focus of this paper is on interactive data management 

approaches for processing interactive, user-driven queries and not 

on determining the most efficient data storage algorithm, indexing 
schemes, or querying techniques. However, these areas can have a 

profound impact on the timeliness of data retrieval. A great deal 

of research has been performed on determining efficient storage, 
indexing schemes, and querying techniques when working with 

extreme amounts of data (e.g., in the 100’s of gigabyte range). In 

the area of computer network traffic data, researchers at Lawrence 
Berkeley National Laboratory have conducted a great deal of 

research on query-driven visualization of large datasets [7][8][9]. 

Their approach to only visualize what is scientifically interesting 
coupled with powerful hardware and efficient bitmap indexing 

should certainly be considered when attempting to collect, store, 

and process the enormous amount of data flowing on a network. 
The concepts outlined in this paper can be implemented into any 

visual analytics application that is tied to a back-end repository 

that provides mechanisms for aggregating data. The process is 
aimed at automatically keeping requested data within client 

system tolerable limits and as such can provide added value to all 

prior research that has been performed on “increasing the signal 
from the noise” and on efficient data storage and indexing 

schemes. The remainder of this section will examine common 

data retrieval strategies for relational data. 

3.1 Result Set Limits 

The most straightforward approaches to data management are 

those that limit the result sets of queries.  

3.1.1 Row Fetch Limits 

Naïve data management systems may attempt to use repository 

row fetch limits to quickly and easily keep result sets within the 

target system’s tolerable limits. Most relational repositories allow 
for configuration of the maximum number of rows a result set 

from any arbitrary query will return. When a particular query 

result set reaches the defined maximum number, the query is 
stopped and the max number of records is returned to the user.  

Advantages. Most relational repositories offer the capability of 

limiting the rows returned from arbitrary queries making this 
strategy extremely easy to implement. The target system can be 

guaranteed to never receive more than the maximum defined rows 

of data thus enforcing the desire for the target system to always 
remain functional. 

Disadvantages. With row fetch limits the user has no chance of 

ever being able to analyze the data that is beyond the defined 
maximum row limit. Another drawback is the user is typically not 

given any indication of how many records would have returned if 

the row limit was not in place.  
Situational Awareness. Based upon the percentage of the data 

returned in reference to data requested, a user’s SA will quickly 

degrade as the percentage of actual data returned decreases. 

3.1.2 Cursor Scrolling 

A data management strategy that employs database cursor 
scrolling performs an initial data fetch where the result set is 

limited to the first N rows. Unlike the database limit on rows 

returned as described above, the user of an application that has 
database cursor scrolling capabilities is able to request the next (or 

previous) N rows of data. In essence, database cursor scrolling 

allows for a specified data window size that can be moved around 
the entire result set. 

Advantages. Database cursor scrolling offers utility to users by 

allowing them to analyze the entire data set chunk by chunk.  
Disadvantages. Users must perform a great deal of cognitive 

work. The user will create mental models of each chunk of data 

that is analyzed and cognitively fuse those together in the attempt 
to form an accurate mental model of the entire data set. This kind 

of approach can lead a user to succumbing to the Requisite 

Memory Trap SA demon [4] where only a limited amount of 
information can be kept in short term memory and any new 

information has the potential to replace existing important 

information already in memory. 
Situational Awareness. Database cursor scrolling is a data 

management strategy that has the potential to allow the 

maintenance of SA by analyzing each data chunk and cognitively 
fusing each chunk to form the “big picture” mental model. Since 

the entire data set can not be displayed at one time, the level of 

SA that is obtained will vary based upon each user’s mental 
capacity to retain information over time. Relying on the user’s 

mental capacity is a drawback to obtaining and retaining good SA. 

Some users will perform much better than others when faced with 
exactly the same circumstances when this strategy is used.  

3.2 Forced Criteria 

The forced criteria strategy automatically appends specific 
criteria to each and every data request to keep the result sets for 

all data requests within system tolerable limits. Two types of 

forced criteria approaches are described below. 

3.2.1 System-Defined Forced Criteria 

The system-defined forced criteria strategy includes the data 
fields and values that the system designer has determined will 

keep the result sets within system tolerable limits. Fields that are 

often chosen for forced criteria often involve a date/timestamp 
field reflective of when a particular record was added to the 
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repository. System administrators of the system would have a 

good understanding of the magnitude of data that is typically 
inserted each hour, day, week, month or year. The administrators 

would leverage this knowledge along with their understanding of 

the target system’s tolerable limits and enforce every data request 
to include criteria of a certain time span that is believed to return a 

tolerable amount of data for the target system. Of course, other 

field types could be used in place of or in addition to the 
date/timestamp field to limit data retrieval. The fields that will 

make the most sense are highly dependent upon the nature of the 

data being collected. 
Advantages. System-defined forced criteria is very simple to 

implement and can be an effective way of reducing data load. 

