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Abstract—This paper considers a heterogeneous team of co-
operating unmanned aerial vehicles (UAVs) drawn from several
distinct classes and engaged in a search and action mission over a
spatially extended battlefield with targets of several types. During
the mission, the UAVs seek to confirm and verifiably destroy
suspected targets and discover, confirm, and verifiably destroy un-
known targets. The locations of some (or all) targets are unknown
a priori, requiring them to be located using cooperative search.
In addition, the tasks to be performed at each target location by
the team of cooperative UAVs need to be coordinated. The tasks
must, therefore, be allocated to UAVs in real time as they arise,
while ensuring that appropriate vehicles are assigned to each task.
Each class of UAVs has its own sensing and attack capabilities,
so the need for appropriate assignment is paramount. In this
paper, an extensive dynamic model that captures the stochastic
nature of the cooperative search and task assignment problems
is developed, and algorithms for achieving a high level of per-
formance are designed. The paper focuses on investigating the
value of predictive task assignment as a function of the number of
unknown targets and number of UAVs. In particular, it is shown
that there is a tradeoff between search and task response in the
context of prediction. Based on the results, a hybrid algorithm
for switching the use of prediction is proposed, which balances
the search and task response. The performance of the proposed
algorithms is evaluated through Monte Carlo simulations.

Index Terms—Cooperative search, path planning, task alloca-
tion, unmanned aerial vehicle.

I. INTRODUCTION

VER the last decade, unmanned vehicles such as airborne

drones [1] and minesweeper robots have become an
increasingly feasible component of the battlefield environment
and may soon be common in civilian applications such as disas-
ter relief, environmental monitoring, and planetary exploration.
The European project Civil UAV APplications and Economic
effectivity of potential CONfiguration solutions (CAPECON)
has been launched in 2001 to identify civil UAV applications
and define civil UAV configurations [2]-[4].
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However, the unmanned vehicles in current use, such as the
Predator, are not autonomous, requiring remote guidance by a
team of human operators. Not only is this expensive and risky,
it also places a fundamental limit on the scalability and range of
such systems. Recent advances in intelligent systems and coop-
erative control have prompted many researchers to study large
groups of UAVs acting cooperatively to accomplish missions in
uncertain and hazardous environments [5]-[17]. Most research
in this field considers UAV teams engaged in search-and-
response missions, i.e., the UAVs must search for targets and
respond to those that are found. Efficient search and appropriate
task assignment are two crucial components of this problem.

A. Related Work on the Cooperative Search Problem

A significant amount of research on search path planning
can be found in the robotics literature in the field of robot
motion planning [18] and, in particular, within the subfields
of terrain acquisition [19]-[21] and coverage path planning
[22]-[24]. Typically, robot motion planning considers a poorly
known region populated with unknown but stationary obstacles
[25]-[27]. The robot is equipped with a sensing capability
that can identify the regions of opportunity and regions with
obstructions. The objective is to design algorithms that enable
the robot to generate a shortest path through this terrain such
that the sensors can scan every point in it. Applications include
floor painting (i.e., robotic systems that paint all reachable
areas on the floor in a building using the minimum amount
of paint), mine clearing [28], lawn mowing [29], seed spread-
ing, room vacuuming [30], field plowing, terrain acquisition
[25]-[27], and, of interest to us, complete search for a target
[31]-[33]. An excellent survey of the major results in search
theory is available in [34]. The search algorithms utilized in
robot motion planning provide a good source of intuition for
search operations by UAVs. However, most of these algorithms
have not been integrated with task allocation in the case of
stochastic task transitions.

In recent years, there has been a great deal of work on search
schemes for UAVs. A map-based strategy for cooperative
search by a team of mobile UAVs is presented in [35]. The basic
idea is that each UAV maintains a cognitive map of the search
region, assigning an uncertainty measure to each cell within this
region. Based on the information in its cognitive map, each
UAV calculates and updates its search path to minimize the
total uncertainty in the region. The opportunistic neural learning
method [36]-[38] and the dynamic programming technique in
[39] and [40] are examples of this map-based approach. A
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search-theoretic approach based on “rate of return” maps is
proposed in [41]. The idea of surrogate optimization, which is
a non-gradient-based nonlinear programming method, has also
been used to solve this problem [42]. In this approach, each
UAV adaptively identifies a terrain map and uses it to obtain
decentralized controllers that, in turn, produce its trajectories in
a coordinated manner. Genetic algorithms have been applied to
guide the search behavior of UAVs, e.g., the SAMUEL evolu-
tionary learning system [43] developed by the Naval Research
Laboratory has been used to create rules to guide UAV [44].
In [45] and [46], the cooperative search problem is posed as a
pursuit—evasion game.

B. Related Work on the Task Assignment Problem

The task assignment problem deals with the design of algo-
rithms for coordinated assignment of tasks to different UAVs.
The task assignment problem for UAVs is similar to the general
vehicle routing problem (VRP), which is a well-known non-
polynomial-hard (NP-hard) combinatorial optimization prob-
lem in computer science [47]. Many heuristic algorithms
have been proposed for this problem. Genetic algorithms with
different crossover policies have been proposed [48]-[50].
A detailed survey of heuristic methods for VRP with time win-
dows has been given in [51]. However, the assignment problem
for a UAV team is of greater complexity due to its stochastic
dynamics, as well as dimensions and difficulties not present in
typical ground-based applications confined to roadmaps.

The UAV task assignment problem without stochastic task
transitions can be modeled as a large optimization problem,
such as a single mixed-integer linear programming problem
[52]. This method is computationally intensive, but it is guaran-
teed to get the globally optimal solution of the assignment prob-
lem and can work as a benchmark against which approximate
approaches or heuristic methods can be compared. Tabu search
has been employed successfully to find the near optimal cooper-
ative assignment for UAV teams minimizing the total traveling
time [53] and maximizing the expected target coverage [54].
These methods include fixed time windows for visiting each
task location but do not consider multiple successor tasks at
each target location or hidden targets.

A stochastic version of the weapon assignment problem has
been addressed using stochastic programming in [55]. In the
formulation, a set of weapons can be fired at a set of available
targets, but some targets may not be known initially. The
objective is to maximize the expected destroyed target value
over the whole engagement. A stochastic integer program is
solved to balance the value of firing weapons at the detected
targets against the value of holding weapons to fire at unde-
tected targets. This formulation assumes that there are no time
constraints and that each weapon can only be fired against
one target.

The task assignment problem has also been viewed as a
cooperative scheduling (resource allocation) problem in [56],
where the cooperation performance is investigated in the pres-
ence of imperfect communications (e.g., messages with random
but limited delays). A stability analysis of this network-based
cooperative resource allocation strategy is given in [57].

Approaches to the allocation problem, which emphasize
timing constraints, have also been proposed [58]-[61]. In this
approach, detailed paths are selected for each UAV so as to
guarantee simultaneous arrival at an antiaircraft defense system
while minimizing exposure to radar along the path. This is
performed through the use of coordination variables: Each UAV
calculates its own minimum arrival time as a function of radar
exposure and broadcasts it to the team. Each UAV in the team
then solves the same optimization problem to determine the ar-
rival time, which minimizes radar exposure and allows all UAVs
to arrive simultaneously. Schumacher et al. [62] address the
task assignment problem with timing constraints in a UAV team
with geographically dispersed targets. The problem is solved
using mixed-integer linear programming, which is guaranteed
to find a solution if the UAVs have sufficient endurance.

