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Abstract

A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is
maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection
in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present
genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic
reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen
presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing
selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B),
with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential
splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the
consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2

genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B
cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an
ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection.
Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although
the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2

splice forms provide important insights into the potential mechanism for the action of selection.
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Introduction

Balancing selection maintains advantageous genetic diversity in

populations. Unlike positive and purifying selection, which favor

fixation of the fittest allele, balancing selection results in enhanced

genetic and phenotypic variability in populations. Diversity can be

maintained by overdominance (the higher fitness of heterozygotes),

frequency-dependent selection (when an allele’s effect on fitness

varies with its frequency), fluctuating selection (selection that

changes in time or space), or pleiotropy (selection on a variant that

affects multiple traits). Over time, all of these processes leave the

characteristic genetic footprint of balancing selection: an excess of

polymorphism due to the long-term maintenance of selected

alleles, and an enrichment of variants with a frequency close to the

frequency equilibrium (for example, an enrichment in variants at

intermediate frequency if the optimal frequency of the selected

variant is 0.5).

These, and related signatures allow the identification of

candidate targets of balancing selection [1–3]. However, discern-

ing the biological processes underlying balancing selection remains

a challenge, even for loci with striking genetic signatures. As a

result, there are few well-characterized examples of balancing

selection in humans, with both clear genetic signatures and a

known biological mechanism for the action of selection. One

PLoS Genetics | www.plosgenetics.org 1 October 2010 | Volume 6 | Issue 10 | e1001157



prominent exception is the major histocompatibility complex

(MHC) class I locus, arguably the best-established target of natural

selection in vertebrates [4–8]. The MHC class I locus is extremely

polymorphic (over 3000 alleles have been described in humans;

see ebi.ac.uk/imgt/hla/stats.html) and some of its ancestral

polymorphism has been maintained for millions of years in several

extant species (i.e., trans-species polymorphism) [9]. Such extreme

variability ensures MHC presentation of highly diverse antigenic

peptides and, in turn, allows the detection of many different

pathogens, improving the effectiveness of the immune system.

Interestingly, another component involved in MHC function,

the natural killer-cell proteins that recognize MHC-peptide

complexes (killer-cell immunoglobulin-like receptors, KIR), show

signatures of balancing selection and coevolution withMHC class I

[10–12]. The crucial role that MHC-mediated antigen presenta-

tion plays on individual survival explains the influence that

balancing selection has on the evolution of MHC and KIR. In

addition, we recently identified another key element of the MHC

class I antigen-presentation process as a candidate target of

balancing selection: endoplasmic reticulum aminopeptidase 2

(ERAP2) [3].

The MHC class I-dependent antigen presentation pathway

starts with the degradation of intracellular proteins by cytoplasmic

proteases. Some of the resulting short peptides are translocated

into the endoplasmic reticulum for the final trimming of their N-

terminal residues by ERAP2 and its paralog, ERAP1. The two

proteins show different peptide specificity, and they act in a

concerted fashion to generate peptides of the appropriate length

and sequence for MHC class I binding and presentation. Once the

MHC molecule and peptide are coupled, the complex is

translocated to the cell surface, where presentation takes place.

By performing the final trimming steps that ensure the presence of

optimal MHC class I ligands, ERAP1 and ERAP2 play a key role

in MHC antigen presentation (reviewed in [13–19]).

In addition to a role in peptide MHC class I presentation,

ERAP1 and ERAP2 contribute to a number of other biological

processes. Both genes are regulated by interferon c IFN- c and are

involved in immune activation and inflammation [20]. They may

also regulate angiogenesis and blood pressure [21,22] through the

trimming of angiotensin II and angiotensin III, respectively

[23,24]. ERAP1 and ERAP2 are down-regulated in some tumors,

suggesting a role in the detection of transformed cells by immune

surveillance [25,26]. ERAP1 genetic variants are associated with

ankylosing spondylitis [27–30], and cervical carcinoma [31–33].

Meanwhile, ERAP2 variants and expression levels have been

associated with pre-eclampsia [34,35], a dangerous hypertensive

complication of pregnancy with both immunological and inflam-

matory components. Haroon and Inman [36] provide a more

comprehensive review of the pathogenic potential of ERAP1 and

ERAP2. Of note, ERAP2 has not been studied as extensively as

ERAP1 because of its absence in rodent (e.g., mouse, rat, and

guinea pig) genomes, although its phylogeny reveals that it was

present in the primate-rodent common ancestor (genome.ucsc.

edu).

Our earlier genomic study revealed increased polymorphism

and the genetic signatures of balancing selection in ERAP2 in

African-Americans and European-Americans [3]. Based on these

data, we hypothesized that advantageous genetic diversity might

enhance not only antigen presentation and recognition (e.g., MHC

and KIR), but also earlier steps of the MHC antigen presentation

pathway. Here, we present evidence to support this hypothesis.

Specifically, we show that ERAP2 has distinct signatures of

balancing selection in geographically diverse human groups, and

that, interestingly, ERAP1 shows similar signatures of selection.

Furthermore, we provide bioinformatic, molecular, cellular, and

immunological evidence that identifies an ERAP2 putatively

selected variant, establishes its effect on protein function, and

demonstrates a downstream impact on MHC class I presentation.

Results

ERAP2 evolution
ERAP2 is a 19-exon gene located on human chromosome 5q15,

residing between ERAP1 (in the opposite orientation and likely

sharing regulatory elements) and leucyl-cystinyl aminopeptidase

(LNPEP); see Figure S1. We sequenced the complete protein-coding

sequence (cds) and adjacent non-coding regions of ERAP2 in 180

individuals from 6 human populations: Luhya, Yoruba, Palestinian,

Gujarati, Han, and Toscani. From these data, we identified 22

coding single-nucleotide polymorphisms (SNPs) and 57 non-coding

SNPs. As a proxy for neutrality, we also sequenced 47 neutral

genomic segments (i.e., control regions, see Materials and Methods

for details), identifying 287 SNPs within our sample set.

Figure 1A and 1B depicts the distribution of allele frequencies

(i.e., the allele site frequency spectrum, SFS) for ERAP2 and the

control regions, respectively. With the control regions, the SFS

shows a distinct skew towards low-frequency variants, as is

typically seen in human datasets [37]. In contrast, with ERAP2,

there is a marked enrichment in intermediate-frequency variants.

