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Balancing Minimum Spanning Trees and 

Shortest-Path Trees 

S. Khul ler ,  1 B. Raghavachar i ,  2 and  N. Young  3 

Abstract. We give a simple algorithm to find a spanning tree that simultaneously approximates a 
shortest-path tree and a minimum spanning tree. The algorithm provides a continuous tradeoff: given 
the two trees and a 7 > 0, the algorithm returns a spanning tree in which the distance between any 

vertex and the root of the shortest-path tree is at most 1 + x/27 times the shortest-path distance, and 

yet the total weight of the tree is at most 1 + ,~/2/~/times the weight of a minimum spanning tree. 
Our algorithm runs in linear time and obtains the best-possible tradeoff. It can be implemented on 

a CREW PRAM to run a logarithmic time using one processor per vertex. 

Key Words. Minimum spanning trees, Graph algorithms, Parallel algorithms, Shortest paths. 

1. Introduction.  A minimum spanning tree of an edge-weighted  g raph  is a spanning  

tree of  the g raph  of  m i n i m u m  to ta l  edge weight. A shortest-path tree roo t ed  at  a 

vertex r is a spann ing  tree such that ,  for any  vertex v, the d is tance  between r and  

v is the same as in the graph.  

M i n i m u m  spann ing  trees and  shor t e s t -pa th  trees are fundamen ta l  s t ructures  in 

the s tudy of  g raph  a lgor i thms  [10], [11], 1-15], [19];  fast a lgor i thms  for f inding 

each are k n o w n  [12], [13]. Typical ly ,  the edge-weighted  g raph  G represents  a 

feasible ne twork .  Each vertex represents  a site. The goal  is to instal l  l inks between 

pairs  of  sites so tha t  signals can be rou ted  in the resul t ing ne twork .  Each  edge of  

G represents  a l ink tha t  can be installed.  The  cost  of  the edge reflects bo th  the 

cost  to instal l  the l ink and  the cost  (e.g., time) for a signal  to t raverse  the l ink once 

the l ink is instal led.  A m i n i m u m  spann ing  tree represents  the least  cost ly set of  links 

to instal l  so tha t  all sites are  di rect ly  or  indi rec t ly  connected,  while a shor t e s t -pa th  

tree represents  the set of l inks to instal l  so that ,  for each site, the cost  for a signal 

to be sent  between the site and  the roo t  of  the tree is as small  as possible.  
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Fig. 1. Approximating both a minimum spanning tree and a shortest-path tree. (a) Euclidean graph, 
(b) minimum spanning tree with distance blow-up, (c) Heavy shortest-path tree, and (d) Light, 

approximate shortest-path tree. 

The goal of a minimum spanning tree is minimum weight, whereas the goal of 

a shortest-path tree is to preserve distances from the root. We show that a single 

tree can approximately achieve both goals. That  is, the cost to install a set of links 

so that every site has a short path to the root is only slightly more than the cost 

just to connect all sites. 
Figure 1 shows a set of points in the plane. These points naturally induce a 

complete graph in which the weight of each edge is the Euclidean distance between 

the points. The weight of the shortest-path tree is much more than the weight of 

a minimum spanning tree. Conversely, in the minimum spanning tree the distance 

between the root and one of the vertices is much larger than the corresponding 

shortest-path distance. Nonetheless, there is a tree which nearly preserves distances 

from the root and yet weighs only a little more than the minimum spanning tree. 
We call such a tree a Light Approximate Shortest-path Tree (LAST). The main 

result of this paper is that such trees exist in all graphs and can be found efficiently. 
Let G = (V, E) be a graph with nonnegative edge weights and a root vertex r. 

Let G have n vertices and m edges. Let w(e) be the weight of edge e e E. The 
distance Da(u, v) between vertices u and v in G is the minimum weight of any path 

in G between them. 
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DEFINITION 1. For  ~_> 1 and fl_> 1, a spanning tree T of G meeting the 

following two requirements is called an (e, fl)-LAST rooted at r. 

�9 (Distance) For every vertex v, the distance between r and v in T is at most a 

times the shortest distance from r to v in G. 

�9 (Weight) The weight of T is at most fl times the weight of a minimum spanning 

tree of G. 

THEOREM 1 (Section 3). Let G be a graph with nonnegative edge weights; let r 

be a vertex of  G; let ~ > 1 and fl > 1 + 2/(a - 1). Then G contains an (~, f i )-LAST 

rooted at r. The LASTcan  be computed in linear time given a minimum spanning tree 

and a shortest-path tree, and in O(m + n log n) time otherwise. 

