
Algorithmica (1995) 14:305-321
Algorithmica
�9 1995 Springer-Verlag New York Inc.

Balancing Minimum Spanning Trees and

Shortest-Path Trees

S. Khul ler , 1 B. Raghavachar i , 2 and N. Young 3

Abstract. We give a simple algorithm to find a spanning tree that simultaneously approximates a
shortest-path tree and a minimum spanning tree. The algorithm provides a continuous tradeoff: given
the two trees and a 7 > 0, the algorithm returns a spanning tree in which the distance between any

vertex and the root of the shortest-path tree is at most 1 + x/27 times the shortest-path distance, and

yet the total weight of the tree is at most 1 + ,~/2/~/times the weight of a minimum spanning tree.
Our algorithm runs in linear time and obtains the best-possible tradeoff. It can be implemented on

a CREW PRAM to run a logarithmic time using one processor per vertex.

Key Words. Minimum spanning trees, Graph algorithms, Parallel algorithms, Shortest paths.

1. Introduction. A minimum spanning tree of an edge-weighted g raph is a spanning

tree of the g raph of m i n i m u m to ta l edge weight. A shortest-path tree roo t ed at a

vertex r is a spann ing tree such that , for any vertex v, the d is tance between r and

v is the same as in the graph.

M i n i m u m spann ing trees and shor t e s t -pa th trees are fundamen ta l s t ructures in

the s tudy of g raph a lgor i thms [10], [11], 1-15], [19]; fast a lgor i thms for f inding

each are k n o w n [12], [13]. Typical ly , the edge-weighted g raph G represents a

feasible ne twork . Each vertex represents a site. The goal is to instal l l inks between

pairs of sites so tha t signals can be rou ted in the resul t ing ne twork . Each edge of

G represents a l ink tha t can be installed. The cost of the edge reflects bo th the

cost to instal l the l ink and the cost (e.g., time) for a signal to t raverse the l ink once

the l ink is instal led. A m i n i m u m spann ing tree represents the least cost ly set of links

to instal l so tha t all sites are di rect ly or indi rec t ly connected, while a shor t e s t -pa th

tree represents the set of l inks to instal l so that , for each site, the cost for a signal

to be sent between the site and the roo t of the tree is as small as possible.

1 Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742, USA. samir@cs.umd.edu. Current research supported by NSF
Research Initiation Award CCR-9307462. This work was done while this author was supported by
NSF Grants CCR-8906949, CCR-9103135, and CCR-9111348.
2 Department of Computer Science, University of Texas at Dallas, Box 830688, Richardson, TX
75083-0688, USA. rbk@utdallas.edu.
3 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA. Part of
this work was done while this author was at the University of Maryland Institute for Advanced
Computer Studies (UMIACS) and supported by NSF Grants CCR-8906949 and CCR-9111348.
ney@princeton.edu.

Received August 16, 1992; revised June 10, 1993, and December 27, 1993. Communicated by
T. Nishizeki.

306 S. Khuller, B. Raghavachari, and N. Young

|

I

q

!

Fig. 1. Approximating both a minimum spanning tree and a shortest-path tree. (a) Euclidean graph,
(b) minimum spanning tree with distance blow-up, (c) Heavy shortest-path tree, and (d) Light,

approximate shortest-path tree.

The goal of a minimum spanning tree is minimum weight, whereas the goal of

a shortest-path tree is to preserve distances from the root. We show that a single

tree can approximately achieve both goals. That is, the cost to install a set of links

so that every site has a short path to the root is only slightly more than the cost

just to connect all sites.
Figure 1 shows a set of points in the plane. These points naturally induce a

complete graph in which the weight of each edge is the Euclidean distance between

the points. The weight of the shortest-path tree is much more than the weight of

a minimum spanning tree. Conversely, in the minimum spanning tree the distance

between the root and one of the vertices is much larger than the corresponding

shortest-path distance. Nonetheless, there is a tree which nearly preserves distances

from the root and yet weighs only a little more than the minimum spanning tree.
We call such a tree a Light Approximate Shortest-path Tree (LAST). The main

result of this paper is that such trees exist in all graphs and can be found efficiently.
Let G = (V, E) be a graph with nonnegative edge weights and a root vertex r.

Let G have n vertices and m edges. Let w(e) be the weight of edge e e E. The
distance Da(u, v) between vertices u and v in G is the minimum weight of any path

in G between them.

Balancing Minimum Spanning Trees and Shortest-Path Trees 307

DEFINITION 1. For ~_> 1 and fl_> 1, a spanning tree T of G meeting the

following two requirements is called an (e, fl)-LAST rooted at r.

�9 (Distance) For every vertex v, the distance between r and v in T is at most a

times the shortest distance from r to v in G.

�9 (Weight) The weight of T is at most fl times the weight of a minimum spanning

tree of G.

