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Abstract—Both objective optimization and constraint sat-
isfaction are crucial for solving constrained multi-objective
optimization problems, but existing evolutionary algorithms
encounter difficulties in striking a good balance between
them when tackling complex feasible regions. To address
this issue, this paper proposes a two-stage evolutionary
algorithm, which adjusts the fitness evaluation strategies
during the evolutionary process to adaptively balance objec-
tive optimization and constraint satisfaction. The proposed
algorithm can switch between the two stages according to the
status of the current population, enabling the population to
cross the infeasible region and reach the feasible regions
in one stage, and to spread along the feasible boundaries
in the other stage. Experimental studies on four benchmark
suites and three real-world applications demonstrate the
superiority of the proposed algorithm over the state-of-the-
art algorithms, especially on problems with complex feasible
regions.
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I. INTRODUCTION

THERE are many real-world optimization problems
containing multiple objectives and constraints. For

instance, the time-varying ratio error estimation problem
aims to minimize the total ratio error and its variation,
and the solutions should meet the constraints of topol-
ogy, series, and phase [1]. The robot gripper optimization
problem aims to minimize the fluctuation of gripping
force and the force transmission ratio, and the solutions
are restricted by six constraints related to geometry and
force considerations [2]. These problems are collectively
known as constrained multi-objective optimization prob-
lems (CMOPs), which can be mathematically defined as

Minimize F(x) = (f1(x), · · · , fm(x))

subject to x ∈ Ω

gi(x) ≤ 0, i = 1, · · · , p
hj(x) = 0, j = 1, · · · , q

, (1)

where x = (x1, · · · , xd) ∈ Ω is the solution consisting
of d decision variables, Ω ⊆ Rd is the decision space,
F : Ω→ Rm consists of m objectives, and gi(x) and hj(x)
are p inequality and q equality constraints, respectively.

Over the last two decades, evolutionary algorithms
have been widely employed to solve multi-objective
optimization problems, which are able to strike a balance
between the conflicting objectives and gain a population
with good convergence and diversity. For example, the
Pareto dominance based evolutionary algorithms im-
prove the population convergence by non-dominated
sorting [3] and maintain the population diversity by
various selection strategies [4]. The decomposition based
evolutionary algorithms predefine a set of uniformly
distributed weight vectors to ensure the population di-
versity [5], and drive the population to converge along
the weight vectors by optimizing aggregation functions
[6]. The indicator based evolutionary algorithms select
solutions according to their contributions to performance
indicators like HV [7] and IGD-NS [8], where perfor-
mance indicators can evaluate the convergence and di-
versity of a population simultaneously. In order to solve
CMOPs, some constraint handling techniques should be
additionally considered for balancing the objectives and
constraints, such as the constraint dominance principle



IEEE TRANSACTIONS ON CYBERNETICS, VOL. , NO. , MONTH YEAR 2

Fig. 1. Feasible regions of LIR-CMOP9 and MW13. The objectives
should be given an equal or higher priority than the constraints for
solving LIR-CMOP9 and given a lower priority than the constraints
for solving MW13.

of NSGA-II-CDP [9], the two-archive strategy of C-TAEA
[10], and the push-and-pull search process of PPS [11].

In spite of the promising performance of exist-
ing constrained multi-objective evolutionary algorithms
(CMOEAs) on simple CMOPs, they are incapable of
balancing objective optimization and constraint satis-
faction on complex CMOPs [12]–[14], whose feasible
regions may be disconnected (e.g., LIR-CMOP9 [12]) or
disjoint from the unconstrained Pareto front (e.g., MW13
[13]) as shown in Fig. 1. In fact, for the CMOPs with
disconnected feasible regions, the objectives can be given
an equal or higher priority than the constraints, so that
the solutions can cross the infeasible regions and reach
the feasible regions. While for the CMOPs whose feasible
regions are disjoint from the unconstrained Pareto front,
the objective can be given a lower priority than the
constraints, so that the solutions can stay in the feasible
region for better diversity. As a consequence, it is un-
reasonable to use a single constraint handling technique
to solve different CMOPs; by contrast, the priority of
objectives and constraints should be adaptively adjusted
to adapt to various feasible regions.

Following this idea, this paper proposes a two-stage
CMOEA to adaptively balance objective optimization
and constraint satisfaction during the evolutionary pro-
cess. To be more specific, the main contributions of this
work can be summarized as follows:

1) A two-stage CMOEA is proposed for solving
CMOPs with complex feasible regions. The pro-
posed algorithm divides the evolutionary process
into two stages, and uses different fitness eval-
uation strategies in the two stages to adjust the
priority of objectives and constraints. The Stage A
indicates that the solutions are mostly infeasible,
and the objectives are given the same priority to
constraints for reaching all the feasible regions. By
contrast, the Stage B indicates that the solutions
are mostly feasible, and the objectives are given a
lower priority than the constraints for diversifying
the solutions along the feasible boundaries. The
proposed algorithm automatically determines the
current stage according to the status of the pop-
ulation at each generation, which is versatile for
tackling various feasible regions.

2) Several case studies on benchmark CMOPs are
performed to reveal the importance of adaptively
balancing objective optimization and constraint sat-
isfaction in solving CMOPs with different feasible
regions. Moreover, a series of experiments on chal-
lenging benchmark suites and real-world applica-
tions are conducted to verify the superiority of the
proposed CMOEA over the state-of-the-art, espe-
cially on CMOPs with complex feasible regions.

The rest of this paper is organized as follows. In Sec-
tion II, we briefly review the state-of-the-art CMOEAs
according to the strategies for balancing objectives and
constraints, and then we elicit the motivation of this
work. The proposed algorithm is elaborated in Sec-
tion III, followed by a description of the experimental
studies in Section IV. Finally, the conclusions and future
work are presented in Section V.

II. RELATED WORK AND MOTIVATION

A. Existing CMOEAs
In general, existing CMOEAs can be grouped into the

following four categories, where the priorities of objec-
tives and constraints are different in these categories.

The first category considers objectives and constraints
equally. In [15], the objective vector of each solution is
extended with the violation of each constraint, then the
non-dominated sorting is performed on the extended
objective vectors. Inspired by [16], the algorithm in [17]
performs non-dominated sorting on objectives and con-
straints separately, then blends the two non-dominated
ranks. In [18], the objective values of each solution are
modified by considering its constraint violation. In [19], a
constrained non-dominated rank is defined by integrat-
ing the original non-dominated rank and a constraint
rank. In [20], a tri-goal evolutionary framework is pro-
posed to consider convergence, diversity, and feasibility.

The second category makes constraints always prior
to objectives. The algorithm in [21] directly discards
infeasible solutions, which may lose selection pressure
when most solutions are infeasible. NSGA-II [9] embeds
feasibility dominance principle into Pareto dominance
for solving CMOPs, which is known as NSGA-II-CDP. A
similar strategy is extended to MOEA/D, which prefers
constraint satisfaction than aggregation function in up-
dating the solution for each weight vector [22]. The
constraint handling strategies in NSGA-II and MOEA/D
can also be easily applied to most Pareto dominance
based MOEAs and decomposition based MOEAs [23],
respectively, but such an excessive use of feasibility may
make the population trap into a small feasible region.
To relax the definition of feasibility, the algorithm in
[24] regards solutions with small constraint violations as
feasible ones, the algorithm in [12] regards solutions with
constraint violations smaller than a predefined parame-
ter ε as feasible ones, the algorithm in [25] makes no dif-
ference when the constraint violations of two solutions
are similar, the algorithm in [26] treats two infeasible
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solutions as non-dominated if the angle between them is
large, and the algorithm in [27] preserves the infeasible
solutions in isolated regions. In addition to the use of
constraint violation, the number of violated constraints
[28] and the dominance relation based on constraints
[29], [30] have also been considered.