Note that there is a tradeoff between the approximations of the two trees. The 

tradeoff is the best possible: 

THEOREM 2 (Section 4). Fix ct > 1 and 1 _< fl < 1 + 2/(ct - 1). A planar graph 

G with a vertex r exists such that G contains no (a, f l )-LAST rooted at r. Deciding 

whether a given graph contains an (~ f l)-LAST rooted at a given vertex is NP- 

complete. 

Note that for fi --- 1, the problem is to find a minimum spanning tree that best 

approximates a shortest-path tree. It follows from Theorem 2 that this is NP- 

complete. When ~ = 1, the problem is to find a minimum-weight shortest-path 

tree. This problem can be solved in linear time, even in directed graphs: 

THEOREM 3 (Section 5). Given any shortest-path tree of a directed or undirected 

graph rooted at a given vertex, a minimum-weight shortest-path tree can be found 

in linear time. 

Finally, LASTs can also be found quickly in parallel, given a minimum spanning 

tree and shortest-path tree (or approximations thereof, see Section 3.4): 

THEOREM 4 (Section 6). Given ~ > 1, a minimum spanning tree, and a shortest- 

path tree, an (a, 1 + 2/(a - 1))-LAST can be found by n processors in O(log n) 

time on a C R E W  P R A M .  

2. Related Work. Trees realizing tradeoffs between weight and distance require- 

ments were first studied by Bharath-Kumar and Jaffe [411 The authors '  weight 

requirement was the same as ours, but their distance requirement was that the 

sum of the distances from the root to each vertex should be  at most fl times the 

minimum possible sum. They showed the weaker tradeoff that the desired tree 

exists if ~fl _> | 
Awerbuch et al. [2], motivated by applications in broadcast-network design, 

made a fundamental contribution by showing that every graph has a shallow-light 
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t ree- -a  tree of diameter at most a constant times the diameter of G and of weight 

at most a constant times the weight of the minimum spanning tree. Our algorithm 

is a modification of their algorithms. Cong et aI. [7] [9], motivated by applica- 

tions in VLSI-circuit design, improve the constants in the construction of [-2] and 

consider variations bounding the radius of the tree instead of the diameter. 

Recently and independently, Awerbuch et al. [3] modified the algorithm from [2]. 

They obtained the same algorithm as in [8] but a stronger analysis, proving that 
the algorithm computes on (e, 1 + 4 / ( e -  1))-LAST. Their algorithm takes 

O(m + n log n) time. Our algorithm achieves a strictly stronger distance require- 

ment than the above algorithms. 

Considerable research has been done on finding spanners of small size and 

weight in arbitrary graphs [1], [5], [17] and in Euclidean graphs induced by 

points in the plane [5], [6], [16], [20]. A t-spanner is a low-weight sugraph G' of 

G such that, for any two vertices, the distance between them in G' is at most t 

times the distance in G. It is known that there are graphs that do not have 

constant-spanners of net weight bounded by a constant times the weight of the 

minimum spanning gree. Awerbuch et al. [3] also consider light trees that have 

low average distance-blowup on all nontree edges. References to most of the work 
on graph spanners may be found in the paper by Chandra et al. [5]. 

We can reduce the problem of finding an (e, 1 + 2/(e - 1))-LAST to the problem 

of finding an a-spanner Of weight at most (1 + 2/(e - 1)) times the minimum 

spanning-tree weight in a planar graph. An algorithm achieving the latter is 

given in [1]. This gives an alternate (but less efficient) method of finding an 

(e, 1 + 2/(e - 1))-LAST. 

3. The Algorithm. The algorithm is given an e > 1, a minimum spanning tree, 

and a shortest-path tree rooted at a vertex r. It returns an (e, 1 + 2/(e - 1))-LAST 
rooted at r. 

The basic idea of the algorithm is to traverse the minimum spanning tree, 

maintaining a current tree, and checking each vertex when it is encountered to 

ensure that the distance requirement for that vertex is met in the current tree. If it 

is not met, the edges of the shortest path between the vertex and the root are added 

into the current tree. Other edges are discarded so that a tree structure is 

maintained. 

After all vertices have been checked and paths added as necessary, the remaining 

tree is the desired LAST. The final tree is not too heavy because a shortest- 

path is only added if the path that it replaces is heavier by a factor of 

e > 1. This allows a charging argument bounding the net weight of the added 
paths. 