THEOREM 1 (Section 3). Let G be a graph with nonnegative edge weights; let r

be a vertex of G; let ~ > 1 and fl > 1 + 2/(a - 1). Then G contains an (~, f i)-LAST

rooted at r. The LASTcan be computed in linear time given a minimum spanning tree

and a shortest-path tree, and in O(m + n log n) time otherwise.

Note that there is a tradeoff between the approximations of the two trees. The

tradeoff is the best possible:

THEOREM 2 (Section 4). Fix ct > 1 and 1 _< fl < 1 + 2/(ct - 1). A planar graph

G with a vertex r exists such that G contains no (a, f l)-LAST rooted at r. Deciding

whether a given graph contains an (~ f l)-LAST rooted at a given vertex is NP-

complete.

Note that for fi --- 1, the problem is to find a minimum spanning tree that best

approximates a shortest-path tree. It follows from Theorem 2 that this is NP-

complete. When ~ = 1, the problem is to find a minimum-weight shortest-path

tree. This problem can be solved in linear time, even in directed graphs:

THEOREM 3 (Section 5). Given any shortest-path tree of a directed or undirected

graph rooted at a given vertex, a minimum-weight shortest-path tree can be found

in linear time.

Finally, LASTs can also be found quickly in parallel, given a minimum spanning

tree and shortest-path tree (or approximations thereof, see Section 3.4):

THEOREM 4 (Section 6). Given ~ > 1, a minimum spanning tree, and a shortest-

path tree, an (a, 1 + 2/(a - 1))-LAST can be found by n processors in O(log n)

time on a C R E W P R A M .

2. Related Work. Trees realizing tradeoffs between weight and distance require-

ments were first studied by Bharath-Kumar and Jaffe [411 The authors ' weight

requirement was the same as ours, but their distance requirement was that the

sum of the distances from the root to each vertex should be at most fl times the

minimum possible sum. They showed the weaker tradeoff that the desired tree

exists if ~fl _> |
Awerbuch et al. [2], motivated by applications in broadcast-network design,

made a fundamental contribution by showing that every graph has a shallow-light

308 S. Khuller, B. Raghavachari, and N. Young

t ree- -a tree of diameter at most a constant times the diameter of G and of weight

at most a constant times the weight of the minimum spanning tree. Our algorithm

is a modification of their algorithms. Cong et aI. [7] [9], motivated by applica-

tions in VLSI-circuit design, improve the constants in the construction of [-2] and

consider variations bounding the radius of the tree instead of the diameter.

Recently and independently, Awerbuch et al. [3] modified the algorithm from [2].

They obtained the same algorithm as in [8] but a stronger analysis, proving that
the algorithm computes on (e, 1 + 4 / (e - 1))-LAST. Their algorithm takes

O(m + n log n) time. Our algorithm achieves a strictly stronger distance require-

ment than the above algorithms.

Considerable research has been done on finding spanners of small size and

weight in arbitrary graphs [1], [5], [17] and in Euclidean graphs induced by

points in the plane [5], [6], [16], [20]. A t-spanner is a low-weight sugraph G' of

G such that, for any two vertices, the distance between them in G' is at most t

times the distance in G. It is known that there are graphs that do not have

constant-spanners of net weight bounded by a constant times the weight of the

minimum spanning gree. Awerbuch et al. [3] also consider light trees that have

low average distance-blowup on all nontree edges. References to most of the work
on graph spanners may be found in the paper by Chandra et al. [5].

We can reduce the problem of finding an (e, 1 + 2/(e - 1))-LAST to the problem

of finding an a-spanner Of weight at most (1 + 2/(e - 1)) times the minimum

spanning-tree weight in a planar graph. An algorithm achieving the latter is

given in [1]. This gives an alternate (but less efficient) method of finding an

(e, 1 + 2/(e - 1))-LAST.

3. The Algorithm. The algorithm is given an e > 1, a minimum spanning tree,

and a shortest-path tree rooted at a vertex r. It returns an (e, 1 + 2/(e - 1))-LAST
rooted at r.

The basic idea of the algorithm is to traverse the minimum spanning tree,

maintaining a current tree, and checking each vertex when it is encountered to

ensure that the distance requirement for that vertex is met in the current tree. If it

is not met, the edges of the shortest path between the vertex and the root are added

into the current tree. Other edges are discarded so that a tree structure is

maintained.

After all vertices have been checked and paths added as necessary, the remaining

tree is the desired LAST. The final tree is not too heavy because a shortest-

path is only added if the path that it replaces is heavier by a factor of

e > 1. This allows a charging argument bounding the net weight of the added
paths.

3.1. Relaxation. The tree is maintained by keeping a parent pointer p[v] for each

nonroot vertex v. To avoid recomputing shortest-path distances when a path is

added, the algorithm maintains a distance estimate d Iv] for each vertex v.
This distance estimate, which is an upper bound on the true distance in the
current tree, is used in deciding whether to add a path to the vertex. The

Balancing Minimum Spanning Trees and Shortest-Path Trees 309

parent pointers and distance estimates are initialized and maintained as in

[10, Section 25.11:

INITIALIZE()

Initialize distance estimates, parent pointers.

