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Abstract—The fast growth of cloud computing considerably
increases the energy consumption of cloud infrastructures, espe-
cially, data centers. To reduce brown energy consumption and
carbon footprint, renewable energy such as solar/wind energy
is considered recently to supply new green data centers. As
renewable energy is intermittent and fluctuates from time to time,
this paper considers two fundamental approaches for improving
the usage of renewable energy in a small/medium-sized data
center. One approach is based on opportunistic scheduling: more
jobs are performed when renewable energy is available. The other
approach relies on Energy Storage Devices (ESDs), which store
renewable energy surplus at first and then, provide energy to the
data center when renewable energy becomes unavailable. In this
paper, we explore these two means to maximize the utilization of
on-site renewable energy for small data centers. By using real-
world job workload and solar energy traces, our experimental
results show the energy consumption with varying battery size
and solar panel dimensions for opportunistic scheduling or ESD-
only solution. The results also demonstrate that opportunistic
scheduling can reduce the demand for ESD capacity. Finally, we
find an intermediate solution mixing both approaches in order
to achieve a balance in all aspects, implying minimizing the
renewable energy losses. It also saves brown energy consumption
by up to 33% compared to ESD-only solution.

Keywords-Green data centers; Cloud computing; renewable
energy; energy storage; opportunistic scheduling.

I. INTRODUCTION

The fast growing demand for Cloud services, emphasized

by the data deluge, has lead to a boom in the number of

data centers worldwide. Consequently, the global electricity

part dedicated to their consumption has reached unprecedented

levels. In 2012, the number of data centers worldwide was

estimated at 509,147 consuming roughly the output of 30

nuclear power plants [1]. In 2016, another study estimates

that worldwide the data centers use 91 billion kilowatt-hours of

electricity – enough to power New York City twice over – and

their consumption is still growing rapidly [2]. This situation

raises major environmental, economic and social concerns.

One way to save energy at a data center level consists in

locating it close to where the electricity is generated, hence

minimizing transmission losses. For example, Western North

Carolina, USA, attracts data centers with its low electricity

prices due to abundant capacity of coal and nuclear power

following the departure of the region’s textile and furniture

manufacturing [3]. Currently, this region has three super-size

data centers from Google, Apple and Facebook with respective

power demands of 60 to 100 MW, 100 MW and 40 MW [3].

However, such huge facilities represent only a small fraction

of the global consumption of data centers. Indeed, small- and

medium-sized server rooms continue to account for nearly half

the electricity consumption of the market [4].

For economical, environmental or marketing reasons, other

companies opt for greener sources of energy. For example,

Quincy (Washington, USA) supplies electricity to data facil-

ities from Yahoo, Microsoft, Dell and Amazon with its low-

cost hydro-electrics left behind following the shutting down of

the region’s aluminum industry [3]. Several renewable energy

sources like wind power, solar energy, hydro-power, bio-

energy, geothermal power and marine power can be considered

to power up super-sized facilities. The production variability

of most renewable sources leads data center facilities to only

partially rely on them and to depend also on the regular

electrical grid as a backup or main supplier.

While using renewable sources may reduce energy costs,

reduce peak power costs, or both [5], they are mostly in-

termittent and fluctuating over time (like sun and wind for

instance). These variations may lead to electricity losses if the

computing workload does not match the renewable production.

Cloud infrastructures, on the other hand, can take advantage

of multiple locations to increase their green consumption with

approaches such as follow-the-sun and follow-the-wind [6].

As sun and wind provide renewable sources of energy whose

capacity fluctuates over time, the rationale is to place com-

puting jobs on resources using renewable energy, and migrate

jobs as renewable energy becomes available for resources in

other locations.

In the case of a single data center, such follow-the-sun ap-

proaches are not feasible. But instead, opportunistic scheduling

algorithms can make advantage of renewable energy avail-

ability to perform jobs with low priorities [7]. Opportunistic

policies distinguish two kind of computing jobs: jobs requiring

to run continuously (like web servers) and jobs that can be

delayed and interrupted, but with a deadline constraint (such

batch jobs include monthly payroll computation for example).