This excess of intermediate-frequency alleles is significant in all

populations based on both the MWUhigh test [3,37] and Tajima’s

D analysis [38] (Table 1). Analyses of only coding SNPs reveal the

same trend (Figure S2 and Table S1). Overall, ERAP2 shows

strong and consistent signatures of balancing selection maintaining

intermediate-frequency alleles.

Our analyses of ERAP2 revealed 22 coding SNPs and 10 coding

fixed differences with chimpanzee: 2.2 coding SNPs per fixed

difference. This represents a 2.7-fold enrichment compared with

the control regions, which have 0.82 SNPs per fixed difference

(287 SNPs and 352 fixed differences). The excess of polymorphism

is significant in two populations (Palestinian and Gujarati) and

Author Summary

It has long been known that the extremely high levels of
genetic diversity present in the major histocompatibility
locus (MHC) are due to balancing selection, a type of
natural selection that maintains advantageous genetic
diversity in populations. The MHC encodes for molecules
required for a type of antigen presentation that mediates
detection of infected and cancerous cells by the immune
system; the genetic diversity of the MHC thus ensures an
adequate response to the wide variety of pathogens that
humans encounter. Here, we show that other genes
involved in the same antigen-presentation pathway are
also subject to balancing selection in humans. Specifically,
we show that balancing selection acts to maintain two
forms of the endoplasmic reticulum aminopeptidase 2
gene (ERAP2), which encodes a protein also involved in
antigen presentation. Although the two ERAP2 forms are
present in a similar frequency (close to 0.5), they are
associated with differences with respect to the levels of
MHC molecules on the cell surface of immune cells. In
summary, our findings show that natural selection
maintains variants of ERAP2 that affect immune surveil-
lance; they also establish ERAP2 as one of the few
examples of balancing selection in humans where the
selected variant, its functional consequences, and its
influence in interpersonal diversity are known.

Balancing Selection of ERAP2

PLoS Genetics | www.plosgenetics.org 2 October 2010 | Volume 6 | Issue 10 | e1001157



marginally non-significant in the Toscani group (HKA test [39],

Table 1), but fails to reach significance in the other populations

(likely due to the limited power of the short coding regions).

Consistent with a relatively long-term influence of selection,

ERAP2 does not show the characteristic long-range linkage

disequilibrium (LD) of very recent balancing selection (Figure S3

and Text S1); the estimated coalescent time of the locus is

1.44 Mya (standard deviation: 550,000 years).

The haplotype network of ERAP2 is highly structured, with two

differentiated clades or haplogroups: ‘Haplotype A’ and ‘Haplo-

type B’ (Figure 2). The two haplotypes are differentiated by

numerous SNPs, including four coding SNPs and a large number

of non-coding SNPs (not depicted). We refer to these SNPs as

‘diagnostic SNPs.’ Each haplotype has a frequency around 0.5 in

all populations (Figure 2), with the ancestral state set between the

two haplotypes. The similar distribution of variants in the two

Figure 1. Allele site-frequency spectrum (SFS) of ERAP2, control regions, and ERAP1 in each population. The X-axis reflects the absolute
frequency of the derived allele, while the Y-axis reflects the frequency of that allele frequency bin in the generated data set. To account for missing
data, the frequencies were projected to a sample size of 15 chromosomes. See the SFS of only coding SNPs in Figure S2.
doi:10.1371/journal.pgen.1001157.g001

Balancing Selection of ERAP2
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haplogroups and their similar patterns of long-range LD (see

above), points to a similar age for each. Taken together, the

signatures of selection and the maintenance of two haplogroups at

similar frequencies suggest a functional difference between

Haplotype A and Haplotype B.

Effects of ERAP2 variants on mRNA splicing
We identified four coding diagnostic SNPs that differentiate the

coding sequence of Haplotype A and Haplotype B. Only one of

these reflects a non-synonymous variant, resulting in a conserva-

tive change unlikely to influence protein function (K392N, a basic

polar residue to a neutral polar). Nevertheless, several studies have

previously identified associations between SNPs in this genomic

region and changes in ERAP2 expression and splicing [40–43]. In

addition, a recent study identified an intronic variant that is

associated with differential splicing of ERAP2 [44]. These studies

suggest that ERAP2 variants can alter splicing, raising the

possibility of differences in the splicing of ERAP2mRNA expressed

from Haplotype A versus Haplotype B.

To explore this hypothesis, we sequenced the complete ERAP2

cDNA isolated from EBV-transformed lymphoblastoid cell lines

(LCLs) derived from two HapMap individuals: one homozygous

for Haplotype A (AA-homozygote) and one homozygous for

Haplotype B (BB-homozygote). We used LCLs because ERAP2 is

highly expressed in lymphocytes [45] and this cell type is

particularly relevant for studies of MHC class I presentation.

One identified splicing form, which contains an extended exon 10

with 56 extra nucleotides (AY028805.1 and AB163917.1 [20]),

was observed only in Haplotype-B mRNAs (Figure 3A). To

confirm that this splice form is indeed specific to Haplotype B, we

used PCR to isolate from cDNA the region across the exon 10 and

exon 11 splice junction in 12 HapMap LCLs with varied

genotypes (Figure 3B). The exon 10 ‘extension’ was detected in

all 4 BB-homozygotes but none of the 4 AA-homozygotes; both

splice forms were detected in AB-heterozygotes. Therefore,

Haplotype A-expressed ERAP2 is consistently spliced to contain

the standard exon 10, while Haplotype B-expressed ERAP2 is

spliced to contain the extended version of exon 10. These results

are consistent with an in silico analysis of all publicly available

ERAP2 mRNAs and ESTs (Text S1). We conclude that the

haplotype-specific splicing of ERAP2 must be driven by a

diagnostic SNP.

Extension of exon 10 occurs when the standard splice site

(position 69 of exon 10) is skipped in favor of a downstream cryptic

splice site at position 56 of intron 10. Only one diagnostic SNP

resides in the proximity of exon 10: rs2248374, which lies within

the 59 canonical splice site (Figure 3A). Haplotype A contains the

rs2248374-A allele, while Haplotype B contains the rs2248374-G

allele. In silico prediction of optimal splicing (GeneID [46]) with the

rs2248374-A allele yields the Haplotype A splice form, while

prediction with the rs2248374-G allele yields the Haplotype B

splice form (Text S1). According to MaxEnt, a maximum entropy

computational analysis of splice sites [47], and as shown by

Coulombe-Huntington et al. [44], this is due to rs2248374

reducing the signal strength of the exon 10 donor splice site from

9.33 (for the A allele) to 7.61 (for the G allele). Coulombe-

Huntington et al. [44] studied 78 candidate loci of allele-specific

splicing, and experimentally confirmed 6 of them, including

rs2248374 and ERAP2 exon 10. Together, these results show that

the difference in ERAP2 splicing between Haplotypes A and B is

due to rs2248374, whose A and G alleles increase and reduce the

strength of the splice site, respectively.