The third category balances objectives and constraints
dynamically by the use of different strategies in dif-
ferent populations. The DyHF framework [31] divides
the population into several subpopulations according
to the Euclidean distances between solutions, and then
performs global search or local search dynamically. In
[32], the algorithm also divides the population into sev-
eral subpopulations and considers a single constraint in
each subpopulation. The DPDE framework [33] divides
the population into two subpopulations, hoping one
population to evolve from infeasible regions to feasible
regions and the other population to be optimized in the
feasible regions. Similarly, the algorithm in [34] evolves
one population by optimizing only the objectives, and
evolves another population by optimizing only the con-
straints. In C-TAEA [10], a convergence-oriented archive
is evolved by optimizing both the objectives and con-
straints, and a diversity-oriented archive is evolved by
optimizing only the objectives.

The fourth category balances objectives and con-
straints dynamically through different strategies at dif-
ferent stages of the search process. ToPDE [35] tries to
find out as many feasible solutions as possible in the
first stage, and optimizes those feasible solutions in the
second stage. In [36], [37], two novel frameworks are
proposed for constrained optimization, which convert
the original constrained problem to an equivalent dy-
namic CMOP and solve it via dynamic multi-objective
evolutionary algorithms, where the constraint boundary
is gradually reduced to the original constraint boundary
in the dynamic CMOP. The PPS framework [11] divides
the search process into a push stage and a pull stage,
where the population is evolved without considering
constraints in the push stage and with considering all
the objectives and constraints in the pull stage. The
ToP framework [14] also suggests a two-stage search
process, where all the constraints and a single objective
are considered in the first stage, and all the constraints
and objectives are considered in the second stage.

B. Motivation of This Work

It can be found that the balance between objective
optimization and constraint satisfaction is a key issue
in solving CMOPs. However, most existing CMOEAs
encounter difficulties in striking a good balance between
objectives and constraints when solving CMOPs with
complex feasible regions [13], [14]. To better illustrate
the limitations of existing CMOEAs, Fig. 2 plots the
populations obtained by NSGA-II-CDP, C-TAEA, and
PPS on LIR-CMOP9 and MW13, where the parameter
settings are presented in Section IV-B. As mentioned

Fig. 2. Populations obtained by NSGA-II-CDP, C-TAEA, and PPS on
LIR-CMOP9 and MW13. NSGA-II-CDP and C-TAEA perform well on
only MW13, while PPS performs well on only LIR-CMOP9.

before, the objectives should be given an equal or higher
priority than the constraints for solving LIR-CMOP9,
while the objectives should be given a lower priority
than the constraints for solving MW13.

For LIR-CMOP9 whose feasible regions are discon-
nected and separated by a large infeasible region, the
population of NSGA-II-CDP converges to a few feasible
regions since it always prefers feasible solutions than
infeasible solutions (i.e., the priority of objectives is
lower than constraints), which disables the population
from crossing the infeasible region and reaching all the
feasible regions. Similarly, many solutions obtained by
C-TAEA cannot cross the infeasible region since the
main population (i.e., convergence-oriented archive) also
prefers feasible solutions than infeasible solutions. Be-
sides, the solutions obtained by PPS can reach all the
feasible regions and converge well, since it considers
only the objectives in the push stage and considers both
the objectives and constraints in the pull stage (i.e., the
objectives always have an equal or higher priority than
the constraints). On the other hand, for MW13 whose
feasible regions are disjoint from the unconstrained
Pareto front, the populations of NSGA-II-CDP and C-
TAEA have good convergence and diversity, since they
give a lower priority to the objectives that enable the
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Fig. 3. Procedure of the proposed CMOEA-MS.
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Fig. 4. Ratio of feasible solutions in the populations obtained by
NSGA-II-CDP, C-TAEA, and PPS on LIR-CMOP9 and MW13. The three
CMOEAs cannot perform well on both LIR-CMOP9 and MW13 since
the priority of objectives and constraints (reflected by the ratio of
feasible solutions) remains unchanged on the two CMOPs.

solutions to spread along the feasible boundary. By con-
trast, the population of PPS has worse convergence than
those of NSGA-II-CDP and C-TAEA, which is mainly
due to the high priority of the objectives.

As a consequence, none of the three CMOEAs can
balance the objectives and constraints on both LIR-
CMOP9 and MW13, since the objectives are always given
a lower priority than the constraints in NSGA-II-CDP
and C-TAEA, and the objectives are always given an
equal or higher priority than the constraints in PPS. For
further observation, Fig. 4 depicts the ratio of feasible
solutions in the populations at each generation of the
three CMOEAs averaged over 30 runs, where a higher
ratio of feasible solutions indicates a lower priority of the
objectives. It can be found that the ratio of feasible solu-
tions in the populations of NSGA-II-CDP and C-TAEA
is always 1, which is beneficial for solving MW13 but
ineffective for solving LIR-CMOP9. By contrast, the ratio
of feasible solutions in the population of PPS is smaller
than 1 since it gives the objectives an equal priority to the
constraints, which is improper for solving MW13. Note
that the ratio of feasible solutions of PPS reaches 1 at
last since PPS gives the objectives a lower priority than
the constraints at the last several generations, but these
generations are not enough to spread the population
along the feasible boundary of MW13.

To address the limitations of existing CMOEAs, the
proposed CMOEA automatically adjusts the priority of
objectives and constraints at different stages. By giving
the objectives an equal priority to the constraints in
one stage and a lower priority than the constraints in
the other stage, the proposed CMOEA is expected to
tackle CMOPs with different feasible regions. In the

next section, the procedure of the proposed CMOEA is
described.

III. THE PROPOSED ALGORITHM

A. Procedure of CMOEA-MS
Fig. 3 illustrates the procedure of the proposed

CMOEA with a two-stage framework (CMOEA-MS).
The proposed algorithm first generates an initial popula-
tion randomly, then repeats reproduction, fitness evalu-
ation, and environmental selection until the termination
condition is satisfied. The novelty of CMOEA-MS mainly
lies in the two-stage framework, which automatically
determines the current stage at each generation and
uses different fitness evaluation strategies in the two
stages for balancing the objectives and constraints. More
specifically, if the ratio of feasible solutions in the com-
bined population is smaller than λ, CMOEA-MS will
use the fitness evaluation strategy of Stage A to give
the objectives the same priority to the constraints, hence
some infeasible solutions can be maintained to help the
population cross infeasible regions. Otherwise, CMOEA-
MS will use the fitness evaluation strategy of Stage B to
give the objectives a lower priority than the constraints,
hence more feasible solutions can be found to help the
population spread along the feasible boundaries.

As presented in Algorithm 1, CMOEA-MS starts with
the random initialization of a population with size n.
In the reproduction procedure, n parents are selected
from the current population P by binary tournament
selection based on the fitness of solutions, then n off-
spring solutions are generated based on the parents
and combined with the current population. Afterwards,
the algorithm will enter either Stage A or Stage B. In
the environmental selection procedure, n solutions with
better fitness values are selected and survive to the next
generation; as suggested in [38], if the fitness values of
more than n solutions in P are smaller than 1 (i.e., these
solutions are non-dominated), n of them are selected by
the truncation method based on the Euclidean distances
between solutions. In other words, the solutions with
fitness values larger than 1 are compared according to
their fitness values, and the solutions with fitness values
smaller than 1 are compared according to the Euclidean
distances between them.

