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Abstract— In this paper, we consider a heterogeneous team
of UAVs drawn from several distinct classes and engaged
in a search and destroy mission over a spatially extended
battlefield with targets of several types. Some target locations
are suspected a priori with a certain probability, while the rest
need to be detected gradually through search. The tasks are
determined in real-time by the actions of all UAVs and their
consequences (e.g., sensor readings), which makes the task
dynamics stochastic. The tasks must, therefore, be allocated
to UAVs in real-time as they arise. Quick response is more
important for known targets, while efficient search is necessary
to discover hidden targets. Prediction may help when most
targets are known a priori, but could hurt when they are not.
In this paper, we study how the benefit of such prediction may
depend on the number of targets and UAVs. In particular, we
show that there is a trade-off between search and task response
in the context of prediction. Based on the results, we propose a
hybrid algorithm which balances the search and task response.
The performance of proposed algorithms is evaluated through
Monte Carlo simulations.

I. INTRODUCTION

Recent advances in intelligent systems and cooperative
control have prompted many researchers to study large
groups of unmanned autonomous vehicles or UAVs acting
cooperatively to accomplish search and destroy missions in
poorly known and hazardous environments ([?], [?], [?], [?],
[?], [?]). UAVs engaged in such missions must search for
targets and respond to those that are found. In this paper,
we look at the delicate balance between these two aspects
of the UAVs mission.

We consider a group of UAVs drawn from several distinct
classes and engaged in a search and destroy mission over an
extended battlefield. The suspected locations of some targets
are given a priori, while others must be found through
cooperative search by the UAVs. Each suspected target
must be confirmed and classified, attacked with appropriate
munitions, and have its destruction verified. Since these
tasks are created and accomplished through the actions of
the UAVs, the task dynamics emerges stochastically over
the environment, and requires that tasks be assigned to
appropriate UAVs as they arise. This creates a problem
similar to the dynamic vehicle routing problem ([?], [?]),
but of greater complexity due to the stochastic dynamics
and several types of vehicles and tasks.
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In previous papers, we have reported results from a sim-
plified model where UAVs choose their tasks autonomously
and cooperatively using a central cognitive map that pro-
vides perfect, instantaneous information on the status of
all tasks and UAVs ([?]). In this model, UAVs engage in
search as the default behavior, and take on target-specific
tasks through a process of cooperative gradual commitment,
beginning with volunteering and ending in assignment.
UAVs assigned to specific tasks proceed directly to the
task location instead of searching for new targets. This cre-
ates a classic exploration-exploitation trade-off [?], where
resources dedicated to search (exploration) compete with
those dedicated to target response (exploitation). This trade-
off is magnified further when UAVs act on predicted as
well as current information, since the predicted tasks create
further opportunities for exploitation and take resources
away from exploration. In this paper, we present a model
significantly more realistic than the one used in our earlier
work, and use it to study the issues of predictive assign-
ment and the search-response trade-off with Monte Carlo
simulations.

II. COOPERATIVE UAV TEAM MODEL

A. Scenario and Model Description

The environment is taken to be a continuous region
measuring Lx km by Ly km. For the purposes of sensing
and representation, it is divided into Nx×Ny cells. We use
upper case X and Y to denote the integer coordinates of the
discretized cellular representation and lower-case x and y

for the Cartesian coordinates of the continuous environment.
The environment has M stationary targets, νi, i =

1, . . . , M with locations, (xν
i , yν

i ), and fixed orientations
Φ∗

i relative to a globally defined frame of reference. These
targets are drawn from NT different target classes. Of
the M targets, Mk are suspected initially, while Mh =
M − Mk need to be discovered gradually during search.
There are n UAVs, ui, i = 1, . . . , n, operating in the
environment, with the goal of discovering and destroying
all targets. A canonical task set, T , defines the tasks
that the UAVs can undertake at a target location: T =
{Search,Confirm,Attack,BDA}.

Each UAV, ui, is characterized by two expertise vectors:
(1) ξS

i = {ξS
ij , j = 1, . . . , NT }, where ξS

ij indicates the
UAV’s expertise for sensing and identifying a target of type
j; (2) ξA

i = {ξA
ij , j = 1, . . . , NT }, where ξA

ij indicates
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the UAV’s capability for attacking a target of type j. The
matrices ΞS = {ξS

i } and ΞA = {ξA
i } are termed the

sensing expertise matrix and the attack expertise matrix,
respectively.