Effects of ERAP2 variants on mRNA processing and
translation
The ERAP2 mRNA derived from Haplotype A encodes the

canonical (full-length) ERAP2 protein consisting of 960 amino

acids. In contrast, translation of the ERAP2 mRNA derived from

Haplotype B would be predicted to produce a truncated protein of

534 amino acids, since the exon 10 extension contains two TAG

stop codons (Figure 3A). This second mRNA form was first

reported in an early characterization of the gene [24]. We sought

Table 1. Neutrality tests.

Population All SNPs Coding SNPs Coding

S TajD p(TajD) p(MWU) S TajD p(TajD) p(MWU) p(HKA)

ERAP2

Yoruba 45 2.05 0 0 10 1.43 0.004 0.017 0.525

Luhya 51 1.44 0.000 0.000 11 0.95 0.026 0.145 0.400

Palestinian 55 1.34 0.004 0.001 13 1.05 0.094 0.028 0.019

Gujarati 45 1.99 0 0 12 1.05 0.105 0.068 0.033

Han 38 2.68 0 0 9 1.95 0.008 0.001 0.150

Toscani 40 2.30 0 0 11 1.17 0.078 0.085 0.067

ERAP1

Yoruba 52 0.19 0.032 0.048 20 0.10 0.185 0.242 0.016

Luhya 55 20.06 0.113 0.139 19 0.16 0.158 0.201 0.023

Palestinian 58 0.38 0.196 0.038 22 0.08 0.435 0.311 0

Gujarati 54 0.44 0.173 0.082 22 0.18 0.382 0.327 0.000

Han 41 0.91 0.027 0.010 18 0.55 0.202 0.131 0.000

Toscani 49 1.07 0.012 0.007 17 1.16 0.057 0.037 0.002

The number of SNPs (S) and results for the three neutrality tests performed for ERAP2 and ERAP1 using data generated from the six populations are indicated [TajD:
Tajima’s D; p(TajD): P-value for Tajima’s D test; p(MWU): P-value for MWUhigh test; p(HKA): P-value for HKA test]. HKA was performed only for the coding regions of
the genes. The complete matrix with summary statistics is presented in Table S1.
doi:10.1371/journal.pgen.1001157.t001

Balancing Selection of ERAP2
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to detect the truncated form of ERAP2 by western blot analysis of

protein extracted from LCLs using two antibodies that should

detect both truncated and full-length forms of the protein. This

analysis revealed that AA-homozygote cells produce only full-

length ERAP2 (120 kDa), while BB-homozygote cells produce no

detectable ERAP2 protein (Figure 4). Additionally, AB-heterozy-

gotes only produce full-length ERAP2, in seemingly smaller

quantities compared to AA-homozygotes (the intensity of the full-

length ERAP2 band in AB-heterozygotes is 35% and 50% that of

AA-homozygotes for the two antibodies, respectively). Therefore,

only the full-length ERAP2 protein is detectable in LCLs, and only

in AA-homozygotes and AB-heterozygotes.

We did detect an extremely faint band in BB-homozygotes, of

the size of the full-length ERAP2 protein, when the western was

run with mouse 3F5 antibody [48] (Figure S4). This band could be

due to unspecific binding of the mouse mAb 3F5 antibody, since

unspecific bands were observed in that experiment (Figure S4);

however, if it corresponds to ERAP2 it likely derives from the very

limited amount of ERAP2 Haplotype B that is spliced to contain

the canonical exon 10 (Figure 3B). This small amount of protein

likely has no or very little biological relevance, particularly when

compared with the high levels observed in AA-homozygotes and

AB-heterozygotes. In any case, note that truncated ERAP2 protein

(60 kDa) could not be detected in this experiment (Figure S4).

Nonsense-mediated decay (NMD) is a cellular process that

degrades aberrant mRNAs, such as those with in-frame stop

codons that encode truncated proteins. In ERAP2, NMD has been

shown to degrade a rare mRNA form detected in a mantle-cell

lymphoma that included an extra exon (after canonical exon 12)

with an in-frame STOP codon [49]. The two stop codons present

in exon 10 on Haplotype B also fulfill the established requirements

for NMD [50]. Thus, the above-described absence of detectable

truncated ERAP2 protein may be due to NMD of Haplotype B-

derived mRNA. To test this hypothesis, we performed allele-

specific quantitative real-time PCR (qRT-PCR) analysis of

heterozygote LCLs under normal and NMD-inhibited conditions

(by treating the cells with emetine, which blocks translation and

NMD). We specifically examined the expression of three coding

diagnostic SNPs (Figure 5A). All three SNPs showed significantly

Figure 3. Haplotype-specific splicing of ERAP2. A, The genomic
organization of the human chromosome 5q15 region containing ERAP1

and ERAP2 is included at the top. The two haplotype-specific ERAP2

spliced forms are shown for Haplotype A (in blue) and Haplotype B (in
purple). The different alleles of rs2248374 are shown as a blue or purple
base position, respectively. The red boxes represent the premature stop
codons in the Haplotype B mRNA. B, PCR amplification of cDNA across
the exon 10 splice junction (see Materials and Methods) from the
indicated 16 LCLs, with the haplotype status of each cell indicated as
homozygote (AA or BB) or heterozygote (AB). A negative control PCR,
with no DNA template, was also performed (water).
doi:10.1371/journal.pgen.1001157.g003Figure 2. Haplotype network of ERAP2 and ERAP1. Circles

represent haplotypes, with the areas proportional to the frequency of
the haplotype (color-coded by population). The lines connecting the
haplotypes have a length proportional to the number of mutations that
differentiate the two haplotypes. Reticulations reflect recombinations or
recurrent mutations. The ancestral state was inferred using the
chimpanzee sequence data. For ERAP2, the four coding diagnostic
SNPs are shown as white boxes; one nearly diagnostic SNP, which
appears four times in the network due to the reticulations, is marked as
thinner horizontal boxes. The ERAP2 haplotype network that includes all
SNPs (coding and non-coding) is shown in Figure S5, and the ERAP2

haplotype network that includes the chimpanzee sequence is shown in
Figure S6.
doi:10.1371/journal.pgen.1001157.g002

Balancing Selection of ERAP2
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lower levels of ERAP2 mRNA expressed from Haplotype B versus

Haplotype A (Figure 5B) for all AB-heterozygote cell lines.