1 for each nonroot vertex v do p[v] *-- nil; d[v] *-- oo

2 d[r] +-- 0

RELAX(U, V)

Check for shorter path to v through (u, v).

1 if d[v] > d[u] + w(u, v)

2 then d[v] *- d[u] + w(u, v)

3 p[v] *-- u

After executing INITIALIZE, the algorithm builds and updates the tree and main-

tains the distance estimates by a sequence of calls to RELAX. The important

invariant maintained by RELAX is that the edges {(ply], v): d[v] # oo} form a

tree, with d[v] an upper bound on the distance between the root and v in the

tree.

3.2. The Algorithm as a Sequence of Relaxations. The algorithm performs a

depth:first search of the minimum spanning tree starting at the root. For a tree,

a depth-first search is simply an edge-by-edge walk from the root vertex through

the vertices of the tree. Each edge is traversed twice: once in each direction.

At any time in the search, the sequence of edges traversed so far forms a walk (a

nonsimple path) through the visited vertices. The walk starts at the root and ends
at a vertex that we call the current vertex. We also say the algorithm is visiting

this vertex.

The relaxations done by the algorithm are of two kinds: The first kind

adds shortest paths. The first time vertex v is visited, if d[v] exceeds c~ times

the distance from the root to v in the shortest-path tree, then the edges of

the shortest path are relaxed as needed to lower d[v] to the shortest-path

distance.

The second kind extends or modifies the current tree to use a minimum-

spanning-tree edge if it is useful. Specifically, when an edge (u, v) is traversed from

u to v, RELAX(U, V) is called. This guarantees inductively that d[v] is bounded by

the weight of the shortest path from the root r to vertex v' plus the weight of the

minimum-spanning tree path from v' to v, where v' is the most recent vertex to

have its shortest path added. This invariant is what allows the weight of the added

paths to be bounded.

When the depth-first search finishes, the current tree is the desired LAST. The

full algorithm is given in Figure 2.

3.3. A Sample Execution. Figure 3 shows a sample execution of the algorithm

with c~ = 2 on the graph given in frame (a). Frames (b) and (c) give, respectively,
a minimum spanning tree (of weight 60) and a shortest-path tree.

310 S. Khuller, B. Raghavachari, and N. Young

FIND-LAsT(TM, Ts, r, 0 0

Input: Minimum spanning tree Tu, shortest-path tree Ts, vertex r, ~ > 1.
Output: an (~, 1 + 2/(~ -- 1))-LAST rooted at r.
1 INITIALIZE()
2 DFS(r)
3 return tree T = {(v, p[v])lv~ V -- {r}}

DFS(u)
Traverse the subtree of T M rooted at u, relaxing edges as they are traversed,
and adding paths from Ts as needed.
1 if d[u] > ~Drs(r, u)
2 then ADD-PATH(U)
3 for each child v of u in T M
4 do RELAX(U, V)
5 DFS(v)
6 RELAX(V, U)

ADD-PATH(V)
relax edges along path from r to v in T s.
1 if d[v] > DTff, v)
2 then Aoo-PgTH(parentTs(V))

RELAX(parentTs(V), V)

Fig. 2. Algorithm to compute a LAST.

Initially all parent pointers are nil and each d[-v] is infinite. The depth-first

search of the min imum spanning tree visits the vertices in increasing order

of their labels and traverses the edes of the minimum-spanning tree in the following

order:

(1, 2), (2, 3), (3, 4), (4, 5), (5, 4), (4, 6), (6, 7), (7, 6), (6, 4), (4, 3), (3, 2), (2, 1), (1, 8), (8, 1).

Recall that when an edge is traversed, it is relaxed. When a vertex is visited, if its

current distance es t imate is not small enough to guarantee the distance require-

ment, then the edges on the shortest pa th to the vertex are relaxed, modifying the

current tree.

F rame (d) shows the state of the algori thm just after vertex 5 has been visited:

the edges (1, 2), (2, 3), (3, 4) and (4, 5) were relaxed as they were traversed. Because

d[-5] was 'equal to 40 (more than twice the shortest-path distance) when vertex v
was visited, edge (1, 5) was relaxed, changing vertex 5's parent to vertex 1, and

changing d[5] to 15.