Disadvantages. Users are only presented with what may be a 
small “slice” of the data. Due to the presence of the forced 

criteria, the user is never able to see the “big picture” of the data. 

Although the forced criteria may be fully disclosed to users, 
providing them with an understanding that the data has been 

artificially restricted, users can easily formulate an inaccurate 

mental model of what the entire data set is really conveying 
because they are only seeing a small slice. Another problematic 

characteristic of system-defined forced criteria deals with the 

uncertainty of future data throughput. Criteria based on studies of 
historical data throughput and content may not be an accurate 

indication of future data throughput and content, thus causing 

current forced criteria to be either too restrictive or not restrictive 
enough for future circumstances. 

Situational Awareness. This method tends to provide users 

with poor SA due to inability to grasp the “big picture” and the 
ease of forming an inaccurate mental model of the situation based 

upon analysis of only a section or slice of the data. Further, if the 

system administrator changes the criteria to keep up with 
changing usage, the users must also maintain awareness of the 

dynamically changing criteria. 

3.2.2 User-Configurable Forced Criteria 

User-configurable forced criteria can be used to overcome some 

of the disadvantages of system-defined forced criteria section. 
This data management strategy forces a user to repeatedly select 

fields and criteria values to build a forced Structured Query 

Language (SQL) where clause that is used to restrict the requested 
result set. Each time a user adds a new piece of criteria to the data 

request, a count query can be generated to help determine if the 

requested result set will be within tolerable limits prior to making 
the full data request. While the request is outside the tolerable 

limits for the target system, users are forced to add more criteria. 

Once the count query is found to be within tolerable limits, the 
full query can be submitted and the result set displayed. 

Advantages. This easily implemented approach improves upon 

the system-defined forced criteria in that the user has full control 
over how the data is filtered rather than relying on the system to 

define the criteria.  

Disadvantages. Users are still only presented with what may be 
a small “slice” of the data, preventing the big picture view.  

Situational Awareness. Poor SA can still result with large data 

sets due to the user only retrieving a slice of data. Although the 
attempt to keep the user “in the loop” increases the chances of this 

strategy giving the user better SA over system-defined forced 

criteria, this approach still suffers from the inability for users to 
see the “big picture” which fosters inaccurate mental models of 

the situation resulting in this approach providing the user with 

overall poor SA.  

3.3 Aggregation 

The term aggregation refers to the grouping of multiple items 

together to form a single item. It is essential in managing massive 

data to determine methods in which the data can be aggregated to 

produce smaller data sets. In terms of SQL, aggregation is most 
commonly performed by making use of the Group By, Select 

Distinct, and available aggregation functions capabilities. 

Group By essentially allows for the “roll-up” or clustering of 
data based upon the field(s) defined in the Group By. For 

example, to determine the average salary paid in each department 

one could formulate the simple SQL statement: SELECT Dept, 
AVG(Salary) FROM Employee GROUP BY Dept;  

This statement will only return a row count that is equal to the 

number of distinct departments regardless of how many records 
actually exist in the Employee table. As the SQL statement shows, 

when Group By constructs are used all fields that are not included 

in the Group By clause must have aggregating functions, such as 
AVG, placed on them. 

Select Distinct allows a SQL request to only bring back a single 

row of data for each distinct combination of fields.  
Aggregation Functions are used to reduce the cardinality of a 

specific data column. Cardinality is defined as the number of 

unique elements found in a specified data column. Low 
cardinality data columns contain a high percentage of repeated 

data values. High cardinality columns contain a low percentage of 

repeated data values. The SQL aggregation functions of count, 
minimum, maximum, sum, and average all reduce a column’s data 

cardinality to a single value regardless of how many rows of data 

exist in the specified table of which the data column belongs. 
Typically, aggregation involves a combination of Select 

Distinct and/or Group By in concert with the various aggregation 

functions that have been outlined above. Depending on the actual 
nature of the data this kind of standard aggregation may be 

sufficient to produce manageable result sets from arbitrary SQL 

data requests. This is especially true if only a handful of low 
cardinality fields are being requested. If, however, a large number 

of fields from the database are typically requested, this simple 

approach to aggregation will very likely not be able to reduce the 
data – each additional field lowers the ability for Group By 

constructs to reduce the result set. This aggregation approach also 

breaks down when any number of fields (large or small) are 
requested where one or more of the fields are considered to be of 

high cardinality, those fields with a great deal of variation. High 

cardinality fields such as date/time fields in SQL requests are 
unable to have their result sets reduced by merely grouping data 

or asking for distinct values. The very nature of high cardinality 

fields is that there are many unique values thus defeating the 
attempt to cut down a result set by only requesting unique values. 

