

Balancing Interactive Data Management of Massive Data with
Situational Awareness through Smart Aggregation

Daniel R. Tesone * and John R. Goodall †

Secure Decisions, a division of Applied Visions Inc.

ABSTRACT

Designing a visualization system capable of processing,

managing, and presenting massive data sets while maximizing the

user’s situational awareness (SA) is a challenging, but important,
research question in visual analytics. Traditional data management

and interactive retrieval approaches have often focused on solving

the data overload problem at the expense of the user’s SA. This
paper discusses various data management strategies and the

strengths and limitations of each approach in providing the user

with SA. A new data management strategy, coined Smart
Aggregation, is presented as a powerful approach to overcome the

challenges of both massive data sets and maintaining SA. By

combining automatic data aggregation with user-defined controls
on what, how, and when data should be aggregated, we present a

visualization system that can handle massive amounts of data

while affording the user with the best possible SA. This approach
ensures that a system is always usable in terms of both system

resources and human perceptual resources. We have implemented

our Smart Aggregation approach in a visual analytics system
called VIAssist (Visual Assistant for Information Assurance

Analysis) to facilitate exploration, discovery, and SA in the

domain of Information Assurance.

CR Categories and Subject Descriptors: H.1.2 [Models and

Principles]: User/Machine Systems — Human information
processing; I.3.6 [Computer Graphics]: Methodology and

Techniques — Interaction techniques

Additional Keywords: Data management, visual analytics,
data retrieval, information visualization, smart aggregation,

situational awareness.

1 INTRODUCTION

As a result of exponential growth in the collection and storage
of data, government and commercial organizations are finding it

increasingly difficult to efficiently analyze and obtain useful

intelligence about the data being collected. Many of these
organizations are turning to visual analytics to help in the

discovery of useful information that is typically buried within the

data collection. However, Information Technology (IT) systems
have finite amounts of resources, such as processor power,

memory, and monitor real estate. In addition to the finite

limitations of system resources, humans’ perceptual capabilities
also have limitations. Information visualization can take

advantage of human perceptual capabilities by displaying

information in graphical, interactive computer systems. However,
not all visualization techniques can scale to the massive data sets

now common, both in terms of what a system can process and
display, and what a human can perceive. Thus, visual analytics

technologies must employ a data management strategy to

successfully process and retrieve data that is often in excess of the
system’s or human’s resource capabilities.

Some data management strategies focus on the reduction of

data by enforcing specific criteria to be applied to every data
request; others may truncate results after a certain maximum

record count is exceeded. Some strategies make use of database

cursors that help the user access only a portion of the result set at
a time. Still others attempt to cluster results set data based upon

uniqueness. In addition to each strategy having its own set of

advantages and disadvantages in terms of data reduction
capability, each strategy also has implications on the level of

Situational Awareness (SA) that is afforded to the user.

An effective visual analytics system should strive to maximize
users’ SA by avoiding automatically hiding, truncating, or

transforming data without the user’s knowledge. Systems should

offer multiple simultaneous ways to represent the data and display
data in an unambiguous manner. Systems should also provide

mechanisms to allow users to drill into the data to facilitate further

exploration.
Users of visual analytics technologies are often required to be

intimate with the underlying data sets in order to avoid

overloading the system with data that is returned from an arbitrary
request. However, this requirement is antithetical to one of the

primary strengths and purposes of visual analytics systems – these

tools enable exploration of the data that facilitate new insights into
data, and enable users to answer questions they didn’t even know

they had. Users should be exploring the data to generate new

insights; they should not need to understand the data beyond their
domain knowledge. Many systems today rely on users knowing

what data requests are “safe” and what requests may cause the

system to become unresponsive. Others provide the capability for
users to make use of aggregation functions at the time of data

request, but depend on users to recognize when such actions are

required to keep the system responsive. Rather, effective visual
analytics systems should be designed to automatically determine

when a particular data request is going to exceed the system’s

resources and automatically take the necessary actions to ensure
the system remains functional. This automation should be

combined with user-driven awareness of when and how these

automated actions will occur.
In this paper we present the Smart Aggregation data

management approach that automatically determines when data

reduction is required and aggregates the data as needed while
preserving SA. The approach we propose has been implemented

in a visual analytics system for Information Assurance, VIAssist

(Visual Assistant for Information Assurance Analysis). The
system always remains functional regardless of the users’

(potentially damaging) data requests. This is accomplished by

intelligently selecting specific fields for aggregation from the data
request followed by selection and application of a user ranked

cardinality reducing function for each selected field in order to

control the amount of data returned from the data request. This

* e-mail: dant@securedecisions.avi.com
† e-mail: johng@securedecisions.avi.com

67

IEEE Symposium on Visual Analytics Science and Technology 2007
October 30 - November 1, Sacramento, CA, USA
978-1-4244-1659-2/07/$25.00 ©2007 IEEE

approach ensures that users do not need to know the details of the

data while still maintaining SA.