As a consequence, the fitness of solutions plays a
crucial role in the proposed algorithm, where the fitness
evaluation strategies in the two stages are also the core
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Algorithm 1: The procedure of CMOEA-MS
Input: n (population size), λ (parameter for

determining the current stage)
Output: P (final population)

1 P ← RandomInitialization(n);
2 F ← Calculate the fitness of solutions in P by (2)(3);
3 while termination criterion not fulfilled do

//Reproduction
4 P ′ ← Use binary tournament selection to select

n parents from P based on the fitness;
5 P ← P

∪
V ariation(P ′);

6 if the ratio of feasible solutions in P is smaller than
λ then

//Stage A
7 F ← Calculate the fitness of solutions in P

by (2)(3);

8 else
//Stage B

9 F ← Calculate the fitness of solutions in P
by (2)(6);

//Environmental selection
10 if the fitness values of more than n solutions in P

are smaller than 1 then
11 P ← Use truncation method (a greedy

strategy based on Euclidean distance) to
select n solutions whose fitness values are
smaller than 1 from P ;

12 else
13 P ← Directly select n solutions with better

fitness values from P ;

14 return P ;

contributions of this work. In the next subsection, the
details of the proposed fitness evaluation strategies are
elaborated.

B. Fitness Evaluation Strategies in CMOEA-MS

The fitness evaluation strategies in CMOEA-MS hold
a similar idea to the one in SPEA2 [38]. First of all,
the solution set Rx storing all the solutions dominated
by x and the solution set Sx storing all the solutions
dominating x are determined, and the ⌊

√
2n⌋-th nearest

neighbor x′ of x is found. Then, the fitness of solution
x can be calculated by

fit(x) =
∑
y∈Sx

|Ry|+
1

dist(x,x′) + 2
, (2)

where the first component of fit(x) counts the total
number of solutions dominated by the solutions dom-
inating x, and the second component calculates the
inverse of the Euclidean distance from x to its ⌊

√
2n⌋-

th nearest neighbor. Obviously, a smaller fitness value
represents a better quality of the solution, and fit(x) < 1

indicates that the solution is not dominated by any
others.

The difference between the proposed fitness eval-
uation strategies and the one in SPEA2 lies in the
dominance relation for determining Rx and Sx. To be
more specific, SPEA2 uses the conventional Pareto dom-
inance [39] to determine the dominance relation between
each two solutions, which considers all the objectives
of solutions. By contrast, the Stage A of CMOEA-MS
determines the dominance relation by considering the
following two new objectives:

Minimize F′(x) = (SDE(x), CV (x))

subject to x ∈ Ω
, (3)

where SDE(x) is the minimum shift-based density esti-
mation based distance between x and other solutions in
the population P [40]:

SDE(x) = min
y∈P\{x}

√√√√ m∑
i=1

(max{0, fi(y)− fi(x)})2, (4)

and CV (x) is the total constraint violation of x [9]:

CV (x) =

p∑
i=1

max{gi(x), 0}+
q∑

j=1

|hj(x)|, (5)

where fi(x), gi(x), and hi(x) denote the objective values,
inequality constraints, and equality constraints of the
solution, respectively. The first objective SDE(x) can
evaluate the quality of a solution in terms of both con-
vergence and diversity, and the second objective CV (x)
evaluates the quality of a solution in terms of constraint
satisfaction. Therefore, the Stage A of CMOEA-MS gives
the objectives an equal priority to the constraints. Be-
sides, in contrast to some existing CMOEAs consider the
sum of all the objectives as the first objective [14], the
use of shift-based density estimation based distance can
additionally consider the population diversity to enable
the solutions to reach the isolated feasible regions. The
experiments in Section IV-E will demonstrate the supe-
riority of shift-based density estimation based distance
over the sum of all the objectives.

On the other hand, the Stage B of CMOEA-MS aims
to give the objectives a lower priority than the con-
straints. To this end, the constraint dominance principle
[9] is adopted in the Pareto dominance to determine the
dominance relation between each two solutions. More
formally, a solution x dominates another solution y if
the following conditions hold:

CV (x) = 0

CV (y) = 0

fi(x) ≤ fj(y), ∀i ∈ {1, . . . ,m}
fi(x) < fj(y), ∃i ∈ {1, . . . ,m}
or
CV (x) < CV (y)

. (6)
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Fig. 5. Populations obtained by the proposed CMOEA-MS on LIR-
CMOP9 and MW13. CMOEA-MS performs well on both the two
CMOPs.

As a result, the Stage B always prefers the solution
with lower constraint violation; while if both the two
solutions are feasible, they are compared based on the
conventional Pareto dominance.

C. Analysis of CMOEA-MS

To investigate the performance of CMOEA-MS and
verify whether it can balance objective optimization and
constraint satisfaction on different CMOPs, it is tested
on LIR-CMOP9 and MW13 with λ = 0.5. As can be
seen from Fig. 5, the population can not only reach all
the feasible regions of LIR-CMOP9 but also uniformly
spread along the feasible boundary of MW13. In short,
CMOEA-MS can better balance objective optimization
and constraint satisfaction than NSGA-II-CDP, C-TAEA,
and PPS on the two CMOPs.

The superiority of CMOEA-MS is attributed to the dif-
ferent priorities of objectives and constraints considered
in the two stages. When solving LIR-CMOP9 with many
small and isolated feasible regions, CMOEA-MS enters
Stage A since most offspring solutions are likely to locate
in the infeasible region, hence the objectives are given an
equal priority to the constraints. On the contrary, when
solving MW13 whose feasible regions are continuous but
disjoint from the unconstrained Pareto front, CMOEA-
MS enters Stage B since most offspring solutions are
likely to locate in the feasible region, hence the objectives
are given a lower priority than the constraints. For
further demonstration, Fig. 6 plots the ratio of feasi-
ble solutions in the populations at each generation of
CMOEA-MS, averaged over 30 runs. It can be found
that the ratios of feasible solutions on the two CMOPs
are quite different, which means that CMOEA-MS uses
different priorities to the objectives and constraints.
Specifically, the low ratio on LIR-CMOP9 demonstrates
that CMOEA-MS is always in Stage A that gives the
objectives an equal priority to the constraints, and the
high ratio on MW13 demonstrates that CMOEA-MS is
mostly in Stage B that gives the objectives a lower
priority than the constraints. By contrast, the ratio of
feasible solutions in the populations of NSGA-II-CDP, C-
TAEA, and PPS remains unchanged on LIR-CMOP9 and
MW13, which is unable to balance objective optimization
and constraint satisfaction on both the two CMOPs.
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Fig. 6. Ratio of feasible solutions in the populations obtained by
the proposed CMOEA-MS on LIR-CMOP9 and MW13. CMOEA-MS
performs well on both LIR-CMOP9 and MW13 since the priority of
objectives and constraints (reflected by the ratio of feasible solutions)
adapts to the two CMOPs.

(a) PPS on DAS-CMOP5

(b) CMOEA-MS on DAS-CMOP5
Fig. 7. Populations and ratio of feasible solutions of PPS and the
proposed CMOEA-MS on DAS-CMOP5. CMOEA-MS obtains a better
population than PPS at the last generation.