Research has also focused on suitable control architectures
for the coordination of UAV teams, especially in the context
of the Low Cost Autonomous Attack System (LOCAAS) [63].
LOCAAS is a miniature autonomous powered munition capa-
ble of broad area search, identification, and destruction of a
range of mobile ground targets. A hierarchical control strategy
has been proposed in [64], which decomposes this problem into
three levels, namely 1) team formation; 2) intrateam task alloca-
tion; and 3) individual UAV control. Decision making methods
at each of these levels have been discussed in [65]. A limited-
horizon minimum-weight spanning tree is used to partition the
UAVs. An iterative network flow method is applied to make
the intrateam assignment. At each iteration, this method carries
out a temporary assignment of all the remaining tasks among
the UAVs first and then fixes the assignment with the earliest
estimated time. This process is repeated until all the tasks are
assigned. The allocation problem has also been solved using
dynamic network flow optimization models [16] and market-
based allocation methods [66].

C. Overview of the Present Paper

As discussed above, the problem of multiagent coordination
in general and of UAV teams in particular has received sig-
nificant attention. However, the research we report makes four
important contributions in this area.

1) The mission model we describe and use goes well beyond
the model used in the UAV area in several ways.

a) The search and response problems are considered
together, allowing the tradeoff between them to be
explored.

b) Both known and hidden task locations are included.

c) Task transitions are modeled stochastically, and occur
in response to UAV actions rather than deterministi-
cally or autonomously.

d) UAVs are not assumed to be identical, and are
modeled as having different—possibly even time-
varying—capabilities for each task.

e) Erroneous sensor readings on the part of UAVs are
modeled explicitly in a parameterized way.

f) UAV and target orientations are modeled explicitly
and are related to outcomes.
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Other researchers have included some of these fea-
tures in their models, but by including all of them, our
model captures the complexities of the general problem
more completely. In particular, by stochastically link-
ing the state of the unfolding mission to the actions
of the UAVs, we are able to evaluate the performance
of the UAV team more realistically than models where
tasks are known a priori and scheduling is the only
issue [56].

2) As in most work on multiagent assignment [56], [67],
[68], we use a greedy approach to task selection by indi-
vidual UAVs but mitigate the effects of this simplification
by using a gradual commitment scheme and allowing
cooperative reassignment.

3) Because we consider both search and task response
within a single framework, we are able to evaluate the
tradeoff between them in assessing the value of pre-
diction. This is an important question, and it has been
suggested that, given the highly uncertain nature of most
UAV missions, prediction may not be of much value [56].
We address this issue concretely by considering the actual
costs and benefits of prediction in terms of the tasks that
UAVs must perform.

4) Based on our investigations, we present a hybrid algo-
rithm that allows UAVs to balance the needs of search
and task response in an adaptive way to obtain the full
benefit of prediction.

The remainder of this paper is organized as follows. In the
next section, the scenario of the research problem is introduced.
The UAV team model and target information dynamics are
defined in Sections III and IV, respectively. In Section V,
the basic and predictive assignment algorithms are proposed.
Monte Carlo simulation results are presented and discussed
in Section VI. Finally, Section VII concludes the paper with
a summary and a brief discussion of extensions and future
direction for our work.

II. SCENARIO AND MODEL DESCRIPTION

The environment is taken to be a continuous region mea-
suring L, km by L, km. For the purposes of sensing and
representation, it is divided into N, x Ny cells. Thus, each cell
is Ly /Ny km by L, /N, km. Uppercase X and Y denote the
integer coordinates of the discretized cellular representation and
lowercase = and y represent the Cartesian coordinates of the
continuous environment.

The environment has M stationary targets v;, 1 = 1,..., M,
with locations (z7,y!) and fixed orientations ®; relative to a
globally defined frame of reference. These targets are drawn
from N different target classes. Of the M targets, M, are sus-
pected initially, while M; = M — M} need to be discovered
gradually during search. There are n UAVs u;, i =1,...,n,
operating in the environment, with the goal of discovering and
destroying all targets. It is assumed that the UAV's do not know
the total number of targets. The UAV team keeps track of
current information about targets using an occupancy grid—an
approach widely used in robotics [69].

The set of tasks that UAVs can perform at each cell com-
prise the canonical task set 7. In this paper, we consider the
task set

7T = {search, confirm, attack, BDA}.

UAVs move autonomously through the environment in con-
tinuous time, scanning, communicating with other UAVs,
making decisions, and performing tasks. At time ¢, every
cell (X,Y) in the environment has an associated task status
T(X,Y,t) =[T;(X,Y,t)], j=0,1,..., Ny, indicating what
needs to be done for each possible target type j in that cell.
Here, j = 0 corresponds to the “no target” case. Each T can
take values 1 (search), 2 (confirm), 3 (attack), or 4 (BDA).
Thus, T; = 1 means “search for target of type j,” while T; = 3
means “attack target of type j.” The task status of all cells
T(t) = {T;(X,Y,t)} represents the task state of the environ-
ment from the UAV team’s viewpoint. The dynamics of the
task state is determined by the target occupancy probability
(TOP) P(X,Y,t) = {P;(X,Y,t)} of each cell (X,Y") defined
as the estimated probability that the cell contains a live target of
type j, j =1,2,...,Nr. Py(X,Y,t) represents the estimated
probability that there is no live target in the cell (X,Y"). In the
current model, it is assumed that there is at most one live target
located in a cell and that no target crosses the boundary between
two or more cells. However, since the UAV's do not know about
the type (or even existence) of targets a priori and obtain their
information using imperfect sensors that can confuse between
target types, we typically have 0 < P;(X,Y,¢) <1 for all
(X,Y) and j. The TOP of all cells P(t) = {P;(X,Y,t)} is
called the TOP map of the environment and represents the UAV
team’s subjective estimate of target occupancy throughout the
environment. The TOP map is updated as cells are scanned
during the mission.

There is a nominal target orientation ®*(X,Y") associated
with the target (if any) in cell (X, Y"). However, since the UAVs
do not know where and of what type the targets are, each cell
(X,Y) is initialized with a default orientation ®(X,Y,t) =
{®;(X,Y,0)}. These orientation estimates are updated when-
ever a target is detected by the sensors (see below). The set
of orientation estimates over the whole environment ®(¢) =
{®(X,Y,t)} constitutes the subjective orientation map for the
UAV team.

The confirm, attack, and BDA tasks are called assignable
tasks, i.e., tasks for which the UAVs are assigned explicitly.
Such UAVs move purposively to the locations of their assigned
tasks and perform them. The search task is termed an automatic
task, i.e., any UAV passing through a cell with search task status
automatically performs search when it scans the cell with its
sensors, but the task is not explicitly assigned to a specific UAV.
The search task does have an effect on UAV movements, as
described below.

All cells with known assignable tasks at time ¢ form the set
L(t) of current target locations (CTLs). The task 7; at each CTL
(X;,Y;) has an assignment status A;, which can take on the
values from the set

A = {available, associated, assigned, active, complete }.
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The assignment status indicates whether the task is open
for assignment (available), has elicited interest from a UAV
(associated), has been firmly assigned to a UAV (assigned), is
currently being performed by a UAV at the location (active), or
has been finished (complete). A completed task is accompanied
by an immediate transition in the task status of the CTL,
possibly to the same task if it needs to be repeated.