2 SITUATIONAL AWARENESS

Considerable research on Situational Awareness has been

published in the psychology and human factors literature. Endsley

describes SA as simply “knowing what is going on around you,”
and within that knowledge of your surroundings knowing what is

important [3]. One doesn’t need to know everything, only those

things necessary to make accurate, timely decisions.
In order to maintain SA, it is important to avoid “black box”

approaches in visual analytics systems. Defined as the “Rational

Gap” in information visualization [1], the disconnect between
perception and explanation makes maintaining SA impossible. An

effective visual analytics system should maximize users’ SA by

avoiding approaches that make explanation problematic.
Automatically transforming data without the user’s knowledge or

transforming data in ways a user cannot understand impedes SA.

The deluge of data in many domains – including Information
Assurance, where analysts regularly examine multiple gigabytes

worth of data at a time – often results in the need to reduce or

aggregate data to provide an overview of the entire data set. Even
with advanced information visualization techniques, this data

reduction is often required to gain the big picture comprehension

that is crucial to SA. The challenge discussed in this paper is to
identify data management methods that balance this necessary

data reduction with the need to maintain SA.

3 INTERACTIVE DATA MANAGEMENT STRATEGIES

When dealing with data volumes that are measured in gigabytes

or more, how does a system designer prevent users from
requesting more data than the system is capable of handling and

what are the implications on the user’s SA? Choosing a data

retrieval strategy that will safeguard users from overloading the
available, finite system resources while simultaneously providing

the best possible SA should be done with the clear understanding

of what implications come with each strategy.
The focus of this paper is on interactive data management

approaches for processing interactive, user-driven queries and not

on determining the most efficient data storage algorithm, indexing
schemes, or querying techniques. However, these areas can have a

profound impact on the timeliness of data retrieval. A great deal

of research has been performed on determining efficient storage,
indexing schemes, and querying techniques when working with

extreme amounts of data (e.g., in the 100’s of gigabyte range). In

the area of computer network traffic data, researchers at Lawrence
Berkeley National Laboratory have conducted a great deal of

research on query-driven visualization of large datasets [7][8][9].

Their approach to only visualize what is scientifically interesting
coupled with powerful hardware and efficient bitmap indexing

should certainly be considered when attempting to collect, store,

and process the enormous amount of data flowing on a network.
The concepts outlined in this paper can be implemented into any

visual analytics application that is tied to a back-end repository

that provides mechanisms for aggregating data. The process is
aimed at automatically keeping requested data within client

system tolerable limits and as such can provide added value to all

prior research that has been performed on “increasing the signal
from the noise” and on efficient data storage and indexing

schemes. The remainder of this section will examine common

data retrieval strategies for relational data.

3.1 Result Set Limits

The most straightforward approaches to data management are

those that limit the result sets of queries.

3.1.1 Row Fetch Limits

Naïve data management systems may attempt to use repository

row fetch limits to quickly and easily keep result sets within the

target system’s tolerable limits. Most relational repositories allow
for configuration of the maximum number of rows a result set

from any arbitrary query will return. When a particular query

result set reaches the defined maximum number, the query is
stopped and the max number of records is returned to the user.

Advantages. Most relational repositories offer the capability of

limiting the rows returned from arbitrary queries making this
strategy extremely easy to implement. The target system can be

guaranteed to never receive more than the maximum defined rows

of data thus enforcing the desire for the target system to always
remain functional.

Disadvantages. With row fetch limits the user has no chance of

ever being able to analyze the data that is beyond the defined
maximum row limit. Another drawback is the user is typically not

given any indication of how many records would have returned if

the row limit was not in place.
Situational Awareness. Based upon the percentage of the data

returned in reference to data requested, a user’s SA will quickly

degrade as the percentage of actual data returned decreases.

3.1.2 Cursor Scrolling

A data management strategy that employs database cursor
scrolling performs an initial data fetch where the result set is

limited to the first N rows. Unlike the database limit on rows

returned as described above, the user of an application that has
database cursor scrolling capabilities is able to request the next (or

previous) N rows of data. In essence, database cursor scrolling

allows for a specified data window size that can be moved around
the entire result set.

Advantages. Database cursor scrolling offers utility to users by

allowing them to analyze the entire data set chunk by chunk.
Disadvantages. Users must perform a great deal of cognitive

work. The user will create mental models of each chunk of data

that is analyzed and cognitively fuse those together in the attempt
to form an accurate mental model of the entire data set. This kind

of approach can lead a user to succumbing to the Requisite

Memory Trap SA demon [4] where only a limited amount of
information can be kept in short term memory and any new

information has the potential to replace existing important

information already in memory.
Situational Awareness. Database cursor scrolling is a data

management strategy that has the potential to allow the

maintenance of SA by analyzing each data chunk and cognitively
fusing each chunk to form the “big picture” mental model. Since

the entire data set can not be displayed at one time, the level of

SA that is obtained will vary based upon each user’s mental
capacity to retain information over time. Relying on the user’s

mental capacity is a drawback to obtaining and retaining good SA.

Some users will perform much better than others when faced with
exactly the same circumstances when this strategy is used.

3.2 Forced Criteria

The forced criteria strategy automatically appends specific
criteria to each and every data request to keep the result sets for

all data requests within system tolerable limits. Two types of

forced criteria approaches are described below.