Inhibition of NMD resulted in similar levels of ERAP2 mRNA

expression from Haplotypes A and B (Figure 5B). These data

indicate that NMD acts on Haplotype B-derived ERAP2 mRNA,

accounting for both the reduced levels of Haplotype B-derived

ERAP2 cDNA and the absence of truncated ERAP2 protein.

Effects of ERAP2 variants on MHC class I presentation
Transient knock-down of ERAP1 and ERAP2 reduces the levels

of MHC class I molecules on the surface of cultured cells [48]. To

establish whether endogenous ERAP2 deficiency has a similar

effect in BB-homozygotes, we examined the levels of MHC class I

molecules on the surface of peripheral blood B cells by flow

cytometry. Two experiments were performed to account for

experimental variability. MHC class I (HLA-ABC) mean fluores-

cence intensities (MFIs) were lower on BB-homozygote cells

compared to AA-homozygote cells; such a difference was not seen

with CD19, a marker constitutively expressed by B cells (Figures

S7 and S8). AB-heterozygotes showed a high level of variability

(Figures S7 and S8). To account for the intrinsic variability among

human samples, the HLA-ABC MFIs were standardized relative

to CD19 (see Materials and Methods for details). Standardized

HLA-ABC MFIs were also reduced in BB-homozygotes: a two-

factor ANOVA showed that after controlling for differences

among experiments (a significant factor, P=0.0011), genotype

significantly affects the level of standardized HLA-ABC MFIs

(P=0.0137). Such an effect is evident in both experiments

(Figure 6), although the significance of the tests is reduced due

to the smaller sample size (T-test: experiment 1, P-value = 0.0782;

experiment 2, P-value = 0.0471). These results demonstrate that

BB-homozygotes have reduced levels of MHC class I expression

on B-cell surfaces.

ERAP1 evolution
In order to determine whether the signatures of selection seen

with ERAP2 are shared with its closely linked paralog (ERAP1), we

analyzed the polymorphism data for ERAP1 generated with our

sample of 180 individuals. The SFS for ERAP1 shows a slight

enrichment in intermediate-frequency alleles (Figure 1C), which

results in a significant departure from neutral expectations in the

Yoruba, Palestinian, Han, and Toscani populations as measured

by the MWUhigh test (Table 1). The Yoruba, Han, and Toscani

populations also show departures from neutral expectations

according to Tajima’s D analysis (Table 1). ERAP1 has 6.4 SNPs

per fixed difference (45 coding SNPs and 7 coding fixed

differences), a significant departure from neutral expectations

(HKA test, Table 1). The estimated time to the most recent

common ancestor of ERAP1 variants is 2.84 Mya (standard

deviation: 839,000 years).

The ERAP1 haplotype network (Figure 2B) contains a large

number of haplotypes, with a complex relationship among them

and many reticulations that represent either recombination or

recurrent mutation. In short, it does not reflect a highly structured

haplotype network, likely due to the long-term effects of

recombination. It is worth noting that LD between ERAP1 and

ERAP2 is low (Figure S9), and the two most common ERAP1

haplotypes do not show linkage with the two major ERAP2

haplotypes (data not shown), indicating that the ERAP1 signatures

are independent from those of ERAP2. Additionally, we found no

association between the ERAP2 haplotypes and ERAP1 splicing or

expression differences (Text S1).

Discussion

By generating and analyzing high-quality genome-sequence

data, we have demonstrated that ERAP2 has the distinct signatures

of balancing selection that maintains intermediate-frequency

alleles. These results validate our initial genome-wide findings

[3], and indicate that the selective agent is not population-specific,

because the detected signatures are similar among geographically

diverse human groups. Selection has maintained ERAP2 variants

for an estimated 1.4 million years and, accordingly, the putatively

selected variant rs2248374 is not polymorphic in chimpanzee

(sequence analysis, n = 19) or orangutan (sequence analysis, n = 4),

and no annotated chimpanzee SNP is shared with humans

(dbSNP version 130). Interestingly, the derived allele was observed

in a 4,000-year-old Paleo-Eskimo [51], showing that the non-

functional ERAP2 form was present in ancient Homo sapiens

populations. We are confident that the detected ERAP2 genetic

signatures are due to selection on the gene rather than on adjacent

loci (e.g., ERAP1 and LNPEP) because (a) signatures of balancing

selection are tight in humans [3] due to the long-term effects of

recombination [52,53]; and (b) no linkage block shared between

African, East Asian, and European HapMap populations links

ERAP2 with ERAP1 or LNPEP (Figure S9).

ERAP1 also shows signatures of selection, although the patterns

are less dramatic than with ERAP2. The excess of polymorphism

(over 7-fold compared with control regions) and subsequent high

estimated coalescence time (2.8 Mya), combined with a modest

enrichment in intermediate-frequency variants, suggest long-term

balancing selection acting on ERAP1. Still, the gene lacks a striking

excess of intermediate-frequency alleles as seen with ERAP2, and

its haplotype network is not highly structured due to the long-term

effects of recombination. Taken together, these results suggest that

Figure 4. Immunoblot analyses of ERAP2 using LCL protein
extract. Two LCLs of each ERAP2 genotype (AA, AB, and BB) were
tested for protein using primary antibodies specific to: A, ERAP2 (goat
polyclonal); B, ERAP2 (mouse polyclonal); and C, ß-actin (see Materials
and Methods).
doi:10.1371/journal.pgen.1001157.g004
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Figure 6. Standardized HLA-ABC mean fluorescence intensity of B-cells with various ERAP2 genotypes. The distribution of observed
levels of surface-expressed HLA-ABC for B cells of AA, AB, and BB individuals are graphically represented as boxplots (the blue box containing the
25th–75th percentile of the distribution, the black horizontal line indicating the median, the red dot reflecting the mean, and black circles
representing outliers). Data are shown for two independent experiments (left and right). For each experiment, the significance level of the
comparison between AA and BB homozygotes (T-test) is shown within the plot; the significance level of the effect of genotype in the global
comparison between AA and BB homozygotes (two-way ANOVA) is shown above. A representative HLA-ABC fluorescence intensity plot is shown in
Figure S7, and the mean fluorescence intensity boxplots of HLA-ABC and CD19 are presented in Figure S8.
doi:10.1371/journal.pgen.1001157.g006