UAVs move autonomously through the environment
in continuous time, scanning, communicating with other
UAVs, making decisions, and performing tasks. At time t,
every cell, (X,Y ), in the environment has an associated
task status, T (X,Y, t) = {Tj(X,Y, t), j = 0, 1, . . . , NT },
indicating what needs to be done for each possible target
type j. Here, j = 0 corresponds to the “no target”
case. Each Tj can take values 1 (search), 2 (confirm), 3
(attack), and 4 (BDA). The task status of all cells, T (t) =
{Tj(X,Y, t)}, represents the task state of the environment
from the UAV team’s viewpoint. The dynamics of the task
state is determined by the target occupancy probability
(TOP), Pj(X,Y, t), defined as the estimated probability that
the cell contains a live target of type j, j = 1, . . . NT , and
P0(X,Y, t) represents the estimated probability that there
is no live target there. It is assumed that there is at most
one live target located at a cell and no target crosses the
boundary between two or more cells. The TOP of all cells,
P (t) = {Pj(X,Y, t)}, is called the TOP map.

The confirm, attack and BDA tasks are called
assignable tasks, i.e., tasks for which the UAVs are assigned
explicitly. Such UAVs move purposively to the locations of
their assigned tasks and perform them. search is termed an
automatic task, i.e., any UAV passing through a cell with
search task status automatically performs search but UAVs
do not actively bid for these tasks. The search task does
have an effect on UAV movements as described below.

All cells with known assignable tasks at time t form
the set, L(t), of current target locations (CTLs). The
task, τi, at each CTL, (Xi, Yi), has an assignment status,
Ai, which can take on the values from the set A =
{available, associated, assigned, active, complete}. The
assignment status indicates whether the task is open for
bidding (available), has been provisionally assigned to a
UAV (associated), has been firmly assigned to a UAV
(assigned), is currently being performed by a UAV at the
location (active), or has been finished (complete).

B. UAV State

The state, Si(t), of a UAV, ui, at time t has two parts:

• A physical state, including information on its position,
Li(t), speed, vi(t) , heading angle, ψi(t), sensor
resources, ζi(t), and munition resources, µi(t).

• A functional state, indicating the identity and location
of the specific task (if any) to which the UAV is
committed or has bid for, the corresponding com-
mitment status (see below), and the UAV’s expected
cost for performing this task. The commitment status,
Ki(t), of UAV ui takes values from the set S =
{open, competing, committed}, indicating whether
the UAV has no commitment (open), has bid on a task
or been associated with one (competing), or is assigned

to a task and, possibly, is performing it (committed).
The functional state of an open UAV has NULL
values in its other fields. The search task requires no
commitment, and corresponds to an open functional
state.

C. UAV Kinematic Model

UAVs move on continuous trajectories with constant
speed and constraints on turning. For the ith UAV, ui, the
kinematic model is given by:

ẋi = vi cos ψi

ẏi = vi sin ψi

ψ̇i ≤ η1

v̇i = 0

where (xi, yi) is the position of the UAV, vi is its speed
and ψi its heading angle. The third equation specifies the
constraint on the turning rate, which cannot exceed η1. This
model has been used widely by other UAV researchers ([?],
[?], [?]).

D. Sensor Model
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Fig. 1. Sensor model.

Each UAV is assumed to have a fixed rectangular sensor
field (footprint) of size Lf km × Wf km, and df km ahead
of the UAV in the heading direction (Fig. 1). The sensor
footprint covers several cells at a time, but only cells whose
centers are covered by the footprint are taken as read. In
the case of Fig. 1, cells 2, 4, 5, 6, 8 are sensed. All sensors
are assumed to have the same sensor field, though this is
not essential to the model.