3.2.1 System-Defined Forced Criteria

The system-defined forced criteria strategy includes the data
fields and values that the system designer has determined will

keep the result sets within system tolerable limits. Fields that are

often chosen for forced criteria often involve a date/timestamp
field reflective of when a particular record was added to the

68

repository. System administrators of the system would have a

good understanding of the magnitude of data that is typically
inserted each hour, day, week, month or year. The administrators

would leverage this knowledge along with their understanding of

the target system’s tolerable limits and enforce every data request
to include criteria of a certain time span that is believed to return a

tolerable amount of data for the target system. Of course, other

field types could be used in place of or in addition to the
date/timestamp field to limit data retrieval. The fields that will

make the most sense are highly dependent upon the nature of the

data being collected.
Advantages. System-defined forced criteria is very simple to

implement and can be an effective way of reducing data load.

Disadvantages. Users are only presented with what may be a
small “slice” of the data. Due to the presence of the forced

criteria, the user is never able to see the “big picture” of the data.

Although the forced criteria may be fully disclosed to users,
providing them with an understanding that the data has been

artificially restricted, users can easily formulate an inaccurate

mental model of what the entire data set is really conveying
because they are only seeing a small slice. Another problematic

characteristic of system-defined forced criteria deals with the

uncertainty of future data throughput. Criteria based on studies of
historical data throughput and content may not be an accurate

indication of future data throughput and content, thus causing

current forced criteria to be either too restrictive or not restrictive
enough for future circumstances.

Situational Awareness. This method tends to provide users

with poor SA due to inability to grasp the “big picture” and the
ease of forming an inaccurate mental model of the situation based

upon analysis of only a section or slice of the data. Further, if the

system administrator changes the criteria to keep up with
changing usage, the users must also maintain awareness of the

dynamically changing criteria.

3.2.2 User-Configurable Forced Criteria

User-configurable forced criteria can be used to overcome some

of the disadvantages of system-defined forced criteria section.
This data management strategy forces a user to repeatedly select

fields and criteria values to build a forced Structured Query

Language (SQL) where clause that is used to restrict the requested
result set. Each time a user adds a new piece of criteria to the data

request, a count query can be generated to help determine if the

requested result set will be within tolerable limits prior to making
the full data request. While the request is outside the tolerable

limits for the target system, users are forced to add more criteria.

Once the count query is found to be within tolerable limits, the
full query can be submitted and the result set displayed.

Advantages. This easily implemented approach improves upon

the system-defined forced criteria in that the user has full control
over how the data is filtered rather than relying on the system to

define the criteria.

Disadvantages. Users are still only presented with what may be
a small “slice” of the data, preventing the big picture view.

Situational Awareness. Poor SA can still result with large data

sets due to the user only retrieving a slice of data. Although the
attempt to keep the user “in the loop” increases the chances of this

strategy giving the user better SA over system-defined forced

criteria, this approach still suffers from the inability for users to
see the “big picture” which fosters inaccurate mental models of

the situation resulting in this approach providing the user with

overall poor SA.

3.3 Aggregation

The term aggregation refers to the grouping of multiple items

together to form a single item. It is essential in managing massive

data to determine methods in which the data can be aggregated to

produce smaller data sets. In terms of SQL, aggregation is most
commonly performed by making use of the Group By, Select

Distinct, and available aggregation functions capabilities.

Group By essentially allows for the “roll-up” or clustering of
data based upon the field(s) defined in the Group By. For

example, to determine the average salary paid in each department

one could formulate the simple SQL statement: SELECT Dept,
AVG(Salary) FROM Employee GROUP BY Dept;

This statement will only return a row count that is equal to the

number of distinct departments regardless of how many records
actually exist in the Employee table. As the SQL statement shows,

when Group By constructs are used all fields that are not included

in the Group By clause must have aggregating functions, such as
AVG, placed on them.

Select Distinct allows a SQL request to only bring back a single

row of data for each distinct combination of fields.
Aggregation Functions are used to reduce the cardinality of a

specific data column. Cardinality is defined as the number of

unique elements found in a specified data column. Low
cardinality data columns contain a high percentage of repeated

data values. High cardinality columns contain a low percentage of

repeated data values. The SQL aggregation functions of count,
minimum, maximum, sum, and average all reduce a column’s data

cardinality to a single value regardless of how many rows of data

exist in the specified table of which the data column belongs.
Typically, aggregation involves a combination of Select

Distinct and/or Group By in concert with the various aggregation

functions that have been outlined above. Depending on the actual
nature of the data this kind of standard aggregation may be

sufficient to produce manageable result sets from arbitrary SQL

data requests. This is especially true if only a handful of low
cardinality fields are being requested. If, however, a large number

of fields from the database are typically requested, this simple

approach to aggregation will very likely not be able to reduce the
data – each additional field lowers the ability for Group By

constructs to reduce the result set. This aggregation approach also

breaks down when any number of fields (large or small) are
requested where one or more of the fields are considered to be of

high cardinality, those fields with a great deal of variation. High

cardinality fields such as date/time fields in SQL requests are
unable to have their result sets reduced by merely grouping data

or asking for distinct values. The very nature of high cardinality

fields is that there are many unique values thus defeating the
attempt to cut down a result set by only requesting unique values.