The jobs of the second type wait for renewable energy surplus

to be scheduled, thus reducing the overall consumption part

of brown energy. However, such scheduling policies make use

of virtual machine migrations and suspend/resume functions

that have a cost in terms of energy consumption [8].

Another possible method for improving the effective utiliza-

tion of intermittent and fluctuating renewable energy consists

in using batteries to store green production surplus, and to

use it during low production periods [5]. Typically for solar

sources, energy can be stored during the day – if not fully

consumed – and be utilized during nights when there is

no production. However, batteries have an inherent energy

efficiency (their yield) that leads to energy losses. So, is it

greener to use opportunistic scheduling or batteries?

In this paper, we discuss these two approaches for maximiz-

ing the utilization of renewable energy in small and medium

data centers. We compare these two solutions in terms of

renewable energy utilization and total energy consumption

in order to estimate whether the losses due to the battery

efficiency balances or not the losses due to migration costs

incurred by opportunistic scheduling policies. We also evaluate

an intermediate solution mixing both approaches. This study

investigates two types of batteries (lead-acid and lithium-ion,

but can be easily generalized to other types of ESD), the

optimal size of photovoltaic panels, several sunlight profiles

and real-world workload traces from a medium-sized data

center.

The remainder of the paper is organized as follows. Sec-

tion II presents recent work on reducing energy consumption

in data centers. Section III describes our data center and En-

ergy Storage Device (ESD) models. Section IV describes the

job scheduling algorithms: baseline algorithm with ESD, op-

portunistic scheduling without ESD and opportunistic schedul-

ing combined with ESD. Section V presents our experimental

setup including an analysis of real-world workload traces and

the simulation-based methodology to find the optimal solar

panel dimension and battery size for a given data center and

a given workload. Section VI presents the results of our sim-

ulations which show the relationship between brown energy

consumption and different solar panel dimension/battery size.

Lastly, Section VII concludes this work and discusses the

challenges for future research.

II. BACKGROUND AND RELATED WORK

Data center consumption reduction. Much of the early

work focuses on the reduction of the brown energy con-

sumption in data centers [5], [9]–[11]. In order to save

energy in mono-site data center, a classical goal consists in

reducing the number of powered-on servers as idle servers

can typically consume half of their peak power consump-

tion [8]. Job scheduling, virtual machines (VMs) placement

and consolidation directly affect the number of powered-

on servers. In [12], Chaima et al. propose an energy-aware

allocation and consolidation algorithm to switch off the under-

utilized servers in cloud data centers. For powered-on servers,

dynamic voltage and frequency scaling (DVFS) allows CPU

to work at multiple frequencies by increasing/decreasing volt-

age to meet the performance demand and to reduce the

average power consumption [13]–[15]. Lastly, resource over-

commitment increases server utilization and minimizes the

number of powered-on servers. In [16], Zhang et al. design

a migration algorithm that reduces the risk of overload and

minimizes the number of VM migrations in over-committed

data centers.
Integrate renewable energy into data center. Unlike tra-

ditional infrastructures where energy sources are controllable,

integrating renewable energy into a data center is difficult due

to its intermittent and variable nature. Usually, solar energy is

considered as an admissible renewable source as solar panels

are easy to install, they present a reasonable efficiency and

the variations in their electricity production are not too abrupt

(as for wind) [5]. In [17], Andrew et al. point out that the

slack time is a key feature enabling the jobs to be delayed

until the renewable energy becomes available. They propose

an off-line scheduling algorithm to align the brown energy

consumption with the renewable energy supply. However, it

is arduous to make accurate long-range workload prediction.