As it traverses the environment performing search, a UAV
senses at a fixed sensing rate, Rs. The sensing rate is chosen
relative to UAV speed, v, such that no cell in its path is
missed by a UAV travelling in a straight line. If a cell is
scanned several times in successive readings, only the first
of these is considered. Thus, once a cell is read, it must fall
out of the UAV’s sensor field before it can be read again.
This is to eliminate several highly correlated readings during
the same pass over a cell.
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Sensor readings taken for confirm and BDA tasks are
handled slightly differently. A UAV proceeding to a cell
(X∗, Y ∗) for a confirm or BDA task continues taking sensor
readings as for search. However, once the target cell enters
its sensor field, it ceases these routine readings and waits
until the field is centered on the target cell at the desired
angle of approach and then takes a reading. The reading still
includes all the cells in the field, but has the target cell in
the best position. The UAV then refrains from taking further
readings until the target cell is out of its sensor field. It then
resumes taking regular periodic readings.

E. TOP Dynamics

The TOP map is updated in an event driven fashion
by UAV observations and actions. When UAV ui takes
a sensor reading at time t, observations bi(X,Y, t) ∈
{0, 1, ..., NT } are produced for all cells (X,Y ) in its
sensor field at the time. These are stochastic quantities, with
bi(X,Y, t) = j indicating that UAV ui detected a target of
type j in cell (X,Y ) at time t (recall that j = 0 corresponds
to detecting no target). When a UAV ui located within cell
(X,Y ) fires a munition at time t, it is denoted as an action,
ai(X,Y, t). The observations and actions that occur in cell
(X,Y ) at time t are denoted, respectively, by b(X,Y, t) and
a(X,Y, t). Together, they determine the updates of the TOP
value at (X,Y ) through a possibly stochastic TOP update
function, F :

P (X,Y, t)

= F (P (X,Y, t−), T (X,Y, t−), a(X,Y, t), b(X,Y, t))(1)

where t− indicates the time immediately preceding the
action or observation. If multiple UAVs take observations
or actions in the same cell simultaneously, the updates are
applied sequentially.

The TOP update function F is defined as follows for the
cases of observation and action:

Observation-Triggered TOP Update Function Fo: If
UAV ui makes a sensor reading bi(X,Y, t) using sensor
resources ζi(t), the TOP for each target type is updated
based on the Bayesian formulation ([?]):

Pj(X,Y, t)

=
λi

j,bi(X,Y,t)(θS(t), ζi(t))Pj(X,Y, t−)

NT∑
l=0

λi
l,bi(X,Y,t)(θS(t), ζi(t))Pl(X,Y, t−)

(2)

where θS is the relative angle of observation (RAO),
given by the angle between the UAV’s heading and the
target’s estimated orientation, and λi

j,k is a function char-
acterizing the accuracy of the sensors used by ui, defined
as:

λi
j,k(θS , ζi) = Prob(bi = k|Ej ; θS , ζi).

Here, Ej is the event that a target of type j is actually
located in the cell being scanned. So λi

j,k(θS , ζi) quantifies
the probability of observing a type j target as a type k target

from an RAO of θS using sensor resources ζi. It is assumed
that, given a target type and a sensor, there are some optimal
angles of observation. A high-quality sensor would have
λi

k,k close to 1 for all k when the observation is made from
an optimal angle for that target type, but not necessarily
from another angle. This models the real situation when the
accuracy of a given sensor depends on the type of target and
angle of observation. Note that the TOP for all target types
in the cell are updated after each observation.

Action-Triggered TOP Update Function, Fa: If UAV
ui with munition resources µi(t) executes an attack in cell
(X,Y ), the TOP for the cell is updated as:

Pj(X,Y, t) = (1 − βi
j(θA(t), µi(t)))Pj(X,Y, t−),

for j = 1, 2, . . . , NT (3)

P0(X,Y, t) = 1 −

NT∑
l=1

Pl(X,Y, t) (4)

where 0 ≤ βi
j ≤ 1 is the probability that the target of type

j is destroyed by UAV ui (i.e., with the munitions available
to it), θA(t) is the relative angle of attack (RAA). As with
observation-triggered updates, the TOP for all target types
is updated after an action.

F. Task Dynamics

Confirm

Search BDA

Attack

P <= ps <= P <= pepr

P < pr

P > ps

P <= ps

< P <= pcps P > pc
P > pe

P > pe

P <= pe

Fig. 2. Automaton formulation of the task dynamics.