III. UAV TEAM MODEL
A. UAV State

The state S;(t) of a UAV w; at time ¢ has the following

two parts:

1) physical state, including information on its position
(i (t),y:(t)), speed v;(t), heading angle v;(t), sensor
resources (*(t), and munition resources ¢();

2) functional state, indicating the identity and location of
the specific task (if any) to which the UAV is assigned
or associated with, the corresponding commitment status
(see below), and the UAV’s expected cost for performing
this task. The commitment status K;(t) of UAV u, takes
on values from the set

S = {open, competing, committed }

indicating whether the UAV has no commitment (open),
has volunteered for a task or been associated with one
(competing), or is assigned to a task and, possibly, is
performing it (committed). The functional state of an
open UAV has NULL values in its other fields. The search
task requires no commitment and corresponds to an open
functional state.

B. UAV Kinematic Model

UAVs move on continuous trajectories with constant speed
and constraints on turning. For the ith UAV w;, the kinematic
model is given by

T; =v; COs Y,
Yi = v; sin
Ui <m
v; =0

where (z;,y;) is the position of the UAV, v; is its speed, and 1);
is its heading angle. The third equation specifies the constraint
on the turning rate, which cannot exceed 7;. This model has
been used by other UAV researchers as well [58], [59], [70],
and [71].

C. UAV Sensor Model

Each UAV is assumed to have a fixed rectangular sensor field
(footprint) of size Ly km by Wy km and d; km ahead of the
UAV in the heading direction (as shown in Fig. 1). Here, it is
assumed that all the UAVs know the position of the center of
each cell using a localization system [e.g., global positioning
system (GPS)]. The sensor footprint covers several cells at a
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Fig. 1. UAV’s sensor model.

time, but only cells whose centers are covered by the footprint
are taken as read. For example, in the case of Fig. 1, cells 2, 4,
5, 6, and 8 are sensed. All sensors are assumed to have the same
sensor field, though this is not essential to the model.

As it traverses the environment performing search, a UAV
senses at a fixed sensing rate Rs so a new reading of the cells
currently covered by the sensor field is taken every 1/ R, s. The
sensing rate is chosen relative to UAV speed, the size of sensor
footprint, and the size of the cell, such that no cell in its path is
missed by a UAV traveling in a straight line. If a cell is scanned
several times in successive readings, only the first of these is
considered. Thus, once a cell is read, it must fall out of the
UAV’s sensor field before it can be read again. This eliminates
several highly correlated readings during the same pass over
a cell.

Sensor readings taken for confirm and BDA tasks are handled
slightly differently. A UAV proceeding to a cell (X*,Y™) for a
confirm or BDA task continues taking sensor readings as for
search. However, once the target cell enters its sensor field, it
ceases these routine readings and waits until the field is centered
on the target cell at the desired angle of approach and then takes
areading. The reading still includes all the cells in the field, but
has the target cell in the best position. The UAV then refrains
from taking further readings until the target cell is out of its
sensor field. It then resumes taking regular periodic readings.

D. UAV Capabilities

Each UAV w; is characterized by two capability vectors.

1) Sensing capability vector: &7 (t) = {¢5 (1)} j=1,2,
..., N7. Each 5;9]-(75) is determined by the UAV’s sensor
resources (*(t) and indicates the UAV’s expertise for
sensing and identifying a target of type j.

2) Attack capability vector: ££(t) = {fé(t)},j =1,2,...,
Nr. Each fg‘;(t) is determined by the UAV’s munition
resources p*(t) and indicates the UAV’s capability to
attack a target of type j.

The matrices 2% = [¢7] and 24 = [¢/]] are termed the
sensing capability matrix and the attack capability matrix,
respectively. The sensing and attack capability vectors are

taken to be time varying in general and can be used to model
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in-field changes in UAV capabilities due to sensor damage and
munitions use.

1) Sensing Capability: For UAV wu;, )\; & 1s a function char-
acterizing the accuracy of the sensor resources ¢*(t), used by
u;, which is defined as

k (05(), C"(1)) = Prob (b = k|Ej; 05(1),C' (1))

where E; is the event that a target of type j is actually located
in the cell being scanned, and 0g(¢) is the relative angle of
observation (RAO), which is defined as the angle between the
UAV’s heading and the estimated orientation of the type j
target in the cell. Therefore, X’ ; (6s5(t),¢"(t)) quantifies the
probability of observing a type j target as a type k target
from an RAO of 05(t) using sensor resources ¢%(t). Guided
by practical experience in target detection, it is assumed that,
given a target type and a sensor, there are some optimal angles
of observation. A high-quality sensor would have A} , close to
1 for all k when the observation is made from an optimal angle
for that target type but not necessarily from another angle. This
models the real situation when the accuracy of a given sensor
depends on the type of target and angle of observation.

In the current model, the sensing capability ffj(t) is de-
fined as

€5(t) = {1 —exp (=TU(¢(1), ifT% (C°(1) > 1

0, otherwise
where
Ay (0,6°(1))
2. A (6,¢ (1)

Ié(Ci(t) =

N V1 GISIO)
oefo,2m) 1 — A% . (0,C7(¢))
A% 5(6,¢'(t)) quantifies the probability of correct detection,
thus, T%(¢*(t)) indicates the UAV’s best sensing expertise
achievable using the sensor resources ¢*(t). If T'%(¢*(t)) < 1,
which means that the sensor is likely to make a false reading,
the UAV is considered ineligible for sensing type j targets and

i(t) = 0. This is a purely phenomenological model intended
to map the [0, 00) range of the correct detection odds to the
[0, 1] range for capability. Other specific models can be substi-
tuted without changing the overall framework.

2) Attack Capability: For UAV u;, ﬂ; is a function charac-

terizing the attacking capability of the munition resources (),
used by u;, which is defined as

B35 (04(t), 1' (1))
= Prob (attack destroys target| E;; 0.4 (t), 1 (t))

where E; is the event that a target of type j is actually located
in the cell being attacked, and 04 (¢) is the relative angle of
attack (RAA), which is defined as the angle between the UAV’s
heading and the estimated orientation of the type j target in the
cell. In an actual application scenario, the value of 5; would

be obtained from available data on the effectiveness of each
munition on various types of targets.
The attack capability f{; (t) is defined as

A = {gj- (L)), if B2 (n'(t) > &min

t , otherwise

where

B; (u'(t)) represents the UAV’s best attacking expertise achiev-
able using the munition resources y‘(t). If B; (ui(t)) is less than
some positive number &,i,, the UAV is not eligible to attack a
type j target and £} (t) = 0.

IV. TARGET INFORMATION DYNAMICS
A. Target Orientation Dynamics

Since the effectiveness of both sensor observations and attack
depend on the orientation of a UAV relative to the target, it is
important for UAVs to estimate the actual orientation of each
observed target. Initially, UAVs have a default value of the
actual orientation, and it is updated by observations. When UAV
u; takes a sensor reading at time ¢, observations b;(X,Y,t) €
{0,1,2,..., Ny} are produced for all cells (X, Y") in its sensor
field at the time. b; (X, Y, t) is a random variable depending on
the sensing capability and observation angle, with b; (X, Y, t) =
J, indicating that UAV wu, detected a target of type j in cell
(X,Y) at time ¢ (recall that j = 0 corresponds to no target
detection). If this UAV makes the observation using sensor
resources (*(t) and the observation returns b;(X,Y,t) = j, it
estimates an orientation, ¢; € [0, 27) for the type j target. The
orientation estimate ®;(X, Y, t) is then updated as

O;(X,Y 1) = [1 =} (05(t),¢"(1)] @;(X, Y, )
i (0s(6),CF () b (D)

where ¢~ indicates the time immediately prior to the obser-
vation fg(t) is the RAO given by the angle between the
UAV’s heading and the target’s estimated orientation, and
'y;- (0s(t), ¢4 (t)) € [0, 1] is the capability of the sensor resource
C(t) for estimating the orientation of type j targets from an
RAO of fg(t). For an actual UAV, the orientation sensing
capability 7]"— would be obtained from known characteristic
data for the sensors carried by the UAV. Note that the target
orientation is updated only for the target type detected at time .
The UAVs’ estimate orientation eventually approaches the true
value after several observations.