F rame (e) shows the state after vertex 7 - - the next vertex to have its shortest

pa th added - -ha s been visited. Note that when edge (5, 4) was traversed, from 5

to 4, its relaxation changed vertex 4's parent to vertex 5 and update d[4] to reflect

the new shorter path (1, 5), (5, 4). The algori thm then traversed and relaxed edges
(4, 6) and (6, 7), bringing vertices 6 and 7 into the tree. When vertex 7 was
encountered, its distance estimate (40) exceeded twice the shortest-path distance

(15), so the edges on the shortest path (1, 8), (8, 7) to vertex 7 were relaxed in that

Balancing Minimum Spanning Trees and Shortest-Path Trees 311

r r r

5 5
15 (~ ~ 1

~ , ,~

lO
lO

(a)

r

40/15

(d)

(b)

r

20

25

15 1

(el (f)

(c)~

r

5

k2) 15

Fig. 3, A sample execution of the algorithm. (a) Graph, (b) minimum spanning tree, (c) shortest-path
tree, (d) vertex 5 just visited, (e) vertex 7 just visited, and (f) on termination, a LAST of weight 70. @,
current vertex; , shortest paths; ~ , traversed MST edges; ----~, parent pointers; - - - , un-
traversed MST edges.

order. This added these edges to the current tree and brought down the distance

estimates of these vertices.

F rame (f) shows the final state of the algorithm. The parent pointers give the

final tree. Note that the relaxation of edge (7, 6) from 7 to 6, changed vertex 6's

parent. This was the final change made to the tree. Subsequent relaxations made

by the traversal had no effect. Remaining distance estimates were small enough

to guarantee that the distance requirements were met, so that ADD-PATH was

not called.

3.4. Analysis o f the Algorithm. Next we prove that FTND-LAST (TM,TS, r, ~)

returns an (~, 1 + 2/(~ - 1))-LAST in linear time. Let T be the tree returned.

LEMMA 3.1. The distance between v and r in T is at most ~ times the shortest-path

distance.

312 S. Khu l l e r , B. R a g h a v a c h a r i , a n d N. Y o u n g

PROOF. When a vertex v is visited, if d[v] exceeds e times the distance in the

shortest-path tree, then ADD-PATH is called, after which d[v] equals the shortest-

path distance. In any case, after v is visited, d[v-I is at most c~ times the shortest-path

distance and subsequently never increases. On termination it bounds the distance

in T. []

An amortized analysis establishes that the total weight of Tis not too large.

LEMMA 3.2. The weight of T is at most (1 + 2/(c~- 1)) times the minimum

spanning-tree weight.

PROOF. Let Vo = r and let v 1, u2,.. . , u k be the vertices that caused shortest paths

to be added during the traversal, in the order they were encountered. When the

shortest path from r to v~ (i > 1) was added, the net weight of the added edges

was at most Dr~(r, v~). Also, the edges on the path to vi consisting of the shortest

path to v~_ 1 followed by the path in the minimum spanning tree from v~_ a to v~

had been relaxed in order, so that d[vi] <_ Drs(r, v~_ 1) + Dr~(vi- 1, v~). The shortest

path to v i was added because ~Drs(r, v~) < d[v~]. Combining the inequalities,

c~Drs(r, vi) < Dr,(r, vi- 1) + Dr~(vi- 1, vi).

Summing over i bounds the net weight of the added paths:

k k

i = 1 i = 1

and therefore

k k

(~ -- 1) ~ Drs(r, vi) < ~ DTM(Vi-D Vi)"
i = 1 i = 1

The DFS traversal each edge exactly twice, and hence the sum on the right-hand

side is at most twice the weight of TM, i.e.,

k

DrM(vi-1, vi) < 2w(TM).
i = 1

Hence the net weight of the added paths is less than (2/(c~ - 1))w(T~t). []

The following alternate proof of Lemma 3.2 may also be of interest.

Alternate Proof of Lemma 3.2. As the algorithm executes, define the potential
function @ to be the distance estimate of the current vertex. When a shortest path
of length p to the current vertex v is added, q~ = d[v] > c~p. Adding the path lowers

d[v] to p, decreasing ~ by at least (e - 1)p. Hence the total weight of the added

Balancing Minimum Spanning Trees and Shortest-Path Trees 313

paths is bounded by the sum of the decrements to �9 during the course of the

algorithm, divided by ~ - 1.

Since q) is initially 0 and always nonnegative, the sum of the decreases is at

most the sum of the increments, q) increases only when the current vertex changes

from some vertex u to a vertex v after the edge (u, v) Was relaxed. This ensures

that d Iv] < d Eu"] + w(u, v) and that q5 increases by at most w(u, v). Since each edge

is traversed twice, the total of the increases to q~ during the course of the algorithm

is bounded by twice the weight of the minimum spanning tree.

This establishes that the total weight of the added paths is bounded by 2/(~t - 1)

times the weight of the minimum spanning tree. []

The running time is proportional to the number of relaxations. This is O(n)

because each edge in T~t or Ts is relaxed at most twice by DFS and at most once

by ADD-PATH. If the shortest-path tree and the minimum spanning tree are not

given, they can be computed in O(m + n log n) time [12], [13]. This establishes

Theorem 1.

OBSERVATION 1. In metric graphs (complete graphs with edge weights satisfying

the triangle inequality, such as Euclidean graphs) the shortest-path tree is trivial

and can be found in O(n) time. For Euclidean graphs induced by points in the

plane, the minimum spanning tree can be computed in O(n log n) time [18]. In

these cases the LAST can be found more quickly.

