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ABSTRACT

Horizontal cooperation in logistics has gathered momentum in the last decade as a way to reach
economic as well as environmental benefits. In the literature, these benefits are most often assessed
through aggregation of demand and supply chain optimization of the partnership as a whole. How-
ever, such an approach ignores the individual preferences of the participating companies and forces
them to agree on a unique coalition objective. Companies with different (potentially conflicting)
preferences could improve their individual outcome by diverging from this joint solution. To account
for companies preferences, we propose an optimization framework that integrates the individual
partners’ interests directly in a cooperative model. The partners specify their preferences regarding
the decrease of logistical costs versus reduced COs emissions. Doing so, all stakeholders are more
likely to accept the solution, and the long-term viability of the collaboration is improved. First,
we formulate a multi-objective, multi-partner location-inventory model. Second, we distinguish two
approaches for solving it, each focusing primarily on one of these two dimensions. The result is a set
of Pareto-optimal solutions that support the decision and negotiation process. Third, we propose
and compare three different approaches to construct a unique solution which is fair and efficient
for the coalition. Extensive numerical results not only confirm the potential of collaboration but,
more importantly, also reveal valuable managerial insights on the effect of dissimilarities between

partners with respect to size, geographical overlap and operational preferences.
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1. Research context and motivation

To be competitive in today’s demanding markets, it is no longer sufficient to operate
at minimum cost (Saad, Rahim, & Fernando, 2016). Companies are under pressure
to also ensure high customer service levels and to account for the growing awareness
with respect to environmental sustainability. Encouraged by public incentives and
the emergence of carbon taxes, more and more companies integrate emissions targets
into all levels of decision-making (Hovelaque & Bironneau, 2015). The low average
vehicle loading rates — currently between 57% and 68% in EU-28 countries (Creemers,
Woumans, Boute, & Belién, 2017; Vargas, Patel, & Patel, 2018) — show huge potential
for improving the sustainability of logistical networks. At the same time, maintaining
high delivery frequencies is crucial to remain competitive.

A promising avenue to improve the efficiency as well as the sustainability of the
logistical operations is to engage in a collaboration. In this paper, the focus is on hori-
zontal cooperation, which is defined as “multiple companies (potentially competitors),
operating at the same level of the supply chain, that join forces with the aim of im-
proving their overall efficiency” (Cruijssen, 2006). Through active sharing of vehicles
and facilities, companies can achieve substantial economies of scale. This leads to more
efficient vehicle loading rates and a reduction in total kilometres driven, which posi-
tively impacts the operational costs as well as the carbon footprint of the collaborating
companies (Hacardiaux & Tancrez, 2019).

A key challenge when modelling and analyzing collaborative environments is that
companies remain independent entities with different (potentially conflicting) prefer-
ences regarding the characteristics of the logistical network, and with different sizes
(thus potentially different influences in the decision process). This challenge is most
often circumvented in the literature with two premises: focusing on the improvement
in one dimension and considering the coalition as a unique deciding entity. Existing re-
search typically relies on the assumption that all partners agree on a unique objective.
Mostly, only the reduction of total logistics costs is considered. Furthermore, customer
demands and the preferences of the collaborating partners are aggregated and, doing
so, the identity and independence of the partnering companies are ignored (Defryn,
Sorensen, & Dullaert, 2019). Consequently, an optimal solution at the coalition level
can be sub-optimal at the individual partner level. This discrepancy creates an in-

centive for the partners to behave opportunistically and diverge from the proposed



solution to improve their individual outcome. This potential mismatch between indi-
vidual partner and coalition objectives jeopardizes the long-term stability, and thus
success, of the collaboration.

In this paper, we investigate the design of a cooperative supply network that ex-
plicitly accounts for differences in the individual preferences with respect to costs and
CO2 emissions reduction, and the influence weight of each partner. To the best of our
knowledge, we are the first to analyze such a problem within the context of collabora-
tive logistics. The result is a multi-objective optimization framework that integrates
the individual partner preferences, in order to find a solution which is fair and efficient
for the coalition. We introduce and compare five different approaches to find such a
solution. The first two generate a set of Pareto-optimal solutions that can support the
negotiation and decision-making process. The other three approaches help companies
to highlight a unique solution based on predefined criteria. To support the presentation
and show the working of our framework, it is applied and validated on a multi-objective
location-inventory problem. Extensive computational experiments allow us to derive
managerial insights for strategic and tactical decision support, including partner se-
lection.

The remainder of the paper is structured as follows. Section 2 contains a literature
review and positions the contribution of our paper. In Section 3, the problem setting
and the multi-objective and multi-partner collaborative location-inventory model are
presented. The first two multi-objective solution approaches that rely on the construc-
tion of a Pareto frontier are discussed in Section 4. The other three approaches, aimed
at finding a unique solution, are introduced in Section 5. In Section 6, experimental
results are presented and relevant managerial insights are derived. Finally, Section 7

concludes our paper and presents ideas for future research.

2. Related literature

Due to its practical importance and promising benefits, collaboration in logistics has
attracted the interest of the research community over the last decade. Existing stud-
ies mainly focus on collaborative transport or distribution systems, where the main
motivation for companies to cooperate is an increased efficiency of the vehicle fleet

operations and thus a lower logistical cost (Gansterer & Hartl, 2018; Verdonck, 2017).