®;(X,Y,t) is an estimate of the actual target orientation
from the viewpoint of UAVs. The confidence can be measured
by introducing a variable that represents how certain the team is
about the estimate orientation (similar to the uncertainty about
target existence and target type discussed later in Section I'V-C).
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B. TOP Dynamics

The TOP map is updated in an event-driven fashion by
UAVs’ observations and actions. When UAV u; takes a sensor
reading at time ¢, observations b;(X, Y, ) are produced for all
cells (X,Y) in its sensor field at the time. If UAV u; located
within cell (X,Y") fires a munition at time ¢, it is denoted as an
action a;(X,Y,t). The observations and actions that occur in
cell (X,Y) at time ¢ are denoted, respectively, by b(X,Y,t)
and a(X,Y,t). Together, they determine the updates of the
TOP value at (X, Y') through a possibly stochastic TOP update
function F

P(X,Y,t)
=F (P(X,Y,t7),T(X,Y,t),a(X,Y,t),b(X,Y,t)) (2

where ¢~ indicates the time immediately preceding the ob-
servation or action. If multiple UAVs take observations or
actions in the same cell simultaneously, the updates are applied
sequentially.

The TOP update function F' is defined for the cases of
observation and action.

Observation-Triggered TOP Update Function F,: If UAV
u; makes a sensor reading b;(X,Y,t) € {0,1,2,..., Nr} in
cell (X,Y) at time ¢ using sensor resources (*(t), the TOP for
each target type, 7 =0,1,2,..., Np, is updated based on the
Bayesian formulation given as

A;,bi(X,Y,t) (95(7,‘)7C1(t)) Pj(X’Kti) 3)
Nt

l;) A;,bi(X7Y7t) (95 (t)7 Cz (t)) Pl (Xa K ti)

Pi(X,Y,t) =

where P;(X,Y,t") is the TOP prior to the observation. Note
that the TOP for all target types in the cell are updated af-
ter each observation, and E;V:TO P;(X,Y,t) =1 at all times.
The Bayesian update rule is widely used in sensor literatures
[72]-[75]. The TOP update equation is discussed in greater
detail in Appendix A [69], [76].

Action-Triggered TOP Update Function F,: If UAV u; with
munition resources £%(t) executes an attack in cell (X,Y), the
TOP for the cell is updated as

Pi(X> Y> t) = [1 - ﬁ; (eA(t)uui(t)ﬂ Pi(X7 Y» t_)
forj=1,2,...,Np (4)
Nt
Ry(X,Y,t) =1-> P(X,Y,t) )
=1

where P;(X,Y,¢") is the TOP for target type j prior to attack,
and by the definition of 3%(6.4(t), u*(t)), 1 — B5(0a(t), p*(t))
denotes the probability that attack with munition y*(t) from
RAA 04(t) does not destroy a type j target. As with the
observation-triggered updates, the TOP for all target types is
updated after an action.

PP Prre P>pe
Conﬁrm Attack
P>pg P >Pe
P <=pg P <=p¢
@ P<DPr BDA
P<=Ps Pr<=P <= Pe

Fig. 2. Automaton formulation of the task dynamics, where ps is the suspi-
cion threshold, p. is the certainty threshold, pe is the exit threshold, and p, is
the resolution threshold.

C. Uncertainty Dynamics

In order to direct the search for targets efficiently, it is
important to quantify how much is known about the existence
of alive target in each cell as well as the target type. This is done
by defining an uncertainty variable for each cell and updating
it as the cell is observed or a target in it is attacked. We find it
useful to distinguish between two types of uncertainty, namely
1) uncertainty about the existence of a target within a cell and
2) uncertainty about the type of the target, if any. We use an
entropy-based formulation for each, defining the two quantities
as follows:

1) Target occupancy uncertainty x,(X,Y,t), given by

XO(X7 Ya t) = _PO(Xa}/at) logPO(Xath)

_(1 - PO(va’t))log (1 - PO(XaKt))

Since statistical entropy is a probabilistic measure of
uncertainty or ignorance, X, (X,Y,t) indicates how un-
certain the UAV team is about the existence of a live target
in cell (X,Y) at time ¢. It is maximal when the presence
or absence of a target are equiprobable and zero when one
or the other is certain.

2) Target type uncertainty x;(X,Y,t), given by

Nt

! Z(H(X, Y,t)log P(X,Y,1))

Xt (X7 Y7 t) IOg NT

where x;(X, Y, t) quantifies how uncertain the UAV team
is about the type of a live target in cell (X, Y") at time ¢.

Based on the above definitions, an uncertainty variable
Xx(X,Y,t) for each cell (X,Y) is defined as

X(X, Y1) = woXo(X, Y ) + (1 — wy)xe (X, Y, 8) 6)

where w, is the uncertainty coefficient that takes a value
between 0 and 1. This combined entropy-like formulation pro-
vides a measure that represents how uncertain the UAV team
is that a target exists in (X, Y") and about its type. It should be
noted that uncertainty here is a subjective quantity based on the
UAVs’ estimate of what they know, not an objective measure of
what is known. This kind of measure is also used in our previous
work to guide UAVs’ search path [38].
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D. Task Dynamics

Changes in the TOP map determine the dynamics of the cell’s
task state. This is modeled as a deterministic automaton H,
whose transitions depend on threshold crossings in P(X,Y,t)
(see Fig. 2)

T(X,Y,t) = H(T(X,Y,t ), P(X,Y,t);p) (]

where the parameter vector p represents the set of threshold
values used for transitions. The dynamics is made stochas-
tic by the random nature of b(X,Y,t) and the TOP update
function F'.

Fig. 2 shows the transitions between states using an au-
tomaton formulation. The task update function H is defined
separately for each task status.

Task 1—Search: A cell (X,Y) with the search status for
targets of type j transitions to confirm for that target type if
P;(X,Y,t) exceeds the suspicion threshold p,; otherwise, it
remains in the search status.

Task 2—Confirm: The cuing of a confirm task for a target of
type j at cell (X,Y") indicates that a UAV with the appropriate
sensors should move towards the cell and make an observation
in it. Unlike search, the confirm task is assignable to UAVs
with the appropriate expertise. The sensors used may also be
different in the two cases. The execution of the task causes
an observation-triggered TOP update. The cell transitions to
search for the type j target if P;(X,Y,¢t) falls below ps (as a
result of failure to confirm suspicions) and to attack for the type
Jj target if P;(X,Y,t) exceeds the certainty threshold p. (i.e.,
the existence of the type j target is confirmed from the UAVs’
viewpoint).

