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ABSTRACT

Horizontal cooperation in logistics has gathered momentum in the last decade as a way to reach

economic as well as environmental benefits. In the literature, these benefits are most often assessed

through aggregation of demand and supply chain optimization of the partnership as a whole. How-

ever, such an approach ignores the individual preferences of the participating companies and forces

them to agree on a unique coalition objective. Companies with different (potentially conflicting)

preferences could improve their individual outcome by diverging from this joint solution. To account

for companies preferences, we propose an optimization framework that integrates the individual

partners’ interests directly in a cooperative model. The partners specify their preferences regarding

the decrease of logistical costs versus reduced CO2 emissions. Doing so, all stakeholders are more

likely to accept the solution, and the long-term viability of the collaboration is improved. First,

we formulate a multi-objective, multi-partner location-inventory model. Second, we distinguish two

approaches for solving it, each focusing primarily on one of these two dimensions. The result is a set

of Pareto-optimal solutions that support the decision and negotiation process. Third, we propose

and compare three different approaches to construct a unique solution which is fair and efficient

for the coalition. Extensive numerical results not only confirm the potential of collaboration but,

more importantly, also reveal valuable managerial insights on the effect of dissimilarities between

partners with respect to size, geographical overlap and operational preferences.
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1. Research context and motivation

To be competitive in today’s demanding markets, it is no longer sufficient to operate

at minimum cost (Saad, Rahim, & Fernando, 2016). Companies are under pressure

to also ensure high customer service levels and to account for the growing awareness

with respect to environmental sustainability. Encouraged by public incentives and

the emergence of carbon taxes, more and more companies integrate emissions targets

into all levels of decision-making (Hovelaque & Bironneau, 2015). The low average

vehicle loading rates — currently between 57% and 68% in EU-28 countries (Creemers,

Woumans, Boute, & Beliën, 2017; Vargas, Patel, & Patel, 2018) — show huge potential

for improving the sustainability of logistical networks. At the same time, maintaining

high delivery frequencies is crucial to remain competitive.

A promising avenue to improve the efficiency as well as the sustainability of the

logistical operations is to engage in a collaboration. In this paper, the focus is on hori-

zontal cooperation, which is defined as “multiple companies (potentially competitors),

operating at the same level of the supply chain, that join forces with the aim of im-

proving their overall efficiency” (Cruijssen, 2006). Through active sharing of vehicles

and facilities, companies can achieve substantial economies of scale. This leads to more

efficient vehicle loading rates and a reduction in total kilometres driven, which posi-

tively impacts the operational costs as well as the carbon footprint of the collaborating

companies (Hacardiaux & Tancrez, 2019).

A key challenge when modelling and analyzing collaborative environments is that

companies remain independent entities with different (potentially conflicting) prefer-

ences regarding the characteristics of the logistical network, and with different sizes

(thus potentially different influences in the decision process). This challenge is most

often circumvented in the literature with two premises: focusing on the improvement

in one dimension and considering the coalition as a unique deciding entity. Existing re-

search typically relies on the assumption that all partners agree on a unique objective.

Mostly, only the reduction of total logistics costs is considered. Furthermore, customer

demands and the preferences of the collaborating partners are aggregated and, doing

so, the identity and independence of the partnering companies are ignored (Defryn,

Sörensen, & Dullaert, 2019). Consequently, an optimal solution at the coalition level

can be sub-optimal at the individual partner level. This discrepancy creates an in-

centive for the partners to behave opportunistically and diverge from the proposed
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solution to improve their individual outcome. This potential mismatch between indi-

vidual partner and coalition objectives jeopardizes the long-term stability, and thus

success, of the collaboration.

In this paper, we investigate the design of a cooperative supply network that ex-

plicitly accounts for differences in the individual preferences with respect to costs and

CO2 emissions reduction, and the influence weight of each partner. To the best of our

knowledge, we are the first to analyze such a problem within the context of collabora-

tive logistics. The result is a multi-objective optimization framework that integrates

the individual partner preferences, in order to find a solution which is fair and efficient

for the coalition. We introduce and compare five different approaches to find such a

solution. The first two generate a set of Pareto-optimal solutions that can support the

negotiation and decision-making process. The other three approaches help companies

to highlight a unique solution based on predefined criteria. To support the presentation

and show the working of our framework, it is applied and validated on a multi-objective

location-inventory problem. Extensive computational experiments allow us to derive

managerial insights for strategic and tactical decision support, including partner se-

lection.

The remainder of the paper is structured as follows. Section 2 contains a literature

review and positions the contribution of our paper. In Section 3, the problem setting

and the multi-objective and multi-partner collaborative location-inventory model are

presented. The first two multi-objective solution approaches that rely on the construc-

tion of a Pareto frontier are discussed in Section 4. The other three approaches, aimed

at finding a unique solution, are introduced in Section 5. In Section 6, experimental

results are presented and relevant managerial insights are derived. Finally, Section 7

concludes our paper and presents ideas for future research.

2. Related literature

Due to its practical importance and promising benefits, collaboration in logistics has

attracted the interest of the research community over the last decade. Existing stud-

ies mainly focus on collaborative transport or distribution systems, where the main

motivation for companies to cooperate is an increased efficiency of the vehicle fleet

operations and thus a lower logistical cost (Gansterer & Hartl, 2018; Verdonck, 2017).
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Despite the potential environmental and economical benefits, the sharing of distribu-

tion centers or joint inventory management policies have not received large attention

from the research community. While location-inventory problems receive increasing

academic attention (Daskin & Maass, 2019; Farahani, Rashidi Bajgan, Fahimnia,

& Kaviani, 2015; Melo, Nickel, & Saldanha-Da-Gama, 2009), their application in a

horizontal cooperation context is novel. Verdonck, Beullens, Caris, Ramaekers, and

Janssens (2016) analyze the benefits of cooperative facility location in a horizontal

carrier cooperation. Solving the joint location-allocation problem leads to an average

reduction in facility opening and distribution costs of 9.1%. Tang, Lehuédé, and Péton

(2016) determine optimal locations for regional distribution centers in a collaborative

distribution network. Makaci, Reaidy, Evrard-Samuel, Botta-Genoulaz, and Monteiro

(2017) empirically study the sharing of warehouses among different companies to iden-

tify, among others, the KPIs and uncertainty sources. Hacardiaux and Tancrez (2018)

present a location-inventory model and demonstrate average savings around 22% in

terms of facility opening, transportation, cycle inventory, ordering and safety stock

costs when setting up a collaboration. A limited number of papers consider carbon

footprint reductions associated with the collaborative location-inventory model. Hac-

ardiaux and Tancrez (2019) analyze the impact of several market and partner char-

acteristics (e.g. vehicle capacity, facility opening cost, inventory holding cost, demand

variability) on the reduction of cost and CO2 emissions when collaborating. Stellingw-

erf, Laporte, Cruijssen, Kanellopoulos, and Bloemhof (2018) analyze the economic and

environmental benefits of joint route planning and vendor-managed inventory in the

context of collaborative food logistics. Results show significant savings in costs, emis-

sions, distance and travel time, and demonstrate the advantages of vendor-managed

inventory in the case under study. Ouhader and El Kyal (2017) propose a multi-

objective optimization model, including both facility location and routing decisions,

that maximizes costs reduction and job creation subject to a constraint on CO2 emis-

sions. Unlike the work presented in this paper, existing contributions focus exclusively

on coalition objectives and the individual preferences of partners are ignored.

Despite its inherent multi-objective nature, horizontal logistics collaboration has

mainly been studied from a single-objective perspective in the literature (Defryn et

al., 2019). Typically, the collaborative scenario is simulated by aggregating the cus-

tomers’ demand of the different partners, and a single-objective optimization model
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is then solved at the level of the coalition. For the cooperation to be viable, ensur-

ing significant collaborative savings in the long run, however, the individual partner

preferences need to be taken into account. A growing body of research exists on multi-

objective optimization in various logistics domains. A general overview of relevant

literature can be found in Ehrgott (2005), Caramia and Dell'Olmo (2008) and Deb

(2014). More specifically, multi-objective applications have been developed for vehi-

cle routing problems (Jozefowiez, Semet, & Talbi, 2008), facility location problems

(Farahani, SteadieSeifi, & Asgari, 2010) and inventory management (Tsou, 2008).