OBSERVATION 2. If the algorithm is given an a-approximate shortest-path tree

and a b-approximate minimum spanning tree, the tree returned by the algorithm

will be an (act, b + 2b/(~ - 1))-LAST. If such trees can be found more quickly, then

a LAST can also be found more quickly.

OBSERVATION 3. In the multiple-root variant, the distance requirement is that in

the final tree (or forest) the distance between each vertex and its nearest root should

be at most c~ times the distance to any root in the original graph. This variant can

be easily reduced to the original problem by adding an artificial root at distance

0 from the multiple roots.

4. Optimality of the Algorithm. Next we show that the algorithm is optimal in

the following sense. Fix e > 1 and 1 < fl < 1 + 2/(c~ - l). There is a planar graph

not containing an (e, fl)-LAST rooted at a particular vertex. Further, it is

NP-complete to decide whether a given graph contains an (ct, fl)-LAST from a

given root.

4.1. Nonexistence of LASTs when fl < l + 2/(~ - 1).

LEMMA 4.1. I f C~ > 1 and 1 _< fl < 1 + 2/(e -- 1), then there exists a planar graph

containing no (cq fl)-LAST rooted at a particular vertex.

314 S. Khuller, B. Raghavachari, and N. Young

F

Fig. 4. A graph with no (ct, fl)-LAST for fl < 1 + 2/(c~ - 1) (A = c~ + 1, B = c~ + e -- 1, and C = 2).

PROOF. The graph is shown in Figure 4. The structure of the graph is as

follows. The root r is connected to a central vertex c by a pa th of weight A,

of edges of weight some small 6. T h e central vertex is connected th rough similar

paths of weight B to the 1 leaves. The root is connected to each leaf with an

edge of weight C. Let A = e + l , B = e + e - 1 , and C = 2 , where e is an

arbi t rar i ly small constant. Fo r small enough 6, the m i n i m u m spanning tree is

formed by using all edges except those of weight C. Not ice that this g raph is

planar.

Consider the pa ths f rom the root to any leaf. The shortest pa th is the direct

edge of weight 2. Any other pa th weighs more than 2~: the pa th th rough the

center vertex weighs A + B = 2c~ + e; any pa th through another leaf weighs at

least 2 + 2B = 2(~ + e). This means that in any (~, fl)-LAST all l edges of weight

2 are present. In addition, all but l of the remaining edges are present. Therefore

the weight of any (c~, fl)-LAST is at least 21 + T ~ - 16, where T M = (c~ + 1) +

l(ct - 1 + e) is the weight of the min imum spanning tree. Hence the rat io of

the weight of the (~, fl)-LAST to the weight of the m i n i m u m spanning tree is at

least

1 +
/(2 -- a)

ce-t- 1 + l(c~- 1 +e) "

If fl < 1 + 2/(ct - 1), then the above exceeds fl for sufficiently small e and 6 and

sufficiently large 1. []

4.2. NP-Completeness of L A S T Queries. Next we show that for any fixed c~ > 1

and 1 < fl < 1 + 2/(~ - 1) it is N P - h a r d to decide whether a given graph contains

an (c~, fl)-LAST rooted at a given vertex. Thus, it is unlikely that a polynomial - t ime

a lgor i thm exists for finding (~, fl)-LASTs when fl < 1 + 2/(c~ - 1).

Clearly, the p rob lem is in NP. The p roo f of NP-ha rdness is in two parts. We

first show NP-ha rdness for fl = 1 and fixed ~ > 1. We then reduce this p rob lem

to the fixed fl < 1 + 2/(~ - 1) case.

LEMMA 4.2. For fixed ~ > 1, deciding the existence of an (~, 1)-LAST rooted at

a given vertex of a given graph is NP-hard.

Balancing Minimum Spanning Trees and Shortest-Path Trees 315

~W

A A A A

Fig. 5. Reduction from 3-SAT.

PROOF. The proof is by reduction from 3-SAT (Figure 5). Let F be a 3-SAT
formula in conjunctive normal form--each clause consists of three literals
from {xl, . . . , x,} u {2l 2,}. We build a graph in which the (e, 1)-LASTs
correspond to satisfying assignments of F.

A, B, D, E, and W are constants to be determined later. The graph has a root
vertex R, a vertex S, and a path connecting R to S of weight D consisting of edges
small enough to ensure that the path is in any minimum spanning tree.

For each pair of literals xi and 2i, there are two vertices Xi and)(~, each
having an edge to S of weight A. A path of weight E connects Xg and Jfi. This
path is also constructed so as to be in any minimum spanning tree.

For each clause cj there is a vertex Cj with an edge to R of weight W. From Cj
to each vertex corresponding to a literal in cj there is an edge of weight B.