Despite the potential environmental and economical benefits, the sharing of distribu-
tion centers or joint inventory management policies have not received large attention
from the research community. While location-inventory problems receive increasing
academic attention (Daskin & Maass, 2019; Farahani, Rashidi Bajgan, Fahimnia,
& Kaviani, 2015; Melo, Nickel, & Saldanha-Da-Gama, 2009), their application in a
horizontal cooperation context is novel. Verdonck, Beullens, Caris, Ramaekers, and
Janssens (2016) analyze the benefits of cooperative facility location in a horizontal
carrier cooperation. Solving the joint location-allocation problem leads to an average
reduction in facility opening and distribution costs of 9.1%. Tang, Lehuédé, and Péton
(2016) determine optimal locations for regional distribution centers in a collaborative
distribution network. Makaci, Reaidy, Evrard-Samuel, Botta-Genoulaz, and Monteiro
(2017) empirically study the sharing of warehouses among different companies to iden-
tify, among others, the KPIs and uncertainty sources. Hacardiaux and Tancrez (2018)
present a location-inventory model and demonstrate average savings around 22% in
terms of facility opening, transportation, cycle inventory, ordering and safety stock
costs when setting up a collaboration. A limited number of papers consider carbon
footprint reductions associated with the collaborative location-inventory model. Hac-
ardiaux and Tancrez (2019) analyze the impact of several market and partner char-
acteristics (e.g. vehicle capacity, facility opening cost, inventory holding cost, demand
variability) on the reduction of cost and COz emissions when collaborating. Stellingw-
erf, Laporte, Cruijssen, Kanellopoulos, and Bloemhof (2018) analyze the economic and
environmental benefits of joint route planning and vendor-managed inventory in the
context of collaborative food logistics. Results show significant savings in costs, emis-
sions, distance and travel time, and demonstrate the advantages of vendor-managed
inventory in the case under study. Ouhader and El Kyal (2017) propose a multi-
objective optimization model, including both facility location and routing decisions,
that maximizes costs reduction and job creation subject to a constraint on CO9 emis-
sions. Unlike the work presented in this paper, existing contributions focus exclusively
on coalition objectives and the individual preferences of partners are ignored.
Despite its inherent multi-objective nature, horizontal logistics collaboration has
mainly been studied from a single-objective perspective in the literature (Defryn et
al., 2019). Typically, the collaborative scenario is simulated by aggregating the cus-

tomers’ demand of the different partners, and a single-objective optimization model



is then solved at the level of the coalition. For the cooperation to be viable, ensur-
ing significant collaborative savings in the long run, however, the individual partner
preferences need to be taken into account. A growing body of research exists on multi-
objective optimization in various logistics domains. A general overview of relevant
literature can be found in Ehrgott (2005), Caramia and Dell'Olmo (2008) and Deb
(2014). More specifically, multi-objective applications have been developed for vehi-
cle routing problems (Jozefowiez, Semet, & Talbi, 2008), facility location problems
(Farahani, SteadieSeifi, & Asgari, 2010) and inventory management (Tsou, 2008).
The consideration of multiple objectives in a horizontal cooperation context, however,
is a novel research domain. Kimms and Kozeletskyi (2017) develop a multi-objective
optimization model for the travelling salesman problem (TSP) with horizontal coop-
eration. Their goal is to simultaneously minimize travelling costs and maximize the
partner utility consequential to order assignment. In line with Kimms and Kozeletskyi
(2017), Defryn and Soérensen (2018) solve a multi-objective collaborative TSP aimed
at minimizing both the total distance travelled and the customer time window viola-
tions. Wang et al. (2018) present a vehicle routing model which minimizes both the
operating costs and the number of vehicles in the context of collaborative customer
and vehicle sharing. Soysal, Bloemhof-Ruwaard, Haijema, and van der Vorst (2018)
model an inventory routing problem analyzing collaborative benefits in terms of mul-
tiple objectives, i.e., emissions, driving time and total logistics cost. While each of the
papers described above considers multiple objectives on the coalition level, none of
them account for individual partner preferences.

To the best of our knowledge, Defryn et al. (2019) are the only to describe and
investigate the inclusion of individual partners preferences in collaborative logisti-
cal planning. In their paper, they propose a framework that allows for a difference
in individual partner preferences while assuring maximal synergy creation through
collaboration. Our research work differs from theirs by developing a multi-objective
framework both at the coalition and at the individual partner level, accounting for
preferences in both costs and CO, emissions reductions, and accounting for the indi-
vidual partners’ influence on the collaboration. Consequently, in this paper, there is
no need for coalition partners to agree on a single coalition objective, contrary to the
assumptions made by Defryn et al. (2019). Furthermore, our methodology is tested

and validated on a collaborative location-inventory problem aiming to minimize both



the total logistical cost and the transportation CO4 emissions. Finally, we consider an
a priori stated preference articulation with respect to the effect of the collaboration on
both objectives. In other words, we analyze the current stand-alone situation for each
individual partner to state their preferences in advance. Again, this approach differs
from Defryn et al. (2019), in which an a posteriori preference articulation is assumed.

Based on our literature review, we conclude that multi-objective research in hori-
zontal logistics cooperation is scarce. Moreover, the focus is on routing or distribution
environments, and only the coalition level is typically considered. Since collaborating
companies remain independent entities with potentially conflicting goals, there is an
urgent need for more multi-objective, multi-partner models that can account for the

individuality of the partners and their preferences.