The consideration of multiple objectives in a horizontal cooperation context, however,

is a novel research domain. Kimms and Kozeletskyi (2017) develop a multi-objective

optimization model for the travelling salesman problem (TSP) with horizontal coop-

eration. Their goal is to simultaneously minimize travelling costs and maximize the

partner utility consequential to order assignment. In line with Kimms and Kozeletskyi

(2017), Defryn and Sörensen (2018) solve a multi-objective collaborative TSP aimed

at minimizing both the total distance travelled and the customer time window viola-

tions. Wang et al. (2018) present a vehicle routing model which minimizes both the

operating costs and the number of vehicles in the context of collaborative customer

and vehicle sharing. Soysal, Bloemhof-Ruwaard, Haijema, and van der Vorst (2018)

model an inventory routing problem analyzing collaborative benefits in terms of mul-

tiple objectives, i.e., emissions, driving time and total logistics cost. While each of the

papers described above considers multiple objectives on the coalition level, none of

them account for individual partner preferences.

To the best of our knowledge, Defryn et al. (2019) are the only to describe and

investigate the inclusion of individual partners preferences in collaborative logisti-

cal planning. In their paper, they propose a framework that allows for a difference

in individual partner preferences while assuring maximal synergy creation through

collaboration. Our research work differs from theirs by developing a multi-objective

framework both at the coalition and at the individual partner level, accounting for

preferences in both costs and CO2 emissions reductions, and accounting for the indi-

vidual partners’ influence on the collaboration. Consequently, in this paper, there is

no need for coalition partners to agree on a single coalition objective, contrary to the

assumptions made by Defryn et al. (2019). Furthermore, our methodology is tested

and validated on a collaborative location-inventory problem aiming to minimize both
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the total logistical cost and the transportation CO2 emissions. Finally, we consider an

a priori stated preference articulation with respect to the effect of the collaboration on

both objectives. In other words, we analyze the current stand-alone situation for each

individual partner to state their preferences in advance. Again, this approach differs

from Defryn et al. (2019), in which an a posteriori preference articulation is assumed.

Based on our literature review, we conclude that multi-objective research in hori-

zontal logistics cooperation is scarce. Moreover, the focus is on routing or distribution

environments, and only the coalition level is typically considered. Since collaborating

companies remain independent entities with potentially conflicting goals, there is an

urgent need for more multi-objective, multi-partner models that can account for the

individuality of the partners and their preferences.

3. The multi-objective collaborative location-inventory problem

In this section, we formally introduce the multi-objective collaborative supply chain

network problem. We then formulate both objectives, the minimization of logistics

costs and the minimization of CO2 emissions, and finally we present our multi-objective

collaborative location-inventory model.

3.1. Problem definition

We are given a set of companies wishing to engage in a horizontal collaboration. Each

company produces one specific product in their own central plant. As illustrated in

Figure 1.a, each company currently has its own (set of) distribution centers (DCs),

from where they distribute their product to a group of retailers. We assume that each

individual company has independently optimized its distribution network given its

preferences regarding costs and CO2 emissions. Each company has opened an optimal

number of DCs, chosen their location and allocated the retailers. Cycle inventory is

also considered, in particular choosing the right shipment sizes for each transport.

To satisfy the uncertain demand during the lead time (which is proportional to the

traveled distance) safety stocks are kept at every DC.

Motivated by potential reductions in logistics costs and CO2 emissions, the com-

panies consider setting up a joint supply network in which they share their DCs and

vehicles, as illustrated in Figure 1.b. The following advantages can be expected (Hac-
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Figure 1.: Illustration of the delivery networks of two independent stand-alone compa-
nies (a), and of the joint delivery network of these companies when they are cooperating
(b).

ardiaux & Tancrez, 2019):

• As DCs are shared by the cooperating companies, the total number of DCs is

likely to reduce, while each company’s product will likely be delivered from more

DCs.

• The vehicle loading rates will improve due to the bundling of goods from multiple

companies for a shared customer.

• The total distance travelled will decrease for two reasons: retailers are delivered

from a potentially closer DC, and the improvement of the loading rate will reduce

the number of vehicles travelling (per time period).

Although products from different companies are stored in the same facilities, com-

panies keep their own cycle inventory and safety stock. We asssume direct deliveries

and single sourcing, meaning that all the products delivered to a specific retailer come

from a single DC, even if these products originate from different partners.

3.2. Logistics costs and CO2 emissions

The goal of the coalition is to design a supply chain network that balances the inter-

ests of all partners, relative to their two objectives: minimizing the logistics costs and

the CO2 emissions. In this section, we formulate the costs and emissions of an indi-

vidual partner in the coalition (using the mathematical notations listed in Table 1).
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Each individual partner aims to minimize its own share of costs and emissions in the

coalition. As detailed below, to share the total logistics costs as well as the total CO2

emissions of the cooperation among partners, we apply proportional rules based on

the quantity of products shipped by each partner. In practice, proportional alloca-

tion methods are most commonly used due to their simplicity and the fact that they

facilitate communication among partners (Guajardo, 2018).

Table 1.: Overview of mathematical notations.

Sets and indices:
D = {1, ..., nD} Potential distribution center (DC) locations, indexed by d.
R = {1, ..., nR} Retailers, indexed by r.
I = {1, ..., nI} Companies, indexed by i.

Parameters:
F Fixed cost for opening a DC, in AC/period.
T Transportation cost per km for a vehicle, in AC/(km·vehicle).
Ddr Distance between DC d and retailer r, in km.
Hi

r Unit inventory holding cost at retailer r for a product of company i, in AC/(item·period).
hi
d Unit inventory holding cost at DC d for a product of company i, in AC/(item·period).

C Vehicle capacity, in items/vehicle.
Ki

d Fixed cost at DC d for placing an order to the plant of company i, in AC/order.
ziα Standard normal deviation associated with service level αi at retailers, for company i.
LTdr Lead time between DC d and retailer r, in periods.
LT i

d Lead time between the central plant of company i and DC d, in periods.
λi
r Mean demand for products of company i at retailer r, in items/period.

Λr Mean demand for all products at retailer r, in items/period, i.e. Λr =
∑

i λ
i
r.

Λi Mean demand for products of company i for all retailers, in items/period, i.e. Λi =
∑

r λ
i
r.

Λ Mean total demand for all companies and all retailers, in items/period, i.e. Λ =
∑

r Λr.
σi
r Standard deviation of the demand for products of company i at retailer r, in items/period.

ǫe CO2 emissions emitted by an empty vehicle in kg/km.
ǫf CO2 emissions emitted by a fully loaded vehicle in kg/km.
Qdr Total shipment size (for all companies) from DC d to retailer r (decided a priori), in items/vehicle.

Decision Variables:

yd

{

1, if DC d is opened,

0, otherwise.

xdr

{

1, if DC d serves retailer r (for all products),

0, otherwise.
vi
1d, v

i
2d Auxiliary variables for company i and DC d.

3.2.1. Objective 1: Minimizing logistics costs

The logistics costs comprise of the facility opening costs, the transportation costs and

the inventory costs. To share the facility costs, a proportional volume-based rule is

used such that each partner pays for the fraction of the DC it is storing its products

in. Regarding the transportation costs, we use a separate deliveries weighted allocation

rule, where, in a similar manner, each partner pays for each vehicle proportionally to

the volume its products occupy in it (Frisk, Göthe-Lundgren, Jörnsten, & Rönnqvist,

2010). The transportation cost allocation is thus different for each retailer ( λ
i

r

Λr

). Finally,

as each company has its own cycle inventory and safety stock, the inventory costs can
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be directly allocated to a specific partner. The share of the logistics costs for a partner

i in the cooperation can thus be expressed as follows.

Λi

Λ

∑

d

F yd+
∑

r

λi
r

Λr

∑

d

T Ddr
Λr

Qdr
xdr+

∑

d,r

H i
r

Qdr

2

λi
r

Λr
xdr+

∑

d

√

2Ki
d h

i
d λ

i
r xdr

+
∑

d

hid z
i
α

√

LT i
d

√

∑

r

(σi
r)

2xdr +
∑

d,r

H i
r z

i
α σ

i
r

√

LTdr xdr (1)

The terms of equation (1) represent, for company i, its share of facility opening

costs, its share of transportation costs (Λr/Qdr gives the number of shipments per

period to a retailer r), its cycle inventory costs at retailers, its cycle inventory and

ordering costs at DCs (assuming an EOQ inventory structure), its safety stock costs

at DCs and its safety stock costs at retailers (to reach service level α).