Many applications that do not “gracefully”1 handle large data

use only the simple aggregation approach where the sole attempt

was to group data and not change or transform the data in any

way. However, to design a system that successfully handles large

data and maximizes the user’s SA, system designers must venture

into aggregation methods that not only attempt to group data but

also transform it into higher levels of abstraction.

Advantages. Aggregation can help visual analytics applications

survive and perform well in massive data environments. SA can
be obtained by users who understand when aggregation is

required, what fields are best to aggregate, and how best to

perform the aggregation.
Disadvantages. If the visual analytics application merely

provides the opportunity for users to aggregate fields as they

desire, less experienced users will perform data requests that will
overload the target system. SA will likely only be obtained from

1
 The term “gracefully” in this context is used to denote the need to

automatically detect and take appropriate aggregation action when large

result set data requests are being made that would result in system

degradation.

69

expert users who have a thorough understanding of what fields in

his repository are of high cardinality and need to be aggregated in
order to keep the system in a useable state. Thus, the user must

have an excellent grasp of the data itself. Expert users may also

recognize the simultaneous request of many low to medium
cardinality fields may also require aggregation on certain fields in

order to keep the system functional. The underlying problem is no

safe guard exists for users of visual analytics systems that simply
offer aggregation capabilities as a tool for users to embrace. Users

who are not familiar with the collected data will very quickly find

themselves in a situation of requesting more data than the system
can handle.

Situational Awareness. The aggregation methods outlined here

have the ability to provide SA to those users who have an intimate
understanding of the data and are savvy enough to know when to

make use of the aggregation calculations. Without system logic

that can automatically detect when such aggregation needs to take
place, the system will quickly succumb to an unsuspecting data

request that exceeds the target system’s capabilities.

4 SMART AGGREGATION

Two particular assumptions that many visual analytics

applications make are: the end-user knows what they are looking
for; and the end-user knows how and when to apply criteria to

reduce the size of the result set from a given data request.

Unfortunately, these very assumptions cause many of the
applications to fail to gracefully handle massive data requests.

Users of visual analytics systems often explore without really

knowing what they are looking for within the data set. Indeed, this
is one of the powers of information visualization – the ability to

formulate and answer questions they did not anticipate [5]. This is

especially true for analysts studying massive amounts of network
traffic. For this reason, it is important for the data presentation

system to provide the flexibility of arbitrary data requests.

In order for a visual analytics system to provide the best SA and
reduce the amount of data to display, aggregation algorithms need

to focus on reducing the granularity of the data to present. That is,

functionality needs to be developed that is capable of taking a
request for detailed information, recognize when the result set of

the request will be too much for the system (or user) to handle,

and transform the request into a higher level summarized data
request that is capable of still returning meaningful data to the

user. Our term for this process is Smart Aggregation. Specifically,

the Smart Aggregation approach we present here performs the
following: (1) Determine if aggregation is required; (2) Select

candidate fields to aggregate, based on the cardinality of the field

data and the user-specified field ranking; (3) Choose an
appropriate aggregation function to apply to each candidate field

based upon the computed cardinality reduction factor and field

calculation rankings; (4) Replace original candidate field requests
with the new field request that includes the computed aggregation

calculation; (5) Perform a cluster query that only retrieves distinct

field combinations from the repository with an associated count of
how many times that combination exists in the data set for the

current set of criteria

Before stepping through a data request, we will present some of
the underlying concepts and functions used in Smart Aggregation.

4.1 Data Transformation Aggregation Functions

One way to transform the data into higher levels of abstraction
is by applying cardinality reducing functions to the requested

fields. A sample of standard SQL data transformation functions

and how they can be used are described below.
General (Is Null). The Is Null function will reduce any single

field’s set of results down to two rows – either 0 (false) if the

column value is present or 1 (true) if the column value is not

present for any given row. Although this provides great reduction
in data, the outcome of knowing whether data exists or not may

prove to be of little use to the user.

String Functions (Upper, Lower, Trim). Although the string
functions may not appear to have cardinality reduction

capabilities, they are able to reduce row counts if the underlying

data was entered with various casing or with trailing spaces.
These functions would be considered to be low cardinality

reducing functions unless the underlying data was consistently

added with various casing and no normalization has taken place.
Integer Functions (Count, Min, Max, Sum, Avg, etc.). These

calculations are all considered to be high cardinality reducing

calculations since they all produce a single value regardless of
how many rows of data they are applied to. Care should be taken

on the use of these functions since they may aggregate data to a

level that has little benefit to the user. (e.g., the field destination
port of network traffic data that has any one of these functions

placed on it provides the analyst with no useful analytical insight.)

Date Functions (Name, Year, Quarter, Month [number],
Month Name, Week of Year, Week of Month, Day of Year, Day
of Month, Day of Week [number], etc.). Since “raw” date time

fields are typically of high cardinality, functions to help
summarize the data for these fields can be very beneficial. There

are many functions that can be placed on date time fields ranging

from high cardinality reducing functions such as Quarter or Day
of Week (where data will be reduced to a maximum of 4 or 7 rows

respectively regardless of row count) to lower cardinality reducing

functions such as Day of Year Truncation (where data will be
reduced to a maximum of 365 rows regardless of row count).