Changes in the TOP map determine the dynamics of the
cell’s task state. This is modelled as a deterministic automa-
ton, H , whose transitions depend on threshold crossings in
P (X,Y, t) (Fig. 2):

T (X,Y, t) = H(T (X,Y, t−), P (X,Y, t); ρ̄) (5)

where the parameter vector ρ̄ represents the set of threshold
values used for transitions. The dynamics is made stochastic
by the stochasticity of a(X,Y, t) and b(X,Y, t). Fig. 2
shows the transitions between states using an automaton
formulation. Details can be found in our previous work
([?]).

G. Uncertainty Dynamics

In order to direct the search for targets efficiently, it
is important to quantify how much is known about the
existence of targets in each cell. We do this by defining
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an uncertainty variable, χ(X,Y, t). Each observation by a
UAV in (X,Y ) updates the uncertainty as follows:

χ(X,Y, t) = ωχ[−P0(X,Y, t) log P0(X,Y, t)

− (1 − P0(X,Y, t)) log(1 − P0(X,Y, t))]

+
(1 − ωχ)

log NT

[

NT∑
l=1

(−Pl(X,Y, t) log Pl(X,Y, t))] (6)

where, ωχ is a parameter between 0 and 1. The first term of
the equation (6) is the entropy of target existence, while the
second term is the entropy of target type. This combined
entropy-like formulation provides a measure that represents
how certain the UAV team is that a target exists in (X,Y )
and about its type.

H. Target Orientation Dynamics

There is a nominal target orientation, Φ∗(X,Y ), asso-
ciated with the target (if any) in cell (X,Y ). However,
since the UAVs do not know where and of what type the
targets are, each cell, (X,Y ), is initialized with a default
orientation, Φj(X,Y, 0) for each target type, j. Φ(X,Y, t),
which is the collection of all orientation estimates for the en-
vironment, comprises the subjective orientation map for the
UAV team. When UAV ui makes an observation in (X,Y )
using sensor resources ζi(t) and the observation returns
bi(X,Y, t) = j, it estimates an orientation, φt ∈ [0, 2π)
for the type j target. The orientation estimate Φj(X,Y, t)
is then updated as:

Φj(X,Y, t) = (1 − γi,j)Φj(X,Y, t−) + γi,jφt (7)

where, γi,j ∈ [0, 1] is the capability of the sensor resource,
ζi(t) , for estimating the orientation of type j targets (e.g.,
dependent on nominal variance of the estimate). Note that
the target orientation is updated only for the target type
detected at time t.

III. ASSIGNMENT ALGORITHM

A. Basic Assignment Algorithm

The UAVs’ mission is to search all cells for all possible
target types, and to perform confirm, attack and BDA

tasks on each target known or discovered through search.
For each task, the team must try to use the UAV best suited
to it.

All UAVs have instantaneous and noise-free access to a
centralized information base (IB), which comprises the TOP
map, orientation map, uncertainty map, task status map,
assignment status map and UAV state vector. Each UAV
reads and updates the Information Base continuously.

Initially, if a cell, (X,Y ), is suspected to have a target of
type j∗ (at most one), Pj(X,Y, 0) is assigned as follows:

Pj(X,Y, 0) =

{
Pj∗(X,Y, 0) ≥ ps, if j = j∗

1−Pj∗ (X,Y,0)

NT
, otherwise

,

and the corresponding task status is set as:

Tj(X,Y, 0) =

{
confirm, if j = j∗

search, otherwise
.

For those cells which have no suspected target of any
type, Pj(X,Y, 0) = 1

1+NT
, and Tj(X,Y, 0) = search, for

j = 0, 1, 2, . . . , NT .
The UAVs’ initial positions are also given. All UAVs

initially have the open status. The current set of assignable
tasks is Ts = {τk}, and mk denotes the identity of task τk,
i.e., whether it is to confirm a target of type j (mk = (j, 2)),
to attack a target of type j (mk = (j, 3)), or to do BDA

on a target of type j (mk = (j, 4)). The initial assignment
is done as follows:

Each UAV ui calculates a cost value, hik, with respect
to all available or associated assignable tasks, τk:

hik = ωcdik + (1 − ωc) exp(−ξimk
) (8)

where, ωc is a parameter valued in [0,1], dik is the normal-
ized distance between UAV ui and the location of task τk,
and ξimk

is the expertise of UAV ui for task mk. UAV ui

is eligible for task mk if the expertise ξimk
≥ ξmin, where

ξmin is a non-negative parameter.
Each UAV reports its cost for all tasks on the CTL for

which it is eligible to the central controller, which then
uses a semi-greedy bipartite matching algorithm to match
UAVs with tasks. UAVs that are within distance Da of
their matched task are assigned the task and are given
the committed status, while UAVs that are further away
are associated with their matched tasks and are given the
competing status. We allow only one UAV to be assigned

to a task but up to na UAVs can be associated with a task.
Similarly, each UAV can only be committed to a single
task, but we allow it to be competing for up to ma tasks.
When a UAV has no task to choose, it has open status and
follows a path of maximum local uncertainty, i.e., one that
takes it through cells with the highest uncertainty in its local
neighborhood — within turning constraints. The purpose is
to maximize the benefit from search in a greedy way, and
the path followed is termed a search path. UAVs assigned
to a task determine the best RAO (or RAA) with respect
to their sensors (or munitions) and plan a path to approach
the target from that angle.

After the initial assignment, each UAV with an assigned

task moves towards that task, UAVs with no assigned task
move towards their lowest-cost associated task, while the
rest follow search paths. All UAVs take sensor readings as
they move and update the TOP. When a UAV reaches its
assigned task, it performs the task and updates the TOP
there. A new task (possibly the same as the previous one) is
then cued at the CTL according to the transition function,
and the UAV’s status reverts to open. Locations can become
CTLs if search raises their TOP above ps, corresponding
to the discovery of a new target. Each new assignable task
is cued with an available status.

At all times, all open and competing UAVs monitor
the CTL, and report their costs for all available and
associated tasks. When a competing UAV reaches a point
within distance Da of its associated task, that task is
assigned to it and its status is switched to committed.
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All other UAVs competing for this task are dis-associated

from it. The controller continually monitors all the costs
reported, and allows as many as na competing or open

UAVs to be associated with it while ensuring that no
UAV is associated with more than ma different tasks.
Sometimes, a task may be done opportunistically by a UAV
that happens to pass by, in which case all UAVs assigned

to or associated with it are released. The process continues
until the region is completely searched and all targets are
neutralized, or some time limit is reached.

B. Predictive Assignment Algorithm

The assignment algorithm described above uses only the
list of currently active tasks for assignment. However, given
the task transition thresholds and current assignments, it is
possible to predict the next set of tasks and to estimate
their probabilities. The process can be iterated to predict
tasks further in the future, albeit with decreasing certainty.
Including the predicted tasks in the assignment procedure
can potentially allow the UAVs to plan their commitments
early, and provide assignments for UAVs that cannot do
any currently available task. An assignment algorithm using
predicted tasks is described below:

A set of predicted task locations (PTLs) is formed con-
taining all the CTLs with associated or assigned tasks.
For a PTL (X,Y ), let ui∗ be the UAV that is assigned

to or associated with this task (if the task has more
than one associated UAV, ui∗ is the nearest one among
them). The UAV’s current sensor and munitions resources
are denoted as ζi∗(t) and µi∗(t), respectively, and θi∗ is
its planned approach angle for the current task. Knowing
these parameters, one can estimate the time, t∗, at which
the UAV will accomplish this task. This is termed the
estimated completion time (ECT) for the task. Also using
the update equations (2), (3) and (4), one can estimate
the TOP P (x, y, t∗) after the task is completed. The task
transition function (Fig. 2) can then be used to get a list of
potential successor tasks, τ j , and their probabilities, πj , for
j = 1, 2, . . . , NT .

All open UAVs then consider bidding for the predicted
tasks according to their distance from the task and capabil-
ities. The commitment procedure for predicted tasks is the
same as for current ones. Consider a UAV, ui, with location,
(xi, yi), sensing (or attacking) expertise profile, ξi(t). For
a PTL, (X,Y ), the UAV, ui, calculates the minimum time,
ti,(x,y), needed to reach it. The time cushion, δi,(x,y), is
defined by δi,(x,y) = (t∗ − t) − ti,(x,y). If δi,(x,y) ≥ 0, the
UAV, ui, would reach the PTL, (x, y), before the successor
task becomes available, and it will loiter there until the
successor task becomes available. If δi,(x,y) < 0, the task is
likely to be available by the time the UAV gets to the PTL.
We define a function Q(z) as:

Q(z) =

{
0, if z ≥ 0
|z|, otherwise

.