3.2.2. Objective 2: Minimizing CO2 emissions

To account for the CO2 emissions, we focus on transportation and use the formula

proposed by Pan, Ballot, and Fontane (2013), which is commonly accepted in the

literature (Danloup et al., 2015; Moutaoukil, Neubert, & Derrouiche, 2015; Ouhader

& El Kyal, 2017). This formula also has the advantage of accounting for the vehicle

loading rate, which is an important factor of improvement when cooperating. To allo-

cate the CO2 emissions among partners, we apply the polluter-pays principle (Kellner

& Otto, 2012). CO2 emissions are divided proportionally to the usage of the vehicles

(it is also a volume-based rule, λi

r

Λr

). This method for the allocation of emissions is

frequently applied by practitioners as it is efficient and easy to understand (Leenders,

Velázquez-Mart́ınez, & Fransoo, 2017). The share of CO2 emissions produced by a

partner i in the collaboration can be expressed as follows:

∑

r

λi
r

Λr

∑

d

[ǫe
Λr

Qdr
+ (ǫf − ǫe)

Λr

C
] Ddr xdr (2)

The share of CO2 emissions for company i, due to the deliveries to its retailers, is

composed of baseline emissions from an empty vehicle, to which emissions proportional

to the vehicle load are added. In the first part of equation (2), the CO2 emissions
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emitted by an empty vehicle per km (ǫev) are simply multiplied by the number of

trips. Then, the CO2 emissions related to the vehicle load (ǫfv− ǫev) are multiplied by

the volume of products expressed in full vehicles. To get the total CO2 emissions of

the supply chain, these emissions per km are multiplied by the distance, and summed

for all deliveries to retailers.

3.3. Multi-objective collaborative location-inventory model

In this section, we present our multi-objective collaborative location-inventory model.

Equations (1) and (2) provide two criteria that need to be minimized for each partner

in the cooperation, leading to a multi-objective and multi-partner optimization model

with 2nI objectives. The model aims to determine the number and locations of the

joint DCs, the allocation of the flows, as well as inventory decisions regarding the ship-

ment sizes and the safety stocks. Moreover, the model directly allocates the costs and

the CO2 emissions to the specific partners. It is formulated as a conic quadratic mixed

integer program, which has the advantage to be solvable by commercial optimization

softwares. Similarly to Atamtürk, Berenguer, and Shen (2012) and Hacardiaux and

Tancrez (2019), the non-linearity in the logistics costs (see equation (1)) is moved to

the constraints using auxiliary variables vi1d and vi2d. In the final model, the objectives

are linear and the constraints are either linear or conic quadratic. Our multi-objective

collaborative location-inventory model is formulated as follows.
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min
Λi

Λ

∑

d

F yd +
∑

r

λi
r

Λr

∑

d

T Ddr
Λr

Qdr
xdr +

∑

d,r

H i
r

Qdr

2

λi
r

Λr
xdr +

∑

d

√

2Ki
d h

i
d v

i
1d

+
∑

d,r

H i
r z

i
α σ

i
r

√

LTdr xdr +
∑

d

hid z
i
α

√

LT i
d v

i
2d ∀i (3)

min
∑

r

λi
r

Λr

∑

d

[ǫe
Λr

Qdr
+ (ǫf − ǫe)

Λr

C
] Ddr xdr ∀i (4)

s.t.
∑

r

λi
r (xdr)

2 ≤ (vi1d)
2 ∀d, i (5)

∑

r

(σi
r)

2 (xdr)
2 ≤ (vi2d)

2 ∀d, i (6)

∑

d

xdr = 1 ∀r (7)

xdr ≤ yd ∀d, r (8)

vi1d, v
i
2d ≥ 0 ∀d, i (9)

xdr, yd ∈ {0, 1} ∀d, r (10)

Equations (3) minimize the share of logistics costs of each partner and equations

(4) minimize the share of CO2 emissions of each partner in the cooperation (2nI

objectives). Constraints (5) and (6) define the auxiliary variables vi1d and vi2d, giving

the model its conic quadratic mixed integer program form (using xdr = x2dr and yd =

y2d). Constraints (7) ensure that each retailer is assigned to exactly one DC (single

sourcing). Constraints (8) ensure that a retailer can be served by a DC only if the

latter is opened. Constraints (9) impose non-negativity on the auxiliary variables, while

constraints (10) enforce the binary nature of decision variables xdr and yd. Note that

the shipment size decision, Qdr, is not treated as a variable when solving our model,

but rather as a parameter. We will show in Section 4 that Qdr can be computed a

priori, before solving the model, in a way that depends on the approach used to solve

model (3)-(10).
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4. Multi-objective optimization frameworks

Our multi-objective collaborative location-inventory model is challenging to solve due

to the number of objectives, which is equal to the number of partners in the cooperation

times two, 2nI . In this way, we could say that the objectives are multiple in two

dimensions: the logistics costs vs. the CO2 emissions on one hand, the multiple partners

on the other hand. In this section, we present two approaches to solve our multi-

objective model, where each approach tackles the problem starting from one of the

two dimensions in order to generate a specific Pareto frontier.

Even though only one solution is chosen in practice, generating these Pareto fronts

provides useful insights into the trade-off between costs and emissions on the one hand

and between the partners interests on the other hand. The cost effect of striving for

a particular emissions level (and vice versa) can be analyzed, next to the balance of

the partners benefits in various collaborative network solutions. Ultimately, this allows

collaborative partners to reflect on their preferences and engage in negotiations on the

costs-emissions strategy of the collaboration.

4.1. Articulation at the coalition level

In the first approach, we tackle the multi-objective problem by aggregating the in-

dividual partners, considering the coalition as a whole. In other words, we look at

the problem as if the coalition was one homogeneous decision entity (Hacardiaux &

Tancrez, 2019; Tang et al., 2016; Verdonck et al., 2016). The shares of all partners are

added up, leading to two objectives: the total coalition costs and the total coalition

emissions. Compared to (3)-(4), ∀i is replaced by
∑

i (and the equation is simplified).

We obtain the following objectives.

min
∑

d

F yd +
∑

d,r

T Ddr
Λr

Qdr
xdr +

∑

d,r,i

H i
r

Qdr

2

λi
r

Λr
xdr +

∑

d,i

√

2Ki
d h

i
d v

i
1d

+
∑

d,r,i

H i
r z

i
α σ

i
r

√

LTdr xdr +
∑

d,i

hid z
i
α

√

LT i
d v

i
2d (11)
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min
∑

d,r

[ǫe
Λr

Qdr
+ (ǫf − ǫe)

Λr

C
] Ddr xdr (12)

4.1.1. Weighted sum method

To tackle the remaining bi-objective model, we apply the weighted sum method, with

a varying weight β, which reflects the relative importance of logistics costs versus CO2

emissions for the cooperation (Kim & de Weck, 2005; Marler & Arora, 2010). Both

objectives are combined and the following model is obtained.

min
∑

d

F yd +
∑

d,r

T Ddr
Λr

Qdr
xdr +

∑

d,r,i

H i
r

Qdr

2

λi
r

Λr
xdr +

∑

d,i

√

2Ki
d h

i
d v

i
1d

+
∑

d,r,i
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+ β
∑
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Qdr
+ (ǫf − ǫe)

Λr

C
] Ddr xdr

s.t.

(5)− (10)

The weight β is refered to as the costs-emissions weight, and reveals how important

CO2 emissions are compared to logistics costs for the collaboration. A small β means

that the cooperation is focused on costs, while a large β reveals a higher environmental

attention. The parameter β can be interpreted as the monetary cost of CO2 emissions.

It can for example be related to carbon taxes or company reputation. The use of this

weight solves the problems of nature and proportionality between both objectives, as

they were originally expressed in euros and in kilograms of CO2.

As noted in Section 3.3, the shipment size Qdr can be computed prior to solving the

model. Deriving equation (13) with respect to Qdr, equaling the resulting expressions

to zero, and accounting for the vehicle capacity, we find the following closed-form

formula for the shipment size.
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Qdr = min

(

C,

√

2 (T + β ǫe)Ddr Λr
∑

iH
i
r λ

i
r/Λr

)

(14)

Note that, as β is part of this equation, the ability to compute Qdr a priori is tied to

the use of the weighted sum method. This is the reason why, for our location-inventory

model, it is the preferred method to tackle the model with the two objectives (11)-(12).

4.1.2. Pareto front

Varying the value of β in model (13), the Pareto front balancing costs and CO2 emis-

sions at the coalition level can be computed. Figure 2 (black squares) represents this

Pareto front for an illustrative case with two partner companies. The first solution on

the left of the frontier is obtained by only minimizing the total logistics costs (β = 0).