4.2 Regular Expression Field Binning

In order to provide the best possible SA to a user, a system
designed to deal with massive data should provide a way for the

user to help configure how fields should be aggregated. Giving

this control to the user allows him to have full control over how
the underlying data is grouped when aggregation needs to take

place. Providing an easy to use user interface that makes use of

regular expressions (definition of a pattern that describes a set of
values) is a very powerful way to offer the capability of users

defining their own aggregation groupings. For example, there are

65,536 possible destination ports in TCP or UDP computer
network traffic; a system could allow an analyst to define his own

port groupings. Analysts may group the destination ports in just a

few bins, such as ports 0–1023 (the “well known ports”), 1024–
49,151 (“registered ports”), and 49,152–65,535 (“dynamic

ports”). This coarse binning could be augmented by also grouping

common ports based upon what they are used for; such as
grouping ports 80, 443, and 8080 (web traffic) together and ports

20 and 21 (FTP traffic) together. Obviously, the user of regular

expressions enables much more complex binning options.

4.3 Targeting High Cardinality Fields

One important concept designers of a visual analytics system

dealing with massive data need to keep in mind is no matter how
much aggregation is performed, if the highest cardinality fields

are not properly aggregated, aggregating lower cardinality fields

will be ineffective and waste system resources. For instance, if a
data request is made for three fields: Date, Source, and Bytes,

where Date is the date/time field of when the record was added to

the database, Source is the source IP address, and Bytes is the
number of bytes that were transferred from the Source IP. Table

1shows a sample of what the original data might look like.

70

Table 1. Original data with no aggregation

Date Source Bytes

2/12/07 14:05:21 192.19.20.1 512

2/12/07 14:05:22 192.19.25.123 331

2/12/07 14:05:23 192.29.201.4 200

2/12/07 14:05:24 200.20.1.231 679

2/12/07 14:05:25 200.18.20.5 64

2/12/07 14:05:26 192.19.25.11 128

If high cardinality reduction aggregation was placed only on

Source and Bytes such that only the first octet of the Source IP is
requested and the maximum value of the Bytes was requested (as

shown in Table 2), the returned row count will likely be exactly

what it was prior to the aggregation. The reason for this is the
highest cardinality field of Date had no aggregation imposed on it.

Table 2. Aggregation on source and bytes

Date Source (Octet A) Bytes (MAX)

2/12/07 14:05:21 192 512

2/12/07 14:05:22 192 331

2/12/07 14:05:23 192 200

2/12/07 14:05:24 200 679

2/12/07 14:05:25 200 64

2/12/07 14:05:26 192 128

Without imposing aggregation on the highest cardinality field,

aggregation imposed on the other fields will provide little benefit
to reducing the actual number of records returning from the

request. However, aggregating on the Date field, such as by Day

of Week, as shown in Table 3, does reduce the number of rows
returned.

Table 3. Aggregation on all fields

Date (Day of Week) Source (Octet A) Bytes (MAX)

Monday 192 512

Monday 200 679

4.4 Analysis of Data Request

To understand how Smart Aggregation works, we will step

through a data request that passes through the Smart Aggregator.
The Smart Aggregator’s role is to determine how much data from

the repository is being requested and then compare that value

against a configurable maximum data threshold value. To achieve
this, the Smart Aggregator performs a count query against the

repository to obtain: (1) a total row count that will be returned,

and (2) a count of the distinct values for every column that the
original query would be selecting.

The Smart Aggregator stores in an XML metadata file a Byte

Cost value for each defined field. This is determined based on the
data type of the field. For example, Boolean fields have a byte

cost of 1 and Integer fields a cost of 4. String byte costs are based

upon an estimation of the average length of data to be stored for
that column. The Smart Aggregator determines a row Byte Cost

value by summing up the byte costs for all fields involved in the

Select portion of the query and then multiplies the row Byte Cost
by the total row count to obtain the potential byte size of the data

that would be returned if the “real” query was executed. If this

potential byte size is greater than the configured maximum data
threshold value, the Smart Aggregator performs the following

steps:

1. Check the cardinality ratio for each column. The
cardinality ratio is the number of distinct values divided by

the actual row count. If the cardinality ratio is found to be

higher than the configured maximum cardinality ratio

threshold, then the field is aggregated regardless of what
aggregation policy is currently in place. Forcing the

aggregation of the highest cardinality columns ensures the

best possible chance of reducing the data load that is to be
returned from the query.

2. Determine the appropriate level of aggregation. The Smart

Aggregator compares the improvement ratio (Byte Cost
divided by Maximum Byte Threshold) against various user

configured improvement factors to determine if a LOW,

MEDIUM, HIGH, TWO_ROW, or SINGLE_ROW
cardinality reducing improvement is required.