3.1. Relaxation. The tree is maintained by keeping a parent pointer p[v] for each 

nonroot  vertex v. To avoid recomputing shortest-path distances when a path is 

added, the algorithm maintains a distance estimate d Iv] for each vertex v. 
This distance estimate, which is an upper bound on the true distance in the 
current tree, is used in deciding whether to add a path to the vertex. The 
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parent pointers and distance estimates are initialized and maintained as in 

[10, Section 25.11: 

INITIALIZE( ) 

Initialize distance estimates, parent pointers. 

1 for each nonroot  vertex v do p[v] *-- nil; d[v] *-- oo 

2 d[r] +-- 0 

RELAX(U, V) 

Check for shorter path to v through (u, v). 

1 if d[v] > d[u] + w(u, v) 

2 then d[v] *- d[u] + w(u, v) 

3 p[v] *-- u 

After executing INITIALIZE, the algorithm builds and updates the tree and main- 

tains the distance estimates by a sequence of calls to RELAX. The important 

invariant maintained by RELAX is that the edges {(ply], v): d[v] # oo} form a 

tree, with d[v] an upper bound on the distance between the root and v in the 

tree. 

3.2. The Algorithm as a Sequence of  Relaxations. The algorithm performs a 

depth:first search of the minimum spanning tree starting at the root. For  a tree, 

a depth-first search is simply an edge-by-edge walk from the root vertex through 

the vertices of the tree. Each edge is traversed twice: once in each direction. 

At any time in the search, the sequence of edges traversed so far forms a walk (a 

nonsimple path) through the visited vertices. The walk starts at the root and ends 
at a vertex that we call the current vertex. We also say the algorithm is visiting 

this vertex. 

The relaxations done by the algorithm are of two kinds: The first kind 

adds shortest paths. The first time vertex v is visited, if d[v] exceeds c~ times 

the distance from the root to v in the shortest-path tree, then the edges of 

the shortest path are relaxed as needed to lower d[v] to the shortest-path 

distance. 

The second kind extends or modifies the current tree to use a minimum- 

spanning-tree edge if it is useful. Specifically, when an edge (u, v) is traversed from 

u to v, RELAX(U, V) is called. This guarantees inductively that d[v] is bounded by 

the weight of the shortest path from the root r to vertex v' plus the weight of the 

minimum-spanning tree path from v' to v, where v' is the most recent vertex to 

have its shortest path added. This invariant is what allows the weight of the added 

paths to be bounded. 

When the depth-first search finishes, the current tree is the desired LAST. The 

full algorithm is given in Figure 2. 

3.3. A Sample Execution. Figure 3 shows a sample execution of the algorithm 

with c~ = 2 on the graph given in frame (a). Frames (b) and (c) give, respectively, 
a minimum spanning tree (of weight 60) and a shortest-path tree. 
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FIND-LAsT(TM, Ts, r, 0 0 

Input: Minimum spanning tree Tu, shortest-path tree Ts, vertex r, ~ > 1. 
Output: an (~, 1 + 2/(~ -- 1))-LAST rooted at r. 
1 INITIALIZE( ) 
2 DFS(r) 
3 return tree T = {(v, p[v])lv~ V -- {r}} 

DFS(u) 
Traverse the subtree of T M rooted at u, relaxing edges as they are traversed, 
and adding paths from Ts as needed. 
1 if d[u] > ~Drs(r, u) 
2 then ADD-PATH(U) 
3 for each child v of u in T M 
4 do RELAX(U, V) 
5 DFS(v) 
6 RELAX(V, U) 

ADD-PATH(V) 
relax edges along path from r to v in T s. 
1 if d[v] > DTff, v) 
2 then Aoo-PgTH(parentTs(V)) 

RELAX(parentTs(V), V) 

Fig. 2. Algorithm to compute a LAST. 

Initially all parent  pointers are nil and each d[-v] is infinite. The depth-first 

search of the min imum spanning tree visits the vertices in increasing order  

of their labels and traverses the edes of the minimum-spanning tree in the following 

order:  

(1, 2), (2, 3), (3, 4), (4, 5), (5, 4), (4, 6), (6, 7), (7, 6), (6, 4), (4, 3), (3, 2), (2, 1), (1, 8), (8, 1). 

Recall that  when an edge is traversed, it is relaxed. When a vertex is visited, if its 

current  distance es t imate  is not  small enough to guarantee the distance require- 

ment, then the edges on the shortest  pa th  to the vertex are relaxed, modifying the 

current  tree. 