For increasing values of β, we observe a reduction in CO2 emissions caused at first

by changes in the inventory policy. More specifically, the shipment size, and thus the

vehicles’ loading rate, is progressively increased, reducing the number of shipments

and the CO2 emissions, but increasing the inventory costs. Then, the CO2 emissions

are further decreased by opening additional DCs, which have a major impact on costs

(additional facility opening costs) and CO2 emissions (reduced travelled distances).

2 DCs

3 DCs

4 DCs

5 DCs
6 DCs

7 DCs
8 DCs

Logistics costs

C
O

2
em

is
si
on

s

p1 alone
p2 alone
p1 + p2 alone
p1 + p2 in coop.
p1, p2 accept
p1 reject
p2 reject

Figure 2.: Balancing the logistics costs and the CO2 emissions on an illustrative case
with two companies p1 and p2: optimal solutions for the stand-alone companies (×
and ⋆) and sum of these two (dashed circle); Pareto front for the cooperation, varying
β (�); and allocated shares for both companies of each Pareto front solution (

⊗

,
⊕

,
©)

For each solution of the Pareto front at the coalition level, the costs and CO2
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emissions can be shared among the partners using volume-based allocation rules (as

described in Section 3.2). For each partner, the resulting trade-off between the costs

share and the emissions share is illustrated in Figure 2 (empty circles). This allows

to assess the solutions at the individual partner level. In particular, a partner could

decide to reject a given solution because it violates rationality principles (Zolezzi &

Rudnick, 2002). Two rationality principles are discussed in the following.

Individual rationality means that a partner will not accept a solution that is worse

than its stand-alone situation. In other words, a partner will not accept to enter a

cooperation that causes him to increase its costs or its CO2 emissions. Only solutions

that dominate all stand-alone solutions will be accepted by all partners. If no such

solution exists, we can conclude that the collaboration will not be viable. In Figure

2, allocated individual shares above or on the right of the stand-alone solutions are

deemed unacceptable and crossed. If a cooperative solution is rejected by at least one

of the partners, this solution is inaccessible to the other partners even if acceptable

for them individually (see crossed solutions
⊗

in the acceptable area in Figure 2).

Collective rationality states that the cooperation should create synergy, implying

that it should decrease both the logistics costs and CO2 emissions. Solutions in the

Pareto front of the cooperation are thus acceptable if their cost is smaller than the

sum of the stand-alone costs and correspondingly for the CO2 emissions. In Figure

2, all depicted solutions satisfy those conditions since they are all situated under and

on the left of the solution summing the stand-alone cases (dashed circle). Note that

multiple Pareto optimal solutions remain and that only one can be implemented (see

Section 5).

4.2. Articulation at the partner level

In the second approach, we tackle the multi-objective problem starting by the balance

between the logistics costs and the CO2 emissions. For each partner i in the coalition,

these two objectives are added, accounting for its preferences regarding costs versus

emissions using βi. Similar to the β introduced in Section 4.1, βi can be interpreted

as the monetary cost for company i of emitting one kilogram of CO2, and denotes

the importance according to partner i of reducing the CO2 emissions compared to

reducing the logistics costs. It is referred to as the individual costs-emissions weight.

The resulting sum, which aggregates the direct logistics costs and the indirect costs
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coming from CO2 emissions, is referred to as the augmented cost (and noted AugC).

Each partner in the coalition aims to minimize its augmented cost, leading to the

following objectives.
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In our approach, the individual costs-emissions weights βi are supposed to be known.

They can easily be inferred from the stand-alone situation (before cooperation) as we

assume that each company has optimally designed its supply chain according to its

individual preferences. Using this concept of revealed preference articulation, it is not

necessary to ask the decision-makers to explicitly express their individual preferences

and avoids the use of untruthful information (Veldhuizen & Lamont, 2000).

4.2.1. Weighted sum method

In order to solve the remaining multi-objective model, we again apply a weighted

sum approach, as in Section 4.1 (Kim & de Weck, 2005; Marler & Arora, 2010). This

time, the weights γi are used. They are referred to as the partner influence weights, as

they reflect the relative influence of each partner in the coalition, i.e. how important

the reduction of the augmented cost of company i is compared to the reduction of the

augmented cost of its partners. The resulting model is the following.
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(16)

s.t.

(5)− (10)
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As previously noted, the shipment size Qdr can be computed a priori. Deriving

equation (16), equaling the resulting expressions to zero, and accounting for the vehicle

capacity, we find the following closed-form formula.

Qdr = min

(

C,

√

2 [
∑

i γ
i λi

r (T + βi) ǫe]Ddr
∑

i γ
iH i

r λ
i
r/Λr

)

(17)

4.2.2. Pareto front

Varying the partner influence weights (γi), single-objective optimization models can

be solved to generate the Pareto front, showing the trade-offs between the companies’

augmented costs. Figure 3 shows the Pareto front for an illustrative case with two

cooperating companies, where the first company gives priority to costs while the second

company has a higher preference for CO2 emissions (β2 > β1). The first solution on

the left of the frontier is obtained by only minimizing the augmented cost of the cost-

focused partner (γ1 > 0 and γ2 = 0), i.e. supposing that the first company has all

the decision power in the cooperation. When the ratio γ2/γ1 increases, the emissions-

focused company gets more power in the decision process. The locations of the DCs will

be modified to get closer to its large customers. Moreover, as β2 > β1, the cooperation

will become more environmentally friendly, and more DCs will be opened to reduce

traveled distances. Finally, the last solution on the right of Figure 3 is the one that

best accommodates the preferences of the emissions-focused company (with γ1 = 0

and γ2 > 0).

5. Identifying unique solutions

In Section 4, we proposed two approaches to reduce the multi-dimensionality of our

model (3)-(10), leading to Pareto fronts that help decision-makers in designing a collab-

orative supply chain. The Pareto fronts balance the logistics costs and CO2 emissions of

the coalition (Section 4.1) or compromise the partners’ augmented costs (Section 4.2).

In this section, as a complement to these results, we propose three different ap-

proaches to identify a unique solution, that would be considered fair and efficient by

every partner. The first two approaches use a value for either β or γi in order to

generate a unique solution from the models (13) and (16) given in Section 4.1 and
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Figure 3.: Pareto front balancing the augmented costs of two cooperating companies
(with β2 > β1).

Section 4.2, respectively. The third approach aims to find a fair balance between the

individual benefits that horizontal cooperation generates for the partners. For each of

these three approaches, two methods are suggested, differing in terms of the way β

and γi are calculated and in the viewpoint on fairness of individual partner benefits,

respectively. These six methods are presented in Sections 5.1, 5.2 and 5.3. They can be

applied as a complement to the analysis of the Pareto fronts (Section 4) to highlight

solutions that are particularly relevant, and serve as a starting point for collaborative

negotiations. Moreover, they have the advantage of being less computationally expen-

sive if the decision-makers prefer to bypass the Pareto fronts generation altogether.

They can also easily be used with more than two companies while the complexity

of the Pareto fronts representation increases with the number of partners. Finally, in

the context of a company looking to select a partner, unique solutions (rather than

Pareto fronts) make it easier to compare potential partners and assess potential fit

and benefits.

5.1. Costs-emissions weight β approach

In order to determine a unique solution for model (13), without generating the Pareto

front, the value of the collaboration’s costs-emissions preference weight, β, has to

be fixed. For this, we rely on the known preferences of each partner, βi, which can

be inferred from their stand-alone supply chain (see Section 4.2). In order for the
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cooperation’s β to be acceptable by all partners, each βi is accounted for in proportion

to the company’s importance. Two methods are presented here, which define this

importance based either on the demand volumes of the partners or on their augmented

costs. As discussed before, proportional techniques are the most commonly used in

practice as they are simple, support communication purposes and do not require a

substantial amount of data (Guajardo, 2018).

• Volume weighted βV ol

In the cooperation literature, allocation and aggregation techniques often rely

on demand volumes (Guajardo & Rönnqvist, 2016). Following this common prac-

tice, in this first method, β is computed as the weighted average of the partner

preferences (βi), weighted by their demand volume, as follows.

βV ol =
∑

i

βi Λ
i

Λ
(18)

This volume weighted computation naturally favors the largest company, giv-

ing its preference a higher importance. This coincides with the research results

of Cruijssen, Cools, and Dullaert (2007) stating that larger coalition players are

the most powerful partners in practice.