This defines the graph. Observe that, provided 0 < A < B < W, the minimum
spanning trees are exactly characterized by the following. In any minimum
spanning tree the path from R to S and each path from Xg to J(~ are present.
For each variable xi, exactly one of the two edges {(S, X~), (S, Xi)} is present. For
each clause c j, exactly one edge of the form (Xi, C~) or (X~, C j) for some i is
present. No other edges are present.

Next we use the distance requirement to ensure that any minimum spanning
tree is an (e, 1)-LAST if and only if the edge to each clause vertex comes from
some variable vertex X~ or X~ that has an edge in the minimum spanning tree
directly to S. This is all that is needed, for then the (e, 1)-LASTs will correspond
to satisfying assignments in the original formula, and vice versa, as follows: for
each variable xi, choose the edge (S, Xi) iff x i is true, otherwise choose the edge
(S, Xi); for each clause cj, choose the edge (Xi, Cj) (or (X" i, Cj)), where xi (or xi)
is a variable (or negated variable) satisfying cj.

316 S. Khuller, B. Raghavachari, and N. Young

It suffices to choose A, B, D, E, and W so that

0 < A < B < W,,

D + A + E _ < e m i n { A + D , B + W},

D+ A + B<c~min{D+ A + B, W} <D + A + E + B.

To achieve this, let A = 1, B = e, D = 2c% E = (cr 1)(2~ + 1), and W = 1 +

2c~ + 1/co []

Next we reduce the (e, 1)-LAST problem to the (c~,/?)-LAST problem, for any

fixed e and/? such that c~ > 1 and 1 _</? < 1 + 2/(:~ - 1).

PROOF OF THEOREM 2. Let G* be the graph for which we want to determine the

existence of an (c~, 1)-LAST rooted at a given vertex r*. By Lemma 4.1, there is a

graph G' with no (~, fl)-LAST rooted at some vertex r'. Assume without loss of

generality that the minimum spanning tree of G* has weight 1 and the minimum
spanning tree of G' is of weight c (a constant to be determined later). Define the

graph G to be the union of G* and G' by identifying r* and r' into a single root r.

Let/?' be the minimum fl such that G' has an (c~,/?)-LAST. Define/3* analogously

for G*. Take c = (/? - 1)/(ff - /3) :
The weight of the minimum spanning tree in G is 1 + c; similarly, the lightest

tree in G meeting the distance requirement is of weight [1" +/?%. Thus G has an

�9 (e, fl)-LAST iff/?* + fl'c <_/3(1 + c). By our choice o f t , this is equivalent to/3* < 1.

Thus G has an (~,/?)-LAST iff G* has an (~, 1)-LAST. []

5. Min imum-Weight Shortest-Path Trees. Next we consider the case when ~ = 1,

i.e., an (~,/?)-LAST is a shortest-path tree of weight at most fl times the weight of

the minimum spanning tree. In this case no algorithm can gurantee any fixed/?

for all graphs. Instead, we show how to find a (1,/3)-LAST with minimum/? in a

given graph, i.e., a minimum-weight shortest-path tree.

In fact, we solve a more general problem: finding a minimum-weight shortest-

path tree in a rooted directed graph. The undirected case reduces to this case by

the standard trick of replacing each undirected edge (u, 0 by two new directed

edges (u, v) and (v, u) of the same weight as the original edge.

The directed problem reduces in turn to the problem of finding a minimum-weight

branching in the shortest-path subgraph of the given directed graph. A branching

is a directed spanning tree with all edges directed away from the root. The

shortest-path subgraph is the spanning subgraph consisting of all directed edges
w(u, v) -- DG(r, v). It is easy to show that the shortest-path trees in a directed graph

are exactly the branchings from the root in its shortest-path subgraph. Con-

sequently, it suffices to find a minimum-weight branching in the shortest-path
subgraph.

A polynomial-time algorithm for finding a minimum-weight branching in any

given graph is known [13]. However, a shortest-path subgraph of a nonnegatively

Balancing Minimum Spanning Trees and Shortest-Path Trees 317

weighted graph has the property that any edge on a cycle has weight 0. This allows

the following linear-time algorithm. First, identify the strongly connected compo-

nents in the subgraph induced by the edges of weight 0. This can be done in linear

time [10]. For each component not containing the root, choose the minimum-

weight incoming edge and call the vertex with an incoming chosen edge the base

vertex of the component. For the component containing the root, call the

root vertex the base vertex. For each component, find a branching of weight

0 edges rooted at the base in the subgraph induced by the component.

Finally, return the chosen edges together with the edges of the components '

branchings.

This set of edges forms a branching: each nonroot vertex has an incoming edge

and there are no cycles. The branching is of minimum weight because in any

branching every nonroot component has at least one incoming edge. It is

straightforward to implement the algorithm to run in O(n + m) time. This proves

Theorem 3.

6. Finding LASTs in Parallel. Given c~ > 1, a minimum spanning tree, and a

shortest-path tree, an (~, 1 + 2/(~ - 1))-LAST can be found using n processors in

O(log n)-time. The model of computation we use is the Concurrent-Read, Exclusive-

Write Parallel RAM, in which independent, synchronized parallel processors share

a common memory [14]. Multiple simultaneous accesses to the same memory

location are allowed only if all of the accesses are read operations.