In the real-world workloads, a number of jobs cannot be

delayed or interrupted, such as web services for instance. In

our previous work [7], we propose an on-line solution making

use of opportunistic scheduling for increasing solar energy

utilization in a small-/medium-size data center without energy

storage. This approach leverages two ideas: 1) delay part of the

jobs (interruptible ondes) until solar energy becomes available;

2) when the renewable energy production cannot fully support

the entire workload energy consumption, the system switches

off the under-utilized servers with the help of consolidation

techniques. However, it resorts to a consequent number of

migrations caused by the consolidation algorithm and thus

incurs a non negligible energy overhead. Furthermore, it may

waste some renewable energy if there is not enough work to

consume it all during production peaks. Batteries can solve this

issue by partially or fully storing renewable energy surplus.
Energy Storage Devices. The variable and intermittent

nature of renewable energy – like solar energy – makes it

difficult to manage. In order to increase the usage of renewable

energy, one way consists in carefully scheduling the workload

to align with the time-varying available renewable energy. An

alternate solution consists in using ESDs [18] to store the

renewable energy and generate electricity for later usage.
The main parameters to be considered when dealing with

ESDs are:

1) Efficiency: The energy used to charge a battery is higher

than what can be used at a later time.

2) Battery charging and Discharging Rate Limit: This

charging/discharging rate limit is determined by the type

of battery. Typically the discharge/charge ratio is larger

than 1 for most batteries.

3) Self-Discharge: There is an energy loss which is propor-

tional to the storage time.

4) Depth-of-Discharge (DoD): Many factors may impact

the battery lifetime such as the charging/discharging



cycles [19], [20]. DoD can also impact the battery

lifetime: in order to extend the battery lifetime to a

reasonable time, we cannot use the full capacity of

battery.

We now present the ESD that includes re-chargeable batter-

ies technologies (Electrochemical). In this paper, we consider

two kinds of batteries: Lead-Acid Battery (LA) and Lithium-

Ion (LI) which are prevalent in current data centers. Table I

shows the different constraints per battery kind.

LA LI
DoD 0.8 0.8

Charge rate / ESD size (%) 12.5 25
Efficiency 0.75 0.85

Self-discharge (per day) 0.3% 0.1%
Discharge rate / charge rate ratio 10 5

Price ($/kWh) 200 525

TABLE I: The battery characteristics (data from [19]–[21])

In comparison with LA, LI battery has higher energy

density, energy efficiency and lower discharge rate, but also

higher cost. In the rest of the paper, battery and ESD terms

are interchangeable.

III. CONTEXT AND ASSUMPTIONS

This paper is focusing on maximizing the use of renewable

energy in a small/medium-scale data center with on-site solar

panels. This section describes the context of this work.

A. Small and medium data centers

The considered data center comprises between 20 to 150

servers. Each server has limited resources in terms of CPU and

RAM. We assume that there is no centralized storage system in

the data center: each server has its own hard disk [22]. The data

center is equipped with photovoltaic (PV) panels and an ESD.

It has dual brown (from regular grid) and renewable energy

supplies. If the renewable energy cannot be entirely consumed

by the data center, the ESD stores the surplus of renewable

energy for future use. We also assume that each server has a

switch connected with renewable and brown energy supplies

and the ESD. Specifically, the server can only opt for using

one of the three sources at the same time.

A job can be submitted to the data center at anytime and

it consists of an individual Virtual Machine (VM) to execute

for a given duration. A VM is considered as the basic unit of

resource allocation. We assume each VM has two constraints,

namely CPU and RAM, and each job has its own duration

and a predefined deadline. When a job finishes, the VM is

destroyed and it releases its reserved resources back to the

server. The job management system assumes that time is

divided into slots. The VM resource allocation operations are

performed periodically at the beginning of each time slot.

B. ESD model

As shown in Figure 1, PV panels turn solar energy into

electrical energy which can be directly supplied for the data

center or collected by the ESD. The ESD is composed of

rechargeable batteries which first collect and store energy

(generated from solar energy only), and then power the data

center when scheduled.