• Augmented cost weighted βAugC

Next to demand volumes, stand-alone costs are also often used as a criterion

for collaborative aggregation or allocation purposes (Guajardo & Rönnqvist,

2016). Accordingly, our second method computes β as the weighted average of

the preferences βi weighted by the stand-alone augmented cost. With Ci
SA being

the stand-alone cost of partner i and Ei
SA its CO2 emissions, the stand-alone

augmented cost of partner i can be computed as AugCi
SA = Ci

SA + βiEi
SA. The

cooperation’s preference weight β can then be formulated as follows.

βAugC =
∑

i

βi AugCi
SA

∑

j AugCj
SA

(19)

This augmented cost weighted computation favors companies with a larger stand-

alone augmented cost, thus accounting for both logistics costs and CO2 emissions.
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5.2. Partner influence weight γi approach

To find a unique solution using model (16), without generating the Pareto front, the

value of every partner’s influence weight γi has to be fixed. These weights characterize

the influence of the companies on the final cooperative solution. To define them, we

rely again on proportional techniques, using the demand volumes or the stand-alone

augmented costs, similar to the computation of β (Section 5.1).

• Volume weighted γiV ol

Demand volumes can be used to reflect the size and negotiation power of a

company in the partnership (Cruijssen, Cools, & Dullaert, 2007). Based on this

idea, the influence weight γi of partner i is computed as the ratio of its demand

to the total demand of all partners.

γiV ol =
Λi

Λ
∀i (20)

In this way, a larger company will have more impact on collaborative decisions.

Note, however, that this method does not account for the fact that a larger

demand volume will typically allow a company to be more efficient, compared

to a smaller company. To account for that, the next method is introduced.

• Augmented cost weighted γiV ol

In this second method, the augmented cost in the stand-alone case is used to

reveal the influence of a partner. The partner influence weights, γi, are computed

as the ratio of their stand-alone augmented cost to the total augmented cost of

all partners.

γiAugC =
AugCi

SA
∑

k AugCk
SA

∀i (21)

Unlike the previous method, using the augmented cost allows to account for

the economies of scale that can be achieved through higher volumes. However,

to get to the augmented cost, the costs, CO2 emissions and individual costs-

emissions weights (βi) are more difficult to assess than volumes.
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5.3. Partners benefits approach

The two previous approaches are based directly on the multi-objective models proposed

in Section 4, balancing costs versus CO2 emissions (Sections 4.1) or balancing the aug-

mented costs of the partners (4.2). The approach presented in this section looks at the

benefits that cooperation generates for the partners individually. The relative benefit

from cooperating for a partner i is computed as (AugCi
SA−AugCi

Coop)/AugC
i
SA, where

AugCi
SA is the stand-alone augmented cost of partner i and AugCi

Coop is its share of

the cooperation’s augmented cost. The main motivation for a company to engage in

a horizontal cooperation is to reduce its own costs and CO2 emissions, i.e., decrease

its individual augmented cost. In practice, a cooperation that leads to vastly different

benefits among partners may be considered unfair, at least by those that benefit less.

In the same vein, a collaborative supply network that is far from the ideal network for

one company will likely result in dissatisfaction and threatens the long-term stability

of the collaboration.

Figure 4 displays the relative benefits of each partner in a two company collabora-

tion, for the solutions of the Pareto fronts as computed in Section 4, using articulation

at the coalition level (model (13)) or articulation at the partner level (16). We observe

a range of potential benefits for both companies. In isolation, the companies would

chose very different collaborative networks, i.e., the two extreme points, leading to

their ideal benefits. In what follows, we introduce two methods for selecting one solu-

tion from these solution sets, in order to guide decision makers. Both methods do not

require the Pareto fronts to be known.

• Maximizing the minimal partner benefit, MmBenefit

Our first method aims at maximizing the lowest individual benefit a partner

gets from cooperating. It will thus lead to a solution in which the company

benefiting the less gets as much as possible, and in which the benefits gotten

by the different partners are as similar as possible. In Figure 4, this solution

(represented by a triangle) is the one closest to the line with identical benefits

for the partners. To find this solution, the following model is solved, maximizing

the smallest benefit among partners (with Benefit and AugCi
Coop being variables

and AugCi
SA being a parameter, computed a priori).
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Figure 4.: Relative benefits from cooperation, in augmented costs, that can be achieved
by two companies collaborating, for the solutions found applying the articulation at
the coalition level and the articulation at the partner level.
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(5)− (10)

Benefit ≥ 0 (25)

AugCi
Coop ≥ 0 ∀i (26)

Since this method leads to similar benefits among partners, it supports accep-
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tance among partners and is in line with the premise of the equal profit method

(Frisk et al., 2010). As such, it may be helpful in the early phases of a growing

horizontal cooperation for communication and negotiation purposes (Verdonck

et al., 2016). However, especially if partner characteristics and/or contributions

are very dissimilar, it can be questioned whether an equal distribution of the

benefits is desirable. Moreover, given its strive for more equal partner benefits,

this method generally affects the average savings of the solution in a negative

way. These specific cases will be numerically explored in detail in Section 6.

• Minimizing the maximal partner loss, mMLoss

This last method is based on the statement that partners ultimately desire

cooperative solutions which are as close as possible to their ideal cooperative

solution from an individual perspective, i.e. the solution that maximizes their

own benefit. The method thus aims at minimizing the maximum loss (dissatis-

faction) of each partner accounting for the cooperative solution that would be

chosen individually, similarly to the idea behind the Nucleolus method (Schmei-

dler, 1969). The solution that company i would select if it could decide alone for

the cooperation (with an augmented cost noted AugCi∗
Coop) is computed a priori,

solving model (16) (Section 4.2) with influence weight γi = 1 for company i,

and zero weights for other companies. The corresponding solutions for all part-

ners are highlighted with the dashed lines in Figure 4. Note that these solutions

could be unacceptable as they might not comply with the individual rationality

principle. Accounting for this, the method finds the solution that minimizes the

maximum difference in benefits with these previously computed solutions, as il-

lustrated by the black square in Figure 4. The following model is solved, with

Loss and AugCi
Coop being variables.
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min Loss (27)
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As the difference between the individually desirable solution and the cooper-

ative solution is minimized, this approach will reduce the partners’ willingness

to leave the cooperation, and thus supports the long-term stability of the coop-

eration.

6. Computational Experiments

In this section, we present and discuss our experimental results in order to compare

and validate all the approaches introduced in the previous sections. First, we intro-

duce the experimental setting in Section 6.1. In Section 6.2, we discuss the working of

both approaches presented in Section 4, that lead to Pareto fronts, relying on prefer-

ence articulation at the coalition and at the partner level. In Section 6.3, we analyze

the three approaches for finding unique solutions presented in Section 5. Finally, Sec-

tions 6.4 and 6.5 study collaborations among companies that are dissimilar in size

(and therefore power) or have a different geographical demand distribution.
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Figure 5.: Joint supply network for two collaborating companies with similar demand
structures and costs-emissions preferences (β1 = β2 = 3), using the volume weighted
βV ol method (equation (18)). The dashed line distinguishes the eastern and the western
cities (see Section 6.5).

6.1. Experimental Setting

In our experiments, we focus on a cooperation between two companies, operating

in the U.S. market. The retailer’s locations are taken from the 49-node data set by

Daskin (2011), which includes the 48 continental U.S. state capitals plus Washington

DC. This data set is commonly used in the facility location literature (Jeon, Snyder,

& Shen, 2006; Santiváñez & Carlo, 2018). All retailers’ locations are considered to be

the possible locations for the DCs. This assumption is common and well-accepted in

the facility location literature (see e.g. Atamtürk et al. (2012); Shen, Coullard, and

Daskin (2003)). The 49 cities and the joint supply network for a specific collaboration

are illustrated in Figure 5.

The parameter values, reflecting the characteristics of the two cooperating compa-

nies, are detailed in Table 2. These parameter values are used for both companies in

all our experiments except for the companies’ size and geographical distribution which

differ in Sections 6.4 and 6.5 (i.e. demands λi
r differ). In order to highlight relevant

insights, we assume that the companies share similar cost structures, but do not nec-

essarily share the same costs versus emissions preferences (βi = 1, 3 or 5 depending

on the experiments). Following Atamtürk et al. (2012); Schuster Puga, Minner, and

Tancrez (2019), we use the city’s population size divided by 1000 (noted πr) as the

baseline for the retailer’s daily demand. To allow for variance in the dataset, a devia-
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tion of 25% is considered. For each company, the expected daily demand at a retailer,

λi
r, is randomly generated within the intervals [0.75πr; 1.25πr]. The standard deviation

of the demand is found applying a CV of 0.5 (normal distributions are assumed). The

service level is set at 97.5%. A transportation cost of 1AC/km is considered per vehicle.