Figure 5. Quantification of allele-specific ERAP2 mRNA levels in LCLs. A, Locations of the four coding diagnostic SNPs across ERAP2 are
shown, of which three (in red) were used to test for allele-specific expression. B, The allelic ratio of Haplotype B to Haplotype A ERAP2 cDNA levels,
which was measured using these three coding diagnostic SNPs in the indicated heterozygote LCLs treated/untreated with emetine (NMD blocked),
are depicted with colored bars. The control represents the allelic ratio measured with genomic DNA (gDNA), expected to be 1.0. The average allelic
ratio across all cell lines tested (for a given SNP) is indicated above each set of bars. The error bars represent the standard error of the mean.
doi:10.1371/journal.pgen.1001157.g005
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ERAP1 has evolved under long-term balancing selection that

either (1) maintains a large number of low-to-intermediate

frequency variants; or (2) has changed, stopped, or weakened in

recent evolutionary history.

ERAP2 is particularly interesting due to the combination of its

remarkable signatures of balancing selection and the pronounced

functional differences between its two major haplotypes. Specif-

ically, we showed that Haplotype A-derived mRNA encodes full-

length, canonical ERAP2, while Haplotype B-derived mRNA

undergoes differential splicing and NMD, resulting in undetectable

levels of ERAP2. We studied LCLs, a particularly relevant cell

type for MHC class I presentation. It is possible, though unlikely,

that other tissues and/or developmental stages utilize alternate

mechanisms that lead to the generation of ERAP2 protein from

both haplotypes. Nevertheless, our data suggest that 25% of the

population are AA homozygotes and generate abundant amounts

of ERAP2 protein in lymphocytes, 50% are heterozygotes and

generate reduced amounts of ERAP2 protein, and 25% are BB

homozygotes and generate no or virtually no ERAP2 protein.

Note that these frequencies are fairly consistent among all of the

populations that we analyzed, as well as other human groups (Text

S1). Therefore, based on our results, the ERAP2 genotype should

be accounted for in interpreting ERAP2 studies, especially those

focused on ERAP2 expression and ERAP2 protein function. For

instance, it may be interesting to reassess previous studies of

ERAP2 that used immortalized or cancer cell lines and reported

contradictory results (Text S1).

In light of the differences in ERAP2 expression from the A

versus B haplotypes, what are the biological consequences of lower

ERAP2 protein levels in AB and BB individuals? The evidence

that ERAP2 has a functional role in humans is both experimental

[24,48] and evolutionary (i.e., the level of constraint of ERAP2 in

humans is similar to that in other mammals; Tables S2 and S3 and

Text S1). ERAP1 and ERAP2 share 51% sequence identity [18],

and their protein products can form heterodimers [48], though the

functional nature of these dimmers remains elusive. While both

ERAP1 and ERAP2 act as aminopeptidases, there are important

differences in their peptide specificity [48]; for example, specific

residues in the HIV-derived peptides R10L (from the HIV-gag

protein) and K51I (from the HIV-env protein) are preferentially

trimmed by ERAP2 [15,48]. ERAP1 and ERAP2 likely act in a

concerted fashion to provide important protein-trimming activity

in the human endoplasmic reticulum, with each differentially

contributing to the pool of antigenic peptides [15].

A possible effect of ERAP2 deficiency could be an alteration in

the set of peptides available for the MHC. For example, mouse

studies have shown that knocking out ERAP1 results in alterations

in the set of presented epitopes [54–56] and immunodominance

hierarchy [57]. These changes ultimately influence T-cell response

[58]. Remarkably, HIV evolves to avoid ERAP1 trimming [59],

suggesting that despite high redundancy in MHC class I

presentation of proteins, the particular presented epitope (which

is highly dependent on antigen processing [60]) influences

immune response. The absence of ERAP2 in the mouse genome

precludes performing similar knock-out studies as with ERAP1,

although one could envision a similar effect of ERAP2 deficiency

in antigen presentation. Importantly, this alteration in the set of

presented epitopes may have a previously unrecognized influence,

for example, on immunological function, auto-immunity, and

histocompatibility.

In addition to these putative differences, we demonstrated that

ERAP2 deficiency results in a quantitative reduction of MHC class

I levels. Specifically, we found significantly less MHC class I on the

surface of B cells from BB-homozygotes compared to AA-

homozygotes. This result is consistent with the reduced MHC

class I cell-surface expression observed after transient knock-down

of ERAP1 or ERAP2 in cultured cells [48], the reduced MHC class

I cell-surface expression seen in ERAP1-knock-out mice [54–

56,61], and our observation that ERAP1 is not upregulated to

compensate for ERAP2 deficiency in cells from BB-homozygotes

(Text S1). The reduced MHC class I cell-surface expression might

be due to reduced stability of the MHC complex when loaded with

suboptimal peptides, as has been suggested with ERAP1-deficient

mice [55,56,62].

Because we studied a natural deficiency of ERAP2, our results

suggest that the observed reduction in MHC class I levels is not

transient and that BB-homozygotes likely have lower background

levels of MHC presentation. The effect of ERAP2 knock-down is

not evident when the antigen-processing machinery is activated by

IFN-c [48], consistent with the results with ERAP1 knock-out mice

[55] (but see [63]). This suggests that rather than affecting

inflammatory response, ERAP2 deficiency might be relevant to

basal MHC class I presentation. Antigen processing is an

inefficient process, with an estimated 10,000 proteins degraded

to form a single MHC-peptide complex [64]. Therefore, reduced

MHC class I levels may result in a lower presentation of rare

antigens (particularly, in this case, of those preferentially trimmed

by ERAP2), possibly delaying their specific immune response.

Further studies that correlate ERAP2 genotype with levels of MHC

class I expression in other tissues, and with the presentation and

recognition of specific antigens, are needed to more clearly define

the influence of ERAP2 deficiency on immune response.

An important remaining question is what selective mechanism

accounts for the maintenance of a decayed form of ERAP2.