Fig. 7 illustrates the search behaviors of PPS and the
proposed CMOEA-MS (λ = 0.5) in a more complex
scenario, where the feasible regions of the problem DAS-
CMOP5 [41] have the difficulties of both LIR-CMOP9
and MW13. That is, the population should be able to
cross the infeasible region, reach the isolated feasible
regions, and spread along the feasible boundary at last.
As can be seen from the figure, CMOEA-MS obtains a
better population than PPS at last, which is mainly due
to two reasons: Firstly, the population converges to the
unconstrained Pareto front in the push stage of PPS since
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the constraints are not considered at all, hence much
effort should be made to pull the population back to the
feasible regions; by contrast, the population remains in
the feasible regions in Stage A of CMOEA-MS since both
the objectives and constraints are considered. Secondly,
the ratio of feasible solutions in the pull stage of PPS is
not always 1, which means that some infeasible solutions
are preferred and hinder the population in spreading
along the feasible boundary; by contrast, the ratio of
feasible solutions in Stage B of CMOEA-MS is always
1, which means that no infeasible solution is preferred
and the population can easily spread along the feasible
boundary. As a result, CMOEA-MS is more effective than
PPS in tackling the feasible regions that are disconnected
and far from the unconstrained Pareto front.

To give a deeper understanding of the advantage of
CMOEA-MS, the search behaviors of NSGA-II-CDP, C-
TAEA, PPS, and CMOEA-MS (λ = 0.8) are investigated
on the following CMOP:

Minimize F(x) = (f1(x), f2(x))

where f1(x) = (1 + g(x)) cos(x1)

f2(x) = (1 + g(x)) sin(x1)

g(x) = 10
50∑
i=2

(xi − 0.5)2

subject to x ∈ [0, 1]50

cos(0.1πg(x)) ≤ 0

. (7)

Obviously, the unconstrained Pareto front is f2
1 + f2

2 = 1
while the feasible boundary is f2

1 + f2
2 = 36, and the

feasible regions and infeasible regions are alternatively
arranged with the increase of g(x) as shown in Fig. 8.
Fig. 8 also shows the worst value of g(x) among all
the solutions in the populations at each generation of
the four CMOEAs, averaged over 30 runs. For NSGA-
II-CDP, the population is hindered by the infeasible
regions and cannot reach the feasible boundary. For C-
TAEA and CMOEA-MS, both their populations can reach
the feasible boundary, and the population of CMOEA-
MS converges much faster than the population of C-
TAEA. For PPS, although the population can reach the
feasible boundary at last, much search effort is wasted on
approximating the unconstrained Pareto front. In short,
CMOEA-MS is more efficient than the other CMOEAs
in solving the problem, which is mainly due to the
two stages alternately used for reaching the feasible
boundary as shown at the bottom of Fig. 8.

D. Computational Complexity of CMOEA-MS

The computational complexity of CMOEA-MS is gov-
erned by three procedures at each generation, including
reproduction, fitness evaluation, and environmental se-
lection. For reproduction, the time complexities of binary
tournament selection and offspring generation are O(n)
and O(dn), respectively, where n denotes the population
size and d denotes the number of decision variables. For

Fig. 8. Feasible regions of the CMOP in (7) and the worst value of
g(x) among all the solutions in the populations obtained by NSGA-
II-CDP, C-TAEA, PPS, and CMOEA-MS. CMOEA-MS is more efficient
than the other CMOEAs in reaching the feasible boundary.

fitness evaluation, the time complexities of calculating
SDE, calculating CV , determining the dominance rela-
tions, and calculating the fitness of all the solutions are
O(mn2), O((p+ q)n), O(mn2), and O(mn2), respectively,
where m denotes the number of objectives, p denotes the
number of inequality constraints, and q denotes the num-
ber of equality constraints. For environmental selection,
the time complexity of truncation method is O(n3). To
summarize, the total computational complexity of each
generation of CMOEA-MS is O((d+mn+ p+ q+ n2)n).

IV. EXPERIMENTAL STUDIES

A series of experiments are performed in this section
to verify the effectiveness of the proposed CMOEA-
MS in solving CMOPs. Specifically, CMOEA-MS is first
compared to five representative CMOEAs on three chal-
lenging benchmark suites. Then, the effectiveness of
the two-stage framework of CMOEA-MS is verified by
ablation study. Lastly, the performance of CMOEA-MS is
verified on several CMOPs from real-world applications.
All the experiments are conducted on PlatEMO [42].

A. Benchmark Suites
A number of benchmark CMOPs taken from four

recently proposed benchmark suites are adopted as the
test problems, which are LIR-CMOP1–LIR-CMOP14 [12],
DAS-CMOP1–DAS-CMOP9 [41], MW1–MW14 [13], and
DC1-DTLZ1–DC3-DTLZ3 [10]. These CMOPs have vari-
ous feasible regions, posing stiff challenges for CMOEAs
to balance objective optimization and constraint satis-
faction. The number of objectives in LIR-CMOP13, LIR-
CMOP14, DAS-CMOP7, DAS-CMOP8, DAS-CMOP9,
MW4, MW8, MW14, and DC1-DTLZ1–DC3-DTLZ3 is 3,
the number of objectives in the other CMOPs is 2, and
the number of decision variables in all the CMOPs is set
to 10 to ensure that most CMOEAs can converge.

B. Compared Algorithms
Five popular CMOEAs (i.e., TiGE-2 [20], NSGA-II-

CDP [9], C-TAEA [10], PPS [11], and ToP [14]) are
selected as baselines. TiGE-2 gives the objectives an equal
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TABLE I
STATISTICAL RESULTS OF IGD OBTAINED BY TIGE-2, NSGA-II-CDP, C-TAEA, PPS, TOP, AND THE PROPOSED CMOEA-MS ON THE

LIR-CMOP BENCHMARK SUITE. BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem TiGE-2 NSGA-II-CDP C-TAEA PPS ToP CMOEA-MS