The vehicle capacity is fixed at a maximum of 2500 items per vehicle. The use of a

DC involves a facility opening cost of 1000AC. The order cost and the holding costs

are 500AC per order and 0.05AC per item respectively (as in Atamtürk et al. (2012);

Schuster Puga et al. (2019)). Lead times between DCs and retailers are directly pro-

portional to the distance (assuming an average speed of 50 km/h). The order lead time

from all DCs to all plants is fixed to the average lead time from all potential DCs to

all retailers. The CO2 emissions emitted by a vehicle are set to 0.857 kg/km for an

empty vehicle (ǫe) and 1.209 kg/km for a full vehicle (ǫf ). These values are obtained

applying the formula proposed by Hickman, Hassel, Joumard, Samaras, and Sorenson

(1999), considering a heavy-duty vehicle (maximum load of 25 tons) driving at a speed

of 50 km/h, and ignoring the gradient of the road (Pan et al., 2013). Models are im-

plemented in CPLEX and run on a 3.2 GHz computer with 8 GB of RAM. Problems

are solved to optimality both for the stand-alone and the cooperation cases.

Table 2.: Parameters values for the numerical experiments.

λi
r [0.75πr; 1.25πr] items/day

CV 0.5
αi 97.5%
ziα 1.96
T 1AC/km
C 2500 items
Fd 1000 AC/day
Ki

d 500 AC/order
hi
d = Hi

r 0.05 AC/item·day
ǫe 0.857 kg/km
ǫf 1.209 kg/km

6.2. Pareto fronts analysis

To help decision-makers negotiate a collaboration, our methods first displays the al-

ternative joint supply networks in the form of Pareto fronts. They can be computed

using a preference articulation at the coalition level (Section 4.1) or at the partner

level (Section 4.2). To illustrate these methods, the two collaborating companies, with
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similar demand structures, are supposed to have opposite costs-emissions preferences

(otherwise the two companies would be very similar, and would easily agree on their

joint supply network). One company is focused on costs minimization (β1 = 1) while

its partner is focused on emissions reduction (β2 = 5).

Figure 6 shows the resulting Pareto fronts for both preference articulations, at

the coalition level and at the partner level, as well as the balance of the benefits in

augmented cost that the partners get from cooperating (see Section 5.3). We observe

that companies first have to decide whether to open 3, 4 or 5 DCs. Then, the decisions

regarding the locations of these DCs as well as the loading rates of the vehicles will have

an additional impact on the costs-emissions balance and on the individual augmented

costs. Unsurprisingly, the results obtained with both preference articulations are not

drastically different. They rather offer variations and a wider choice of alternative

supply networks.

In Figure 6.c, we observe that no solution leads to perfectly equal relative benefits for

both companies. This is not exceptional to this instance, and may be an impediment

during the negotiation process. In this case, visualizing all possible alternative supply

networks (and thus also the non-existing ones), in the form of these Pareto fronts,

may definitely be valuable. Interestingly, although collaboration is clearly beneficial

for both partners, we see that benefits can vary between 20% and 29% for the cost-

focused company and between 22% and 27% for the emissions-focused company. This

disparity is a direct consequence of the difference in costs-emissions preferences for

both partners. We will elaborate on the impact of individual partner preferences in

more detail in the next section.

6.3. Impact of the individual costs-emissions preferences

To explore the impact of individual costs-emissions preferences (weight βi), we perform

additional experiments in which company 1 is set as a cost-focused company (β1 = 1)

while the partner’s preference is altered. First, both companies are similar, being both

cost-focused (β2 = 1). Second, company 2 focuses more on CO2 emissions (β2 = 3).

Third, company 2 is very environmentally conscious (β2 = 5).

For each scenario, we compare the unique solutions returned by each of the three

approaches (six computation methods) introduced in Section 5: the costs-emissions

weight β can be volume weighted (equation (18), computation method denoted βV ol
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(a) Total coalition costs versus total coalition
CO2 emissions.

(b) Augmented costs for both partners.

(c) Relative benefits in augmented costs from cooperating, for both partners.

Figure 6.: Pareto fronts obtained using the articulation at the coalition level (�) and
the articulation at the partner level (+) for companies with different costs-emissions
preferences.
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in the following) or augmented cost weighted (equation (19), denoted βAugC); the

partner influence weight γi can also be volume weighted (equation (20), denoted γiV ol)

or augmented cost weighted (equation (21), denoted γiAugC); the partners benefits

can be used as a criterion, maximizing the minimal partner benefit (model (22)-(26),

denoted MmBenefit) or minimizing the maximal partner loss (model (27)-(31), de-

noted mMLoss). Note that, for the two last methods (MmBenefit and mMLoss),

the shipment size Qdr is computed using equations (17) and (20).

The results are summarized in Figure 7, showing the impact of the costs-emissions

preference of the second company on the collaborative benefits for both companies.

When the costs-emissions weights are the same for both companies (β1 = β2 = 1,

first bar for each method), both companies are similar in all respects: cost parameters,

demands and preferences. As a consequence, their costs and CO2 emissions reductions

from cooperating are very similar. The joint supply network is easily found and the

various methods lead to the same results.

With the increase of the second company’s weight (β2 = 3 then 5, second and

third bar for each method), the relative benefit of the collaboration decreases as the

companies have to compromise, accounting for different preferences. The cooperative

solution becomes more environmentally friendly, with higher vehicle loading rates and

in some cases the opening of additional DCs (with β2 = 5 and the three methods

βAugC , γ
i
AugC and MmBenefit). Overall, the benefit decreases weakly for company 1

and more severely for company 2. For the cost-focused company 1, the decrease in the

costs benefit (black bars) is compensated by an increase in the CO2 emissions benefit

(grey bars). In other words, the cost-focused company also benefits significantly from

the reduction in CO2 emissions enforced by the other partner. The notable exception to

that is in the cases where an additional DC is opened to satisfy the emissions-focused

company 2 (β2 = 5). The benefit for the cost-focused company drops significantly as

the additional DC largely increases the cost of the network (and the CO2 emissions

reduction does not compensate).

Looking at the second company, for which the costs-emissions weight increases,

its benefits are decreasing more severely, deviating more and more from those of its

partner. Moreover, the share of profits actually linked to CO2 emissions reductions

(grey bars) is decreasing when the costs-emissions weight increases. Although this

might seem counter-intuitive, it can easily be explained by the fact that we make use
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Figure 7.: Relative benefits in augmented cost from cooperating for cost-focused com-
pany 1 (first line) and company 2 with a changing costs-emissions preference (second
line). Groups of three bars show the benefits obtained by each company when the
costs-emissions weight increases for the second company (β2 = 1, 3, 5). The weight
does not change for company (β1 = 1). Each group of three bars, in the six columns,
is for one the six methods to propose a unique solution. Each bar is decomposed in
terms of costs and CO2 emissions reductions.

of stated preference articulation to determine the individual partner preferences. In

other words, a company that deems CO2 emissions priority, will already have low CO2

emissions when operating alone. The opportunities for decreasing the emissions even

further when collaborating are thus limited, especially if the other partner (company

1 in this case) does not value CO2 emissions reduction. In the special cases where the

second company’s strong preference for emissions reduction leads to the opening of an

additional DC, the emissions indeed drastically decrease, but the benefit is cancelled

out by the cost increase.

When the individual costs-emissions preferences differ, and companies become dis-

similar, we also see in Figure 7 that the outcomes of the six computation methods of

Section 5 diverge. To study this in more detail, we refer to Table 3, which presents,

for each method, the benefits in augmented cost obtained in a cooperation between

a cost-focused company 1 (β1 = 1) and a very environmentally conscious company 2
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(β2 = 5). To underline the fact that the methods tend to have different strengths and

weaknesses, Table 3 shows the benefits of each company, the average benefit revealing

the global efficiency of the cooperation, the difference between the benefits unveiling

the equity of the cooperation, and the difference with the ideal solution of a company

(if it would decide alone for the cooperation). We see that the volume weighted meth-

ods (βV ol and γiV ol) lead to solutions with a high average benefit (25.9%), in which

the cooperation as a whole benefits the most. However, these methods lead to a high

disparity between partners (4.1%), clearly favoring the cost-focused company.