The algorithm is as follows. Let C = (el, e2 , e a n _ 2) be the (directed) edges

of the walk through the graph implicit in the depth-first search of the minimum

spanning tree, as in Section 3.2. This tour can be constructed in O(Iog n) time by

n processors using standard techniques [14]. Let (uz, uz+ 1) = el. Using the termino-

logy of Section 3.2, after edge (ui, ui+O is traversed from u~ to uz+l, vertex u~+ 1 is

the current vertex.

The parallel algorithm emulates the serial algorithm except that the distance

estimates are more loosely defined in two ways. First, while a vertex may occur

several times in C, the parallel algorithm treats each occurrence as a distinct vertex.

Second, when a shortest path is added, only the distance estimate of the destination

vertex is lowered. These more loosely defined distance estimates can be computed

in parallel, but still suffice to imply the weight requirement.
j--1 Let Dc(u i, uj) denote ~k=i W(ek), the distance from u i to uj along C. Let m(i,j)

be the relation

i < j and Drs(r, ui) + Dc(u i, u~) > ~DTs(r, u~).

The meaning of m(i,j) is the following. Suppose we modify the original algorithm
to use the more loosely defined distance estimates. Were the modified algorithm

to encounter a vertex u~ without having added a shortest path to any of the vertices

ui + 1, ul + 2 u~_ 1, then it would add the shortest path from the root to uj. Thus, if

the modified algorithm adds a shortest path to a vertex u~, then the next shortest

path it adds will be to vertex u k, where k = min{j: m(i,j)}.

318 s. Khuller, B. Raghavachari, and N. Young

The parallel algorithm will emulate the modified algorithm. Define J(i)=

min{j: m(i, j)}. The parallel algorithm will compute the function J and then add
shortest paths to vertices in the set

S = { U l , u j (i) , u j (j (1)) , . . . , uj(j(...j(1)...)) }.

Once J has been computed, S can be computed by n processors in O(log n) times
on a CREW PRAM using standard techniques [14]. Once S has been computed,
the set S* of ancestors of S in the shortest-path tree can also be computed by n
processors in O(log n) time using tree contraction technique [14]. The final tree
is formed by each nonroot vertex choosing as its parent either the parent in the
shortest-path tree (if the vertex is in S*) or the parent in the minimum spanning
tree (otherwise). It can easily be shown that every vertex has a path to the root
using this set of n - 1 edges, so that they do indeed form a tree.

It remains to compute J(i). First, note that re(i, j) is monotone in i for fixed j.

LEMMA 6.1. I f i' < i and m(i, j) is true, then m(i', j) is true.

PROOF. If m(i, j) is true, then Drf f , u~) + Dc(ui, uj) > o~Drs(r, uj). For any i' < i,
Dc(u~, u j) <_ Dc(u'~, u j). The shortest path from r to i is no longer than any other

path from i to r in the graph, and hence Drs(r, ui) < Dr f f , ui,) + Dc(u'i, ui). Combin-
ing these inequalities we get

Dr~(r, ui,) + Dc(u'i, uj) = Dr~(r, ui,) + Dc(u' i, ug) + Dc(u i, u~)

>_ Drs(r, u~) + Dc(u i, u j)

> ~Dr~(r, uj).

Hence m(i',j) is true by definition. []

The function J can be computed efficiently because of this monotonicity
property:

LEMMA 6.2. Suppose re(i, j) implies m(i', j) for 0 <_ i' <_ i < n, 0 < j < n. Then

the function J(i) = rain{j: m(i,j)} can be computed in O(log n) time by n processors
on a C R E W P R A M .

PROOF. Define l (j) = max{i: m(i,j)}. For each j, compute I(j) using binary
search. Define l * (j) = max{I(j'): 1 < j ' < j}. Compute function I* from func-
tion I using a standard prefix-maxima computation. Finally, define J'(i)=

m i n { j : l * (j) > i}. Compute function J', again using binary search, from
monotone function 1". (See Figure 6.) Each of these computations can be
done by n processors in O(log n) time on a CREW PRAM using standard
techniques [14].

Balancing Minimum Spanning Trees and Shortest-Path Trees 319

M

J

Fig. 6. Computing J from m to find a LAST in parallel.

We prove that J'(/) = J(i) for each i. The proof is in two steps.

1. J'(/) = rain{j: I*(j) > i} = min{j: I(j) > i}, i.e., the smallest j such that I*(j)
exceeds i is equal to the smallest j such that l(j) exceeds i. This is because the
latter depends only on the maxima o f / - - t hose j such that I(j) > l(j') for all
j '_<j .