F rame  (d) shows the state of the algori thm just after vertex 5 has been visited: 

the edges (1, 2), (2, 3), (3, 4) and (4, 5) were relaxed as they were traversed. Because 

d[-5] was 'equal  to 40 (more than twice the shortest-path distance) when vertex v 
was visited, edge (1, 5) was relaxed, changing vertex 5's parent  to vertex 1, and 

changing d[5]  to 15. 

F rame  (e) shows the state after vertex 7 - - the  next vertex to have its shortest 

pa th  added - -ha s  been visited. Note  that  when edge (5, 4) was traversed, from 5 

to 4, its relaxation changed vertex 4's parent  to vertex 5 and update  d[4] to reflect 

the new shorter  path  (1, 5), (5, 4). The  algori thm then traversed and relaxed edges 
(4, 6) and (6, 7), bringing vertices 6 and 7 into the tree. When vertex 7 was 
encountered,  its distance estimate (40) exceeded twice the shortest-path distance 

(15), so the edges on the shortest path (1, 8), (8, 7) to vertex 7 were relaxed in that  
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Fig. 3, A sample execution of the algorithm. (a) Graph, (b) minimum spanning tree, (c) shortest-path 
tree, (d) vertex 5 just visited, (e) vertex 7 just visited, and (f) on termination, a LAST of weight 70. @, 
current vertex; , shortest paths; ~ ,  traversed MST edges; ----~, parent pointers; - - - ,  un- 
traversed MST edges. 

order. This added these edges to the current tree and brought  down the distance 

estimates of  these vertices. 

F rame  (f) shows the final state of  the algorithm. The parent  pointers give the 

final tree. Note  that  the relaxation of  edge (7, 6) from 7 to 6, changed vertex 6's 

parent. This was the final change made  to the tree. Subsequent  relaxations made  

by the traversal had no effect. Remaining distance estimates were small enough 

to guarantee that  the distance requirements were met, so that  ADD-PATH was 

not  called. 

3.4. Analysis o f  the Algorithm. Next  we prove that FTND-LAST (TM,TS, r, ~) 

returns an (~, 1 + 2/(~ - 1))-LAST in linear time. Let T be the tree returned. 

LEMMA 3.1. The distance between v and r in T is at most ~ times the shortest-path 

distance. 
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PROOF. When a vertex v is visited, if d[v] exceeds e times the distance in the 

shortest-path tree, then ADD-PATH is called, after which d[v] equals the shortest- 

path distance. In any case, after v is visited, d[v-I is at most c~ times the shortest-path 

distance and subsequently never increases. On termination it bounds the distance 

in T. [] 

An amortized analysis establishes that the total weight of Tis not too large. 

LEMMA 3.2. The weight of T is at most (1 + 2/(c~- 1)) times the minimum 

spanning-tree weight. 

PROOF. Let Vo = r and let v 1, u2,.. .  , u k be the vertices that caused shortest paths 

to be added during the traversal, in the order they were encountered. When the 

shortest path from r to v~ (i > 1) was added, the net weight of the added edges 

was at most Dr~(r, v~). Also, the edges on the path to vi consisting of the shortest 

path to v~_ 1 followed by the path in the minimum spanning tree from v~_ a to v~ 

had been relaxed in order, so that d[vi] <_ Drs(r, v~_ 1) + Dr~(vi- 1, v~). The shortest 

path to v i was added because ~Drs(r, v~) < d[v~]. Combining the inequalities, 

c~Drs(r, vi) < Dr,(r, vi- 1) + Dr~(vi- 1, vi). 

Summing over i bounds the net weight of the added paths: 

k k 

i = 1  i = 1  

and therefore 

k k 

(~ -- 1) ~ Drs(r, vi) < ~ DTM(Vi-D Vi)" 
i = 1  i = 1  

The DFS traversal each edge exactly twice, and hence the sum on the right-hand 

side is at most twice the weight of TM, i.e., 

k 

DrM(vi-1, vi) < 2w(TM). 
i = 1  

Hence the net weight of the added paths is less than (2/(c~ - 1))w(T~t ). [] 

The following alternate proof of Lemma 3.2 may also be of interest. 

Alternate Proof of Lemma 3.2. As the algorithm executes, define the potential 
function @ to be the distance estimate of the current vertex. When a shortest path 
of length p to the current vertex v is added, q~ = d[v] > c~p. Adding the path lowers 

d[v] to p, decreasing ~ by at least (e - 1)p. Hence the total weight of the added 
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paths is bounded by the sum of the decrements to �9 during the course of the 

algorithm, divided by ~ - 1. 