Many applications that do not “gracefully”1 handle large data 

use only the simple aggregation approach where the sole attempt 

was to group data and not change or transform the data in any 

way. However, to design a system that successfully handles large 

data and maximizes the user’s SA, system designers must venture 

into aggregation methods that not only attempt to group data but 

also transform it into higher levels of abstraction. 

Advantages. Aggregation can help visual analytics applications 

survive and perform well in massive data environments. SA can 
be obtained by users who understand when aggregation is 

required, what fields are best to aggregate, and how best to 

perform the aggregation. 
Disadvantages. If the visual analytics application merely 

provides the opportunity for users to aggregate fields as they 

desire, less experienced users will perform data requests that will 
overload the target system. SA will likely only be obtained from 

                                                                    
1
 The term “gracefully” in this context is used to denote the need to 

automatically detect and take appropriate aggregation action when large 

result set data requests are being made that would result in system 

degradation. 
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expert users who have a thorough understanding of what fields in 

his repository are of high cardinality and need to be aggregated in 
order to keep the system in a useable state. Thus, the user must 

have an excellent grasp of the data itself. Expert users may also 

recognize the simultaneous request of many low to medium 
cardinality fields may also require aggregation on certain fields in 

order to keep the system functional. The underlying problem is no 

safe guard exists for users of visual analytics systems that simply 
offer aggregation capabilities as a tool for users to embrace. Users 

who are not familiar with the collected data will very quickly find 

themselves in a situation of requesting more data than the system 
can handle.  

Situational Awareness. The aggregation methods outlined here 

have the ability to provide SA to those users who have an intimate 
understanding of the data and are savvy enough to know when to 

make use of the aggregation calculations. Without system logic 

that can automatically detect when such aggregation needs to take 
place, the system will quickly succumb to an unsuspecting data 

request that exceeds the target system’s capabilities. 

4 SMART AGGREGATION 

Two particular assumptions that many visual analytics 

applications make are: the end-user knows what they are looking 
for; and the end-user knows how and when to apply criteria to 

reduce the size of the result set from a given data request.  

Unfortunately, these very assumptions cause many of the 
applications to fail to gracefully handle massive data requests. 

Users of visual analytics systems often explore without really 

knowing what they are looking for within the data set. Indeed, this 
is one of the powers of information visualization – the ability to 

formulate and answer questions they did not anticipate [5]. This is 

especially true for analysts studying massive amounts of network 
traffic. For this reason, it is important for the data presentation 

system to provide the flexibility of arbitrary data requests.  

In order for a visual analytics system to provide the best SA and 
reduce the amount of data to display, aggregation algorithms need 

to focus on reducing the granularity of the data to present. That is, 

functionality needs to be developed that is capable of taking a 
request for detailed information, recognize when the result set of 

the request will be too much for the system (or user) to handle, 

and transform the request into a higher level summarized data 
request that is capable of still returning meaningful data to the 

user. Our term for this process is Smart Aggregation. Specifically, 

the Smart Aggregation approach we present here performs the 
following: (1) Determine if aggregation is required; (2) Select 

candidate fields to aggregate, based on the cardinality of the field 

data and the user-specified field ranking; (3) Choose an 
appropriate aggregation function to apply to each candidate field 

based upon the computed cardinality reduction factor and field 

calculation rankings; (4) Replace original candidate field requests 
with the new field request that includes the computed aggregation 

calculation; (5) Perform a cluster query that only retrieves distinct 

field combinations from the repository with an associated count of 
how many times that combination exists in the data set for the 

current set of criteria 

Before stepping through a data request, we will present some of 
the underlying concepts and functions used in Smart Aggregation. 

4.1 Data Transformation Aggregation Functions  

One way to transform the data into higher levels of abstraction 
is by applying cardinality reducing functions to the requested 

fields. A sample of standard SQL data transformation functions 

and how they can be used are described below. 
General (Is Null). The Is Null function will reduce any single 

field’s set of results down to two rows – either 0 (false) if the 

column value is present or 1 (true) if the column value is not 

present for any given row. Although this provides great reduction 
in data, the outcome of knowing whether data exists or not may 

prove to be of little use to the user. 