3. Consult the aggregation policy. A policy is a collection of

system-defined rules that use user configured parameters
to drive the aggregation process. This policy is used to

determine the aggregating reduction function that should

be used for the specified field. For example, Source IP
field with a HIGH cardinality reducing improvement

request may be forced to use a function that truncates the

Source IP at the first octet, whereas a LOW cardinality
reducing improvement may force a truncation at the third

octet.

4. Calculate new Byte Cost. Upon completion of aggregating
the high cardinality columns, a byte improvement value is

calculated and subtracted off of the original computed total

byte cost. If the new byte cost is below the configured
maximum data threshold, no more aggregation is required

on this pass. If, however, more aggregation is still

required, new fields are found to attempt aggregation from
the user’s field ranking list and steps 2 and 3 are repeated

until the estimated total byte cost falls below the

configured maximum data threshold.
5. Repeat steps 1-4. Each of the previous steps are repeated

with the new aggregated fields until the actual byte count

is found to fall below the configured maximum data
threshold. It is possible that on subsequent passes, fields

that had cardinality reducing functions on them that were

lower than SINGLE_ROW strength, will be re-evaluated
and forced to have higher cardinality reducing functions

placed on them.

The intelligent aggregation significantly reduces the returned
data to a manageable level. All visualization views that were

configured with fields tagged to use the Smart Aggregator have

their configurations replaced with the aggregated form of the
field. This provides the user with what may be a higher-level view

of the data than initially intended, but with the benefit of ensuring

that that the limited system resources are not used up. The user
can then interactively filter the data, zoom into (drill-into) the data

as needed, or revise their original query.

4.5 Implementation

The Smart Aggregation concept described in this paper was

implemented in a visual analytics system for the information

assurance (IA) domain, VIAssist, shown in Figure 1. IA analysts
deal with a vast amount of multidimensional data. VIAssist was

designed to enhance the SA of IA analysts, specifically to:

• Show the same data simultaneously in multiple ways to
reveal patterns that would otherwise not have been detected

to enhance the user’s SA;

• Provide context for the area of focus by building a
framework of views that can interactively be replaced or

resized to keep views visible that are relevant to the analyst

to help in maintaining SA;
• Promote fast data manipulation through intuitive visual

interaction mechanisms – while also providing access to

71

textual queries for advanced users – to allow a “glass box”
understanding of the system necessary for SA.

The concentration of system development was on the interface

and data management frameworks and not on developing new
visualization components. Rather, we currently utilize multiple

proven, existing visualization components. Based upon the

framework design, integration of new visualization components at
a future date is a straightforward activity.

4.5.1 Setting the Smart Aggregator Policy

VIAssist gives the user control over how the Smart Aggregator

chooses fields and functions for aggregation. The user interface

for setting the Smart Aggregation policy, shown in Figure 2,
allows the user to rank all of the available fields from most

important to least important. The fields defined as most important

will be aggregated last, unless the column cardinality for the given
query is considered to be above the highest threshold. The user

also has the opportunity to individually configure and rank the

aggregation functions for each of the fields. This allows the user
to determine the most preferred functions for a given field if smart

aggregation needs to take place. All field calculations have a

“cardinality reducing strength” associated with them stored in the
metadata file that describes what tables, fields, joins, vendors, etc.

are available to the system. Currently, the system has two

implemented aggregation policies:
Maximum Data Retrieval: the maximum data retrieval policy

will use the user’s field rankings when determining which fields

to aggregate and use the user’s rankings as a guide when
determining what cardinality reducing function should be applied

to the field. The policy is such that it will traverse the list of

ranked functions for the current field being aggregated and use the
first calculation that has a cardinality reducing function that

matches the required field improvement computed by the system.

Functions that were already attempted for this field will be
skipped. If no functions are found that match the required field

improvement, the required field improvement is increased to the

next highest level and the process is repeated.
User Function Rankings: the user function ranking policy

operates in a similar fashion to the Max Data Retrieval policy.

However, when determining what cardinality reducing function to
use, this policy traverses the User Function Ranking list and will

use the first cardinality reducing function that is equal to or higher

than the required field improvement that was computed by the
system. Using this policy, the functions that the Smart Aggregator

selects have a better chance of matching the user’s preferred

functions, but if the user’s most preferred function rankings for
each field tend to be of a high cardinality reducing strength, then

it is possible that the Smart Aggregator will aggregate at a higher

level than necessary.

4.6 Enhancing Situational Awareness

The Smart Aggregation data management strategy is capable of

automatically detecting when a user data request is going to result
in a result set that exceeds the target system’s capability. After

detection, the Smart Aggregator consults an aggregation policy

that makes use of user-configured preferences to determine which
fields should be aggregated and how those fields should be

aggregated. This approach prevents the user from potentially

requesting too much data that the target system is unable to
handle. It reduces the data presented to the user, making the

overview of the data more understandable, while enabling users to

zoom into their data.
This approach enhances SA by allowing the user to readily see

the big picture. Large data result sets without any aggregation can

saturate the visualization display, making SA impossible. Take,
for example, the screen shot displayed in Figure 3, which

visualizes a data result set with no aggregation, as compared to

Figure 4, which visualizes the same result set after having passed
through the Smart Aggregator. In the former, it is impossible to

glean a meaningful overview of the data; in the latter it is much

clearer to determine an overview of the characteristics of the data.
Further, the Smart Aggregation approach described in this

paper permits users to follow Shneiderman’s Visual Information

Seeking Mantra: Overview first, zoom and filter, then details-on-
demand [6]. After gaining an overview, the user can interactively

decrease the level of aggregation to zoom in and filter the data.