Since q) is initially 0 and always nonnegative, the sum of the decreases is at 

most the sum of the increments, q) increases only when the current vertex changes 

from some vertex u to a vertex v after the edge (u, v) Was relaxed. This ensures 

that d Iv] < d Eu"] + w(u, v) and that q5 increases by at most w(u, v). Since each edge 

is traversed twice, the total of the increases to q~ during the course of the algorithm 

is bounded by twice the weight of the minimum spanning tree. 

This establishes that the total weight of the added paths is bounded by 2/(~t - 1) 

times the weight of the minimum spanning tree. [] 

The running time is proportional to the number of relaxations. This is O(n) 

because each edge in T~t or Ts is relaxed at most twice by DFS and at most once 

by ADD-PATH. If the shortest-path tree and the minimum spanning tree are not 

given, they can be computed in O(m + n log n) time [12], [13]. This establishes 

Theorem 1. 

OBSERVATION 1. In metric graphs (complete graphs with edge weights satisfying 

the triangle inequality, such as Euclidean graphs) the shortest-path tree is trivial 

and can be found in O(n) time. For  Euclidean graphs induced by points in the 

plane, the minimum spanning tree can be computed in O(n log n) time [18]. In 

these cases the LAST can be found more quickly. 

OBSERVATION 2. If the algorithm is given an a-approximate shortest-path tree 

and a b-approximate minimum spanning tree, the tree returned by the algorithm 

will be an (act, b + 2b/(~ - 1))-LAST. If such trees can be found more quickly, then 

a LAST can also be found more quickly. 

OBSERVATION 3. In the multiple-root variant, the distance requirement is that in 

the final tree (or forest) the distance between each vertex and its nearest root should 

be at most c~ times the distance to any root in the original graph. This variant can 

be easily reduced to the original problem by adding an artificial root at distance 

0 from the multiple roots. 

4. Optimality of the Algorithm. Next we show that the algorithm is optimal in 

the following sense. Fix e > 1 and 1 < fl < 1 + 2/(c~ - l). There is a planar graph 

not containing an (e, fl)-LAST rooted at a particular vertex. Further, it is 

NP-complete to decide whether a given graph contains an (ct, fl)-LAST from a 

given root. 

4.1. Nonexistence of LASTs  when fl < l + 2/(~ - 1). 

LEMMA 4.1. I f  C~ > 1 and 1 _< fl < 1 + 2/(e -- 1), then there exists a planar graph 

containing no (cq fl)-LAST rooted at a particular vertex. 
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F 

Fig. 4. A graph with no (ct, fl)-LAST for fl < 1 + 2/(c~ - 1) (A = c~ + 1, B = c~ + e -- 1, and C = 2). 

PROOF. The  graph  is shown in Figure 4. The  structure of  the graph  is as 

follows. The  root  r is connected to a central  vertex c by a pa th  of weight A, 

of  edges of  weight some small 6. T h e  central  vertex is connected th rough  similar 

paths  of  weight B to the 1 leaves. The  root  is connected to each leaf with an 

edge of weight C. Let A = e + l ,  B = e + e - 1 ,  and C = 2 ,  where e is an 

arbi t rar i ly  small constant.  Fo r  small enough 6, the m i n i m u m  spanning tree is 

formed by using all edges except those of weight C. Not ice  that  this g raph  is 

planar.  

Consider  the  pa ths  f rom the root  to any leaf. The  shortest  pa th  is the direct 

edge of weight 2. Any other  pa th  weighs more  than  2~: the pa th  th rough  the 

center vertex weighs A + B = 2c~ + e; any pa th  through another  leaf weighs at 

least 2 + 2B = 2(~ + e). This means  that  in any (~, fl)-LAST all l edges of weight 

2 are present. In  addition, all but  l of the remaining edges are present. Therefore  

the weight of  any (c~, fl)-LAST is at least 21 + T ~ -  16, where T M = (c~ + 1 ) +  

l(ct - 1 + e) is the weight of the min imum spanning tree. Hence  the rat io of 

the weight of  the (~, fl)-LAST to the weight of the m i n i m u m  spanning tree is at 

least 

1 +  
/(2 -- a) 

ce-t- 1 + l(c~- 1 +e ) "  

If  fl < 1 + 2/(ct - 1), then the above  exceeds fl for sufficiently small e and 6 and 

sufficiently large 1. [ ]  

4.2. NP-Completeness of  L A S T  Queries. Next  we show that  for any fixed c~ > 1 

and 1 < fl < 1 + 2/(~ - 1) it is N P - h a r d  to decide whether  a given graph  contains  

an (c~, fl)-LAST rooted  at a given vertex. Thus,  it is unlikely that  a polynomial - t ime 

a lgor i thm exists for finding (~, fl)-LASTs when fl < 1 + 2/(c~ - 1). 