String Functions (Upper, Lower, Trim). Although the string 
functions may not appear to have cardinality reduction 

capabilities, they are able to reduce row counts if the underlying 

data was entered with various casing or with trailing spaces. 
These functions would be considered to be low cardinality 

reducing functions unless the underlying data was consistently 

added with various casing and no normalization has taken place. 
Integer Functions (Count, Min, Max, Sum, Avg, etc.). These 

calculations are all considered to be high cardinality reducing 

calculations since they all produce a single value regardless of 
how many rows of data they are applied to. Care should be taken 

on the use of these functions since they may aggregate data to a 

level that has little benefit to the user. (e.g., the field destination 
port of network traffic data that has any one of these functions 

placed on it provides the analyst with no useful analytical insight.) 

Date Functions (Name, Year, Quarter, Month [number], 
Month Name, Week of Year, Week of Month, Day of Year, Day 
of Month, Day of Week [number], etc.). Since “raw” date time 

fields are typically of high cardinality, functions to help 
summarize the data for these fields can be very beneficial. There 

are many functions that can be placed on date time fields ranging 

from high cardinality reducing functions such as Quarter or Day 
of Week (where data will be reduced to a maximum of 4 or 7 rows 

respectively regardless of row count) to lower cardinality reducing 

functions such as Day of Year Truncation (where data will be 
reduced to a maximum of 365 rows regardless of row count). 

4.2 Regular Expression Field Binning  

In order to provide the best possible SA to a user, a system 
designed to deal with massive data should provide a way for the 

user to help configure how fields should be aggregated. Giving 

this control to the user allows him to have full control over how 
the underlying data is grouped when aggregation needs to take 

place. Providing an easy to use user interface that makes use of 

regular expressions (definition of a pattern that describes a set of 
values) is a very powerful way to offer the capability of users 

defining their own aggregation groupings. For example, there are 

65,536 possible destination ports in TCP or UDP computer 
network traffic; a system could allow an analyst to define his own 

port groupings. Analysts may group the destination ports in just a 

few bins, such as ports 0–1023 (the “well known ports”), 1024–
49,151 (“registered ports”), and 49,152–65,535 (“dynamic 

ports”). This coarse binning could be augmented by also grouping 

common ports based upon what they are used for; such as 
grouping ports 80, 443, and 8080 (web traffic) together and ports 

20 and 21 (FTP traffic) together. Obviously, the user of regular 

expressions enables much more complex binning options. 

4.3 Targeting High Cardinality Fields  

One important concept designers of a visual analytics system 

dealing with massive data need to keep in mind is no matter how 
much aggregation is performed, if the highest cardinality fields 

are not properly aggregated, aggregating lower cardinality fields 

will be ineffective and waste system resources. For instance, if a 
data request is made for three fields: Date, Source, and Bytes, 

where Date is the date/time field of when the record was added to 

the database, Source is the source IP address, and Bytes is the 
number of bytes that were transferred from the Source IP. Table 

1shows a sample of what the original data might look like. 
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Table 1. Original data with no aggregation 

Date Source Bytes 

2/12/07 14:05:21 192.19.20.1 512 

2/12/07 14:05:22 192.19.25.123 331 

2/12/07 14:05:23 192.29.201.4 200 

2/12/07 14:05:24 200.20.1.231 679 

2/12/07 14:05:25 200.18.20.5 64 

2/12/07 14:05:26 192.19.25.11 128 

 

If high cardinality reduction aggregation was placed only on 

Source and Bytes such that only the first octet of the Source IP is 
requested and the maximum value of the Bytes was requested (as 

shown in Table 2), the returned row count will likely be exactly 

what it was prior to the aggregation. The reason for this is the 
highest cardinality field of Date had no aggregation imposed on it.  

Table 2. Aggregation on source and bytes 

Date Source (Octet A) Bytes (MAX) 

2/12/07 14:05:21 192 512 

2/12/07 14:05:22 192 331 

2/12/07 14:05:23 192 200 

2/12/07 14:05:24 200 679 

2/12/07 14:05:25 200 64 

2/12/07 14:05:26 192 128 

 

Without imposing aggregation on the highest cardinality field, 

aggregation imposed on the other fields will provide little benefit 
to reducing the actual number of records returning from the 

request. However, aggregating on the Date field, such as by Day 

of Week, as shown in Table 3, does reduce the number of rows 
returned. 