This interactive drill in is shown in Figure 5, in which one of the
branches of the tree have been de-aggregated to show the details

of each individual data element.

4.7 Smart Aggregator in the Field

As many computer network traffic analysts would attest, even

attempting to analyze what is considered to be interesting is still

too much data to process and visualize. As a result, many analysts
still rely on scripting tools to look for specific “known” data, but

have no way to effectively explore the data. Our recommendation

is to take advantage of the scripting tools that analysts are familiar

Figure 2. Smart Aggregator user interface for defining the policy to

use (left), and ranking preferred fields and calculations (right)

Figure 1. VIAssist visual analytic system showing linked

visualization views and interaction mechanisms

72

with to do any preprocessing or data reduction, and insert that data

into a data warehouse. This is the approach we took in a field trial
of VIAssist at a government facility. The users were network

analysts who regularly examine massive amounts of NetFlow

data. (NetFlows are aggregated records of network traffic between
two computers [2].)

The NetFlow data was input into a data warehouse optimized

for data querying. The analysts who had used VIAssist with
operational data appreciated the ability to detect and take action

when requests were going to produce result sets that were too

large for the system to handle. Analysts were also appreciative of
the ability to produce result sets of higher data resolution when

criteria is automatically appended to the data request upon the

analyst drilling-in to data items of interest. The capability of
allowing users to define their own aggregation bins in addition to

the capability to affect the Smart Aggregation process through

field and aggregation function ranking proved to be important
factors in analysts gaining SA of the data being analyzed.

4.8 Smart Aggregation Example

A novice IA analyst decides to use VIAssist to analyze a small

set (two million rows) of NetFlow data collected over a single

hour. After loading the data into VIAssist’s visualization

repository, the analyst decides to configure a workspace of views

to show Source IP, Destination IP, Destination Port, Start Time,

Duration, and number of Bytes transferred. The analyst can see

there are 2 million records in the main table of the database since

it is displayed at the top-left corner of the application window.

The novice analyst pays no attention to the record count and

decides to perform a full data fetch from the repository without

supplying any criteria. However, the Smart Aggregator is able to

detect data overload situations by performing a pre-count query

for the desired fields (see Table 4).

Table 4. Distinct field counts of 2 million row table

Src IP Dst IP Dst
Port

Start
Time

Dura-
tion

Bytes Total
Rows

119,440 728,491 57,189 3,169 1,220 24,759 2 Mil

A distinct row count involving the requested fields returns

1,942,791 and an estimated byte cost of 68 bytes/row. The system

determines aggregation that will result in a high system

improvement is required. Field distinct value counts are checked

to see if any field’s cardinality exceeds the high cardinality

threshold ratio. The Destination IP field was found to exceed this

value and because a high improvement is needed, an IP truncation

at octet A is required.

Before performing another count query, the Smart Aggregator

determines if additional fields need to be aggregated on this pass

by subtracting off the total number of bytes that would be saved if

the field that was just flagged for aggregation was reduced down

to a single row. This estimation allows the system to quickly

determine that more aggregation needs to take place before

approaching system-tolerable limits. The aggregation policy

determines the next field selected for aggregation is the Start Time

field. Based upon the determination that a high system

improvement is still required, the highest ranked high cardinality

reducing function Day-of-week is selected. The Smart Aggregator

once again determines that more aggregation needs to be

performed during this pass and consults the aggregation policy for

the next lowest ranked field to be aggregated. Using the same

process as above, the system selects the Bytes field for

aggregation, chooses a user-defined binning function, and repeats

the process once more, selecting Destination Port also with a user-

defined binning function. At this point, the system determines it

might have done enough aggregation and allows another set of

count queries to take place. A new count query is generated where

it is determined more aggregation is still required (see Table 5 for

aggregation pass results).

Table 5. Distinct field counts for each aggregation pass

 Src IP Dst
IP

Dst
Port

Start
Time

Dura-
tion

Byt
es

Total
Rows

1 119,440 30 3 1 1220 3 459,461

2 131 30 3 1 6 3 32,970

The Smart Aggregator determines that a high improvement is

still required and finds two new fields for aggregation (Source IP

and Duration). The function of truncation at octet A is applied to

Source IP and a user-defined binning is applied to duration. The

system estimates it has made enough improvements and performs

another count query taking into account the new aggregation

functions, which returns a result within tolerable limits. The full

query to extract the data from the repository is submitted and the

results are displayed upon query completion.

4.9 Costs of Performing Smart Aggregation

As is the case with all data reduction schemes, there are costs

associated with methods used to perform data reduction and the

Figure 3. Tree with no aggregation showing an IP address at the

root with time, byte size bins, and destination port bins

Figure 4. The tree shown in Figure 3 after Smart Aggregation,

reducing occlusion while enabling the user to see the big picture

73

Smart Aggregation technique is no exception. The main cost of

using the Smart Aggregation approach is the time required to

iteratively run count queries against the target repository. Other

factors that affect the performance of the Smart Aggregation

count queries include:

• Number of fields involved in the database request – more

fields typically equates to more time required.