LIR-CMOP1 8.4168e-2 (2.31e-2) ≈ 1.8674e-1 (5.94e-2) − 2.4656e-1 (1.22e-1) − 9.4513e-3 (2.50e-3) + 1.6109e-1 (1.33e-1) ≈ 9.1974e-2 (5.02e-2)
LIR-CMOP2 1.0482e-1 (3.20e-2) ≈ 1.4944e-1 (5.64e-2) − 7.8418e-2 (1.97e-2) ≈ 6.4834e-3 (6.30e-4) + 1.5049e-1 (1.31e-1) ≈ 9.4703e-2 (4.25e-2)
LIR-CMOP3 8.7271e-2 (2.86e-2) + 2.4048e-1 (6.34e-2) ≈ 2.6444e-1 (1.78e-1) ≈ 9.7277e-3 (5.63e-3) + 3.6618e-1 (4.55e-2) − 2.5920e-1 (1.37e-1)
LIR-CMOP4 9.6294e-2 (2.38e-2) + 2.3352e-1 (8.92e-2) ≈ 1.9762e-1 (1.28e-1) ≈ 4.9555e-3 (3.15e-3) + 3.3258e-1 (7.39e-2) ≈ 2.7395e-1 (6.20e-2)
LIR-CMOP5 2.8706e-1 (8.80e-2) − 7.9890e-1 (4.53e-1) − 9.2948e-2 (1.55e-2) − 6.2936e-3 (3.99e-4) − 2.9253e-1 (5.17e-1) − 4.9393e-3 (1.73e-4)
LIR-CMOP6 5.2491e-1 (2.13e-1) − 5.4141e-1 (5.21e-1) − 1.2999e-1 (1.25e-1) − 7.5306e-3 (8.39e-4) − 1.7106e-1 (3.91e-1) − 4.9707e-3 (1.27e-4)
LIR-CMOP7 1.5279e-1 (7.48e-2) − 9.8944e-3 (3.16e-3) − 1.8057e-2 (1.80e-3) − 1.0161e-2 (1.16e-3) − 8.6330e-3 (2.76e-4) − 7.2675e-3 (3.34e-4)
LIR-CMOP8 2.5226e-1 (1.48e-1) − 7.0191e-2 (1.20e-1) − 1.9867e-2 (7.30e-3) − 1.0574e-2 (9.05e-4) − 8.6143e-3 (3.71e-4) − 7.5092e-3 (3.56e-4)
LIR-CMOP9 7.7370e-1 (2.47e-1) − 5.1760e-1 (1.39e-1) − 6.7924e-2 (2.68e-2) − 3.2808e-3 (1.32e-4) + 2.4650e-1 (1.79e-1) ≈ 2.9224e-2 (9.48e-3)
LIR-CMOP10 4.7549e-1 (2.71e-2) − 3.4652e-1 (9.84e-2) − 6.6641e-2 (5.51e-2) − 5.1535e-3 (1.57e-4) − 5.5902e-3 (2.06e-4) − 4.2495e-3 (1.13e-4)
LIR-CMOP11 6.4562e-1 (3.86e-1) − 1.3998e-1 (1.11e-1) ≈ 1.2150e-1 (3.29e-2) + 2.3949e-3 (1.02e-4) + 9.6494e-2 (6.95e-2) + 2.3391e-1 (1.53e-1)
LIR-CMOP12 4.4006e-1 (2.12e-1) − 1.5167e-1 (1.02e-1) − 1.3646e-2 (3.06e-3) − 3.0275e-3 (7.34e-5) − 2.8845e-3 (1.22e-4) − 2.7937e-3 (5.77e-5)
LIR-CMOP13 3.5519e-1 (4.21e-2) − 6.7913e-2 (1.93e-3) − 5.4146e-2 (5.43e-4) + 6.7710e-2 (1.37e-3) − 7.7715e-2 (1.05e-3) − 6.2303e-2 (7.74e-4)
LIR-CMOP14 3.6556e-1 (6.10e-2) − 7.0478e-2 (1.61e-3) − 5.5815e-2 (1.04e-3) + 6.7115e-2 (1.18e-3) − 7.0685e-2 (1.16e-3) − 5.8666e-2 (6.46e-4)
+/− / ≈ 2/10/2 0/11/3 3/8/3 6/8/0 1/9/4

priority to the constraints, NSGA-II-CDP and C-TAEA
give the objectives a lower priority than the constraints,
PPS gives the objectives a higher priority than the con-
straints in the push stage and an equal priority to the
constraints in the pull stage, and ToP gives the objectives
a lower priority than the constraints in both the first
and second stages. According to the taxonomy given in
Section II-A, TiGE-2 belongs to the first category, NSGA-
II-CDP belongs to the second category, C-TAEA belongs
to the third category, and PPS and ToP belong to the
fourth category. Parameter settings of these CMOEAs are
the same as those in their original literatures, which are
given in the following; besides, a parameter sensitivity
analysis of all the compared CMOEAs is given in Sup-
plementary Materials I.

• The population size of all the CMOEAs is set to
100 for two-objective CMOPs, 300 for three-objective
CMOPs, and 330 for five-objective CMOPs.

• The number of function evaluations of all the
CMOEAs is set to 200,000 for two-objective CMOPs
and 400,000 for three- and five-objective CMOPs.

• TiGE-2, NSGA-II-CDP, C-TAEA, and CMOEA-MS
use simulated binary crossover [43] and polynomial
mutation [44] to generate offspring solutions, while
PPS and ToP use differential evolution [45] and
polynomial mutation. The crossover probability is
set to 1, the mutation probability is set to 1/d (d is
the number of decision variables), the distribution
index of both crossover and mutation is set to
20, and the parameters CR and F in differential
evolution are set to 1 and 0.5, respectively.

• PPS adopts C-MOEA/D [22] as the optimizer, and
the other parameter settings are Tc = 0.8 × Tmax,
α = 0.95, τ = 0.1, cp = 2, and l = 20, where Tmax

denotes the maximum number of generations.
• ToP adopts NSGA-II-CDP as the optimizer, and the

first stage ends if the feasibility proportion Pf > 1/3
or the difference δ < 0.2.

• The parameter λ for determining the current stage
in CMOEA-MS is set to 0.5.

C. Performance Metrics
Since the constrained Pareto fronts of all the bench-

mark CMOPs are known, the widely used inverted gen-
erational distance (IGD) [46] metric is employed to as-
sess the performance of the compared CMOEAs, where
approximately 10,000 uniformly distributed points sam-
pled on each constrained Pareto front are used as the ref-
erence points for calculating IGD. While the constrained
Pareto fronts of all the real-world CMOPs are unknown,
the hypervolume (HV) [47] metric is employed, where
the reference point is set to 1.1× znad (znad denotes the
nadir point of the non-dominated solutions obtained by
all the CMOEAs) as suggested in [48]. All the CMOEAs
are executed on each CMOP for 30 independent runs,
and the mean value and standard deviation of the 30
metric values are recorded. Besides, we also take the
Wilcoxon rank sum test with a significance level of 0.05
to analyze the results, where ‘+’, ‘−’, and ‘≈’ indicate
that the result of a compared CMOEA is significantly
better, significantly worse, and statistically similar to that
of the proposed CMOEA-MS, respectively.

D. Experimental Results on Benchmark Suites
1) Comparisons on LIR-CMOP Suite: The 14 LIR-CMOP

problems are challenging for most existing CMOEAs
since they have small feasible regions, where some
Pareto fronts are obstructed by very large infeasible
regions, some Pareto fronts consist of a few disjoint
segments or sparse dots obstructed by large infeasi-
ble regions, and some feasible regions are even just a
curve. As can be seen from the experimental results
shown in Table I, both PPS and CMOEA-MS exhibit
the best performance on six CMOPs, C-TAEA exhibits
the best performance on two CMOPs, while the other
three CMOEAs do not gain any best result. In particular,
the proposed CMOEA-MS exhibits the best performance
on LIR-CMOP5–LIR-CMOP8 and good performance on
LIR-CMOP9–LIR-CMOP12, since CMOEA-MS is good
at handling the feasible regions that are obstructed by
large infeasible regions (LIR-CMOP5–LIR-CMOP8) or
disconnected (LIR-CMOP9–LIR-CMOP12). By contrast,
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TABLE II
STATISTICAL RESULTS OF IGD OBTAINED BY TIGE-2, NSGA-II-CDP, C-TAEA, PPS, TOP, AND THE PROPOSED CMOEA-MS ON THE

DAS-CMOP BENCHMARK SUITE. BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem TiGE-2 NSGA-II-CDP C-TAEA PPS ToP CMOEA-MS