Task 3—Attack: The attack status for a target of type j
indicates that an appropriately armed UAV should proceed
to the location and attack the target there with the correct
munition. The execution of the task causes an action-triggered
TOP update. If the updated P;(X,Y,t) falls below the exit
threshold p,. (as a result of successful attack), the cell transitions
to status BDA for the type j target; otherwise, it remains in the
attack status.

Task 4—BDA: The purpose of a BDA task for target type
Jj is to verify that, after an attack in cell (X,Y’), the TOP
for target type j has indeed fallen below p.. Like confirm,
the task is assigned to a UAV with the appropriate sensors,
which proceeds to (X,Y’) and makes an observation, leading
to an observation-triggered update. If the result of the update
produces P;(X,Y,t) > p. (i.e., the target was not eliminated
from the UAVs’ viewpoint), the task status for target type j
transitions back to attack; if p, < P;(X,Y,t) < p. (ie., the
UAVs are not sure whether the target was eliminated or not),
it remains BDA; and if P;(X,Y,t) < p, (ie., the target is
neutralized), it transitions to search.

The task dynamic model is built from the UAVs’ viewpoint,
so it is reasonable to assume that UAVs know the transition
thresholds. These values can be chosen based on the particular
application and requirements. For example, if the mission area
is dangerous and missing, a target is not tolerated, the suspicion

threshold pg, certainty threshold p., and resolution threshold p,.
could be set low, while the exit threshold could be set high.

V. ASSIGNMENT ALGORITHMS

The primary focus of our work is to develop an efficient
algorithm that assigns UAVs to tasks at target locations such
that the mission is completed as rapidly and cheaply as possible.
The problem is complicated by three factors.

1) Not all target locations and types are known a priori.

2) The task transitions even at known target locations are
stochastic.

3) The effectiveness of each UAV depends on task and target
type, so all UAVs cannot be considered equivalent.

In order to obtain flexibility and scalability, the basic algo-
rithm that we propose comprises an initial assignment of at
most one target to each UAV followed by an in-field event-
driven process where UAVs select tasks as they become avail-
able using a policy of gradual commitment. In this approach,
UAVs do not attempt to predict future tasks. This issue is
addressed in our predictive algorithm, where UAVs use their
current information and problem model to estimate probabili-
ties for future tasks and incorporate these predictions into their
decision making. In principle, this allows for better coordina-
tion and faster response. However, there are certain hazards
associated with prediction, and consideration of the costs and
benefits of prediction is a major focus of this paper.

A. Basic Assignment Algorithm

The UAVs’ mission is to search the whole environment for all
possible target types and to perform confirm, attack, and BDA
tasks on each target known or discovered through search. For
each assignable task, the team must try to utilize UAVs best
suited to it.

It is assumed that all UAVs have instantaneous and noise-free
access to a centralized information base (IB), which comprises
the following items:

1) the task status map T(X,Y,t) V(X,Y);
v

2) the assignment status map A(X,Y,¢) V(X,Y) €
3) the orientation map ®(X,Y,t) V(X,Y);

4) the TOP map P(X,Y,t) V(X,Y);

5) the uncertainty map x(X,Y, t) V(X,Y);

6) the UAV state vector S(t) = {S;(¢)} Vu;.

The IB is updated in an event-driven manner whenever new
information comes up.

1) Status Initialization: Initially, if a cell (X,Y) is sus-
pected to have a target of type j*, the probability P;(X,Y,0)

forj =0,1,2,..., Nr is assigned as
P (X,Y,0) > ps, ifj=j*
Pi(X,Y,0) = { 1P (x,7.0) :
— Ny otherwise

i.e., the suspected target type is given a probability higher than
the threshold necessary for the confirm, and the remaining
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probability is divided equally among the other possibilities.
This leads to the initial task status being set as

confirm,
search,

_ B ifj =j*
T;(X,Y,0) = { otherwise.

For those cells that have no suspected target of any type,
the UAV team has no reason to assume that a target of some
type is more probable than the others. Thus, it is natural to set
P;(X,Y,0),for j =0,1,2,..., Ny equiprobable as

1

P;(X,Y,0) = TNy

forj=0,1,2,...,Np

and

T;(X,Y,0) = search, forj=0,1,2,..., Np.

The orientation estimate ®;(X,Y,0) begins with 0 for all
(X,Y) and j=0,1,2,..., Np. The UAVS’ initial positions
are randomly distributed in the environment. All UAVs initially
have the open status.

2) Initial Assignment: The current set of assignable tasks is
Ts = {7}, and my, denotes the identity of task 7, i.e., whether
it is to confirm a target of type j(my = (j,2)), to attack a
target of type j(my = (4,3)), or to do BDA on a target of type
imi = (.4)).

The initial assignment is done as follows.

Each UAV u; calculates a cost value h;; with respect to all
available or associated assignable tasks 73 as

hik = wedi, + (1 — we) exp(—&im,,) 8

where w.. is the cost coefficient that takes a value between 0 and
1, d;j, is the distance between UAV u; and the location of task
T3, the normalized distance d;;, = max; k dix, and & p,, is the
capability of UAV wu; for task my. UAV w; is eligible for task
my, if the capability &; 1, > &min, Where &y 1S @ nonnegative
parameter.

Each UAV reports its cost for all tasks in the CTL for
which it is eligible to the central controller, which then uses
a bipartite matching algorithm [77] (or linear programming
[78]) to match UAVs with tasks to minimize the total cost in
the team. The central controller is off-line and only does the
initial assignment. UAVs that are within distance D, (termed
the commitment threshold) of their matched tasks are assigned
to the task and are given the committed status, while UAVs
that are farther away are associated with their matched tasks
and are given the competing status. It is assumed that only one
UAV is allowed to be assigned to a task, but up to n, UAVs
can be associated with one task. Similarly, each UAV can only
be committed to a single task, but it can be competing for up
to m, tasks. UAVs assigned to a task determine the best RAO
(or RAA) with respect to their sensors (or munitions) and plan
an optimal path to approach the target from that angle [79].
When a UAV has no task to choose (this can happen when
all the targets are neutralized or the UAV is ineligible for all
available or associated assignable tasks), it has an open status
and follows a path of maximum local uncertainty. An open

Fig. 3. Search path. The fan-shaped polygons denote the UAV’s flyable area
subject to the turning constraints.

UAV calculates its flyable area over a finite horizon based on
its speed, heading angle, and turning constraints (denoted by
the fan-shaped regions in Fig. 3). The UAV considers n, + 1
angularly equally spaced paths through this region, with the
extreme paths corresponding to the boundaries of the turning
circles. For each path, the UAV calculates the total uncertainty
of the cells included in it and chooses the path with the maxi-
mum total uncertainty. As it approaches the end of the chosen
path segment, the UAV repeats the process over the next finite
horizon region. Thus, the UAV follows a path of maximum local
uncertainty, much as a steepest descent algorithm follows a path
of locally steepest descent. The purpose is to maximize the
benefit from search in a greedy way, and the path that followed
is termed as a search path. Increasing the horizon considered
at each step can improve the path but becomes computationally
prohibitive.

After the initial assignment, each UAV with an assigned task
moves towards that task, UAVs with no assigned task move
towards their lowest cost associated task, while the rest follow
the search paths. All UAVs take sensor readings as they move
(as described earlier) and update the TOP in the cells scanned.
When a UAV reaches its assigned task, it performs the task
and updates the TOP there. A new task (possibly the same
as the previous one) is then cued at the CTL according to
the transition function, and the UAV’s status reverts to open.
Locations can become CTLs if search raises their TOP above
ps, corresponding to the discovery of a new target. Each new
assignable task is cued with an available status.