Selection of polymorphic truncating variants is not unusual, with

notable examples in domesticated species [65,66] and natural

populations [67–69]. ERAP2 is involved in a variety of biological

processes, including immunity, inflammation, and, perhaps, the

regulation of blood pressure; it has also been linked to pathologies

such as pre-eclampsia (see Introduction). Therefore, a number of

mechanisms may explain the balancing selection seen with ERAP2.

Overdominance is probably the most widely considered mecha-

nism for balancing selection. In this case, overdominance could be

explained if heterozygotes had the optimal level of ERAP2 protein.

This would be unlikely if MHC levels are the selected phenotype,

because MHC cell-surface expression is variable in heterozygotes

(Figure 6). Regardless, AB-heterozygotes might have a different

epitope hierarchy than AA or BB homozygotes that account for

the putative selective advantage.

Another possible mechanism is oscillating selection, where

alternative genotypes are advantageous at different times. This has

been proposed for FLT1, a gene that, like ERAP2, is associated

with pre-eclampsia [70]. The short alleles of the FLT1 repetitive

region are deleterious during malaria season but appear to be

beneficial out of malaria season. There is no known link between

malaria and ERAP2 genotypes, and the signatures of selection are

observed in non-malaria-suffering regions. However, one can

imagine other scenarios where seasonal agents could favor the AA

or BB genotype at different times, with adequate temporal

fluctuation and selective coefficients to maintain both alleles in

the population.

Another interesting mechanism of balancing selection is

pleiotropic selection, where different genotypes are advantageous

for different biological processes. This has been suggested as an

explanation for the highly polymorphic KIR loci [12], with KIR A

haplotypes protecting against hepatitis C virus infection but being

a risk factor for pre-eclampsia. In this model, differential selection

between an immunological function and reproduction maintains
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genetic diversity. Interestingly, a recent study revealed an

association between the ERAP2 Haplotype A and pre-eclampsia

in an Australian cohort [34]. The presence of functional ERAP2

and the resulting high levels of MHC class I may be beneficial in

some situations (e.g., in response to tumors or pathogens) yet

detrimental in others (e.g., in the case of auto-immunity).

Immune-related genes are subject to natural selection in

humans [71–74], although the relative importance of positive

and balancing selection is not fully defined (reviewed in [75]). In

the case of MHC class I presentation, the elements responsible for

recognition and presentation of antigenic peptides have evolved

under balancing selection [4–6,10–12], as have the two genes that

encode the enzymes responsible for the final trimming of antigenic

peptides. The ERAP2 genetic diversity identified here has

biological implications in terms of influencing the levels of MHC

class I on the cell surface and likely downstream antigen

presentation. Future studies should help to establish the influence

that this genetic variation has on other biological processes, such as

immunocompetence, histocompatibility, regulation of blood

pressure, and risk to immune-related disorders such as auto-

immunity and pre-eclampsia.

Materials and Methods

Ethics statement
Anonymized samples for this study were derived from allogeneic

blood donor samples that already existed and would otherwise be

discarded. As the samples were provided anonymously, the NIH

Office Of Human Subjects Research approved the use of these

samples on an exemption basis, per federal code (45CFR46),

without the need for IRB review or informed consent.

Sequence generation
The complete ERAP2 coding region and some exon-adjacent

intronic regions (8794 bp total, 2883 bp of which are protein

coding) were sequenced in 180 individuals from 6 geographically

diverse human groups. Specifically, we studied 30 individuals from

each of the following HapMap [76] populations: Yoruba (Nigeria),

Luhya (Kenya), Gujarati Indians (living in Houston, TX, USA),

Han (China), and Toscani (Italy). As a representative Middle

Eastern population, we also studied 30 Palestinian (Israel)

individuals from the National Laboratory for the Genetics of

Israeli Populations (Tel-Aviv University). The same 180 individ-

uals were also used for sequencing portions of the ERAP1 gene

(9753 bp total, 2847 bp of coding sequence). The regions

sequenced are shown in Figure S1.

Regions of interest were PCR-amplified and sequenced

(bidirectional Sanger-based sequencing), and SNPs were detected

with Polyphred/Polyphrap. To minimize sequencing errors,

variants residing within the first and last 50 bp of each amplified

segment were discarded. Additionally, we manually reviewed all

variants associated with discordant results between overlapping

amplimers, variants with a quality score lower than 99, singletons,

and triallelic SNPs. The ancestry of each SNP was inferred

through comparison with the chimpanzee, orangutan, and

macaque genome sequences [77,78, genome.ucsc.edu]. Fixed

differences with chimpanzee were identified by comparison with

the chimpanzee genome sequence [77].

As a proxy for neutrality, we sequenced 47 control regions. Such

regions consisted of unlinked, ancient processed pseudogenes that

do not encode a functional protein and are thus expected to evolve

in a neutral fashion. The control regions are not part of gene

families, are far from genes, do not overlap putative functional

elements, are conserved as pseudogenes in chimpanzees, orang-

utans, and macaques, and have recombination rates and GC

contents similar to coding genes. Details about these control

regions can be found in the Text S1.

Evolutionary analysis
The generated sequence data were analyzed using three

neutrality tests: MWUhigh, Tajima’s D, and HKA. MWUhigh

[37] compares the SFS of a region of interest with the SFS of a

neutral region(s) (e.g., control regions) to determine whether the

former is consistent with neutral expectations [37]. Specifically, we

applied MWUhigh to the folded SFS, which becomes significant

only in the case of an excess of intermediate-frequency alleles [3].

Tajima’s D [38] compares two estimates of h (the scaled mutation

rate) and, when significantly positive, identifies genealogies with

long internal branches consistent with long-term balancing

selection. Finally, HKA [39] identifies regions with an unusual

density of polymorphisms when compared with divergence and

with the patterns of neutral loci. For the HKA test, we focused

only on coding regions and used the chimpanzee as an outgroup.

MWUhigh was calculated using an in-house C script, while

Tajima’s D and HKA were calculated using libsequence [79].

The significance of all neutrality tests was assessed by 10,000

coalescent simulations with ms [80]. Selecting an appropriate

demographic model for the simulations is crucial to avoid spurious

detection of signatures of selection. Our null model followed a

recently published demographic scenario that included African,

Asian, and European populations [81] and that was a better fit to

our control data than previously proposed demographic models.

The divergence to chimpanzee was adjusted in the simulations to

fit the ratio of SNPs to fixed differences of the control regions.