3. The multi-objective collaborative location-inventory problem

In this section, we formally introduce the multi-objective collaborative supply chain
network problem. We then formulate both objectives, the minimization of logistics
costs and the minimization of CO5 emissions, and finally we present our multi-objective

collaborative location-inventory model.

3.1. Problem definition

We are given a set of companies wishing to engage in a horizontal collaboration. Each
company produces one specific product in their own central plant. As illustrated in
Figure 1.a, each company currently has its own (set of) distribution centers (DCs),
from where they distribute their product to a group of retailers. We assume that each
individual company has independently optimized its distribution network given its
preferences regarding costs and COs emissions. Each company has opened an optimal
number of DCs, chosen their location and allocated the retailers. Cycle inventory is
also considered, in particular choosing the right shipment sizes for each transport.
To satisfy the uncertain demand during the lead time (which is proportional to the
traveled distance) safety stocks are kept at every DC.

Motivated by potential reductions in logistics costs and COg emissions, the com-
panies consider setting up a joint supply network in which they share their DCs and

vehicles, as illustrated in Figure 1.b. The following advantages can be expected (Hac-
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Figure 1.: Illustration of the delivery networks of two independent stand-alone compa-
nies (a), and of the joint delivery network of these companies when they are cooperating

(b).

ardiaux & Tancrez, 2019):

e As DCs are shared by the cooperating companies, the total number of DCs is
likely to reduce, while each company’s product will likely be delivered from more
DCs.

e The vehicle loading rates will improve due to the bundling of goods from multiple
companies for a shared customer.

e The total distance travelled will decrease for two reasons: retailers are delivered
from a potentially closer DC, and the improvement of the loading rate will reduce

the number of vehicles travelling (per time period).

Although products from different companies are stored in the same facilities, com-
panies keep their own cycle inventory and safety stock. We asssume direct deliveries
and single sourcing, meaning that all the products delivered to a specific retailer come

from a single DC, even if these products originate from different partners.

3.2. Logistics costs and COs emissions

The goal of the coalition is to design a supply chain network that balances the inter-
ests of all partners, relative to their two objectives: minimizing the logistics costs and
the CO4 emissions. In this section, we formulate the costs and emissions of an indi-

vidual partner in the coalition (using the mathematical notations listed in Table 1).



Each individual partner aims to minimize its own share of costs and emissions in the
coalition. As detailed below, to share the total logistics costs as well as the total CO9
emissions of the cooperation among partners, we apply proportional rules based on
the quantity of products shipped by each partner. In practice, proportional alloca-
tion methods are most commonly used due to their simplicity and the fact that they

facilitate communication among partners (Guajardo, 2018).

Table 1.: Overview of mathematical notations.

Sets and indices:

D ={1,..,np} Potential distribution center (DC) locations, indexed by d.
R={1,..,nr} Retailers, indexed by r.

I={1,..,n;} Companies, indexed by .

Parameters:

F Fixed cost for opening a DC, in €/period.

T Transportation cost per km for a vehicle, in €/(km-vehicle).

Dy, Distance between DC d and retailer r, in km.

H} Unit inventory holding cost at retailer 7 for a product of company ¢, in €/(item-period).
R, Unit inventory holding cost at DC d for a product of company %, in €/(item-period).

C Vehicle capacity, in items/vehicle.

K} Fixed cost at DC d for placing an order to the plant of company 7, in € /order.

2t Standard normal deviation associated with service level o at retailers, for company 4.
LTy, Lead time between DC d and retailer 7, in periods.

LT} Lead time between the central plant of company ¢ and DC d, in periods.

AL Mean demand for products of company i at retailer r, in items/period.

A, Mean demand for all products at retailer r, in items/period, i.e. A, = Y, AL.

A Mean demand for products of company i for all retailers, in items/period, i.e. A* =3 AL
A Mean total demand for all companies and all retailers, in items/period, i.e. A =37 A,.

ol Standard deviation of the demand for products of company 4 at retailer r, in items/period.
€’ CO; emissions emitted by an empty vehicle in kg/km.

ef CO; emissions emitted by a fully loaded vehicle in kg/km.

Qar Total shipment size (for all companies) from DC d to retailer r (decided a priori), in items/vehicle.

Decision Variables:
{1, if DC d is opened,

Ya 0, otherwise.

. {1, if DC d serves retailer r (for all products),
0, otherwise.

vl vb, Auxiliary variables for company i and DC d.

3.2.1. Objective 1: Minimizing logistics costs

The logistics costs comprise of the facility opening costs, the transportation costs and
the inventory costs. To share the facility costs, a proportional volume-based rule is
used such that each partner pays for the fraction of the DC it is storing its products
in. Regarding the transportation costs, we use a separate deliveries weighted allocation
rule, where, in a similar manner, each partner pays for each vehicle proportionally to
the volume its products occupy in it (Frisk, Géthe-Lundgren, Jérnsten, & Roénnqvist,
2010). The transportation cost allocation is thus different for each retailer (j{—:) Finally,

as each company has its own cycle inventory and safety stock, the inventory costs can



be directly allocated to a specific partner. The share of the logistics costs for a partner

7 in the cooperation can thus be expressed as follows.

N ZFyd+Z ZTDdr $dr+ZH1 Dar A dr+z 2 K hiy \i g,

+thzz@\/m+zmzéai@xdr 0
d r d,T‘

The terms of equation (1) represent, for company i, its share of facility opening
costs, its share of transportation costs (A,/Qg gives the number of shipments per
period to a retailer r), its cycle inventory costs at retailers, its cycle inventory and
ordering costs at DCs (assuming an EOQ inventory structure), its safety stock costs

at DCs and its safety stock costs at retailers (to reach service level ).