3) Assignment Update: At all times, all open and competing
UAVs monitor the CTL (which is being updated continually)
and report their costs for all available and associated tasks.
When a competing UAV reaches a point within distance D,
of its associated task, that task is assigned to it, and its status
is switched to committed. All other UAVs competing for this
task are disassociated (or released) from it. At any time, as
many as n, open or competing UAVs can be associated with it,
while no UAV can be associated with more than m, different
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tasks. Thus, if a better UAV becomes available for a task,
another UAV associated with it may be released. Sometimes,
a task may be done opportunistically by a UAV that happens
to pass by, in which case, all UAVs associated with or assigned
to it are released. At all times, all committed UAVs move to
their assigned task, UAVs associated with multiple tasks move
towards the one with the lowest cost, and open UAVs follow
a search path. The process continues until all the targets are
neutralized and the uncertainty of all locations has fallen below
some positive threshold or some time limit is reached.

B. Predictive Assignment Algorithm

The basic assignment algorithm described above uses only
the list of currently active tasks for assignment. However, given
the task transition thresholds and current assignments, it is
possible to predict the next set of tasks and to estimate their
probabilities. The process can be iterated to predict tasks further
in the future, albeit with decreasing certainty. Including the
predicted tasks in the assignment procedure can potentially
allow the UAVs to plan their commitments early and provide
assignments for UAVs that cannot do any currently available
task. An assignment algorithm including predicted tasks is
described below.

A set of predicted task locations (PTLs) is formed containing
all the CTLs with associated or assigned tasks. For a PTL
(X,Y), let u; be the UAV that is assigned to or associated
with this task (if the task has more than one associated UAV,
u;~ 1s the nearest one among them). The UAV’s current position
and heading angle are denoted as (x;(t), y;«(t)) and ¥« (t),
respectively, and 6;+(t) is its planned approach angle for the
current task. Given the above information, one can estimate
the time t* at which the UAV will accomplish this task. This
is termed the estimated completion time (ECT) for the task.
Furthermore, using the update (3)—(5), one can estimate the
TOP P(x,y,t") after the task is completed. The task transition
function (Fig. 2) can then be used to get a list of potential suc-
cessor tasks 7; and their probabilities 7; for j = 1,2,..., Np.

All open UAVs then consider volunteering for the predicted
tasks according to their distance from the task location and
capabilities. The commitment procedure for the predicted tasks
is the same as for the current ones. Consider a UAV u; with
location (z;(t), yi(t)), heading angle ;(¢), and sensing (or
attacking) capability profile &;(¢). For a PTL (X,Y"), the UAV
w; calculates the minimum time ¢; (x y needed to reach it. The
time cushion d; (x y) is defined by

Six,y)y = (" —1) —t; (x.v) 9)

where ¢ denotes the current time. If 6; (xy) > 0, the UAV
u; would reach the PTL (X,Y) before the successor task
becomes available, and it will loiter there until the successor
task becomes available. If d; (x y) < 0, the task is likely to be
available by the time the UAV gets to the PTL.

A function Q(z) is defined as

0, ifz>0
Qz) = { |z|, otherwise.

The UAV’s cost value with respect to the predicted tasks at
PTL (X,Y) is calculated as

hy = weQ (6i,x,v)) + (1 —we) exp (—m(X, Y, 1) - &(1))
(10)

where Si,( X,v) is the normalized time cushion value defined as
5i,(X,Y) = 5¢,(X,Y)/maxi |6i,(X,Y)|'

The assignment process is the same as that in the basic
assignment algorithm. Once a UAV is associated with the
predicted tasks at a PTL, the successors of those tasks can be
predicted.

C. Performance Measures

The goal for the UAV team is to cover the environment as
rapidly as possible in such a way that the whole region is
completely searched and all targets neutralized. Specially, two
time measures are defined to qualify performance.

1) Target neutralization time (TNT), which is the time
needed to actually neutralize all targets. This is an ob-
jective measure of performance that is not based on the
UAVs’ estimation of TOPs.

2) Total mission time (TMT), which is the total time
needed to destroy all targets and bring the uncertainty
of all locations below some positive threshold. Unlike
TNT, the TMT is a subjective measure from the UAVs’
viewpoint.

Based on the developed model formulation and cooperative
search and task assignment algorithms, in this paper, we inves-
tigate the intrinsic value of prediction as well as the search—
response tradeoff.

D. Intrinsic Value of Prediction

The main benefit of using predictive assignment is better
coordination among the UAVs and better response on the
assignable tasks. However, it also has some drawbacks, namely
1) computational costs; 2) wasted effort caused by incorrect
prediction; and 3) loss of search resources. The degree to which
the benefits of prediction can be realized in the face of its
costs may also depend on the size of the UAV team relative
to the mission at hand. If the available number of UAVs is
large relative to the number of targets, the cost of prediction
can be absorbed without affecting performance, where the
benefits can still be realized. The proposed model is applied
to study intrinsic value of prediction as a function of UAV team
composition.

E. Search—Response Tradeoff

In the model described in the previous sections, UAVs en-
gage in search as the default behavior and take on target-
specific tasks through a process of cooperative gradual commit-
ment, beginning with volunteering and ending in assignment.
UAVs assigned to specific tasks proceed directly to the task
location instead of searching for new targets. This creates a
classic exploration—exploitation tradeoff [80], where resources
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dedicated to search (exploration) compete with those ded-
icated to target response (exploitation). This is termed the
search-response tradeoff. This tradeoff is magnified further
when UAVs act on predicted as well as current informa-
tion, since the predicted tasks create further opportunities for
exploitation and take resources away from exploration. The
search—-response tradeoff is studied systematically using the
proposed model and two hypotheses.

1) Prediction may help when (or once) most targets are
known, since quick response is more important for cur-
rently known targets.

2) Prediction could hurt when most targets are unknown,
since efficient search is necessary to find unknown
targets.

We try to answer two questions based on the results from

Monte Carlo simulations.

1) Is there a crossover in the performance of the predictive
and nonpredictive algorithms as the degree of target
knowledge varies? If so, how does it depend on environ-
ment size, UAV team composition, number of targets, and
other factors?

2) How does the benefit of prediction over nonprediction de-
pend on environment size and number of targets relative
to the number of UAVs?

VI. SIMULATION RESULTS AND DISCUSSION
A. Simulation Scenario

To evaluate the performance of the basic and predictive
assignment algorithms, Monte Carlo simulations are conducted
using an event-driven simulator. In the simulations, there are
two types of targets (Type 1 and Type 2), which are charac-
terized by differences in their orientation angles. The UAVs
are drawn from two classes, namely 1) target recognition
(TR) UAVs and 2) attack (A) UAVs. All UAVs are assumed
to have sensors needed for search but with different sensing
capabilities. The sensing capabilities of UAVs from each class
are defined using functions )\fk; the probability that a UAV of
type C detects a type k target given that the true target type
is j. The X functions are chosen to reflect the fact that target
identification is dependent on the angle of observation and
the sensor resources used. We have used phenomenologically
reasonable definitions of these functions for the purpose of
simulation (e.g., giving the lowest probability of error at the
optimal angle of observation, and lower probability of identi-
fication error for TR UAVs compared to A UAVs). In practice,
the A functions will be derived from a knowledge of the sensors,
automatic target recognition (ATR) systems, and targets. The
same considerations apply to the 5; functions for the case of
attack. Please refer to Appendix B for the detailed list of design
parameters.