Simulations were conditioned on the total number of informative

sites, and the recombination rate was set to 1026 per base pair, the

estimated recombination rate of this genomic region (genome.ucs-

c.edu). All analyses were performed with an in-house PERL

program (Neutrality Test Pipeline).

Haplotypes of the coding SNPs were inferred using PHASE

[82], and the haplotype network was created with Network [83].

The estimated age of the haplotypes was calculated using Network

and calibrated with chimpanzee, considering a divergence time of

6 Mya.

Analysis of splicing
We analyzed the ERAP2 cDNA from LCLs of HapMap Yoruba

individuals with different genotypes: AA-homozygotes (GM

18504, GM18505, GM11832, and GM07000), BB-homozygotes

(GM18507, GM19240, GM12891, and GM12892), or AB-hetero-

zygotes (GM18861, GM18870, GM19137, and GM19201). The cell

lines were obtained from the Corriell Cell Repositories (ccr.cor-

iell.org). Total RNA was isolated from each cell line using Trizol

reagent (Invitrogen) and the RNeasy miniprep kit (Qiagen).

cDNA was synthesized from 1 mg of total RNA using the

Superscript III First Strand Reverse Transcriptase Kit and

random hexamers (Invitrogen). The ERAP2 full-length transcript

(exons 1 to 19) was amplified using Expand High Fidelity PCR

System (Roche) from cDNA prepared from LCLs that were AA-

homozygote (GM18504) or BB-homozygote (GM18508). These

PCR products were cloned into the pCR4-TOPO vector

(Invitrogen) and at least six clones for each haplotype were

sequenced (3100 Genetic Analyzer, Applied Biosystems). Primer

sequences for this experiment and for the exon 10 splice-variant

screening can be found in Table S4.

The effect of rs2248374 on ERAP2 mRNA splicing was assessed

using two in silico methods. First, we used GeneID [46] to predict

the splicing of mRNA derived from the two haplotypes (Text S1).
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Second, we used MaxEnt [47] to predict the splicing potential of

the constitutive splice site with: (1) the A allele: ATGGTAAGG;

and (2) the G allele: ATGGTGAGG.

Western blot analyses
Western blot analysis was performed as previously described

[84]. Briefly, protein extracts from approximately 36103 cells were

separated on a 4–12% NuPage Bis-Tris gel (Invitrogen) at 125 V

for 100 minutes in 16 NuPage MES SDS Running Buffer

(Invitrogen). After transfer to a nitrocellulose membrane, proteins

were detected using a 1:5,000 dilution of primary antibody [goat

anti-ERAP2 polyclonal antibody (AF3830, R&D Systems) and

mouse anti-ERAP2 polyclonal (ab69037, Abcam); anti-ß-actin

monoclonal prepared in mouse (A5316, Sigma)] and a 1:10,000

dilution of secondary antibody conjugated with horseradish

peroxidase (HRP) [goat anti-mouse IgG (sc-2005; Santa Cruz

Biotechnology) and donkey anti-goat IgG (sc-2020; Santa Cruz

Biotechnology)]. Proteins were then visualized by autoradiography

after treatment with substrate to HRP (Thermo Scientific) for

5 minutes. The ratio of the intensity of the full-length ERAP2

band of AA-homozygotes to AB-heterozygotes was calculated

using ImageJ (rsbweb.nih.gov/ij/index.html).

Analysis of allele-specific gene expression
AB-heterozygote LCLs were treated with 100 mg/ml of emetine

(Sigma) for 7 hours to inhibit NMD [50]. Parallel cultures were left

untreated and grown at standard conditions. Total RNA was

prepared from each cell line and used to generate cDNA as

described earlier. We quantified haplotype-specific ERAP2 cDNA in

triplicate using an allele-discriminating TaqMan genotyping assay

for three coding diagnostic SNPs (C_3282749_20 for rs2549782,

C_25649530_10 for rs2548538, and C_25649516_10 for

rs2287988; Applied Biosystems) as previously described [85].

Briefly, for each allele-specific assay, we generated a standard curve

consisting of serial dilutions of two HapMap genomic DNA samples

homozygous for either the Haplotype A (GM18504) or Haplotype B

(GM18508) allele. We used a heterozygous genomic DNA sample

(GM18861) to validate the regression equation, in which we expect

to see a mean allelic ratio of 1.0 since both the Haplotype-A and

Haplotype-B alleles are present in an equal proportion.

HLA expression on B-cell surface
Two experiments (labeled 1 and 2 in Figure 6) were performed

with 16 samples each. Human peripheral blood mononuclear cells

(PBMCs) were isolated from buffy coats using a Ficoll/Histopaque

gradient (Lonza). PBMCs were washed and cultured using RPMI

1640 supplemented with 10% fetal calf serum, 1% penicillin and

streptomycin, 0.2 M L-glutamine, and 20 mM Hepes. Surface

staining was measured by flow cytometry using fluorescence-

labeled antibodies specific to CD19 (labeled with APC; clone

HIB19; eBioscience) and HLA-ABC (labeled with FITC; clone

W6/32; eBioscience) which reacts to HLA-A, B, and C. Flow-

cytometry data analysis was performed with Flojo software

(Treestar). Specifically, we measured HLA-ABC MFIs from a

population of B cells gated by CD19 (a constitutive B-cell marker)

intensity. Gating and analysis were carried out blindly with respect

to genotypes. In order to standardize HLA-ABC MFI in light of

the intrinsic variability among human samples, a standardized

HLA-ABC measure was calculated for each sample by dividing

the HLA-ABC MFI by the CD19 MFI for each sample. The

values were partitioned by experiment and sub-partitioned by

genotype; within each of these groups, outliers were removed

(defined as samples with values under or over 1.5-times the inter-

quartile range). It is worth noting that the inclusion of outliers did

not affect the results. Two sets of analyses were performed for each

of these three measures (HLA-ABC, CD19, and standardized

HLA-ABC) as the dependent variable. First, a T-test was used to

detect differences between cells with AA and BB genotypes for

each experiment. Second, a two-factor ANOVA was performed

for each measure using the data generated with all AA or BB

samples, where the two factors of the ANOVA were genotype and

experiment. Genotyping was performed by PCR amplification

and sequencing of DNA prepared from the PBMCs (DNeasy

Blood and Tissue kit, Qiagen) using primers flanking rs2248374

(see Table S4 for primer sequences).

Supporting Information

Figure S1 Genomic regions sequenced. Chromosomal position

and gene structure of ERAP1 and ERAP2 genes. The green boxes

above the gene structures mark the regions sequenced.