DAS-CMOP1 1.0259e-1 (9.94e-2) ≈ 1.6298e-1 (2.54e-1) ≈ 1.0091e-2 (1.83e-3) + 2.0439e-3 (1.91e-4) + 4.9550e-2 (1.64e-1) + 1.4453e-1 (2.15e-1)
DAS-CMOP2 2.5125e-2 (3.71e-3) − 4.8685e-2 (3.64e-2) − 7.8570e-3 (8.70e-4) ≈ 4.0043e-3 (1.99e-4) ≈ 3.8294e-3 (8.81e-5) ≈ 1.6372e-2 (1.45e-2)
DAS-CMOP3 9.8960e-2 (6.08e-2) ≈ 1.7765e-1 (5.93e-2) ≈ 3.0807e-2 (9.67e-3) + 1.9309e-2 (9.12e-5) + 8.4918e-2 (8.66e-2) ≈ 1.2938e-1 (4.95e-2)
DAS-CMOP4 1.5949e-1 (2.23e-1) − 9.6496e-2 (2.22e-1) − 1.1141e-2 (2.45e-3) + 1.7224e-3 (8.27e-5) + 6.6905e-1 (2.59e-1) − 2.3620e-2 (7.79e-2)
DAS-CMOP5 2.2732e-2 (4.14e-3) − 3.4816e-3 (7.20e-5) − 7.4499e-3 (4.44e-4) − 4.2145e-3 (2.87e-4) − 5.0464e-1 (2.57e-1) − 2.7513e-3 (6.05e-5)
DAS-CMOP6 4.7244e-2 (3.93e-2) ≈ 1.5596e-2 (3.44e-3) + 2.9464e-2 (6.73e-3) − 2.4358e-2 (1.11e-2) ≈ 6.4312e-1 (1.48e-1) − 2.6886e-2 (2.25e-2)
DAS-CMOP7 5.6453e-2 (3.92e-3) − 2.3213e-2 (6.85e-4) − 2.9120e-2 (5.11e-4) − 3.9329e-2 (5.91e-3) − 6.2011e-1 (2.68e-1) − 1.7718e-2 (2.46e-4)
DAS-CMOP8 6.8560e-2 (3.52e-3) − 2.8860e-2 (1.16e-3) − 4.4515e-2 (2.10e-3) − 6.8281e-2 (1.27e-2) − 7.9786e-1 (1.41e-1) − 2.3613e-2 (8.48e-4)
DAS-CMOP9 6.1238e-2 (3.14e-3) − 3.1116e-2 (1.68e-3) − 4.6351e-2 (1.65e-3) − 3.2196e-2 (1.80e-3) − 2.8120e-2 (8.33e-4) − 2.3157e-2 (3.83e-4)
+/− / ≈ 0/6/3 1/6/2 3/5/1 3/4/2 1/6/2

Fig. 9. Populations with the median IGD obtained by TiGE-2, NSGA-
II-CDP, C-TAEA, PPS, ToP, and the proposed CMOEA-MS on LIR-
CMOP5.

CMOEA-MS is underperformed by PPS on LIR-CMOP1–
LIR-CMOP4, whose feasible regions are just curves and
difficult to be found by most CMOEAs.

Fig. 9 draws the populations with the median IGD
obtained by the six CMOEAs on LIR-CMOP5, whose
Pareto front is obstructed by two large infeasible regions.
It can be seen that the populations of TiGE-2, NSGA-II-
CDP, and ToP get stuck in the two infeasible regions
and cannot reach the Pareto front, since these three
CMOEAs give the objectives a lower priority than the
constraints that disable the population from crossing
the infeasible region. Although the convergence-oriented
archive of C-TAEA also gives the objectives a low prior-
ity, the diversity-oriented archive of C-TAEA gives the
objectives a higher priority than the constraints that can
generate some offspring solutions crossing the infeasible

region. On the contrary, PPS and the proposed CMOEA-
MS can always give the objectives an equal or higher
priority than the constraints, and all the solutions ob-
tained by them can cross the infeasible region and reach
the Pareto front.

2) Comparisons on DAS-CMOP Suite: The Pareto fronts
of DAS-CMOP problems also consist of some disjoint
segments obstructed by large infeasible regions; in addi-
tion, the feasible regions of some DAS-CMOP problems
are far from the unconstrained Pareto front. According to
the experimental results given in Table II, the proposed
CMOEA-MS also exhibits a very promising performance,
having achieved the best results on 4 CMOPs and fol-
lowed by PPS, NSGA-II-CDP, and ToP. Similar to the
performance on LIR-CMOP suite, CMOEA-MS exhibits
good performance on DAS-CMOP2, DAS-CMOP5, and
DAS-CMOP7–DAS-CMOP9 since they have multiple
disconnected feasible regions, while it performs badly
on DAS-CMOP1, DAS-CMOP3, DAS-CMOP4, and DAS-
CMOP6 since their feasible regions are very small and
easy to be missed. Therefore, the proposed CMOEA-
MS is good at handling CMOPs with complex feasible
regions (e.g., the feasible regions are disconnected, ob-
structed by large infeasible regions, or disjoint from the
unconstrained Pareto front); however, its performance
deteriorates when the feasible regions become small.

Fig. 10 depicts the populations with the median IGD
obtained by the six CMOEAs on DAS-CMOP8, whose
feasible regions are disconnected and far from the uncon-
strained Pareto front f2

1 +f2
2 +f2

3 = 1. Obviously, TiGE-2,
NSGA-II-CDP, and C-TAEA can find a set of solutions
lying on the feasible regions. By contrast, PPS can only
find a few feasible solutions due to the high priority
of the objectives. ToP can hardly find some solutions
on the feasible regions since its reproduction strategy is
tailored for the CMOPs with constraints in both decision
and objective spaces and is ineffective for DAS-CMOP8
with a multi-modal landscape, though it uses the same
constraint handling technique to NSGA-II-CDP. Owing
to the lower priority of the objectives given in Stage B,
the proposed CMOEA-MS can find a large number of
uniformly distributed feasible solutions.

3) Comparisons on MW Suite: MW is a more generic
test suite that the feasible regions have diverse charac-
teristics, where some feasible regions are disconnected,
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TABLE III
STATISTICAL RESULTS OF IGD OBTAINED BY TIGE-2, NSGA-II-CDP, C-TAEA, PPS, TOP, AND THE PROPOSED CMOEA-MS ON THE MW

BENCHMARK SUITE. BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem TiGE-2 NSGA-II-CDP C-TAEA PPS ToP CMOEA-MS