3.2.2. Objective 2: Minimizing COg emissions

To account for the CO5 emissions, we focus on transportation and use the formula
proposed by Pan, Ballot, and Fontane (2013), which is commonly accepted in the
literature (Danloup et al., 2015; Moutaoukil, Neubert, & Derrouiche, 2015; Ouhader
& El Kyal, 2017). This formula also has the advantage of accounting for the vehicle
loading rate, which is an important factor of improvement when cooperating. To allo-
cate the COy emissions among partners, we apply the polluter-pays principle (Kellner
& Otto, 2012). CO4 emissions are divided proportionally to the usage of the vehicles
(it is also a wvolume-based rule, [){—:) This method for the allocation of emissions is
frequently applied by practitioners as it is efficient and easy to understand (Leenders,
Veldzquez-Martinez, & Fransoo, 2017). The share of CO2 emissions produced by a

partner ¢ in the collaboration can be expressed as follows:

A,
- 66)6] Ddr Tdr (2)

AL e A
22|
r T od
The share of CO2 emissions for company ¢, due to the deliveries to its retailers, is
composed of baseline emissions from an empty vehicle, to which emissions proportional

to the vehicle load are added. In the first part of equation (2), the CO2 emissions



emitted by an empty vehicle per km (¢°) are simply multiplied by the number of
trips. Then, the CO9 emissions related to the vehicle load (ef v —€V) are multiplied by
the volume of products expressed in full vehicles. To get the total COs emissions of
the supply chain, these emissions per km are multiplied by the distance, and summed

for all deliveries to retailers.

3.3. Multi-objective collaborative location-inventory model

In this section, we present our multi-objective collaborative location-inventory model.
Equations (1) and (2) provide two criteria that need to be minimized for each partner
in the cooperation, leading to a multi-objective and multi-partner optimization model
with 2n; objectives. The model aims to determine the number and locations of the
joint DCs, the allocation of the flows, as well as inventory decisions regarding the ship-
ment sizes and the safety stocks. Moreover, the model directly allocates the costs and
the CO4 emissions to the specific partners. It is formulated as a conic quadratic mized
integer program, which has the advantage to be solvable by commercial optimization
softwares. Similarly to Atamtiirk, Berenguer, and Shen (2012) and Hacardiaux and
Tancrez (2019), the non-linearity in the logistics costs (see equation (1)) is moved to
the constraints using auxiliary variables v g and vh ¢+ In the final model, the objectives
are linear and the constraints are either linear or conic quadratic. Our multi-objective

collaborative location-inventory model is formulated as follows.
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Equations (3) minimize the share of logistics costs of each partner and equations

(4) minimize the share of COy emissions of each partner in the cooperation (2n;

objectives). Constraints (5) and (6) define the auxiliary variables v}, and v}, giving

the model its conic quadratic mixed integer program form (using xg4, = x?h, and yq =

y2). Constraints (7) ensure that each retailer is assigned to exactly one DC (single

sourcing). Constraints (8) ensure that a retailer can be served by a DC only if the

latter is opened. Constraints (9) impose non-negativity on the auxiliary variables, while

constraints (10) enforce the binary nature of decision variables x4 and y4. Note that

the shipment size decision, Qg4,, is not treated as a variable when solving our model,

but rather as a parameter. We will show in Section 4 that @Qg- can be computed a

priori, before solving the model, in a way that depends on the approach used to solve

model (3)-(10).
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4. Multi-objective optimization frameworks

Our multi-objective collaborative location-inventory model is challenging to solve due
to the number of objectives, which is equal to the number of partners in the cooperation
times two, 2n;. In this way, we could say that the objectives are multiple in two
dimensions: the logistics costs vs. the CO2 emissions on one hand, the multiple partners
on the other hand. In this section, we present two approaches to solve our multi-
objective model, where each approach tackles the problem starting from one of the
two dimensions in order to generate a specific Pareto frontier.

Even though only one solution is chosen in practice, generating these Pareto fronts
provides useful insights into the trade-off between costs and emissions on the one hand
and between the partners interests on the other hand. The cost effect of striving for
a particular emissions level (and vice versa) can be analyzed, next to the balance of
the partners benefits in various collaborative network solutions. Ultimately, this allows
collaborative partners to reflect on their preferences and engage in negotiations on the

costs-emissions strategy of the collaboration.

4.1. Articulation at the coalition level

In the first approach, we tackle the multi-objective problem by aggregating the in-
dividual partners, considering the coalition as a whole. In other words, we look at
the problem as if the coalition was one homogeneous decision entity (Hacardiaux &
Tancrez, 2019; Tang et al., 2016; Verdonck et al., 2016). The shares of all partners are
added up, leading to two objectives: the total coalition costs and the total coalition
emissions. Compared to (3)-(4), Vi is replaced by ), (and the equation is simplified).

We obtain the following objectives.

. Q —
S N TRCaP YL & TS ML
d,i
Z LTdra:dr—i—Zh LA/ LTi v, (11)

d,r,i d,i
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A, A,
min Z o5+ (e = ) ] Dy 2 (12)

4.1.1. Weighted sum method

To tackle the remaining bi-objective model, we apply the weighted sum method, with
a varying weight 3, which reflects the relative importance of logistics costs versus COq
emissions for the cooperation (Kim & de Weck, 2005; Marler & Arora, 2010). Both

objectives are combined and the following model is obtained.