As touched upon earlier, the augmented cost weighted computation methods (βAugC

and γiAugC) lead to open an additional DC when the second company is very environ-

mentally conscious (β2 = 5). In general, these methods favor the emissions-focused

company, leading to greener supply networks and larger CO2 emissions reduction.

However, as the emissions-focused company tends to have lower profits than its cost-

focused partner, these methods counterbalance this negative impact, obtaining a lower

average for the benefits but a lower gap between augmented costs reductions. In Ta-

ble 3, we see that these methods, βAugC and γiAugC , lead to the higher benefit for

the emissions-focused company 2 (25.6%), with a low difference with the benefit of

company 1 (1.5%).

The method maximizing the minimal partner benefit (MmBenefit) further reduces

the difference between the benefits of the partners (0.5%). As such, it allows to reach

a solution where neither partner feels aggrieved. This is also the method that provides

the highest minimum individual benefit (24.4%). To reach a sufficient benefit for the

emissions-focused company 2, an additional DC is opened (as mentioned earlier). The

main drawback of this method MmBenefit is that it leads to a degradation of the

average global savings level (24.7%). In short, MmBenefit is the method giving the

most priority to partner equity versus global efficiency. On the opposite, the method

minimizing the maximal partner loss (mMLoss) leads to very different benefits (4.2%)

but a more efficient supply network for the cooperation as a whole (25.9%). However,

it minimizes the gap with the ideal solutions that companies would choose if they

could decide alone for the cooperation (3.2%), and thus disincentivizes the partners

to leave the cooperation.

In conclusion, companies which are similar in terms of costs-emissions preferences

have higher average benefits, while dissimilar preferences lead to lower and more dis-
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Table 3.: Relative benefits (in %) in augmented costs from cooperating for cost-focused
company 1 (β1 = 1) and emissions-focused company 2 (β2 = 5), their average and their
difference, as well as the highest difference with the ideal cooperative solution of each
partner, as found by the six computation methods.

Costs-emissions weight Partner influence weight Partners Benefits Average
Method βV ol βAugC γi

V ol
γi
AugC MmBenefit mMLoss

Benef. Comp. 1 -27.9 -24.1 -28.0 -24.1 -24.4 -28.0 -26.1
Benef. Comp. 2 -23.8 -25.6 -23.8 -25.6 -24.9 -23.8 -25.0

Average -25.9 -24.8 -25.9 -24.8 -24.7 -25.9 -25.3
Difference 4.1 1.5 4.2 1.5 0.5 4.2 2.7

Highest Diff. Ideal 3.2 4.4 3.2 4.4 4.1 3.2 3.7

parate benefits. In addition, individual benefits from cooperation are mainly coming

from an improvement of the objective which was less favored in the individual case. As

such, a cost-focused company collaborating with an emissions-focused company will

mainly enjoy significant CO2 emissions reductions. This highlights again the impor-

tance of analyzing results (also) at an individual partner level. Finally, the choice of

the solution method noticeably impacts the collaborative solution, the characteristics

of the joint supply network, its costs and emissions. The various methods could fa-

vor a reduction in costs or in CO2 emissions, one partner or the other, the reduction

of the augmented cost of the cooperation as a whole or a smaller difference between

individual benefits, or even a lower gap with the ideal cooperative solution of each

partner.

6.4. Companies with different sizes

A significant part of the literature on horizontal cooperation considers coalitions of

companies of a similar size (i.e., with similar demand). The reasons put forward to

justify this assumption are an easier benefit distribution among partners and the elim-

ination of power influence in the decision-making process (Cruijssen, Bräysy, Dullaert,

Fleuren, & Salomon, 2007; Hacardiaux & Tancrez, 2019; Vanovermeire, 2014). As our

models consider the benefits distribution and the influence weights of the coalition

partners, we can use them to analyze the impact on both coalition performance and

individual benefits of having partners of different sizes in the coalition. For this, we

run a new set of experiments where the first company is twice the size of the second

company, while maintaining a similar total demand for the cooperation as previously.

The demand rate λi
r is computed using the formula in Table 2, with πr being the
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Table 4.: Relative benefits (in %) from cooperating for a large company 1 and a small
company 2, in augmented cost, logistics costs and CO2 emissions, depending on their
costs-emissions preferences β1 and β2.

β1/β2 = 3/3 β1/β2 = 1/5 β1/β2 = 5/1
Coop. Large C1 Small C2 Coop. Large C1 Small C2 Coop. Large C1 Small C2

Augm. costs -26.8* -16.8 -40.5 -26.6* -16.5 -37.6 -22.8* -16.2 -37.1
Logistics costs -26.5 -16.3 -40.3 -32.3 -13.0 -52.3 -26.3 -21.5 -33.9
CO2 emissions -27.2 -17.7 -40.8 -24.3 -30.7 -6.6 -30.8 -7.2 -54.1

*For the partner influence weight and partners benefits approaches, βV ol (equation (18)) is used to compute
the cooperative augmented cost.

city’s population size divided by 750 for the large company 1, and 1500 for the small

company 2 (compared to 1000 for both companies previously). Three combinations

of individual costs-emissions weights are tested, β1/β2 = 3/3, 1/5 or 5/1, to illustrate

companies with similar (3/3) or opposite (1/5 and 5/1) costs-emissions preferences.

These new instances have been solved with the six computation methods proposed

in Section 5, to get unique solutions for the collaboration. Table 4 gives the aver-

age results over the six methods, allowing us to focus on the insights related to the

cooperation’s and companies’ benefits.

Looking at Table 4, it directly appears that the relative benefits of both partners are

very different, around 16% in augmented cost for the large company and between 37%

and 40% for the small company. This is due to the fact that the large partner already

has a more effective supply network before cooperating, thanks to better economies

of scale. With equal costs-emissions weights (β1/β2 = 3/3), the costs and emissions of

the large company are only 35% and 45% larger, respectively, while its demand volume

is twice the volume of the small company. In particular, the average vehicle loading

rate for the large company in the stand-alone case is already close to 90% (for the

various costs-emissions weights combinations β1/β2). On the other hand, the small

company, when cooperating, gets access to a larger number of DCs (for which they

share the costs), better filled trucks (from 79% in the stand-alone case to around 96%

in the collaborative solutions) and more frequent deliveries (reducing inventory costs).

Cooperation is therefore more beneficial, relatively, for the small company than for its

larger partner. Companies thus best join forces with larger partners in order to fully

exploit cooperation opportunities (as also stated in Verdonck, Ramaekers, Depaire,

Caris, and Janssens (2019)).

However, the large company still benefits from a significant reduction of its costs and
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CO2 emissions (around 16% in augmented cost). Even more, interestingly, the large

company is close to reaching the full potential of the collaboration, i.e. the maximum

possible benefit, that a company would get deciding alone for the cooperation (for

all β1/β2 combinations and with most methods). For example, with costs-emissions

weights β1/β2 = 1/5, the results obtained with five of the six computation methods are

very similar, with a relative benefit in augmented costs of 17.2% for the large company

(37.4% for the small one), which is very close to its ideal cooperative solution (decided

alone) with a benefit of 17.4%. The sixth computation method, which leads to other

results, is the augmented cost weighted βAugC method. It favors the small company

even more, leading to a benefit of 39% for the small company and 13.3% for the large

one. The high costs-emissions weight of the small company (artificially) skews the

solution to favor it (even opening an additional DC). This βAugC method should thus

likely be avoided when companies do not have a demand of similar size.

Further looking at Table 4, the observation provided in Section 6.3 is even stronger

with companies of different sizes: when the partners have different costs-emissions

preferences, each company benefits most in the non-priority objective. With costs-

emissions weights β1/β2 = 1/5 for example, the large costs-focused company decreases

its CO2 emissions the most (30.7% vs. 13%), while the small emissions-focused com-

pany reduces its costs the most (52.3% vs. 6.6%). As a whole, the cooperation reduces

its costs by 32.3% and its emissions by 24.3%, showing that the priority of the larger

company for costs still clearly bends the cooperative solution. When both companies

have similar sizes (configuration of Section 6.3 and Table 3, β1/β2 = 1/5), the benefits

are more balanced, as the cooperation reduces its costs by 28.6% and its emissions by

29.3%.

6.5. Companies with different geographical demand distribution

In this section, we analyze the impact of the geographical demand distribution of the

partners on the collaboration. In these new experiments, we assume that the demand

for each company is no longer uniformly spread over all cities (while maintaining a

similar total demand for the cooperation as previously). The first company’s customers

are mostly in the West, while the second company’s customers are mostly in the East.