MW1 2.3382e-1 (2.37e-1) − 2.0813e-3 (7.94e-5) − 2.0137e-3 (8.76e-5) − 2.6688e-3 (8.83e-5) − 1.3725e-1 (2.14e-1) − 1.6155e-3 (1.04e-5)
MW2 6.4655e-1 (9.36e-2) − 1.7289e-2 (1.19e-2) − 1.0135e-2 (7.03e-3) ≈ 7.3785e-2 (4.82e-2) − 9.1757e-2 (7.72e-2) − 8.8565e-3 (5.37e-3)
MW3 2.4217e-2 (3.38e-3) − 5.6382e-3 (1.95e-4) − 4.5625e-3 (1.65e-4) ≈ 6.6556e-3 (7.44e-4) − 4.6446e-1 (4.75e-1) − 4.5349e-3 (1.21e-4)
MW4 4.2608e-2 (1.60e-3) − 3.1808e-2 (1.21e-3) − 2.3389e-2 (9.64e-5) − 3.1116e-2 (8.85e-4) − 9.2925e-2 (1.47e-1) − 2.2720e-2 (1.47e-4)
MW5 4.1708e-2 (3.57e-2) − 6.8267e-2 (2.12e-1) ≈ 8.2972e-3 (1.77e-3) ≈ 1.2808e-1 (2.86e-1) ≈ 5.9780e-1 (3.00e-1) − 6.4659e-3 (5.64e-3)
MW6 6.3976e-1 (4.28e-1) − 1.5742e-2 (9.93e-3) ≈ 5.4619e-3 (3.12e-3) ≈ 3.0476e-1 (2.64e-1) − 2.5613e-1 (2.51e-1) − 1.5769e-2 (8.90e-3)
MW7 4.0485e-2 (2.13e-2) − 4.1938e-2 (1.29e-1) − 6.3718e-3 (4.49e-4) − 5.3326e-3 (4.30e-4) − 1.0465e-1 (1.79e-1) − 3.8232e-3 (6.91e-5)
MW8 8.9002e-1 (8.47e-2) − 2.9628e-2 (1.10e-3) − 2.5459e-2 (3.03e-4) − 5.6767e-2 (1.49e-2) − 6.8136e-2 (1.81e-2) − 2.2932e-2 (8.27e-4)
MW9 1.0798e-1 (9.00e-2) − 4.9567e-3 (2.31e-4) − 9.9748e-3 (6.98e-4) − 6.5818e-3 (5.30e-4) − 5.7108e-3 (3.20e-4) − 4.0820e-3 (8.42e-5)
MW10 2.4598e-2 (1.58e-2) − 9.7869e-2 (5.59e-2) − 8.6793e-3 (5.45e-3) ≈ 2.2177e-1 (1.23e-1) − 3.9603e-1 (3.58e-1) − 1.2972e-2 (1.92e-2)
MW11 3.1339e-2 (4.84e-3) − 6.8677e-3 (3.20e-4) − 1.1922e-2 (1.22e-3) − 7.4482e-3 (4.75e-4) − 7.3637e-2 (1.26e-1) − 5.8206e-3 (9.06e-5)
MW12 2.9776e-2 (8.05e-3) − 5.5490e-3 (1.88e-4) − 7.6746e-3 (4.82e-4) − 7.0151e-3 (6.69e-4) − 2.8050e-1 (3.41e-1) − 4.6382e-3 (1.02e-4)
MW13 2.3000e+0 (2.03e-2) − 7.9294e-2 (1.13e-1) − 1.9117e-2 (8.21e-3) ≈ 1.7994e-1 (1.25e-1) − 2.5678e-1 (2.29e-1) − 2.6401e-2 (1.19e-2)
MW14 9.0982e-2 (4.17e-3) − 7.1194e-2 (3.41e-3) − 5.4800e-2 (6.26e-4) − 1.1287e-1 (1.28e-2) − 8.6473e-2 (7.19e-3) − 5.3318e-2 (5.80e-4)

+/− / ≈ 0/14/0 0/12/2 0/8/6 0/13/1 0/14/0
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Fig. 10. Populations with the median IGD obtained by TiGE-2, NSGA-
II-CDP, C-TAEA, PPS, ToP, and the proposed CMOEA-MS on DAS-
CMOP8.

some feasible regions are separated by large infeasible
regions, and some others are far from the unconstrained
Pareto front. Table III lists the IGD results of the six
compared CMOEAs on MW1–MW14. As can be seen,
CMOEA-MS exhibits the best overall performance on the
MW suite, which gains the best results on nine CMOPs
and competitive results on the other five CMOPs. This
is because the feasible regions of MW suite are relatively
large and can be easily handled.

Fig. 11 plots the populations with the median IGD
obtained by the six CMOEAs on MW14. The feasible
region of MW14 is narrow but involves the whole
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Fig. 11. Populations with the median IGD obtained by TiGE-2, NSGA-
II-CDP, C-TAEA, PPS, ToP, and the proposed CMOEA-MS on MW14.

unconstrained Pareto front; that is, it can be handled
by giving any priority to the objectives, even without
considering the constraints. As shown in Fig. 11, all the
six CMOEAs can obtain a number of feasible solutions
on the Pareto front. While in terms of diversity, the
populations obtained by C-TAEA and CMOEA-MS are
better than those obtained by TiGE-2, NSGA-II-CDP,
PPS, and ToP. Hence, the proposed CMOEA-MS is also
competitive for tackling simple feasible regions.

4) Comparisons on DC-DTLZ Suite: The DC-DTLZ
problems have complex constraints in the decision space
and highly multi-modal landscapes, which pose chal-
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TABLE IV
STATISTICAL RESULTS OF IGD OBTAINED BY TIGE-2, NSGA-II-CDP, C-TAEA, PPS, TOP, AND THE PROPOSED CMOEA-MS ON THE

DC-DTLZ BENCHMARK SUITE. BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem TiGE-2 NSGA-II-CDP C-TAEA PPS ToP CMOEA-MS

DC1-DTLZ1 1.5050e+0 (8.33e-1) − 8.7857e-3 (3.61e-4) − 7.3792e-3 (6.36e-5) − 1.1772e-2 (3.43e-4) − 1.4641e-1 (1.56e-1) − 6.2527e-3 (2.93e-5)
DC1-DTLZ3 9.5954e-1 (1.79e-1) − 1.1490e-1 (1.89e-3) − 1.0786e-1 (9.47e-4) − 1.1131e-1 (1.22e-3) − 1.0055e+0 (3.89e-1) − 1.0506e-1 (3.83e-4)
DC2-DTLZ1 2.9702e-1 (5.32e-2) − N/A 1.1669e-2 (3.03e-5) − 1.5667e-2 (2.50e-4) − N/A 1.1161e-2 (4.84e-5)
DC2-DTLZ3 3.5448e-1 (1.82e-1) − 5.6046e-1 (9.78e-4) − 3.1278e-2 (1.79e-4) − 4.0098e-2 (1.15e-3) − N/A 2.9734e-2 (1.29e-4)
DC3-DTLZ1 3.0928e+0 (1.42e+0) − 1.3812e-1 (8.26e-2) − 4.6615e-3 (5.28e-5) + 8.2808e-3 (5.25e-4) + 6.8533e+0 (1.44e+0) − 1.9386e-2 (5.58e-3)
DC3-DTLZ3 1.6413e+0 (3.33e-1) − 6.6709e-1 (1.99e-1) − 1.5867e-1 (1.61e-3) + 1.5906e-1 (9.43e-4) + 2.6436e+0 (4.39e-1) − 2.2425e-1 (4.74e-2)
+/− / ≈ 0/6/0 0/5/0 2/4/0 2/4/0 0/4/0

lenges for CMOEAs to converge to the constrained
Pareto front. Table IV presents the IGD values of the six
compared MOEAs on the six DC-DTLZ problems, where
‘N/A’ indicates that no feasible solution is found by the
CMOEA. It can be observed that the proposed CMOEA-
MS obtains four best results and C-TAEA obtains two
best results. In terms of statistic test, CMOEA-MS sig-
nificantly outperforms the compared CMOEAs on four
to six CMOPs, which indicates that CMOEA-MS is also
promising for solving the DC-DTLZ suite.

Since the population with slightly worse diversity may
have the best IGD value due to the biased distribution
of the reference points [49], the HV results of the six
compared MOEAs on all the benchmark CMOPs are
listed in Supplementary Materials II. It can be found
from the statistical results that the proposed CMOEA-
MS also obtains the best results on most CMOPs.

E. Effectiveness of the Two-Stage Framework of CMOEA-MS

This subsection performs ablation study to verify the
effectiveness of the core components of the proposed
CMOEA-MS, where CMOEA-MS is compared to its three
variants on the MW suite. The first variant CMOEA-
MS1 replaces the first objective SDE(x) in Stage A by
the sum of all the objectives, which is used to verify
the effectiveness of the two new objectives proposed for
Stage A. The second variant CMOEA-MS2 and the third
variant CMOEA-MS3 always uses the fitness evaluation
strategy of Stage A and Stage B, respectively, which are
used to verify the effectiveness of using both the two
fitness evaluation strategies (i.e., different priorities of
objectives and constraints) simultaneously.

Table V presents the IGD results of CMOEA-MS and
its three variants on MW1–MW14. It can be found that
CMOEA-MS is statistically similar to or significantly bet-
ter than CMOEA-MS1 on all the CMOPs, which verifies
the effectiveness of the first objective SDE(x). Besides,
CMOEA-MS is also statistically similar to or significantly
better than CMOEA-MS2 and CMOEA-MS3, hence the
effectiveness of different priorities of objectives and con-
straints in the two stages can be verified.