ZFyd—FZTDdT xdT+ZH’QdT - dT+Z\/2K1hzv1d
+Y Hlz ol LTd,.xdr—l—Zh \/LTévéd (13)

d,ryi d,i

A,
U 66)6] Ddr Ldr

+8 Y [
d,r
s.t.

(5) — (10)

The weight [ is refered to as the costs-emissions weight, and reveals how important
COg emissions are compared to logistics costs for the collaboration. A small 8 means
that the cooperation is focused on costs, while a large 3 reveals a higher environmental
attention. The parameter $ can be interpreted as the monetary cost of COs emissions.
It can for example be related to carbon taxes or company reputation. The use of this
weight solves the problems of nature and proportionality between both objectives, as
they were originally expressed in euros and in kilograms of COs.

As noted in Section 3.3, the shipment size Qg can be computed prior to solving the
model. Deriving equation (13) with respect to Qg4, equaling the resulting expressions
to zero, and accounting for the vehicle capacity, we find the following closed-form

formula for the shipment size.

13



2(T €) Dgr Ay
Qar = min <C’, \/ (thfﬁe)\)ﬁn/li ) (14)

Note that, as (§ is part of this equation, the ability to compute Qg a priori is tied to
the use of the weighted sum method. This is the reason why, for our location-inventory

model, it is the preferred method to tackle the model with the two objectives (11)-(12).

4.1.2. Pareto front

Varying the value of 8 in model (13), the Pareto front balancing costs and COy emis-
sions at the coalition level can be computed. Figure 2 (black squares) represents this
Pareto front for an illustrative case with two partner companies. The first solution on
the left of the frontier is obtained by only minimizing the total logistics costs (8 = 0).
For increasing values of 3, we observe a reduction in CQO2 emissions caused at first
by changes in the inventory policy. More specifically, the shipment size, and thus the
vehicles’ loading rate, is progressively increased, reducing the number of shipments
and the COqy emissions, but increasing the inventory costs. Then, the CO2 emissions
are further decreased by opening additional DCs, which have a major impact on costs

(additional facility opening costs) and CO emissions (reduced travelled distances).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, DS
[ ]
]
[ ]
[ |
[ ]
u
0 3 DCs
k! L
% 4 DCs
é ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [ ] |
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Logistics costs

Figure 2.: Balancing the logistics costs and the COgy emissions on an illustrative case
with two companies pl and p2: optimal solutions for the stand-alone companies (x
and ) and sum of these two (dashed circle); Pareto front for the cooperation, varying
£ (M); and allocated shares for both companies of each Pareto front solution (&), 6P,

O)

For each solution of the Pareto front at the coalition level, the costs and COsg

14



emissions can be shared among the partners using volume-based allocation rules (as
described in Section 3.2). For each partner, the resulting trade-off between the costs
share and the emissions share is illustrated in Figure 2 (empty circles). This allows
to assess the solutions at the individual partner level. In particular, a partner could
decide to reject a given solution because it violates rationality principles (Zolezzi &
Rudnick, 2002). Two rationality principles are discussed in the following.

Individual rationality means that a partner will not accept a solution that is worse
than its stand-alone situation. In other words, a partner will not accept to enter a
cooperation that causes him to increase its costs or its CO2 emissions. Only solutions
that dominate all stand-alone solutions will be accepted by all partners. If no such
solution exists, we can conclude that the collaboration will not be viable. In Figure
2, allocated individual shares above or on the right of the stand-alone solutions are
deemed unacceptable and crossed. If a cooperative solution is rejected by at least one
of the partners, this solution is inaccessible to the other partners even if acceptable
for them individually (see crossed solutions (X) in the acceptable area in Figure 2).

Collective rationality states that the cooperation should create synergy, implying
that it should decrease both the logistics costs and COy emissions. Solutions in the
Pareto front of the cooperation are thus acceptable if their cost is smaller than the
sum of the stand-alone costs and correspondingly for the COg emissions. In Figure
2, all depicted solutions satisfy those conditions since they are all situated under and
on the left of the solution summing the stand-alone cases (dashed circle). Note that
multiple Pareto optimal solutions remain and that only one can be implemented (see

Section 5).

4.2. Articulation at the partner level

In the second approach, we tackle the multi-objective problem starting by the balance
between the logistics costs and the COs emissions. For each partner ¢ in the coalition,
these two objectives are added, accounting for its preferences regarding costs versus
emissions using F;. Similar to the § introduced in Section 4.1, 3; can be interpreted
as the monetary cost for company i of emitting one kilogram of COg, and denotes
the importance according to partner i of reducing the CO2 emissions compared to
reducing the logistics costs. It is referred to as the individual costs-emissions weight.

The resulting sum, which aggregates the direct logistics costs and the indirect costs
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coming from COq emissions, is referred to as the augmented cost (and noted AugC).
Each partner in the coalition aims to minimize its augmented cost, leading to the

following objectives.

min XZZF%H-ZTDW xdr"‘ZHl Qar Ar dr+Z\/2K1hlvld
Z H' 2 LTy, ﬂUdr‘i‘Z Rzt o/ LT vh 43¢ Z €€ C;; +(ef —€ )%] Dy xar V3
d,r T

In our approach, the individual costs-emissions weights 3; are supposed to be known.
They can easily be inferred from the stand-alone situation (before cooperation) as we
assume that each company has optimally designed its supply chain according to its
individual preferences. Using this concept of revealed preference articulation, it is not
necessary to ask the decision-makers to explicitly express their individual preferences

and avoids the use of untruthful information (Veldhuizen & Lamont, 2000).