Solar 
photovoltaic

ESD Data center

Grid

Fig. 1: Energy sources of the data center

The capacity of the ESD is finite. Herein, we use parameter

C to express the maximum capacity of an ESD. At a given

time t, Cavailable(t) represents the energy that has been

collected and is stored by the ESD. In order to keep a longer

battery lifetime, we take into account the DoD constraint [20],

which stipulates that the remaining energy stored in an ESD

has to be larger than the DoD threshold. So, in other terms,

the available stored energy is smaller than a higher bound ηC
(0 < η < 1, e.g, η = 0.8). By considering the DoD constraint,

one can see that Cavailable(t) never reaches C. Formally, we

have 0 ≤ Cavailable(t) ≤ ηC.
An ESD has two significant functionalities: charging (col-

lects energy from solar panels) and discharging (powers the
data center). In our system, we consider that charging and
discharging are two independent procedures. It implies ESD
is never under charging and discharging states simultaneously.
The charging rate has an upper bound λ depending on the
ESD type and capacity. During a given time period [ti, tj ]
(tj > ti), if we suppose the available green energy (supplied
by PV cells) is E(ti, tj), we use formula 1 to compute the
amount of energy Ein(ti, tj) that can be collected by an ESD.

Ein(ti, tj) = min(E(ti, tj), λ(tj − ti), Cavailable(ti))× σ (1)

Parameter σ is constant and expresses the energy efficiency
of the battery’s charging procedure. The discharging rate also
has an upper bound denoted µ. During a consecutive time
period [ti, tj ], we use formula ?? to compute the amount
of energy Eout(ti, tj) that can be provided by the ESD.
Parameter Eself-discharge(tj − ti) represents the energy loss due
to the self-discharging of batteries.

Eout(ti, tj) = min(µ(tj − ti), ηC − Cavailable)− Eself-discharge(tj − ti)

In this paper, we consider only solar energy as renewable

energy source. Due to the variable and intermittent nature

of solar energy, an energy production prediction is performed

when a job scheduling decision has to be taken. It only predicts

the solar energy for the following time slot (1 hour), so that

such short-time prediction may have a high accuracy [5]. To

simplify the problem, we assume that there is no prediction

error in our validation methodology.

IV. VM SCHEDULING

A. Baseline algorithm

Here we describe the baseline algorithm which will be used

as a comparison reference. Whether the renewable energy

is sufficient for the workload energy or not, we expect to

minimize the total energy consumption of the servers. The



minimization can be done at different levels such as infras-

tructure or application for instance. As mentioned previously,

a server in idle state consumes roughly half of its peak

power. Therefore, an effective approach consists in reducing

the number of powered-on physical servers.

Given a set of VMs with different resources requirements

and a set of servers with fixed capacities, we want to find

the minimum number of servers needed to contain all VMs,

such that the amount of VMs’ resource requirements as-

signed to each server does not exceed its capacity. The VM

placement problem can be modeled as a n-dimensional bin-

packing with finite number of bins, where the different VM

resource requirements can be modeled as different sizes of

items and the various server’s resources correspond to different

bin sizes. In this paper, we consider CPU and RAM as the

constraints for both servers and VMs. The VM placement

problem then become a 2D bin-packing problem which is

an NP-Hard problem. To solve this problem, we adopt the

First Fit Decreasing (FFD) heuristic algorithm. A proof shows

that for every list L, FFD(L) ≤ 11/9 OPT (L) + 1 where

OPT (L) denotes the minimum number of bins that L can be

all packed in and FFD(L) denotes the number of bins used

by FFD [23].

The regular FFD scheduling algorithm usually considers

VM resource requirements as the resources’ constraints for

its placement. However, Cloud jobs typically have resource

utilization levels well below their resource requirements on av-

erage over time [7]. The resource over-commitment technique

increases the server utilization by considering lower bounds

than the actual user requirements for allocating resources to

VMs and thus, putting more VMs on a single server. As a

consequence, when this lower bound is reached by each VM

running on the server, some VMs have to be suspended or mi-

grated in order to free resources. As resource over-commitment

is widespread in Cloud infrastructures [16], [24], we combine

FFD and resource over-commit in order to increase server

resource usage and reduce the number of powered-on servers.

However, as the over-commitment configuration can greatly

increase both CPU and RAM utilization, it can lead to overload

the server. Consequently, we will need to migrate the VMs

from the over-loaded servers to others thus incurring an extra

energy consumption and performance degradation. Hence, for

these reasons, the jobs need to be provisioned for their peak

draw by analyzing the history of jobs behaviors and seeking a

safety over-commitment configuration. We study a real-world

job trace and, in a similar way as our previous work [7], we set

a reasonable over-commitment configuration avoiding RAM

overloads.