B. Simulation Results

Since the UAVs move at a constant speed, a time unit is
defined as the time needed to travel some distance. The time
in the following simulations is measured by this time unit.
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Fig. 4. TNT versus hidden target fraction: 150 by 150 km environment, ten
targets, two TR UAVs, and two A UAVs.
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Fig. 5. TNT versus hidden target fraction: 150 by 150 km environment, ten
targets, five TR UAVs, and five A UAVs.

The algorithms are coded in MATLAB, and the following
simulation results are the average of 100 runs.

Case Study 1: The first set of simulation results (Figs. 4-9)
compares the basic and predictive algorithms in terms of TNT
for a UAV team with different composition in a 150 by 150 km
environment with ten stationary targets. The number of targets
whose positions are suspected a priori is varied from ten (no
hidden targets) to O (all targets hidden).

In the first simulation (Fig. 4), the UAV team comprises
two TR and two A UAVs. Observe that the basic algorithm is
almost always better than the predictive algorithm, indicating
that prediction does not provide any advantage even when all
targets are known a priori. Intuitively, this is because, given
the high number of targets relative to the UAVs, most UAVs
are too busy with current tasks to take advantage of prediction.
This suggests the existence of what might be termed “room for
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Fig. 6. TNT versus hidden target fraction: 150 by 150 km environment, ten
targets, eight TR UAVs, and eight A UAVs.

prediction,” i.e., how much opportunity the UAV team has to
exploit the benefits of prediction even if it would help.

In the second simulation (Fig. 5), the UAV team consists
of five TR and five A UAVs. The graph clearly shows the
crossover predicted by the hypothesized search—response trade-
off. When the UAVs know almost all the target locations from
the start, complete neutralization is achieved faster by using
prediction—presumably because UAVs get in position for fu-
ture tasks early rather than “wasting” time on search. However,
when the fraction of targets with known locations decreases,
search becomes more crucial to the mission, and the predictive
algorithm falls behind the nonpredictive one.

In the last simulation (Fig. 6), the UAV team is comprised
of eight TR and eight A UAVs. Thus, the number of UAVs is
higher relative to the number of targets than in the situations
shown above. This time, prediction provides a significant ad-
vantage until the number of hidden targets reaches eight out
of ten. This is consistent with the hypothesis that prediction
is most useful when the UAV team has sufficient resources to
exploit it. Since this time, there are more UAVs in the team than
before, only part of the team is needed to handle current tasks,
leaving the rest to get in position for the predicted tasks, thus,
reducing the overall TNT. However, this does not neutralize
the essential search-response tradeoff, and when almost all
targets are hidden, the loss of search resources due to predictive
assignment does become a liability.

Case Study 2: Having ascertained that the value of predic-
tion depends on how informed the UAV team is about targets,
we considered a hybrid algorithm, which works as follows.

When prior knowledge of targets is not high (so that search
is needed), UAVs start out in the nonpredictive mode but switch
to the predictive algorithm once a sufficient number of targets
have been found. The simulation result (Fig. 7) shows that
this algorithm works better than the predictive and the non-
predictive approaches and captures the best of both. However,
it requires that the UAVs know the total number of targets
a priori—though the positions of some are still unknown and
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Fraction of Hidden Targets

Fig. 7. TNT versus hidden target fraction: 150 by 150 km environment, ten
targets, five TR UAVs, and five A UAVs.
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Fig. 8. TNT versus number of UAVs: 150 by 150 km environment and

ten suspected targets.

must be found through search. We are investigating algorithms
where other more plausibly available information can be used
to affect the switch. In particular, we are investigating methods
by which the UAV team can estimate how certain it is about
the environment relative to the available resources and use this
as the basis of switching between predictive and nonpredictive
assignment.

Case Study 3: The third set of simulation results (Figs. 8
and 9) compares the basic and predictive algorithms for UAV
teams of different sizes in a 150 by 150 km environment with
ten suspected targets and no hidden targets. Fig. 8 shows that
the benefit of predictive algorithm becomes larger as the size of
the UAV team increases. This confirms our earlier hypothesis
that a larger team is able to exploit prediction more effectively
than a small team that nearly always is fully engaged with the
current tasks. Fig. 9 shows that the predictive approach always
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takes longer to neutralize all the targets and to complete the
search, since even in the best case, going for predicted targets
takes resources away from search.

Case Study 4: The fourth set of simulation results (Figs. 10
and 11) investigates the impact of two system design parame-
ters, i.e., uncertainty coefficient w, and cost coefficient w., on
the crossover point of the basic and predictive algorithms. The
mission size is 150 by 150 km environment with ten targets. We
consider three typical UAV team sizes in each case. The results
show that the crossover point is insensitive to the change of
these two parameters.

Case Study 5: This set of simulation (Figs. 12 and 13)
considers the impact of the certainty coefficient w, in (6) on the
performance of the UAV team. As w, increases, the uncertainty
value used to guide search is weighted more strongly towards
uncertainty about the existence of targets and less toward un-
certainty about target type. Operationally, this means that, at

ju—

09 1

g A A A A A A A oA A

0.7F —%— 4 UAVs i

06h -0+ 10 UAVs i
-A- 16 UAVS

o
n
T
L

o
=~
T
L

Fraction of Hidden Targets
o
o

020 - 0= =0 === =@ = -0 - =B - =Q--0==O--O

0.1F 1
0 * U % v o % 3
0 0.2 0.4 0.6 0.8 1
Cost Coefficient o,
Fig. 11.  Crossover point: 150 by 150 km environment and ten targets.

700 T T T T
650r . 1
~o_v_4~0 ‘O,O
S o0
T o_ - 0_ - _O¢
600 b
H
=
H
550r |
500F b
— high sensing capability
-0+ low sensing capability
450O 0.2 04 0.6 0.8 1

Uncertainty Coefficient

Fig. 12. Uncertainty coefficient effect on TMT: 150 by 150 km environment,
ten suspected targets, and ten TR UAVs.

high values of w,, searching for targets in new locations will
be preferred to spending effort verifying the type of already
discovered targets. This, in turn, is expected to affect overall
performance, since targets differ in optimal observation angles
according to type, and targets of uncertain type are likelier
to be observed (and later attacked) from the wrong direction,
possibly by the wrong type of UAV. Since w, is primarily
a driver for search, the simulations here focus only on the
search and identification tasks using only TR UAVs. It should
be noted, however, that in a full mission, efficiency of search
would also affect the time to neutralize targets. The UAV team
comprises ten TR UAVs in a 150 by 150 km environment with
ten initially unknown targets (five of each type). The mission
is to do a complete search and to classify all the targets. The
locations of UAVs and targets are generated randomly in each
run. Each data point is averaged over 200 independent runs. We
do two separate sets of simulations: one where UAVs have a
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Fig. 13.  Uncertainty coefficient effect on CER: 150 by 150 km environment,

ten suspected targets, and ten TR UAVs.

high sensing capability (the probability of correct classification
is 0.98 from optimal observation angles and 0.7 from other
angles) and another where it is lower (the probability of correct
classification is 0.9 from optimal observation angles and 0.6
from other angles).