Found at: doi:10.1371/journal.pgen.1001157.s001 (0.25 MB TIF)

Figure S2 Allele site-frequency spectrum (SFS) of ERAP2,

control regions, and ERAP1 in each population when only coding

SNPs are considered for ERAP2 and ERAP1. The X-axis reflects

the absolute frequency of the derived allele, while the Y-axis

reflects the frequency of that allele frequency bin in the generated

dataset. To account for missing data, the frequencies were

projected to a sample size of 15 chromosomes [Nielsen R, Hubisz

MJ, Clark AG (2004) Reconstituting the frequency spectrum of

ascertained single-nucleotide polymorphism data. Genetics 168:

2373–2382]. See the SFS of all SNPs in Figure 1.

Found at: doi:10.1371/journal.pgen.1001157.s002 (1.12 MB TIF)

Figure S3 Integrated haplotype score (iHS) test display in each

HapMap population. The graphs show an ordered display of the

haplotypes in the core genomic region (ERAP2), located in the

center. The ancestral allele is represented in blue, and the derived

allele in red. Color switches mark a transition to a different

haplotype (haplotter.uchicago.edu).

Found at: doi:10.1371/journal.pgen.1001157.s003 (1.30 MB TIF)

Figure S4 Immunoblot analyses of ERAP2 using mouse mAb

3F5 antibody of protein extracted from cell lines. 50 mg of protein

extracted from various human cell types [LCLs of each ERAP2

genotype (AA, AB, and BB), a neuronal cell line (SHSY5Y), an

embryonic kidney cell line (HEK293T), and a cervical cancer cell

line (HELA)] were tested for ERAP2 protein using primary mouse

mAb 3F5 [Saveanu L, Carroll O, Lindo V, Del Val M, Lopez D,

et al. (2005) Concerted peptide trimming by human ERAP1 and

ERAP2 aminopeptidase complexes in the endoplasmic reticulum.

Nat Immunol 6: 689–697] in the following concentration: A,

0.5 mg/ml; B, 0.125 mg/ml. Full-length ERAP2 is expected at

approximately 120 kDa, while the putative truncated form of

ERAP2 is expected at approximately 60 kDa. Note the reduced

levels of full-length ERAP2 in SHSY5Y, HEK293T, and HELA.

Found at: doi:10.1371/journal.pgen.1001157.s004 (4.96 MB TIF)

Figure S5 Haplotype network of ERAP2 with both coding and

non-coding SNPs. Circles represent haplotypes, with the areas

proportional to the frequency of the haplotype (color-coded by

population). The lines connecting the haplotypes have a length

proportional to the number of mutations that differentiate the two

haplotypes. Reticulations reflect recombinations or recurrent

mutations. The ancestral state was inferred using the chimpanzee

sequence data.

Found at: doi:10.1371/journal.pgen.1001157.s005 (1.34 MB TIF)

Figure S6 Haplotype network of ERAP2 with chimpanzee.

Circles represent haplotypes, with the areas proportional to the
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frequency of the haplotype (color-coded by population). The lines

connecting the haplotypes have a length proportional to the

number of mutations that differentiate the two haplotypes.

Reticulations reflect recombinations or recurrent mutations. The

chimpanzee sequence represents the reference chimpanzee

genome sequence for ERAP2.
Found at: doi:10.1371/journal.pgen.1001157.s006 (0.85 MB TIF)

Figure S7 HLA-ABC fluorescence intensity of representative

samples with ERAP2 AA and BB genotypes.

Found at: doi:10.1371/journal.pgen.1001157.s007 (0.34 MB TIF)

Figure S8 HLA-ABC and CD19 mean fluorescence intensities

of B cells with various ERAP2 genotypes. The distribution of

observed levels of surface-expressed HLA-ABC for B cells with

AA, AB, and BB genotypes are graphically represented as boxplots

(the blue box containing the 25th–75th percentile of the

distribution, the black horizontal line indicating the median, the

red dot reflecting the mean, and black circles representing

outliers). HLA-ABC results are shown on the left, and CD19

results are shown on the right. Data are shown for two

independent experiments (left and right in each case). For each

experiment, the significance level of the comparison between AA

and BB homozygotes (T-test) is shown within the plot; the

significance level of the effect of genotype in the global comparison

between AA and BB homozygotes (two-way ANOVA) is shown

below.

Found at: doi:10.1371/journal.pgen.1001157.s008 (0.27 MB TIF)

Figure S9 Linkage disequilibrium (LD) in the ERAP1, ERAP2,

LNPEP genomic region based on HapMap polymorphism data.

The strength of LD between a pair of SNPs is shown by the color

of the diamond found at the intersection point connecting them:

LD decreases from red to pink to blue to white (genome.ucsc.edu).

YRI represents the Yoruba population, CEU the CEPH European

sample, and ASN the Han Chinese and Japanese HapMap

populations.

Found at: doi:10.1371/journal.pgen.1001157.s009 (22.86 MB

TIF)

Table S1 Summary statistics and neutrality tests. S: number of

SNPs; TajD: Tajima’s D; p(TajD): P-value for Tajima’s D test;

p(MWU): P-value for MWUhigh test; FixedDiff: number of fixed

differences with chimpanzee; p(HKA): P-value for HKA test.

Found at: doi:10.1371/journal.pgen.1001157.s010 (0.10 MB

DOC)

Table S2 dN/dS of ERAP2 and ERAP1. Estimated dN/dS ratios

for the model that infers a single ratio for the whole phylogeny

(Complete phylogeny) and estimated terminal branch dN/dS for the

model that allows free ratios among branches (Lineage-specific).

Dashes indicate species that lack the gene, while dots indicate

species for which sequence could not be obtained. Likelihood ratio

test results for the different analyses performed are in Table S3.

Found at: doi:10.1371/journal.pgen.1001157.s011 (0.03 MB

DOCX)

Table S3 Models of evolution used for analyzing ERAP2 and

ERAP1. P-values of the log likelihood ratio test for all model

comparisons performed (see Text S1).

Found at: doi:10.1371/journal.pgen.1001157.s012 (0.04 MB

DOC)

Table S4 PCR primers.

Found at: doi:10.1371/journal.pgen.1001157.s013 (0.04 MB

DOC)

Text S1 Supporting materials.

Found at: doi:10.1371/journal.pgen.1001157.s014 (0.11 MB

DOC)
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