We take into account of the VM creation and VM live

migration energy overhead. Unlike the VM creation, the

energy consumption of VM migration depends on the VM

disk size and the number of dirty pages in RAM that impacts

the migration time.

The considered baseline algorithm implements both FFD

and over-commit resources techniques, as our opportunistic

algorithm does. At any time, the jobs are submitted and

the broker directly places them on the servers. The baseline

consumes the solar energy when it is available. The battery is

charged when a surplus solar energy appears. Otherwise, the

workload first discharges the battery and then uses the brown

energy. Note that, there is no opportunistic job scheduling

mechanism in the baseline algorithm.

B. Opportunistic job scheduling

As time in our system is discrete, the optimization opera-

tions are performed periodically at each slot. According to

the job characteristics, opportunistic scheduling approaches

classify the jobs into two types called here web jobs and batch

jobs. The web job is defined as non-interruptible job. It has

the highest priority on scheduling. When both types of jobs

arrive, the broker pushes them respectively to the web job

pool and then to the web queue, the batch job to the batch

pool. We adopt the FFD algorithm to place the web jobs, all

the jobs in web queue are immediately placed on the servers

which have sufficient resources. Unlike the web jobs, batch

jobs can be suspended with a slack time that may increase

the potential chance to exploit the renewable energy. When

the slack time reaches 0, the batch job is promoted as a web

job. After all the web jobs have been placed, the broker seeks

among the running servers which meet the batch jobs resource

requirement. The web job placement and batch job placement

are independent algorithms.
Recall that, opportunistic scheduling targets two problems:

1) when workload energy consumption is higher than the solar

energy supply, it runs partially the workload: it suspends the

batch jobs which have a non-null slack time and performs VM

consolidation in order to switch-off more servers. This is to

reduce the brown energy consumption. 2) Otherwise, it runs

the entire workload and the batch jobs which were delayed

before. This is to maximize the solar energy usage.
Due to the ESD efficiency, there is an energy consumption

during battery charging. In contrary, opportunistic scheduling

can reduce the effect due to battery efficiency by delaying

the batch jobs to consume the solar energy directly instead

of storing it in the battery. However, the more batch jobs are

delayed, the more numerous VM migrations will be due to

consolidation.

C. Battery charge/discharge model
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Fig. 2: Workload energy consumption and solar energy

As shown in Figure 2, the purple curve w(t) denotes
the workload energy consumption and the green curve g(t)



denotes the solar power. We observe in Figure. 2 that for areas
a1, a2 and b1, b2, the workload energy consumption is higher
than the solar energy supply. If there is no ESD, the total
energy consumption from the grid can be expressed as:

Ebrown =

t1∑

t=0

(w(t)− g(t)), ∀(w(t) > g(t)), t ∈ T (2)

When the workload energy demand is less than the solar
energy, the amount of surplus solar energy is defined as:

Esurplus =

t2∑

t=t1

(g(t)− w(t)), ∀(w(t) < g(t)), t ∈ T (3)

For day 1 on Figure 2, Ebrown = a1 + a2 and Esurplus = c1.

The battery has to be charged when w(t) < g(t). When the

solar energy is not sufficient to supply for the current workload

energy, we first discharge the battery. Once the battery runs

out, the servers then consume the brown energy from the grid.

In the rest of paper, we seek for the relationship between c1
and (a2 + b1) in different cases. Ideally, if c1 is much larger

than (a2+b1), the amount of energy produced by solar panels

is sufficient to offset the whole workload energy consumption

that takes into account an ideal ESD (it can store all the surplus

solar energy). In a real case, the battery often has limited size

and solar energy is not sufficient to compensate the workload

energy consumption (c1 < (a2 + b1)).
If we assume the ESD is ideal for both solutions, then

in baseline, the energy loss is mainly caused by the battery
efficiency. The solar energy needed can be formulated as:

c1 × σ > (a2 + b1) (4)

where σ denotes the battery energy efficiency.