2. min{j: I(j) >__ i} = min{j: m(i,j)} because I(j) >_/is equivalent to m(i,j) by the

monotonicity property of m. []

The analyses of Lemmas 3.1 and 3.2 can easily be adapted to prove that the
final tree produced by the parallel algorithm is an (~, 1 + 2/(~ - 1))-LAST. This
establishes Theorem 4--an (c~, 1 + 2/(~ - 1))-LAST can be computed by n pro-
cessors in O(log n) time on a CREW PRAM.

7. Conclusions. Every graph contains trees that offer a continuous tradeoff be-
tween minimum spanning trees and shortest-path trees. Trees achieving the
optimal tradeoff can be found in (sequential) linear time or in logarithmic time by
a linear number of processors.

Is it possible to obtain a better tradeoff in the following cases?

�9 In Euclidean graphs. Note that the proof of Lemma 3.2 requires only that
the algorithm walk around the graph from the root visiting every vertex once,
i.e., that the algorithm traverse a Traveling Salesman path starting at the
root. In Euclidean graphs, perhaps such a path of weight at most (2 - ~) times
the minimum spanning-tree weight always exists and can be found in polynomial
time.

320 s. Khuller, B. Raghavachari, and N. Young

�9 If the distance requirement is replaced by the requirement that the sum of

distances from the root is within ~ times the min imum possible.

�9 If the root is not fixed. This would correspond to the problem of installing

a low-cost network and choosing a roo t site so that distances from the root

are near-minimum.

Clearly, any (e ,/3)-LAST also meets these looser requirements, but our lower

bounds no longer show that the tradeoff is optimal.

For directed graphs, it is easy to show that, for any fixed c~ and/3, (~,/3)-LASTs

may not exist and that finding the min imum /3 such that an (ct,/3)-LAST exists

is NP-hard . Can one approx imate this min imum/3?

Acknowledgments. We would like to thank Seffi Naor , Dheeraj Sanghi, and

Mot i Yung for useful discussions. We would like to thank Shay Kut ten for

telling us about [2]. We would like to thank Baruch Awerbuch, Alan Baratz,

and David Peleg for sending us a copy of their manuscr ipt [33. We would

like to thank Andrew K a h n g and Jeff Salowe for telling us about [7] - - [9] .

N o t e Added in P r o o f It is impor tan t to observe that the algori thm was developed

with the purpose of obtaining an O(n) running time. If running time is not a

concern several simple modifications can be made to obtain lighter trees in

practice.

References

[1] I. Alth6fer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted
graphs, Discrete and Computational Geometry, 9(1) (1993), 81-100.

[2] B. Awerbuch, A. Baratz, and D. Peleg, Cost-sensitive anlaysis of communication protocols, Proe.

9th Symp. on Principles of Distributed Computing, 1990, pp. 177-187.
I-3] B. Awerbuch, A. Baratz, and D. Peleg, Efficient broadcast and light-weight spanners, Manuscript

(1991).
[4] K. Bharath-Kumar and J. M. Jaffe, .Routing to multiple destinations in computer networks,

IEEE Transactions on Communications, 31(3) (1983), 343-351.
[-5] B. Chandra, G. Das, G. Narasimhan, and J. Soares, New sparseness results on graph spanners,

Proc. 8th Symp. on Conputational Geometry, 1992, pp. 19~201.
[-6] L.P. Chew, There are planar graphs almost as good as the complete graph, Journal of Computer

and System Sciences, 39(2) (1989), 205-219.
[7] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, Performance-driven

global routing for cell based IC's, Proc. IEEE Internat. Conf. on Computer Design, 1991,
pp. 170-173.

I-8] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, Provably good performance-
driven global routing, IEEE Transactions on CAD, (1992), 739-752.

[9] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong, Provably good algorithms
for performance=driven global routing, Proe. IEEE Internat. Symp. on Circuits and Systems, San
Diego, 1992, pp. 2240-2243.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1989.

[-11] E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1

(1959), 269-271.

Balancing Minimum Spanning Trees and Shortest-Path Trees 321

[-12] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, Journal of the ACM, 34(3) (1987), 596q515.

1-13] H.N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, Efficient algorithms for finding minimum
spanning trees in undirected and directed graphs, Combinatorica, 6(2) (1986), 109-122.

[14] J. J/tJfi Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1991.
[15] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem,

Proceedings of the American Mathematical Society, 7, (1956), pp. 48-50.
[16] C. Levcopoulos and A. Lingas, There are planar graphs almost.as good as the complete graphs

and almost as cheap as minimum spanning trees, Algorithmica, 8(3) (1992), 251-256.
[17] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, Proc. 6th Symp. on

Principles of Distributed Computing, 1987, pp. 77--85.
[18] F.P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York, 1985.
[19] R.C. Prim, Shortest connection networks and some generalizations, Bell System Technical

Journal, 36 (1957), 1389-1401.
[20] P.M. Vaidya, A sparse graph almost as good as the complete graph on points in K dimensions,

Discrete and Computational Geometry, 6 (1991), 369-381.