Company 1 has 2/3rd of its demand coming from the 25 most western cities (to the

left of the dashed line in Figures 5 and 8) and 1/3rd in the 24 most eastern cities,
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Table 5.: Relative benefits (in %) from cooperating, for a western company 1 and an
eastern company 2, in augmented cost, logistics costs and CO2 emissions, depending
on their costs-emissions preferences β1 and β2.

β1/β2 = 3/3 β1/β2 = 1/5 β1/β2 = 5/1
Coop. West C1 East C2 Coop. West C1 East C2 Coop. West C1 East C2

Augm. costs -26.3* -26.3 -26.2 -22.3* -26.7 -24.3 -24.9* -24.8 -23.1
Logistics costs -30.8 -31.2 -30.4 -30.2 -24.5 -35.1 -26.5 -32.7 -19.2
CO2 emissions -14.7 -14.8 -14.7 -24.9 -35.9 -5.2 -29.2 -13.0 -41.1

*For the partner influence weight and partners benefits approaches, βV ol (equation (18)) is used to compute
the cooperative augmented cost.

and vice versa for company 2. As in the previous section, we consider companies with

similar (β1/β2 = 3/3) or opposite (β1/β2 = 1/5 or 5/1) costs-emissions preferences,

and apply the six computation methods to get unique solutions proposed in Section

5.

Table 5 gives the average benefits for the cooperation and for both companies. As

previously, we observe that both companies have significant benefits (between 23% and

26% in augmented cost), and that companies benefit more in their non-priority crite-

rion (e.g. emissions for a cost-focused company). Interestingly, Table 5 further shows

that the company with higher demand in the west benefits slightly more (around 2%

when preferences are different). The main customers of this company, on the western

part of the map, are more spread than those of the second company, which are mainly

clustered in the east. As distances are longer to reach western cities, the benefit of

cooperation, from more DCs and better vehicle loading rates, is stronger in the west

and impacts the western company more strongly, reducing both its logistics costs and

its environmental impact. In conclusion, when companies have different geographical

demand distributions, companies with a higher demand dispersion obtain higher ben-

efits, as increased geographical coverage provides more cooperation opportunities (in

accordance with Cruijssen, Bräysy, et al. (2007), Guajardo and Rönnqvist (2015) and

Verdonck et al. (2019)).

Figure 8 shows that the decision process of companies forming a collaboration can

strongly impact their collaborative supply network. It is illustrated here for a col-

laboration between a western cost-focused company and an eastern emissions-focused

company. When the western cost-focused company decides alone for the cooperation,

only three DCs are opened to achieve lower costs, and their locations are skewed to-

wards the West (see Figure 8.a). When deciding alone, the eastern emissions-focused
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company prefers reducing the CO2 emissions by shortening distances. It thus opens

five DCs, of which three are in the East (see Figure 8.b). Besides these two extreme

scenarios, it is interesting to look at the methods to identify (realistic) unique solutions

proposed in Section 5. In the case illustrated in Figure 8, there is a significant difference

between the costs-emissions weight β approach on one side and the partner influence

weight γi and the partners benefits approaches on the other side. With the partner

costs-emissions weights β approach, a unique costs-emissions weight β is defined for

the cooperation and then the supply network is designed, thus not accounting for the

difference in costs-emissions preferences (βi) among partners. In Figure 8.c, a weighted

average of both βi is used to decide to open four DCs evenly spread on the map, i.e.

balancing between costs and emissions with similar priority and considering the co-

operation as a whole. It leads to an average individual partner benefit of 24.7%. On

the opposite, the partner influence weight γi and partners benefits approaches better

conserve the individuality of companies, accounting for their different costs-emissions

preferences (βi). In Figure 8.d, only three DCs are opened to reduce costs and please

the western cost-focused company, but their locations are skewed towards the east

(compared to Figure 8.a for example) to shorten distances there and reduce the car-

bon footprint of the eastern emissions-focused company. The decision thus accounts

for both partners’ preferences, leading to a higher individual average benefit of 25.9%.

In conclusion, when geographical spread and individual preferences differ, companies

should prefer applying approaches that conserve these individual preferences as they

allow to design a network that has different priorities (costs versus CO2 emissions) in

different regions.

7. Conclusions

Horizontal collaboration is considered to be a promising avenue in today’s demanding

markets requiring both efficient and sustainable logistics services. Although supply

chain partnerships promise mutual benefits for the participants, those benefits are

rarely realized due to differences in partner preferences. Despite its inherent multi-

objective nature, the majority of current research considers horizontal logistics collab-

oration as a single-objective minimization of transportation costs assuming partners

agree on a unique collaborative goal. In the best case, the effect of collaboration on
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(a) (b)

(c) (d)

Figure 8.: Supply networks and DCs locations, for a western cost-focused company
1 and an eastern emissions-focused company 2 (β1/β2 = 1/5), found when the first
company decides alone for the cooperation (a), when the second company decides alone
(b), with the costs-emissions weight β approach (c) and with the partner influence
weight γi and partners benefits approaches (d).
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CO2 emissions is computed a posteriori, after costs are minimized. Based on this re-

search gap, the contribution of this paper is twofold. First, we develop a multi-objective

framework accounting for the individuality of partners in terms of their costs-emissions

preferences and their influence weights. Second, we propose new approaches for solving

our multi-objective multi-preference model; two approaches resulting in Pareto fronts

and three approaches defining unique solutions. In addition to contributing to aca-

demic research field by developing and solving new models, the proposed framework

provides quantitative decision support for practitioners implementing and managing

horizontal partnerships.

Our multi-objective collaborative location-inventory model, which is formulated as

a conic quadratic mixed integer program, accounts for the logistics costs versus CO2

emissions preferences of all partners. Moreover, it directly allocates these costs and

emissions to the partners based on efficient proportional rules which are commonly

used in practice. In order to solve the model, five solution approaches are proposed.

The two first approaches generate sets of Pareto-optimal solutions, providing useful

insights regarding the trade-off between costs and emissions for the cooperation on the

one hand, and the augmented costs of the different partners on the other hand. While

providing multiple solutions aids partners in negotiating on the collaborative strategy,

pointing at specific promising solutions is also valuable. Moreover, the complexity of

deriving and representing Pareto fronts increases with the number of partners. As

such, we propose three additional approaches to identify a unique solution, that would

be considered fair and efficient by every partner. The first two approaches compute

costs-emissions preference and partner influence weights, while the third approach is

based on the individual partner benefits that horizontal cooperation generates. For

each of these approaches, two methods are suggested, differing in terms of the way the

weights are calculated and the viewpoint on fairness of benefits.

Based on numerical experiments analyzing the performance of the developed solu-

tion approaches and the sensitivity of the results to differing instance configurations,

the following insights may be formulated. First, collaboration remains beneficial for

both partners in all cases, even if their preferences, sizes or geographies are differ-

ent. Preference weight combinations do, however, impact the individual benefits levels

of the partners, with dissimilar weights reducing the potential benefits. Furthermore,

when the partners have different costs-emissions preferences, they tend to benefit the
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most in the non-priority objective. Second, the choice of the solution approach impacts

the collaborative solution, rewarding either the partnership or a specific partner, fa-

voring a reduction in costs or in emissions, and affecting the gap between individual

benefits or with the ideal solution of each partner. Overall, the desirability of the

solution reached by each approach depends on the context of the collaboration, the

demand characteristics, the partners’ preferences and influence. Third, the importance

of partner size is confirmed. Comparatively smaller companies will tend to benefit more

than larger companies which have better economies of scale when stand-alone. Small

companies thus best attract a large partner in order to enjoy savings associated with

large joint orders. However, the larger company will still bend the collaboration to-

wards its costs-emissions preference and reach close to its ideal solution. Finally, broad

geographical coverage increases the potential benefits of cooperation. When the geo-

graphical demand distribution and preferences of the partners are dissimilar, solution

approaches accounting for the individual costs-emissions weights should be preferred.

To conclude, the following suggestions for further research can be made. One nat-

ural avenue is to include more complex allocation techniques from the literature (e.g.

Shapley value) within our optimization framework. Second, the multi-objecive, multi-

partner approach could be applied to other collaborative settings besides the location-

inventory model. According to Pan, Trentesaux, Ballot, and Huang (2019), research

on intermodal collaborations should be enhanced, for example. Finally, to further en-

hance decision support related to partner selection, the sensitivity analysis could be

extended to other cooperation configurations.
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