Clearly, the p rob lem is in NP.  The  p roo f  of NP-ha rdness  is in two parts.  We 

first show NP-ha rdness  for fl = 1 and fixed ~ > 1. We then reduce this p rob lem 

to the fixed fl < 1 + 2/(~ - 1) case. 

LEMMA 4.2. For fixed ~ > 1, deciding the existence of an (~, 1)-LAST rooted at 

a given vertex of a given graph is NP-hard. 
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~W 

A A A A 

Fig. 5. Reduction from 3-SAT. 

PROOF. The proof is by reduction from 3-SAT (Figure 5). Let F be a 3-SAT 
formula in conjunctive normal form--each clause consists of three literals 
from {xl, . . . ,  x,} u {2l . . . . .  2,}. We build a graph in which the (e, 1)-LASTs 
correspond to satisfying assignments of F. 

A, B, D, E, and W are constants to be determined later. The graph has a root 
vertex R, a vertex S, and a path connecting R to S of weight D consisting of edges 
small enough to ensure that the path is in any minimum spanning tree. 

For each pair of literals xi and 2i, there are two vertices Xi and )(~, each 
having an edge to S of weight A. A path of weight E connects Xg and Jfi. This 
path is also constructed so as to be in any minimum spanning tree. 

For each clause cj there is a vertex Cj with an edge to R of weight W. From Cj 
to each vertex corresponding to a literal in cj there is an edge of weight B. 

This defines the graph. Observe that, provided 0 < A < B < W, the minimum 
spanning trees are exactly characterized by the following. In any minimum 
spanning tree the path from R to S and each path from Xg to J(~ are present. 
For each variable xi, exactly one of the two edges {(S, X~), (S, Xi)} is present. For 
each clause c j, exactly one edge of the form (Xi, C~) or (X~, C j) for some i is 
present. No other edges are present. 

Next we use the distance requirement to ensure that any minimum spanning 
tree is an (e, 1)-LAST if and only if the edge to each clause vertex comes from 
some variable vertex X~ or X~ that has an edge in the minimum spanning tree 
directly to S. This is all that is needed, for then the (e, 1)-LASTs will correspond 
to satisfying assignments in the original formula, and vice versa, as follows: for 
each variable xi, choose the edge (S, Xi) iff x i is true, otherwise choose the edge 
(S, Xi); for each clause cj, choose the edge (Xi, Cj) (or (X" i, Cj)), where xi (or xi) 
is a variable (or negated variable) satisfying cj. 
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It suffices to choose A, B, D, E, and W so that 

0 < A < B <  W,, 

D + A + E _ < e m i n { A + D , B +  W}, 

D+ A + B<c~min{D+ A + B, W} <D + A + E + B. 

To achieve this, let A = 1, B = e, D = 2c% E = (cr 1)(2~ + 1), and W = 1 + 

2c~ + 1/co [] 

Next we reduce the (e, 1)-LAST problem to the (c~,/?)-LAST problem, for any 

fixed e and/? such that c~ > 1 and 1 _</? < 1 + 2/(:~ - 1). 

PROOF OF THEOREM 2. Let G* be the graph for which we want to determine the 

existence of an (c~, 1)-LAST rooted at a given vertex r*. By Lemma 4.1, there is a 

graph G' with no (~, fl)-LAST rooted at some vertex r'. Assume without loss of 

generality that the minimum spanning tree of G* has weight 1 and the minimum 
spanning tree of G' is of weight c (a constant to be determined later). Define the 

graph G to be the union of G* and G' by identifying r* and r' into a single root r. 

Let/?' be the minimum fl such that G' has an (c~,/?)-LAST. Define/3* analogously 

for G*. Take c = (/? - 1)/(ff - /3) :  
The weight of the minimum spanning tree in G is 1 + c; similarly, the lightest 

tree in G meeting the distance requirement is of weight [1" +/?%. Thus G has an 

�9 (e, fl)-LAST iff/?* + fl'c <_/3(1 + c). By our choice o f t ,  this is equivalent to/3* < 1. 

Thus G has an (~,/?)-LAST iff G* has an (~, 1)-LAST. [] 

5. Min imum-Weight  Shortest-Path Trees. Next we consider the case when ~ = 1, 

i.e., an (~,/?)-LAST is a shortest-path tree of weight at most fl times the weight of 

the minimum spanning tree. In this case no algorithm can gurantee any fixed/? 

for all graphs. Instead, we show how to find a (1,/3)-LAST with minimum/? in a 

given graph, i.e., a minimum-weight shortest-path tree. 