Fig. 12 shows that the total time for complete search has a
shallow U-shaped dependence on w,,. The value of the optimal
uncertainty coefficient appears to depend slightly on sensing
capability but is close to w, = 0.5, indicating that equal weight
to target presence and type is a good policy. As expected, UAVs
with higher sensing capability finish faster.

Fig. 13 plots the effect on classification error rate (CER),
which is defined as the fraction of targets missed or classified
incorrectly. This is an objective measure of search quality,
addressing the possibility that the UAVs’ assessment may differ
from reality. The figure shows that the CER is virtually inde-
pendent of w,, though, as expected, UAVs with lower sensing
capability make more errors. Thus, the overall conclusion is
that, given the sensing capability of the UAV team, w, can
be chosen to optimize TMT without concern for its effect on
classification error.

VII. CONCLUSION

In this paper, we have presented an approach for the al-
location of tasks to UAVs’ involved in a search-and-act mis-
sion. Three cooperative algorithms have been described for
heterogeneous UAV teams in a spatially extended battlefield
environment with stationary targets. It has been shown that
prediction can help improve the performance of the cooperative
UAV teams, but the utility of prediction depends significantly
on the UAV team’s size relative to the number of targets and
the UAVs’ knowledge of the target locations. The simula-
tions also show that there is a well-defined crossover point as
this knowledge changes. The results show that the crossover
point is almost independent of the system design parameters
wy and we.

While the work we have presented focuses on UAV teams,
it is broadly applicable to teams of mobile agents acting co-
operatively in an extended environment in applications such
as surveillance, search and rescue, wildfire monitoring, etc.
The broader contributions of this work are stated as follows:
1) description of a simple easily decentralizable approach to
multiagent spatial task assignment in dynamic environments
where task dynamics is coupled with agent behavior; 2) explicit
elucidation of a tradeoff between prediction-based “exploita-
tion” and search-based “exploration” for agent teams involved
in search-and-act missions; and 3) a demonstration that the
utility of prediction depends on (at least) two factors, namely
a) the “space for prediction” created by the size of the agent
team relative to the number of task locations and b) the knowl-
edge that the agent team has about the tasks. These results
suggest that an intelligent adaptive use of prediction could be
valuable in spatial multiagent problems.

APPENDIX A
DERIVATION OF (3)

To obtain the update function (3), consider the case where a
UAV takes a measurement in cell (X, Y") at time ¢. Define the
following for a cell (X,Y).

1) Ej; is the event that a target of type j is actually located

incell (X,Y).

2) b(X,Y,t) is the sensor reading taken by the UAV,
b(X,Y,t) €{0,1,2,..., Ny} with b(X,Y,t) = 0, indi-
cating no target detection.

3) B(X,Y,t") is the vector of all sensor readings for cell
(X,Y) by all UAVs taken before time t.

4) P(E;|B(X,Y,t)) is the probability that a target of type
j is in cell (X,Y’) based on observations prior to the
current one.

5) P(E;|B(X,Y,t”),b(X,Y,t)) is the updated probability
after obtaining the new reading, b(X, Y, t).

It is assumed that the sensors’ measurements in any cell are

conditionally independent given the state of the cell. That is

P (b(X,Y,t)|B(X,Y,t7), E;) = P (b(X,Y,t)|E;). (11)

This is a common assumption in the sensor fusion liter-
ature [76].

Based on the above definitions and assumptions, the updating
function (3) follows directly from Bayes’ rule [76], as in (12),
shown at the bottom of the next page, which can be simpli-
fied by applying the conditional independence assumption [see
(11)] written as

P (Ej|B(X,Y,t),b(X,Y,1))

P (X, Y, t)|E;) P (E;|B(X,Y,t7))

- (13)
2 PO Y 0IE) P(EIBX,Y, 7))

The TOP P;(X,Y,t), which is calculated by the model, is
an estimate of P(E;|B(X,Y,t), i.e., the estimated probability
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that the cell (X,Y) contains a live target of type 7,
7=0,1,2,..., Np, with 7 = 0 denoting the no target case.
Thus, (13) can be written as

P (X, Y, ) |Ej) Pi(X, Y, t7)

P(X,Y,t) = (14)

SEP (X, Y,0)|B) PUX. Y, )
=0

The probabilities P(b(X,Y,t)|E;) are characteristics of
the sensor resources used and are assumed to be given by
the sensor specification. The capabilities of a sensor re-
source suite ((t) are specified by A;yx v, (0s(t),((t)) =
P(b(X,Y,t)|E;;05(t),¢(t)), where 05(t) is the observation
angle. Thus, for an observation made from angle 6g, (14) gives
the update (3) as

Aip(x,v,e) (0s(t),¢(t) Pj(X,Y,t7)
Nt

Pi(X,Y, 1) = .
l;) Apx,yie) (0s(t), C(1)) Pi(X,Y,t7)

It should be noted that this update equation uses subjec-
tive estimates of probabilities and observation angles, and,
therefore, includes some uncertainty. These uncertainties can
be reduced by incorporating accurate prior information and
by using better sensors. This issue is not the focus of the
present work.

APPENDIX B
SIMULATOR DESIGN PARAMETERS

The simulations require the selection of several parameters
and the specification of ATR and munition efficiency models.
The parameters were chosen as follows:

1) cost parameter w, = 0.9;

2) uncertainty parameter w, = 0.5;

3) task transition thresholds: resolution threshold p,, = 0.03,
suspicion threshold ps = 0.55, existence threshold p, =
0.7, and certainty threshold p. = 0.9.

These values should be seen as logically reasonable choices
rather than specific recommendations. Other values might be
appropriate for specific mission and circumstances. In partic-
ular, the choice of task transition thresholds will depend on
the type of mission. For example, the threshold for attacking
buildings may be higher than that for attacking antiaircraft gun
position.

For the ATR model, we again use a logically reasonable
phenomenological model (described below). In practice, the
model used for a specific UAV team will depend on the actual
sensor resources available and their known characteristics. Any
model where sensor capabilities can be specified using the very
general framework we propose (i.e., using A parameters) is
compatible with our overall approach.

The sensor accuracy parameter )\fk (0s(t),Ci(t)) is shown at
the top of the next page.

The munition efficiency model is also defined phenomeno-
logically, using a reasonable function. The munition capability
parameter ﬂjC(GA(t), uC(t)) is defined as

ﬂ;.TR (QA(t)aMTR(t)) =0 forj =1,2

2+ cos (04 (t) —
3

)

]

i (0a(1), (1)) =0.95

2+ cos (04 (t) + 3)

B3 (04(t), ™ (£)) =0.95 :
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P(Ej7B(X’Kt_)’b(X7Kt))

P (E;|B(X,Y,t7),b(X,Y,;1)) =

P(B(X,Y,t7),b(X,Y, 1))

_ P(b(X,Y,t)|B(X,Y,t"),E;) P(B(X,Y,t"), E,)
- P(BXY ) P(b(X, Y 1)[B(X,Y,t7))

P (b(X,Y,t)|B(X,Y,t"),E;) P(E;|B(X,Y,t)) P(B(X,Y,t))

P(B(X,Y,t7)) P(b(X,Y,t)|B(X,Y,t7))

P (b(X,Y,t)|B(X,Y,t"),E;) P(E;|B(X,Y,t7))

P (X, Y, 1)[B(X,Y,t7))

P (b(X,Y,t)|B(X,Y,t"),E;) P(E;|B(X,Y,t"))

Nt

12)

Z P(b(vatNB(XﬂKti)?El) P(EllB(X7 Y7 ti))
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