V. EXPERIMENTATION CONDITIONS

We developed a trace-driven simulator to compare different

resource allocation and scheduling policies and estimate their

energy consumption using a power model based on real

measurements. The simulator integrates the data center and

ESD models described in Section III. We use it to evaluate the

impact on energy consumption with different configuration and

ESD technologies. This section presents the experimentation

conditions used in the simulator.

A. Workload trace

For all the simulations, we use the real-world trace from a

medium-scale private Cloud data center provided by Easyvirt,

a French SME which has a research partnership with this

Cloud provider. The original trace was collected from 26th of

March 2014 to 5th of July 2014. We extracted a non-holiday

week: the data consists of 787 web jobs and 3148 batch jobs.

It precises each job’s initial VM resource requirement, the

instantaneous CPU and RAM utilization. In our scenario, the

CPU and RAM utilization is averaged over 1 hour in order to

eliminate the noise. Each web job takes roughly 12 hours and

each batch job takes about 6 hours with a deadline equal to

12 hours (it has to be executed within the 12 hours following

its submission).
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Fig. 3: Solar energy production with solar panels of 5.52 m2

B. Server energy consumption model

A server power consumption is related to its different

components. Most previous studies [8] agree on the fact

that the dynamic server power consumption mainly depends

on the CPU frequency. We performed power consumption

measurements on the Grid’5000 testbed [25]. The used servers

are Dell PowerEdge R720 with two 6-cores Intel Xeon E5-

2630 processors (2.3GHz), 32 GB of RAM and 600 GB of

disk. The power consumption was taken for different CPU load

profiles as described in [7]. Our experimental results shows in

particular that a server on idle state can roughly consume half

of its maximal power consumption.

C. Solar energy trace

For solar energy production, we use a mini-scale solar

power farm which was set up in the campus of University

Nantes1. It is composed by 8 identical panels Sanyo HIP-

240-HDE4 and SMA Sunny Boy 1200 inverter. The theoretical

max power is 240 Watt per panel. Then the instantaneous peak

power can be expressed as a function of m: e.g. for a given

solar power farm with 8 panels, maxEspv = 240 × m watt

where m = 8. As shown in Figure 3, we choose the trace of

a random week (22-28 June 2015) which is mostly sunny.

VI. RESULTS

In this section, we compare the opportunistic scheduling ap-

proach and the battery approach for maximizing solar energy

utilization in a data center. First, we determine the optimal

solar panel and the optimal battery size depending on the

approach. Then we compare both approaches under various

conditions, and we combine them.

A. Find the optimal solar panel dimension

We assume that the battery size and the charg-

ing/discharging rate both approach infinite in this early exper-

iment to determine the optimal solar panel dimension for the

given workload. We seek for a ideal solar panel that can supply

the entire workload energy consumption. We first find a solu-

tion for this problem in the baseline case. Since the workload

energy consumption can be estimated statistically, the area of

solar panels can be trivially determined via calculation.

In this scenario, we assume an infinite battery size. So, it

enables to store all the surplus solar energy in the region c1
and c2 as shown in Figure 2. Due to the battery efficiency

1Traces available online: http://photovolta2.univ-nantes.fr
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Fig. 4: Workload energy/solar energy supply ratio and maxi-

mum solar energy that can be generated per unit time

and limited charge/discharge rates, the amount of surplus solar

energy has to be strictly greater than the required workload

energy in order to compensate for these intrinsic ESD losses.

Recall that, we are looking for c1 which satisfies c1 × σ ≥

a2 + b1 where σ indicates the battery efficiency. This formula

describes the energy stored during the day which furnishes

the workload energy until the solar energy becomes available

again.

Figure 4 illustrates the workload energy/solar energy supply

ratio. As the size of solar panels increase, the brown energy

consumption of the entire workload decreases. When the solar

panel area increases to 226.32 m2 (about 15× 15 meters), the

workload energy consumption reaches 0, under the assumption

of a battery with infinite size and infinite charging/discharging

rate. We later determine the optimal battery size.