The UAV’s cost value with respect to the predicted tasks

at PTL (X,Y ), is calculated as:

hP
ik = ωcQ(δi,(x,y)) + (1 − ωc) exp−(π(x, y, t∗) · ξi(t))

where δi,(x,y) is the normalized time cushion value.
The assignment process is the same as that in the basic

assignment algorithm. Once a UAV is associated with the
predicted tasks at a PTL, the successors of those tasks can
be predicted.

IV. SIMULATION RESULTS AND DISCUSSION

To evaluate the performance of the basic and predictive
assignment algorithms, we conducted Monte Carlo simu-
lations using an event-driven simulator. In the simulations,
we consider two types of targets, type 1 and type 2, which
are characterized by differences in their optimal angles of
detection and attack. The UAVs are drawn from two classes:
target recognition (TR) UAVs and attack (A) UAVs. All
UAVs are assumed to have sensors needed for search, but
with different sensing capabilities.

The goal for the UAV team is to completely search the
region and neutralize all targets as rapidly as possible. In
this paper, however, we focus mainly on how the use of
prediction affects the time until all targets are actually
destroyed. Thus, we use this time, termed the target neu-
tralization time (TNT) as the measure of performance.
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Fig. 3. TNT vs Hidden Target Fraction. 5 TR and 5 A UAVs.

The first set of simulation results (Fig. 3) compare the
basic and predictive algorithms for a team of 5 TR and 5
A UAVs in an environment with 10 targets. The number of
targets whose positions are suspected a priori is varied from
10 (no hidden targets) to 0 (all targets hidden). The graph
clearly shows the crossover predicted by the hypothesized
search-response trade-off. When the UAVs know almost all
the target locations from the start, complete neutralization is
achieved faster by using prediction — presumably because
UAVs get in position for future tasks early rather than
“wasting” time on search. However, when the fraction of
targets with known locations decreases, search becomes
more crucial to the mission, and the predictive algorithm
falls behind the non-predictive one.
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Fig. 4. TNT vs Hidden Target Fraction. 8 TR and 8 A UAVs.

In the second simulation (Fig. 4), the UAV team is
comprised of 8 TR and 8 A UAVs in an environment with
10 targets. Thus, the number of UAVs is higher relative to
the number of targets than in the situation shown in Fig. 3.
This time, prediction provides a significant advantage until
the number of hidden targets reaches 7 out of 10. This is
consistent with our hypothesis that prediction is most useful
when the UAV team has sufficient resources to exploit it.
Since this time there are more UAVs in the team than before,
only part of the team is needed to handle current tasks,
leaving the rest to get in position for predicted tasks, thus
reducing the overall TNT. However, this does not neutralize
the essential search-response trade-off, and when almost
all targets are hidden, the loss of search resources due to
predictive assignment does become a liability.
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Fig. 5. TNT vs Hidden Target Fraction. 5 TR and 5 A UAVs.

Finally, Fig. 5 shows results for a hybrid algorithm where
UAVs start out in the non-predictive mode but switch to the
predictive algorithm once a sufficient number of targets have
been found. The switching point is obtained using the data
in Figure 3. The results show that this algorithm captures
the best of both the predictive and the non-predictive
approaches. However, it requires that the UAVs know the
total number of targets a priori — though the positions
of some are still unknown and must be found through

search. We are investigating algorithms where other, more
plausibly available information can be used to affect the
switch. In particular, we are investigating methods by which
the UAV team can estimate its degree of ignorance about
the environment relative to the available resources, and use
this as the basis of switching between predictive and non-
predictive assignment.

V. CONCLUSION

We have shown that prediction can help improve the
performance of cooperative UAV teams engaged in search-
and-destroy missions. Our results show that the utility of
prediction depends significantly on the UAV team’s size
relative to the number of targets, and the UAVs’ knowledge
of the target locations. Our simulations also show that
there is a well-defined crossover point as this knowledge
changes. The dependence of this crossover on various
system parameters must be studied in greater detail in order
to develop practical adaptive algorithms.
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