Table 3. Aggregation on all fields 

Date (Day of Week) Source (Octet A) Bytes (MAX) 

Monday 192 512 

Monday 200 679 

4.4 Analysis of Data Request 

To understand how Smart Aggregation works, we will step 

through a data request that passes through the Smart Aggregator. 
The Smart Aggregator’s role is to determine how much data from 

the repository is being requested and then compare that value 

against a configurable maximum data threshold value. To achieve 
this, the Smart Aggregator performs a count query against the 

repository to obtain: (1) a total row count that will be returned, 

and (2) a count of the distinct values for every column that the 
original query would be selecting. 

The Smart Aggregator stores in an XML metadata file a Byte 

Cost value for each defined field. This is determined based on the 
data type of the field. For example, Boolean fields have a byte 

cost of 1 and Integer fields a cost of 4. String byte costs are based 

upon an estimation of the average length of data to be stored for 
that column. The Smart Aggregator determines a row Byte Cost 

value by summing up the byte costs for all fields involved in the 

Select portion of the query and then multiplies the row Byte Cost 
by the total row count to obtain the potential byte size of the data 

that would be returned if the “real” query was executed. If this 

potential byte size is greater than the configured maximum data 
threshold value, the Smart Aggregator performs the following 

steps: 

1. Check the cardinality ratio for each column. The 
cardinality ratio is the number of distinct values divided by 

the actual row count. If the cardinality ratio is found to be 

higher than the configured maximum cardinality ratio 

threshold, then the field is aggregated regardless of what 
aggregation policy is currently in place. Forcing the 

aggregation of the highest cardinality columns ensures the 

best possible chance of reducing the data load that is to be 
returned from the query. 

2. Determine the appropriate level of aggregation. The Smart 

Aggregator compares the improvement ratio (Byte Cost 
divided by Maximum Byte Threshold) against various user 

configured improvement factors to determine if a LOW, 

MEDIUM, HIGH, TWO_ROW, or SINGLE_ROW 
cardinality reducing improvement is required. 

3. Consult the aggregation policy. A policy is a collection of 

system-defined rules that use user configured parameters 
to drive the aggregation process. This policy is used to 

determine the aggregating reduction function that should 

be used for the specified field. For example, Source IP 
field with a HIGH cardinality reducing improvement 

request may be forced to use a function that truncates the 

Source IP at the first octet, whereas a LOW cardinality 
reducing improvement may force a truncation at the third 

octet. 

4. Calculate new Byte Cost. Upon completion of aggregating 
the high cardinality columns, a byte improvement value is 

calculated and subtracted off of the original computed total 

byte cost. If the new byte cost is below the configured 
maximum data threshold, no more aggregation is required 

on this pass. If, however, more aggregation is still 

required, new fields are found to attempt aggregation from 
the user’s field ranking list and steps 2 and 3 are repeated 

until the estimated total byte cost falls below the 

configured maximum data threshold. 
5. Repeat steps 1-4. Each of the previous steps are repeated 

with the new aggregated fields until the actual byte count 

is found to fall below the configured maximum data 
threshold. It is possible that on subsequent passes, fields 

that had cardinality reducing functions on them that were 

lower than SINGLE_ROW strength, will be re-evaluated 
and forced to have higher cardinality reducing functions 

placed on them. 

The intelligent aggregation significantly reduces the returned 
data to a manageable level. All visualization views that were 

configured with fields tagged to use the Smart Aggregator have 

their configurations replaced with the aggregated form of the 
field. This provides the user with what may be a higher-level view 

of the data than initially intended, but with the benefit of ensuring 

that that the limited system resources are not used up. The user 
can then interactively filter the data, zoom into (drill-into) the data 

as needed, or revise their original query. 

4.5 Implementation 

The Smart Aggregation concept described in this paper was 

implemented in a visual analytics system for the information 

assurance (IA) domain, VIAssist, shown in Figure 1. IA analysts 
deal with a vast amount of multidimensional data. VIAssist was 

designed to enhance the SA of IA analysts, specifically to: 

• Show the same data simultaneously in multiple ways to 
reveal patterns that would otherwise not have been detected 

to enhance the user’s SA; 

• Provide context for the area of focus by building a 
framework of views that can interactively be replaced or 

resized to keep views visible that are relevant to the analyst 

to help in maintaining SA; 
• Promote fast data manipulation through intuitive visual 

interaction mechanisms – while also providing access to 
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textual queries for advanced users – to allow a “glass box” 
understanding of the system necessary for SA. 

The concentration of system development was on the interface 

and data management frameworks and not on developing new 
visualization components. Rather, we currently utilize multiple 

proven, existing visualization components. Based upon the 

framework design, integration of new visualization components at 
a future date is a straightforward activity. 