4.2.1. Weighted sum method

In order to solve the remaining multi-objective model, we again apply a weighted
sum approach, as in Section 4.1 (Kim & de Weck, 2005; Marler & Arora, 2010). This
time, the weights +* are used. They are referred to as the partner influence weights, as
they reflect the relative influence of each partner in the coalition, i.e. how important
the reduction of the augmented cost of company i is compared to the reduction of the

augmented cost of its partners. The resulting model is the following.

Zv AZFyﬁZTDdT Tar + Z Qj’" o dr+zw/2thZv1d
+ s ot Vi aa + 3ok v2d+ﬁ’§j[€$; +<f—ee>§"wdwdr]

(16)

s.t.

(5) — (10)
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As previously noted, the shipment size Qg can be computed a priori. Deriving
equation (16), equaling the resulting expressions to zero, and accounting for the vehicle

capacity, we find the following closed-form formula.

i 2227 AL (T + B) €] Day
Qor = (C\/ 7 HA/A, ) 1

4.2.2. Pareto front

Varying the partner influence weights (1), single-objective optimization models can
be solved to generate the Pareto front, showing the trade-offs between the companies’
augmented costs. Figure 3 shows the Pareto front for an illustrative case with two
cooperating companies, where the first company gives priority to costs while the second
company has a higher preference for COy emissions (32 > 81). The first solution on
the left of the frontier is obtained by only minimizing the augmented cost of the cost-
focused partner (y; > 0 and v2 = 0), i.e. supposing that the first company has all
the decision power in the cooperation. When the ratio v2/7; increases, the emissions-
focused company gets more power in the decision process. The locations of the DCs will
be modified to get closer to its large customers. Moreover, as 5% > (1, the cooperation
will become more environmentally friendly, and more DCs will be opened to reduce
traveled distances. Finally, the last solution on the right of Figure 3 is the one that
best accommodates the preferences of the emissions-focused company (with v = 0

and 2 > 0).

5. Identifying unique solutions

In Section 4, we proposed two approaches to reduce the multi-dimensionality of our
model (3)-(10), leading to Pareto fronts that help decision-makers in designing a collab-
orative supply chain. The Pareto fronts balance the logistics costs and CO9 emissions of
the coalition (Section 4.1) or compromise the partners’ augmented costs (Section 4.2).

In this section, as a complement to these results, we propose three different ap-
proaches to identify a unique solution, that would be considered fair and efficient by
every partner. The first two approaches use a value for either 8 or ; in order to

generate a unique solution from the models (13) and (16) given in Section 4.1 and
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Augmented cost for cost-focused company 1

Figure 3.: Pareto front balancing the augmented costs of two cooperating companies
(with 82 > ).

Section 4.2, respectively. The third approach aims to find a fair balance between the
individual benefits that horizontal cooperation generates for the partners. For each of
these three approaches, two methods are suggested, differing in terms of the way
and ~; are calculated and in the viewpoint on fairness of individual partner benefits,
respectively. These six methods are presented in Sections 5.1, 5.2 and 5.3. They can be
applied as a complement to the analysis of the Pareto fronts (Section 4) to highlight
solutions that are particularly relevant, and serve as a starting point for collaborative
negotiations. Moreover, they have the advantage of being less computationally expen-
sive if the decision-makers prefer to bypass the Pareto fronts generation altogether.
They can also easily be used with more than two companies while the complexity
of the Pareto fronts representation increases with the number of partners. Finally, in
the context of a company looking to select a partner, unique solutions (rather than
Pareto fronts) make it easier to compare potential partners and assess potential fit

and benefits.

5.1. Costs-emissions weight 3 approach

In order to determine a unique solution for model (13), without generating the Pareto
front, the value of the collaboration’s costs-emissions preference weight, 3, has to
be fixed. For this, we rely on the known preferences of each partner, 4, which can

be inferred from their stand-alone supply chain (see Section 4.2). In order for the
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cooperation’s 3 to be acceptable by all partners, each 3! is accounted for in proportion
to the company’s importance. Two methods are presented here, which define this
importance based either on the demand volumes of the partners or on their augmented
costs. As discussed before, proportional techniques are the most commonly used in
practice as they are simple, support communication purposes and do not require a

substantial amount of data (Guajardo, 2018).

o Volume weighted By o
In the cooperation literature, allocation and aggregation techniques often rely
on demand volumes (Guajardo & Rénnqvist, 2016). Following this common prac-
tice, in this first method, § is computed as the weighted average of the partner

preferences (), weighted by their demand volume, as follows.

%

;A
Bva=) B (18)

This volume weighted computation naturally favors the largest company, giv-
ing its preference a higher importance. This coincides with the research results
of Cruijssen, Cools, and Dullaert (2007) stating that larger coalition players are
the most powerful partners in practice.

o Augmented cost weighted 3auqc

Next to demand volumes, stand-alone costs are also often used as a criterion
for collaborative aggregation or allocation purposes (Guajardo & Ronnqvist,
2016). Accordingly, our second method computes 5 as the weighted average of
the preferences ¢ weighted by the stand-alone augmented cost. With Cfg 4 being
the stand-alone cost of partner ¢ and EZS 4 its CO2 emissions, the stand-alone
augmented cost of partner i can be computed as AugC’g A= C’g A+ I Eg 4- The

cooperation’s preference weight 5 can then be formulated as follows.