F. Experimental Results on Real-World CMOPs

Lastly, the performance of CMOEA-MS is verified
on three CMOPs from real-world applications, i.e., the
car side impact problem [22], the vibration platform

TABLE V
STATISTICAL RESULTS OF IGD OBTAINED BY CMOEA-MS AND ITS

THREE VARIANTS ON THE MW BENCHMARK SUITE. BEST RESULT IN
EACH ROW IS HIGHLIGHTED.

Problem CMOEA-MS CMOEA-MS1 CMOEA-MS2 CMOEA-MS3

MW1 1.6155e-3 1.6191e-3 ≈ 1.8077e-2 − 1.6183e-3 ≈
MW2 8.8565e-3 1.3334e-2 ≈ 3.6369e-2 − 4.0273e-2 −
MW3 4.5349e-3 2.7841e-1 − 6.3663e-2 − 8.0805e-2 ≈
MW4 2.2720e-2 2.2730e-2 ≈ 5.5664e-2 − 2.2758e-2 ≈
MW5 6.4659e-3 6.8114e-1 − 9.5492e-2 − 2.1545e-2 ≈
MW6 1.5769e-2 9.4374e-1 − 5.3730e-2 − 3.3068e-2 −
MW7 3.8232e-3 8.3471e-1 − 2.2121e-1 − 3.8098e-3 ≈
MW8 2.2932e-2 2.4023e-2 ≈ 8.5973e-2 − 2.3371e-2 ≈
MW9 4.0820e-3 8.0985e-1 − 4.6896e-1 − 4.0709e-3 ≈
MW10 1.2972e-2 4.6690e-1 − 4.4287e-2 − 4.1330e-2 −
MW11 5.8206e-3 9.9418e-1 − 4.4668e-1 − 7.1940e-3 ≈
MW12 4.6382e-3 6.6222e-1 − 2.4887e-1 − 4.5952e-3 ≈
MW13 2.6401e-2 4.7503e-2 ≈ 2.2163e-1 − 1.3213e-1 −
MW14 5.3318e-2 5.3481e-2 ≈ 1.1589e-1 − 5.3783e-2 ≈

+/− / ≈ 0/8/6 0/14/0 0/4/10

CMOEA-MS1 replaces the first objective SDE in Stage A by the
sum of all the objectives; CMOEA-MS2 always uses the fitness
evaluation strategy of Stage A; CMOEA-MS3 always uses the
fitness evaluation strategy of Stage B.

design problem [15], and the water resource problem
[50]. The car side impact problem aims to minimize
the weight of the car, the pubic force of passenger,
and the average velocity of V-pillar, and the solutions
should satisfy the limiting values of ten aspects. The
vibration platform design problem aims to maximize the
fundamental frequency and minimize the cost, and the
solutions should meet the limiting values of mass and
width of layers. The water resource problem aims to
minimize four costs and the expected economic loss, and
the solutions are restricted by the constraints of yearly
statistical performance. The mathematical definitions of
these CMOPs can be found in their original literatures.

The parameters in the three CMOPs as well as the
HV results of six CMOEAs are presented in Table VI. As
can be observed from the table, the proposed CMOEA-
MS outperforms the other five CMOEAs on the car
side impact problem and the vibration platform design
problem, while it is slightly worse than PPS on the water
resource problem. Besides, Fig. 12 shows the populations
with the median HV obtained by the six CMOEAs on
the car side impact problem. It can be found that the
population diversity of CMOEA-MS is similar to ToP
and much better than TiGE-2, NSGA-II-CDP, C-TAEA,
and PPS. In short, the three real-world CMOPs are not
difficult and the proposed CMOEA-MS shows a slightly
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TABLE VI
STATISTICAL RESULTS OF HV OBTAINED BY TIGE-2, NSGA-II-CDP, C-TAEA, PPS, TOP, AND THE PROPOSED CMOEA-MS ON THREE

REAL-WORLD CMOPS. BEST RESULT IN EACH ROW IS HIGHLIGHTED.

Problem

TiGE-2 NSGA-II-CDP C-TAEA PPS ToP CMOEA-MS(no. of variables /
no. of objectives /
no. of constraints)

Car side
2.2297e-2 (5.55e-3) − 3.6671e-2 (3.88e-5) − 3.6883e-2 (2.17e-5) − 3.6095e-2 (1.84e-4) − 3.6787e-2 (4.12e-5) − 3.7056e-2 (2.78e-5)impact problem

(7/3/10)
Vibration platform

8.2110e-1 (1.24e-1) − 8.4142e-1 (8.48e-2) ≈ 6.6036e-1 (1.62e-1) − 7.2492e-1 (1.58e-1) − 7.4261e-1 (1.73e-1) ≈ 9.2627e-1 (6.60e-2)design problem
(5/2/5)

Water resource
1.6611e-1 (2.31e-4) + 1.6700e-1 (4.07e-4) + 1.6650e-1 (3.60e-4) + 1.6894e-1 (1.82e-4) + 1.6546e-1 (5.49e-4) ≈ 1.6535e-1 (3.35e-4)problem

(3/5/7)
+/− / ≈ 1/2/0 1/1/1 1/2/0 1/2/0 0/1/2
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Fig. 12. Populations with the median HV obtained by TiGE-2, NSGA-
II-CDP, C-TAEA, PPS, ToP, and the proposed CMOEA-MS on the car
side impact problem.

better performance than the compared CMOEAs.

V. CONCLUSIONS

In this paper, we have proposed a two-stage CMOEA
for solving CMOPs with different feasible regions. The
core idea of the proposed algorithm is to adaptively
balance the objective optimization and constraint sat-
isfaction during the evolutionary process, where the
proposed algorithm enters one of the two stages accord-
ing to the feasibility of the current population at each
generation. The Stage A indicates that most solutions
are infeasible and gives the objective an equal priority
to the constraints, so that some infeasible solutions can
be maintained to help the population cross infeasible
regions. The Stage B indicates that most solutions are

feasible and gives the objectives a lower priority to
the constraints, so that more feasible solutions can be
found to help the population spread along the feasible
boundaries. By using different priorities of objectives
and constraints in the two stages, the objective opti-
mization and constraint satisfaction can be well balanced
when tackling different types of feasible regions.

In the experiments, the proposed algorithm has been
compared to five popular CMOEAs on 43 benchmark
CMOPs from four recently proposed test suites. The
statistical results have indicated that the proposed al-
gorithm has a better overall performance than the com-
pared CMOEAs on the 43 CMOPs with different feasible
regions. Besides, the performance of the proposed algo-
rithm has also been verified on three real-world CMOPs.

By revealing the limitations of existing CMOEAs and
proposing a new multi-stage framework, this work has
confirmed the importance of balancing objective opti-
mization and constraint satisfaction in solving CMOPs.
Although the proposed algorithm has shown promising
performance in the experiments, it is desirable to extend
the proposed multi-stage framework for solving other
more challenging CMOPs. For example, the proposed
framework can be embedded with more effective en-
vironmental selection strategies for solving constrained
many-objective optimization problems (i.e., the UAV
route-planning problem [51]), and it can also be embed-
ded with other reproduction operators for solving large-
scale CMOPs (i.e., time-varying ratio error estimation
[1]). Besides, it is reasonable to improve the performance
of the proposed framework on CMOPs with very small
feasible regions such as LIR-CMOP1–LIR-CMOP4.
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