4.5.1  Setting the Smart Aggregator Policy 

VIAssist gives the user control over how the Smart Aggregator 

chooses fields and functions for aggregation. The user interface 

for setting the Smart Aggregation policy, shown in Figure 2, 
allows the user to rank all of the available fields from most 

important to least important. The fields defined as most important 

will be aggregated last, unless the column cardinality for the given 
query is considered to be above the highest threshold. The user 

also has the opportunity to individually configure and rank the 

aggregation functions for each of the fields. This allows the user 
to determine the most preferred functions for a given field if smart 

aggregation needs to take place. All field calculations have a 

“cardinality reducing strength” associated with them stored in the 
metadata file that describes what tables, fields, joins, vendors, etc. 

are available to the system. Currently, the system has two 

implemented aggregation policies: 
Maximum Data Retrieval: the maximum data retrieval policy 

will use the user’s field rankings when determining which fields 

to aggregate and use the user’s rankings as a guide when 
determining what cardinality reducing function should be applied 

to the field. The policy is such that it will traverse the list of 

ranked functions for the current field being aggregated and use the 
first calculation that has a cardinality reducing function that 

matches the required field improvement computed by the system. 

Functions that were already attempted for this field will be 
skipped. If no functions are found that match the required field 

improvement, the required field improvement is increased to the 

next highest level and the process is repeated. 
User Function Rankings: the user function ranking policy 

operates in a similar fashion to the Max Data Retrieval policy. 

However, when determining what cardinality reducing function to 
use, this policy traverses the User Function Ranking list and will 

use the first cardinality reducing function that is equal to or higher 

than the required field improvement that was computed by the 
system. Using this policy, the functions that the Smart Aggregator 

selects have a better chance of matching the user’s preferred 

functions, but if the user’s most preferred function rankings for 
each field tend to be of a high cardinality reducing strength, then 

it is possible that the Smart Aggregator will aggregate at a higher 

level than necessary. 

4.6 Enhancing Situational Awareness 

The Smart Aggregation data management strategy is capable of 

automatically detecting when a user data request is going to result 
in a result set that exceeds the target system’s capability. After 

detection, the Smart Aggregator consults an aggregation policy 

that makes use of user-configured preferences to determine which 
fields should be aggregated and how those fields should be 

aggregated. This approach prevents the user from potentially 

requesting too much data that the target system is unable to 
handle. It reduces the data presented to the user, making the 

overview of the data more understandable, while enabling users to 

zoom into their data.  
This approach enhances SA by allowing the user to readily see 

the big picture. Large data result sets without any aggregation can 

saturate the visualization display, making SA impossible. Take, 
for example, the screen shot displayed in Figure 3, which 

visualizes a data result set with no aggregation, as compared to 

Figure 4, which visualizes the same result set after having passed 
through the Smart Aggregator. In the former, it is impossible to 

glean a meaningful overview of the data; in the latter it is much 

clearer to determine an overview of the characteristics of the data.  
Further, the Smart Aggregation approach described in this 

paper permits users to follow Shneiderman’s Visual Information 

Seeking Mantra: Overview first, zoom and filter, then details-on-
demand [6]. After gaining an overview, the user can interactively 

decrease the level of aggregation to zoom in and filter the data. 

This interactive drill in is shown in Figure 5, in which one of the 
branches of the tree have been de-aggregated to show the details 

of each individual data element. 

4.7 Smart Aggregator in the Field 

As many computer network traffic analysts would attest, even 

attempting to analyze what is considered to be interesting is still 

too much data to process and visualize. As a result, many analysts 
still rely on scripting tools to look for specific “known” data, but 

have no way to effectively explore the data. Our recommendation 

is to take advantage of the scripting tools that analysts are familiar 

 

Figure 2. Smart Aggregator user interface for defining the policy to 

use (left), and ranking preferred fields and calculations (right) 

 

Figure 1. VIAssist visual analytic system showing linked 

visualization views and interaction mechanisms 
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with to do any preprocessing or data reduction, and insert that data 

into a data warehouse. This is the approach we took in a field trial 
of VIAssist at a government facility. The users were network 

analysts who regularly examine massive amounts of NetFlow 

data. (NetFlows are aggregated records of network traffic between 
two computers [2].)  

The NetFlow data was input into a data warehouse optimized 

for data querying. The analysts who had used VIAssist with 
operational data appreciated the ability to detect and take action 

when requests were going to produce result sets that were too 

large for the system to handle. Analysts were also appreciative of 
the ability to produce result sets of higher data resolution when 

criteria is automatically appended to the data request upon the 

analyst drilling-in to data items of interest. The capability of 
allowing users to define their own aggregation bins in addition to 

the capability to affect the Smart Aggregation process through 

field and aggregation function ranking proved to be important 
factors in analysts gaining SA of the data being analyzed. 