B. Find optimal battery size in ideal case

In this scenario, we assume that the size of solar panels are

ideal, so equal to 226.32 m2. Thus, it can provide sufficient

energy for the workload needs. Figure 5 shows the brown

energy consumption of baseline algorithm and of opportunistic

scheduling with the same type of battery (LI battery) depend-

ing on the battery size (purple and green curves).

Fig. 5: First two curves (purple and green): brown energy

consumption with an LI ESD. Last two curves (blue and

yellow): ESD volume.

We also indicate the corresponding volume taken by the

batteries depending on their capacity for both LI and LA

types (blue and yellow curves). The brown energy of both

solutions decreases when we increase the battery size. We can

see that opportunistic scheduling always requires a smaller

battery size need than baseline, as expected. We can also see

that the workload does not consume anymore brown energy

when battery size is larger than 90 kWh (600 L for a LI

ESD) for opportunistic and 140 kWh (950 L for a LI ESD)

for baseline. So, using opportunistic scheduling decreases the

ideal battery capacity and its corresponding volume by 36%.

With opportunistic scheduling, the batch jobs are delayed in

order to be executed when solar energy is available. This has

two effects: 1) a part of solar energy is directly consumed

instead of storing it the battery; 2) despite the batch jobs

delayed run, the surplus solar energy is reduced. This is why

it can use a smaller battery size than baseline to reach the

same brown energy consumption. Figure 5 also shows that

LA volume is larger than LI. Using the price values provided

in Table I, for a 90 kWh battery, for LI, it represents 600 L

and 47,250 $, while for LA, it represents 1,150 L and 18,000

$. Both price and volume can impact the adoption of such

an approach for logistics and financial reasons. While LI and

LA batteries exhibit different characteristics, their loading and

discharging schemes behave similarly. In the remaining of the

paper, we use LI batteries without loss of generality.

C. Opportunistic vs. baseline when solar energy is not suffi-

cient for the workload

In this scenario and for all the experiments presented

below, we assume that there is not enough solar energy to

fulfill the entire workload needs. We consider the solar panel

dimension which is not able to provide sufficient solar energy

to compensate the workload energy consumption. We compare

the brown energy consumption with variable battery sizes for

the both solutions, opportunistic and baseline.

Fig. 6: Brown energy consumption with varying battery size

Figure 6 demonstrates the different battery sizes with multi-

ple configuration for the opportunistic and baseline algorithms.

The different configurations of the opportunistic scheduling

are defined as delaying 30%, 50%, 70%, 90%, 100% batch

jobs (instead of directly executing them when solar energy is

available, and thus storing it). This represents possible trade-

off between the opportunistic scheduling approach and the

ESD-based approach. We can see that the both opportunistic



and baseline reduce brown energy when the battery size

becomes large. For a given battery size which is inferior to

73 kWh, opportunistic always consumes less brown energy in

comparison with baseline. After this point, the brown energy

consumption of opportunistic approach does not decrease

any more when battery size becomes lager. In contrast, the

baseline brown consumption continues to decrease while the

battery size increases up to 110 kWh. Although all the other

configurations of opportunistic approach can get lower brown

energy with a larger battery compared with pure opportunistic

scheduling, they are still higher than baseline in this particular

case.

D. Solar energy losses with variable battery size

Fig. 7: Solar energy lost due to the limited battery size

Figure 7 shows the energy losses with varying battery sizes.

This energy losses stem from the battery limited charging rate

and size. Since the opportunistic approach delays the batch

jobs until the solar energy becomes available, the workload

here consumes solar energy directly and stores the rest of solar

energy to the battery. Thus, opportunistic can use a smaller

battery while achieving the equivalent effect as baseline.

Finally, when battery size is 80 kWh for opportunistic and

110 kWh for baseline, they both reach zero solar energy loss

caused by the battery’s limited charging rate and size.

E. Opportunistic scheduling migration vs. baseline battery

loss

Fig. 8: Migration cost vs. battery efficiency loss

Figure 8 shows the amount of energy lost with variable

battery size. Here, we focus on 2 types of energy loss: 1)

battery energy efficiency; 2) VM migration energy cost. In

baseline, as the size of battery increases, the energy loss

increases; this happens because of battery energy efficiency

and of very few VM migrations due to overloaded servers

(over-commit policy). Hence, the choice of battery type highly

impact the waste of energy.