In fact, we solve a more general problem: finding a minimum-weight shortest- 

path tree in a rooted directed graph. The undirected case reduces to this case by 

the standard trick of replacing each undirected edge (u, 0 by two new directed 

edges (u, v) and (v, u) of the same weight as the original edge. 

The directed problem reduces in turn to the problem of finding a minimum-weight 

branching in the shortest-path subgraph of the given directed graph. A branching 

is a directed spanning tree with all edges directed away from the root. The 

shortest-path subgraph is the spanning subgraph consisting of all directed edges 
w(u, v) -- DG(r, v). It is easy to show that the shortest-path trees in a directed graph 

are exactly the branchings from the root in its shortest-path subgraph. Con- 

sequently, it suffices to find a minimum-weight branching in the shortest-path 
subgraph. 

A polynomial-time algorithm for finding a minimum-weight branching in any 

given graph is known [13]. However, a shortest-path subgraph of a nonnegatively 
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weighted graph has the property that any edge on a cycle has weight 0. This allows 

the following linear-time algorithm. First, identify the strongly connected compo- 

nents in the subgraph induced by the edges of weight 0. This can be done in linear 

time [10]. For  each component not containing the root, choose the minimum- 

weight incoming edge and call the vertex with an incoming chosen edge the base 

vertex of the component. For  the component containing the root, call the 

root vertex the base vertex. For  each component, find a branching of weight 

0 edges rooted at the base in the subgraph induced by the component. 

Finally, return the chosen edges together with the edges of the components '  

branchings. 

This set of edges forms a branching: each nonroot  vertex has an incoming edge 

and there are no cycles. The branching is of minimum weight because in any 

branching every nonroot  component has at least one incoming edge. It is 

straightforward to implement the algorithm to run in O(n + m) time. This proves 

Theorem 3. 

6. Finding LASTs in Parallel. Given c~ > 1, a minimum spanning tree, and a 

shortest-path tree, an (~, 1 + 2/(~ - 1))-LAST can be found using n processors in 

O(log n)-time. The model of computation we use is the Concurrent-Read, Exclusive- 

Write Parallel RAM, in which independent, synchronized parallel processors share 

a common memory [14]. Multiple simultaneous accesses to the same memory 

location are allowed only if all of the accesses are read operations. 

The algorithm is as follows. Let C = (el, e2 . . . .  , e a n _ 2 )  be the (directed) edges 

of the walk through the graph implicit in the depth-first search of the minimum 

spanning tree, as in Section 3.2. This tour can be constructed in O(Iog n) time by 

n processors using standard techniques [14]. Let (uz, uz+ 1) = el. Using the termino- 

logy of Section 3.2, after edge (ui, ui+O is traversed from u~ to uz+l, vertex u~+ 1 is 

the current vertex. 

The parallel algorithm emulates the serial algorithm except that the distance 

estimates are more loosely defined in two ways. First, while a vertex may occur 

several times in C, the parallel algorithm treats each occurrence as a distinct vertex. 

Second, when a shortest path is added, only the distance estimate of the destination 

vertex is lowered. These more loosely defined distance estimates can be computed 

in parallel, but still suffice to imply the weight requirement. 
j--1 Let Dc(u i, uj) denote ~k=i W(ek), the distance from u i to uj along C. Let m(i,j) 

be the relation 

i < j and Drs(r, ui) + Dc(u i, u~) > ~DTs(r, u~). 

The meaning of m(i,j) is the following. Suppose we modify the original algorithm 
to use the more loosely defined distance estimates. Were the modified algorithm 

to encounter a vertex u~ without having added a shortest path to any of the vertices 

ui + 1, ul + 2 . . . . .  u~_ 1, then it would add the shortest path from the root to uj. Thus, if 

the modified algorithm adds a shortest path to a vertex u~, then the next shortest 

path it adds will be to vertex u k, where k = min{j: m(i,j)}. 
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The parallel algorithm will emulate the modified algorithm. Define J(i)= 

min{j: m(i, j)}. The parallel algorithm will compute the function J and then add 
shortest paths to vertices in the set 

S = { U l ,  u j ( i )  , u j ( j (1) ) ,  . . . ,  uj(j(...j(1)...)) }. 