4.8 Smart Aggregation Example 

A novice IA analyst decides to use VIAssist to analyze a small 

set (two million rows) of NetFlow data collected over a single 

hour. After loading the data into VIAssist’s visualization 

repository, the analyst decides to configure a workspace of views 

to show Source IP, Destination IP, Destination Port, Start Time, 

Duration, and number of Bytes transferred. The analyst can see 

there are 2 million records in the main table of the database since 

it is displayed at the top-left corner of the application window. 

The novice analyst pays no attention to the record count and 

decides to perform a full data fetch from the repository without 

supplying any criteria. However, the Smart Aggregator is able to 

detect data overload situations by performing a pre-count query 

for the desired fields (see Table 4).  

Table 4. Distinct field counts of 2 million row table 

Src IP Dst IP Dst 
Port 

Start 
Time 

Dura-
tion 

Bytes Total 
Rows 

119,440 728,491 57,189 3,169 1,220 24,759 2 Mil 

 

A distinct row count involving the requested fields returns 

1,942,791 and an estimated byte cost of 68 bytes/row. The system 

determines aggregation that will result in a high system 

improvement is required. Field distinct value counts are checked 

to see if any field’s cardinality exceeds the high cardinality 

threshold ratio. The Destination IP field was found to exceed this 

value and because a high improvement is needed, an IP truncation 

at octet A is required. 

Before performing another count query, the Smart Aggregator 

determines if additional fields need to be aggregated on this pass 

by subtracting off the total number of bytes that would be saved if 

the field that was just flagged for aggregation was reduced down 

to a single row. This estimation allows the system to quickly 

determine that more aggregation needs to take place before 

approaching system-tolerable limits. The aggregation policy 

determines the next field selected for aggregation is the Start Time 

field. Based upon the determination that a high system 

improvement is still required, the highest ranked high cardinality 

reducing function Day-of-week is selected. The Smart Aggregator 

once again determines that more aggregation needs to be 

performed during this pass and consults the aggregation policy for 

the next lowest ranked field to be aggregated. Using the same 

process as above, the system selects the Bytes field for 

aggregation, chooses a user-defined binning function, and repeats 

the process once more, selecting Destination Port also with a user-

defined binning function. At this point, the system determines it 

might have done enough aggregation and allows another set of 

count queries to take place. A new count query is generated where 

it is determined more aggregation is still required (see Table 5 for 

aggregation pass results).  

Table 5. Distinct field counts for each aggregation pass 

 Src IP Dst 
IP 

Dst 
Port 

Start 
Time 

Dura-
tion 

Byt
es 

Total  
Rows 

1 119,440 30 3 1 1220 3 459,461 

2 131 30 3 1 6 3 32,970 

 

The Smart Aggregator determines that a high improvement is 

still required and finds two new fields for aggregation (Source IP 

and Duration). The function of truncation at octet A is applied to 

Source IP and a user-defined binning is applied to duration. The 

system estimates it has made enough improvements and performs 

another count query taking into account the new aggregation 

functions, which returns a result within tolerable limits. The full 

query to extract the data from the repository is submitted and the 

results are displayed upon query completion. 

4.9 Costs of Performing Smart Aggregation 

As is the case with all data reduction schemes, there are costs 

associated with methods used to perform data reduction and the 

 

Figure 3. Tree with no aggregation showing an IP address at the 

root with time, byte size bins, and destination port bins 

 

Figure 4. The tree shown in Figure 3 after Smart Aggregation, 

reducing occlusion while enabling the user to see the big picture 
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Smart Aggregation technique is no exception. The main cost of 

using the Smart Aggregation approach is the time required to 

iteratively run count queries against the target repository. Other 

factors that affect the performance of the Smart Aggregation 

count queries include:  

• Number of fields involved in the database request – more 

fields typically equates to more time required.  

• Aggregation calculations that are placed on fields selected 

for aggregation – some functions may cause the data 

repository to perform an expensive operation for every 

record or cause a situation where an index can not be used to 

quickly retrieve the desired set of records. This situation can 

result in negatively impacting the query completion time.  

• Order of aggregation function rankings for each field can 

negatively impact performance by forcing more passes under 

conditions when functions that have less actual cardinality 

reducing capabilities are ranked higher than functions that 

are considered to have the same theoretical cardinality 

reducing strength.  