For the opportunistic approach, the energy loss mainly

depends on: 1) migrations caused by consolidation; 2) the

rest is same as baseline that is the battery efficiency. Since

the solar energy was not sufficient enough for the workload

needs, the opportunistic algorithm has to suspend some batch

jobs and to perform consolidation in order to keep a low

number of powered-on servers. And the delayed batch jobs

then are executed when solar energy become available again.

The delayed workload directly consumes the solar energy

and the remaining solar energy is stored in the battery. Thus

the opportunistic approach stores less energy than baseline

in the ESD, and thus the loss due to battery efficiency are

lower with the opportunistic approach. However, the total

solar energy is not sufficient for the entire workload in this

case, the opportunistic approach periodically performs VM

consolidations that may lead to a number of VM migrations.

This migration energy cost compensates that gain. For this

reason, it can be better to partially delay the batch jobs

(respectively 10, 30, 50 and 70% are delayed). In fact, when

we delay less batch jobs, it leads to less migrations by

consolidation, but more energy will be stored in the ESD.

There is a balance for the opportunistic approach between the

energy loss caused by migrations and by battery efficiency.

We observe that when there are 30% batch jobs delayed, the

energy loss which contains the migration energy overhead

and battery efficiency, the opportunistic approach gets a lower

energy loss than baseline when battery size is greater than 40

kWh.

F. FFD scheduling impact

For a given workload such as ours, the opportunistic ap-

proach has a lower energy loss in comparison with baseline

when it delays 30% batch jobs. Unfortunately, in Figure 6,

the opportunistic approach consumes more brown energy than

baseline. It seems that the result is in conflict with the result

in Figure 8. After our analysis, there is also an impact from

the two consecutive FFD algorithms (for web and batch jobs)

that leads the opportunistic approach to need more servers to

place the same amount of jobs compared with baseline.

There is a performance degradation when we change the

input list size; e.g. for any list L with a length l, FFD(L) ≤
11/9OPT (L)+1 as mentioned in Section IV-A. If we divide

the list L into 2 sub-lists L1 with a length 0 < l1 ≤ n− t and

L2 with length 0 < l2 ≤ t, FFD(L1) ≤ 11/9OPT (L1) + 1
and FFD(L2) ≤ OPT (L2) + 1. The performance may

be different between FFD(L) and (FFD(L1) + FFD(L2)). In

case of our simulation results, we observe that there is a

performance degradation with the number of bins needed:



FFD(L) ≪ (FFD(L1) + FFD(L2)). This explains why the

opportunistic scheduling has a lower energy loss than baseline

in Figure 8, but it consumes more brown energy than baseline

in Figure 6 when the battery size is large enough.

VII. CONCLUSION

Integrating renewable energy into data centers significantly

reduces the traditional energy consumption and carbon foot-

print of these energy-hungry infrastructures. As renewable

energy is intermittent and fluctuates with time, it is usually

under-utilized. In this paper, we address the problem of

improving the utilization of renewable energy for a single

data center by using 2 approaches: opportunistic scheduling

and energy storage. Our first result deals with analyzing the

workload to find ideal solar panel dimension and battery size,

this is used to power the entire workload without any brown

energy consumption. However, in reality, either the solar panel

dimension or the battery size are limited, and we still have to

address the problem of matching the workload consumption

and renewable energy production. The second result shows that

opportunistic scheduling can reduce the demand for battery

size while the renewable energy is sufficient. The last results

demonstrate that for different battery sizes and solar panel

dimensions, we can find an optimal solution combining both

approaches that balances the energy losses due to different

causes such as battery efficiency and VM migrations due to

consolidation algorithms. Our future work includes studying

the pertinence of both approaches with other renewable energy

sources, like wind for instance. As wind energy presents

a completely different production profile compared to solar

energy, we would like to investigate whether the trade-off

between the opportunistic scheduling and energy storage ap-

proaches which is proposed in this paper remains the same or

would be different.
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