• Aggregation calculations that are placed on fields selected

for aggregation – some functions may cause the data

repository to perform an expensive operation for every

record or cause a situation where an index can not be used to

quickly retrieve the desired set of records. This situation can

result in negatively impacting the query completion time.

• Order of aggregation function rankings for each field can

negatively impact performance by forcing more passes under

conditions when functions that have less actual cardinality

reducing capabilities are ranked higher than functions that

are considered to have the same theoretical cardinality

reducing strength.

• Likewise, order of field ranking could also cause additional

passes to be taken by the Smart Aggregator when high

cardinality (but lower than the max configured threshold)

fields are ranked higher than lower cardinality fields. We

believe that this is a cost that most users would be willing to

bear (if given the choice) since the system is attempting to

provide the user with the highest fidelity of data for those

fields that are most important to the user.

5 CONCLUSION

In the face of massive data sets now common in many domains,
the Smart Aggregator ensures a visual analytics system always

remains functional. Users have the ability to rank fields in order of

importance and configure and rank aggregation functions in order
of preference. By providing these user configurable options, users

are involved in the interactive data management process and as

such gain a firm understanding of how the system functions.
However, this user control is not necessary; the user does not need

to know details of the underlying data they wish to explore. The

configurable policies for individual fields ensure that the
aggregation is not only done intelligently, but also according to

the user’s needs. With a firm understanding of how the system

functions comes increased confidence in the visual analytics
system that equates to improved SA for the user.

One potential drawback of Smart Aggregation is that multiple

count queries attempts will likely take place in order for the

system to find the optimal level of aggregation. Repositories that

are optimized for data insertion and not querying may experience
degradation in performance.

Smart Aggregation balances the need for data reduction and

situational awareness. Users do not need to know the details of the
data, but have the ability to tweak the policy that sets how the

aggregation takes place. The system is prevented from

overloading available resources, and users are prevented from
overloading their perceptual capabilities and are able to better

understand the big picture required for SA.

ACKNOWLEDGEMENTS

The development of VIAssist was sponsored by the US

Department of Defense (DoD) under Contract No. F30602-03-C-
0260, with the Air Force Research Laboratory (AFRL) as the

contracting agency. The authors would like to acknowledge the

continuous beneficial guidance during VIAssist development
offered by Dr. Kirsten Whitley of the US DoD and Mr. Walt

Tirenin of the AFRL in Rome, NY. The views and conclusions

contained in the document are those of the authors, and should not
be interpreted as representing the official policies, either

expressed or implied of AFRL, DoD, or the US Government.

VIAssist contains Star Tree® and Table Lens™ from Inxight
Software, Inc. (Copyright © 1996-2005. All rights reserved.

www.inxight.com), and views from ADVIZOR Solutions (©

2006. All rights reserved. www.advizorsolutions.com).

REFERENCE

[1] Robert Amar and John Stasko, “A Knowledge Task-Based

Framework for Design and Evaluation of Information

Visualizations”, Proc. of the IEEE Symposium on Information

Visualization, pp. 143-149, 2004.

[2] Cisco Systems NetFlow Services Export Version 9,

http://www.ietf.org/rfc/rfc3954.txt, 2004.

[3] Mica R. Endsley, “Theoretical Underpinnings of Situational

Awareness: A Critical Review”, Situation Awareness Analysis and

Measurement: Analysis and Measurement, Mica R. Endsley and

Daniel J. Garland, Lawrence Erlbaum Associates, Mawah, NJ, 2000.

[4] Mica R. Endsley, Betty Bolte, and Debra Jones, “Designing For

Situation Awareness: An Approach to User-Centered Design”,

Taylor and Francis New York, NY, pp. 33-34, 2003

[5] Catherine Plaisant, “The Challenge of Information Visualization

Evaluation”, Proc. of the IEEE Conference on Advanced Visual

Interfaces, pp. 109-116, 2004.

[6] Ben Shneiderman, “The Eyes have It: A Task by Data Type

Taxonomy for Information Visualizations”, Proc. of the IEEE

Symposium on Visual Languages, pp. 336-343, 1996.

[7] E. Wes Bethel, et al., “Accelerating Network Traffic Analytics Using

Query-Driven Visualization”, Proc. of the IEEE Symposium on

Visual Analytics Science and Technology, pp. 115-122, 2006

[8] Kurt Stockinger, et al., “Network Traffic Analysis With Query

Driven Visualization SC 2005 HPC Analytics Results”, SC05

Conference Proceedings, 2005.

[9] Kurt Stockinger, John Shalf, Kesheng Wu, and E. Wes Bethel,

“Query-Driven Visualization of Large Data Sets”, Proc. of the IEEE

Visualization 2005, pp. 157-174, 2005

Figure 5. Tree with Smart Aggregation after drilling in to one of the

branches of interest

74