• Likewise, order of field ranking could also cause additional 

passes to be taken by the Smart Aggregator when high 

cardinality (but lower than the max configured threshold) 

fields are ranked higher than lower cardinality fields. We 

believe that this is a cost that most users would be willing to 

bear (if given the choice) since the system is attempting to 

provide the user with the highest fidelity of data for those 

fields that are most important to the user. 

5 CONCLUSION 

In the face of massive data sets now common in many domains, 
the Smart Aggregator ensures a visual analytics system always 

remains functional. Users have the ability to rank fields in order of 

importance and configure and rank aggregation functions in order 
of preference. By providing these user configurable options, users 

are involved in the interactive data management process and as 

such gain a firm understanding of how the system functions. 
However, this user control is not necessary; the user does not need 

to know details of the underlying data they wish to explore. The 

configurable policies for individual fields ensure that the 
aggregation is not only done intelligently, but also according to 

the user’s needs. With a firm understanding of how the system 

functions comes increased confidence in the visual analytics 
system that equates to improved SA for the user.  

One potential drawback of Smart Aggregation is that multiple 

count queries attempts will likely take place in order for the 

system to find the optimal level of aggregation. Repositories that 

are optimized for data insertion and not querying may experience 
degradation in performance.  

Smart Aggregation balances the need for data reduction and 

situational awareness. Users do not need to know the details of the 
data, but have the ability to tweak the policy that sets how the 

aggregation takes place. The system is prevented from 

overloading available resources, and users are prevented from 
overloading their perceptual capabilities and are able to better 

understand the big picture required for SA. 

ACKNOWLEDGEMENTS 

The development of VIAssist was sponsored by the US 

Department of Defense (DoD) under Contract No. F30602-03-C-
0260, with the Air Force Research Laboratory (AFRL) as the 

contracting agency. The authors would like to acknowledge the 

continuous beneficial guidance during VIAssist development 
offered by Dr. Kirsten Whitley of the US DoD and Mr. Walt 

Tirenin of the AFRL in Rome, NY. The views and conclusions 

contained in the document are those of the authors, and should not 
be interpreted as representing the official policies, either 

expressed or implied of AFRL, DoD, or the US Government. 

VIAssist contains Star Tree® and Table Lens™ from Inxight 
Software, Inc. (Copyright © 1996-2005. All rights reserved. 

www.inxight.com), and views from ADVIZOR Solutions (© 

2006. All rights reserved.  www.advizorsolutions.com). 

REFERENCE 

[1] Robert Amar and John Stasko, “A Knowledge Task-Based 

Framework for Design and Evaluation of Information 

Visualizations”, Proc. of the IEEE Symposium on Information 

Visualization, pp. 143-149, 2004. 

[2] Cisco Systems NetFlow Services Export Version 9, 

http://www.ietf.org/rfc/rfc3954.txt, 2004. 

[3] Mica R. Endsley, “Theoretical Underpinnings of Situational 

Awareness: A Critical Review”, Situation Awareness Analysis and 

Measurement: Analysis and Measurement, Mica R. Endsley and 

Daniel J. Garland, Lawrence Erlbaum Associates, Mawah, NJ, 2000. 

[4] Mica R. Endsley, Betty Bolte, and Debra Jones, “Designing For 

Situation Awareness: An Approach to User-Centered Design”, 

Taylor and Francis New York, NY, pp. 33-34, 2003 

[5] Catherine Plaisant, “The Challenge of Information Visualization 

Evaluation”, Proc. of the IEEE Conference on Advanced Visual 

Interfaces, pp. 109-116, 2004. 

[6] Ben Shneiderman, “The Eyes have It: A Task by Data Type 

Taxonomy for Information Visualizations”, Proc. of the IEEE 

Symposium on Visual Languages, pp. 336-343, 1996. 

[7] E. Wes Bethel, et al., “Accelerating Network Traffic Analytics Using 

Query-Driven Visualization”, Proc. of the IEEE Symposium on 

Visual Analytics Science and Technology, pp. 115-122, 2006 

[8] Kurt Stockinger, et al., “Network Traffic Analysis With Query 

Driven Visualization SC 2005 HPC Analytics Results”, SC05 

Conference Proceedings, 2005. 

[9] Kurt Stockinger, John Shalf, Kesheng Wu, and E. Wes Bethel, 

“Query-Driven Visualization of Large Data Sets”, Proc. of the IEEE 

Visualization 2005, pp. 157-174, 2005 

 

Figure 5. Tree with Smart Aggregation after drilling in to one of the 

branches of interest  

74