- AugCh
/BAugC = Z 62 T54

_AuoCss (19)
i Zj AUQCéA

This augmented cost weighted computation favors companies with a larger stand-

alone augmented cost, thus accounting for both logistics costs and CO2 emissions.
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5.2. Partner influence weight ~* approach

To find a unique solution using model (16), without generating the Pareto front, the
value of every partner’s influence weight 4% has to be fixed. These weights characterize
the influence of the companies on the final cooperative solution. To define them, we
rely again on proportional techniques, using the demand volumes or the stand-alone

augmented costs, similar to the computation of 3 (Section 5.1).

o Volume weighted Vivol
Demand volumes can be used to reflect the size and negotiation power of a
company in the partnership (Cruijssen, Cools, & Dullaert, 2007). Based on this
idea, the influence weight 4% of partner i is computed as the ratio of its demand

to the total demand of all partners.

A Al
Yoa=7F W (20)

In this way, a larger company will have more impact on collaborative decisions.
Note, however, that this method does not account for the fact that a larger
demand volume will typically allow a company to be more efficient, compared
to a smaller company. To account for that, the next method is introduced.

o Augmented cost weighted vivol

In this second method, the augmented cost in the stand-alone case is used to
reveal the influence of a partner. The partner influence weights, 7, are computed
as the ratio of their stand-alone augmented cost to the total augmented cost of

all partners.

AungqA

y = =2 — Vi 21

Unlike the previous method, using the augmented cost allows to account for
the economies of scale that can be achieved through higher volumes. However,
to get to the augmented cost, the costs, COy emissions and individual costs-

emissions weights (3%) are more difficult to assess than volumes.
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5.3. Partners benefits approach

The two previous approaches are based directly on the multi-objective models proposed
in Section 4, balancing costs versus CO2 emissions (Sections 4.1) or balancing the aug-
mented costs of the partners (4.2). The approach presented in this section looks at the
benefits that cooperation generates for the partners individually. The relative benefit
from cooperating for a partner 7 is computed as (AungqA—AugCéoop)/AugCgA, where
Aungq 4 1s the stand-alone augmented cost of partner ¢ and AugCé oop 18 1ts share of
the cooperation’s augmented cost. The main motivation for a company to engage in
a horizontal cooperation is to reduce its own costs and CO9 emissions, i.e., decrease
its individual augmented cost. In practice, a cooperation that leads to vastly different
benefits among partners may be considered unfair, at least by those that benefit less.
In the same vein, a collaborative supply network that is far from the ideal network for
one company will likely result in dissatisfaction and threatens the long-term stability
of the collaboration.

Figure 4 displays the relative benefits of each partner in a two company collabora-
tion, for the solutions of the Pareto fronts as computed in Section 4, using articulation
at the coalition level (model (13)) or articulation at the partner level (16). We observe
a range of potential benefits for both companies. In isolation, the companies would
chose very different collaborative networks, i.e., the two extreme points, leading to
their ideal benefits. In what follows, we introduce two methods for selecting one solu-
tion from these solution sets, in order to guide decision makers. Both methods do not

require the Pareto fronts to be known.

o Maximizing the minimal partner benefit, MmBenefit

Our first method aims at maximizing the lowest individual benefit a partner
gets from cooperating. It will thus lead to a solution in which the company
benefiting the less gets as much as possible, and in which the benefits gotten
by the different partners are as similar as possible. In Figure 4, this solution
(represented by a triangle) is the one closest to the line with identical benefits
for the partners. To find this solution, the following model is solved, maximizing
the smallest benefit among partners (with Benefit and AugCé oop DEING variables

and Aungq 4 being a parameter, computed a priori).
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Benefit for company 2

O Articulation at the coalition level
* Articulation at the partner level
—— Identical benefits
- - - Highest, ideal, benefits
A Max Min Benefit
-l Min Max Loss

Benefit for company 1

Figure 4.: Relative benefits from cooperation, in augmented costs, that can be achieved
by two companies collaborating, for the solutions found applying the articulation at
the coalition level and the articulation at the partner level.

max Benefit (22)

s.t.
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(5) — (10)
Benefit >0 (25)

AugC’éOOp >0 Vi (26)

Since this method leads to similar benefits among partners, it supports accep-
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tance among partners and is in line with the premise of the equal profit method
(Frisk et al., 2010). As such, it may be helpful in the early phases of a growing
horizontal cooperation for communication and negotiation purposes (Verdonck
et al., 2016). However, especially if partner characteristics and/or contributions
are very dissimilar, it can be questioned whether an equal distribution of the
benefits is desirable. Moreover, given its strive for more equal partner benefits,
this method generally affects the average savings of the solution in a negative
way. These specific cases will be numerically explored in detail in Section 6.
Minimizing the maximal partner loss, mMLoss

This last method is based on the statement that partners ultimately desire
cooperative solutions which are as close as possible to their ideal cooperative
solution from an individual perspective, i.e. the solution that maximizes their
own benefit. The method thus aims at minimizing the maximum loss (dissatis-
faction) of each partner accounting for the cooperative solution that would be
chosen individually, similarly to the idea behind the Nucleolus method (Schmei-
dler, 1969). The solution that company i would select if it could decide alone for

ik

the cooperation (with an augmented cost noted Aug Cooop

) is computed a priori,
solving model (16) (Section 4.2) with influence weight ¢ = 1 for company i,
and zero weights for other companies. The corresponding solutions for all part-
ners are highlighted with the dashed lines in Figure 4. Note that these solutions
could be unacceptable as they might not comply with the individual rationality
principle. Accounting for this, the method finds the solution that minimizes the
maximum difference in benefits with these previously computed solutions, as il-

lustrated by the black square in Figure 4. The following model is solved, with

Loss and AugCéOOp being variables.
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min Loss (27)

s.t.