Once J has been computed, S can be computed by n processors in O(log n) times 
on a CREW PRAM using standard techniques [14]. Once S has been computed, 
the set S* of ancestors of S in the shortest-path tree can also be computed by n 
processors in O(log n) time using tree contraction technique [14]. The final tree 
is formed by each nonroot vertex choosing as its parent either the parent in the 
shortest-path tree (if the vertex is in S*) or the parent in the minimum spanning 
tree (otherwise). It can easily be shown that every vertex has a path to  the root 
using this set of n - 1 edges, so that they do indeed form a tree. 

It remains to compute J(i). First, note that re(i, j)  is monotone in i for fixed j. 

LEMMA 6.1. I f  i' < i and m(i, j)  is true, then m(i', j )  is true. 

PROOF. If m(i, j) is true, then Drf f ,  u~) + Dc(ui, uj) > o~Drs(r, uj). For any i' < i, 
Dc(u~, u j) <_ Dc(u'~, u j). The shortest path from r to i is no longer than any other 

path from i to r in the graph, and hence Drs(r, ui) < Dr f f ,  ui,) + Dc(u'i, ui). Combin- 
ing these inequalities we get 

Dr~(r, ui,) + Dc(u'i, uj) = Dr~(r, ui, ) + Dc(u' i, ug) + Dc(u i, u~) 

>_ Drs(r, u~) + Dc(u i, u j) 

> ~Dr~(r, uj). 

Hence m(i',j) is true by definition. [] 

The function J can be computed efficiently because of this monotonicity 
property: 

LEMMA 6.2. Suppose re(i, j)  implies m(i', j)  for  0 <_ i' <_ i < n, 0 < j < n. Then 

the function J(i) = rain{j: m(i,j)} can be computed in O(log n) time by n processors 
on a C R E W  P R A M .  

PROOF. Define l ( j ) =  max{i: m(i,j)}. For each j, compute I(j) using binary 
search. Define l * ( j ) =  max{I(j'): 1 < j ' <  j}. Compute function I* from func- 
tion I using a standard prefix-maxima computation. Finally, define J'(i)= 

m i n { j : l * ( j ) >  i}. Compute function J', again using binary search, from 
monotone function 1". (See Figure 6.) Each of these computations can be 
done by n processors in O(log n) time on a CREW PRAM using standard 
techniques [14]. 
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M 

J 

Fig. 6. Computing J from m to find a LAST in parallel. 

We prove that J'(/) = J(i) for each i. The proof is in two steps. 

1. J'(/) = rain{j: I*(j) > i} = min{j: I(j) > i}, i.e., the smallest j such that I*(j) 
exceeds i is equal to the smallest j such that l(j) exceeds i. This is because the 
latter depends only on the maxima o f / - - t hose  j such that I(j) > l(j') for all 
j '_<j .  

2. min{j: I(j) >__ i} = min{j: m(i,j)} because I(j) >_/is equivalent to m(i,j) by the 

monotonicity property of m. [] 

The analyses of Lemmas 3.1 and 3.2 can easily be adapted to prove that the 
final tree produced by the parallel algorithm is an (~, 1 + 2/(~ - 1))-LAST. This 
establishes Theorem 4--an  (c~, 1 + 2/(~ - 1))-LAST can be computed by n pro- 
cessors in O(log n) time on a CREW PRAM. 

7. Conclusions. Every graph contains trees that offer a continuous tradeoff be- 
tween minimum spanning trees and shortest-path trees. Trees achieving the 
optimal tradeoff can be found in (sequential) linear time or in logarithmic time by 
a linear number of processors. 

Is it possible to obtain a better tradeoff in the following cases? 

�9 In Euclidean graphs. Note that the proof of Lemma 3.2 requires only that 
the algorithm walk around the graph from the root visiting every vertex once, 
i.e., that the algorithm traverse a Traveling Salesman path starting at the 
root. In Euclidean graphs, perhaps such a path of weight at most (2 - ~) times 
the minimum spanning-tree weight always exists and can be found in polynomial 
time. 
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�9 If  the distance requirement is replaced by the requirement that  the sum of 

distances from the root  is within ~ times the min imum possible. 

�9 If  the root  is not  fixed. This would  correspond to the problem of installing 

a low-cost network and choosing a roo t  site so that  distances from the root  

are near-minimum. 

Clearly, any (e ,/3)-LAST also meets these looser requirements, but  our  lower 

bounds  no longer show that  the tradeoff  is optimal. 

For  directed graphs, it is easy to show that, for any fixed c~ and/3, (~,/3)-LASTs 

may  not  exist and that  finding the min imum /3 such that  an (ct,/3)-LAST exists 

is NP-hard .  Can  one approx imate  this min imum/3?  
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