AugC’éoop AugCCoop

Loss > Vi (28)
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As the difference between the individually desirable solution and the cooper-
ative solution is minimized, this approach will reduce the partners’ willingness
to leave the cooperation, and thus supports the long-term stability of the coop-

eration.

6. Computational Experiments

In this section, we present and discuss our experimental results in order to compare
and validate all the approaches introduced in the previous sections. First, we intro-
duce the experimental setting in Section 6.1. In Section 6.2, we discuss the working of
both approaches presented in Section 4, that lead to Pareto fronts, relying on prefer-
ence articulation at the coalition and at the partner level. In Section 6.3, we analyze
the three approaches for finding unique solutions presented in Section 5. Finally, Sec-
tions 6.4 and 6.5 study collaborations among companies that are dissimilar in size

(and therefore power) or have a different geographical demand distribution.
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Figure 5.: Joint supply network for two collaborating companies with similar demand
structures and costs-emissions preferences (81 = 2 = 3), using the volume weighted
By o method (equation (18)). The dashed line distinguishes the eastern and the western
cities (see Section 6.5).

6.1. Experimental Setting

In our experiments, we focus on a cooperation between two companies, operating
in the U.S. market. The retailer’s locations are taken from the 49-node data set by
Daskin (2011), which includes the 48 continental U.S. state capitals plus Washington
DC. This data set is commonly used in the facility location literature (Jeon, Snyder,
& Shen, 2006; Santivanez & Carlo, 2018). All retailers’ locations are considered to be
the possible locations for the DCs. This assumption is common and well-accepted in
the facility location literature (see e.g. Atamtiirk et al. (2012); Shen, Coullard, and
Daskin (2003)). The 49 cities and the joint supply network for a specific collaboration
are illustrated in Figure 5.

The parameter values, reflecting the characteristics of the two cooperating compa-
nies, are detailed in Table 2. These parameter values are used for both companies in
all our experiments except for the companies’ size and geographical distribution which
differ in Sections 6.4 and 6.5 (i.e. demands M. differ). In order to highlight relevant
insights, we assume that the companies share similar cost structures, but do not nec-
essarily share the same costs versus emissions preferences (8; = 1,3 or 5 depending
on the experiments). Following Atamtiirk et al. (2012); Schuster Puga, Minner, and
Tancrez (2019), we use the city’s population size divided by 1000 (noted 7,) as the

baseline for the retailer’s daily demand. To allow for variance in the dataset, a devia-
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tion of 25% is considered. For each company, the expected daily demand at a retailer,
AL, is randomly generated within the intervals [0.757,; 1.257,]. The standard deviation
of the demand is found applying a CV of 0.5 (normal distributions are assumed). The
service level is set at 97.5%. A transportation cost of 1€ /km is considered per vehicle.
The vehicle capacity is fixed at a maximum of 2500 items per vehicle. The use of a
DC involves a facility opening cost of 1000€. The order cost and the holding costs
are 500€ per order and 0.05€ per item respectively (as in Atamtiirk et al. (2012);
Schuster Puga et al. (2019)). Lead times between DCs and retailers are directly pro-
portional to the distance (assuming an average speed of 50 km/h). The order lead time
from all DCs to all plants is fixed to the average lead time from all potential DCs to
all retailers. The CO2 emissions emitted by a vehicle are set to 0.857 kg/km for an
empty vehicle (e¢) and 1.209 kg/km for a full vehicle (¢/). These values are obtained
applying the formula proposed by Hickman, Hassel, Joumard, Samaras, and Sorenson
(1999), considering a heavy-duty vehicle (maximum load of 25 tons) driving at a speed
of 50km/h, and ignoring the gradient of the road (Pan et al., 2013). Models are im-
plemented in CPLEX and run on a 3.2 GHz computer with 8 GB of RAM. Problems

are solved to optimality both for the stand-alone and the cooperation cases.

Table 2.: Parameters values for the numerical experiments.

AL [0.757,; 1.257,] items/day
cv 0.5

al 97.5%

2, 1.96

T 1€/km

C 2500 items

Fy 1000 €/day

K} 500 € /order

hi, = H}! 0.05 € /item-day
€° 0.857 kg/km

el 1.209 kg/km

6.2. Pareto fronts analysis

To help decision-makers negotiate a collaboration, our methods first displays the al-
ternative joint supply networks in the form of Pareto fronts. They can be computed
using a preference articulation at the coalition level (Section 4.1) or at the partner

level (Section 4.2). To illustrate these methods, the two collaborating companies, with
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similar demand structures, are supposed to have opposite costs-emissions preferences
(otherwise the two companies would be very similar, and would easily agree on their
joint supply network). One company is focused on costs minimization (51 = 1) while
its partner is focused on emissions reduction (82 = 5).

Figure 6 shows the resulting Pareto fronts for both preference articulations, at
the coalition level and at the partner level, as well as the balance of the benefits in
augmented cost