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ABSTRACT

Regression testing is an important activity but can get ex-
pensive for large test suites. Test-suite reduction speeds
up regression testing by identifying and removing redun-
dant tests based on a given set of requirements. Traditional
research on test-suite reduction is rather diverse but most
commonly shares three properties: (1) requirements are de-
fined by a coverage criterion such as statement coverage;
(2) the reduced test suite has to satisfy all the requirements
as the original test suite; and (3) the quality of the reduced
test suites is measured on the software version on which the
reduction is performed. These properties make it hard for
test engineers to decide how to use reduced test suites.

We address all three properties of traditional test-suite
reduction: (1) we evaluate test-suite reduction with require-
ments defined by killed mutants; (2) we evaluate inadequate
reduction that does not require reduced test suites to sat-
isfy all the requirements; and (3) we propose evolution-aware
metrics that evaluate the quality of the reduced test suites
across multiple software versions. Our evaluations allow a
more thorough exploration of trade-offs in test-suite reduc-
tion, and our evolution-aware metrics show how the quality
of reduced test suites can change after the version where the
reduction is performed. We compare the trade-offs among
various reductions on 18 projects with a total of 261,235
tests over 3,590 commits and a cumulative history spanning
35 years of development. Our results help test engineers
make a more informed decision about balancing size, cover-
age, and fault-detection loss of reduced test suites.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Experimentation, Measurement

Keywords: Test-suite reduction, software evolution

1. INTRODUCTION

Developers often build regression test suites that are au-
tomatically run as the software evolves. Modern software
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evolves fairly quickly, with changes pushed to repositories
even several times per minute [7,10,12]. Meanwhile, regres-
sion test suites also grow, and even older reports mention
real-world regression test suites that could take weeks to
finish [33,34]. As a result, regression testing is becoming
more important but also more expensive.

Test-suite reduction [22-24,29,31,38,41,42] is an approach
to make regression testing faster. The goal is to identify tests
that can be removed from a test suite without substantially
reducing its fault-detection capability. Most test-suite re-
duction techniques identify such tests based on satisfying
redundant test requirements. Each test satisfies certain re-
quirements, e.g., covers certain statements or branches for
the statement or branch coverage criteria. A test ¢ from a
test suite 7 is redundant [38] if ¢ satisfies only the require-
ments satisfied by the other 7\ {¢} tests from the test suite.

Researchers have proposed many algorithms to identify
redundant tests [11, 13, 14, 22-24, 26, 29, 35, 36]. (Yoo and
Harman present an extensive survey of regression testing,
including test-suite reduction [38].) Removing redundant
tests from an original test suite produces a reduced test
suite. Prior research measured the quality of reduced test
suites in comparison to the original test suites mostly by
two metrics. The reduction in test-suite size is most com-
monly measured as the ratio of the number of tests removed
from the original test suite to the number of tests in the
original test suite. The loss in fault-detection capability is
most commonly measured as the ratio of the number of
faults missed by the reduced test suite to the number of
faults detected by the original test suite; the faults are ei-
ther automatically generated mutants or manually seeded
faults [11,22,24,26,29,31,32,35,36,38,41]. Some prior work
also used other metrics, e.g., test-execution cost or coverage
of fault history, as discussed in Section 7.

Despite a variety of techniques, most traditional test-suite
reduction research shares three properties. First, redundant
tests are determined with respect to some structural or data-
flow coverage criteria, e.g., statement coverage [11,13,22,41],
block coverage [35,36], branch coverage [24,31], or def-use
coverage [23,24]. Second, test-suite reduction produces a
reduced test suite that covers exactly the same requirements
as the original test suite; we call this adequate test-suite
reduction. Third, evaluation of the effectiveness of test-suite
reduction was conducted only on the same software version
on which reduction was performed.

These three properties of traditional test-suite reduction
research limit the insight into the trade-offs of reduced test
suites. Consider a test engineer who needs to decide whether



to use the original test suite or a reduced test suite. We can
distinguish two scenarios. One scenario is to permanently
remove redundant tests from the original test suite and keep
only the reduced test suite. Such reduced test suites run
faster, but the removed tests could detect faults that the
remaining tests in the reduced test suite would not detect
as software evolves. The other scenario is to keep both the
reduced test suite and the original test suite, but run the
reduced test suite more often, e.g., run it for all software
changes during day and then run the original test suite only
during night. In both scenarios, the test engineer needs to
balance the reduction in the test-suite size with the risk that
the fault-detection capability of the reduced test suite does
not degrade substantially compared to the original test suite
as the project evolves'.

In this paper we address the three properties of traditional
test-suite reduction. First, we evaluate test-suite reduction
based on killed mutants rather than traditional coverage, i.e.,
the reduced test suite has to kill the same mutants killed by
the original test suite; this reduction was proposed by Of-
futt et al. [30] almost 20 years ago but not widely evaluated.
We also propose an even stronger reduction that requires
the reduced test suite to preserve both statement coverage
and killed mutants of the original test suite. Second, we
evaluate inadequate test-suite reduction where the reduced
test suite need not cover all the requirements as the original
test suite [37]. Such inadequate reduction leads to higher
reductions in test-suite size at the expense of higher losses
in fault-detection capability. Third, we introduce novel re-
duction metrics based on software evolution. Our metrics
evaluate the code coverage and fault-detection capability of
reduced test suites on multiple software versions.

We make the following contributions:

Test-Suite Reduction Based on Killed Mutants We
evaluate using killed mutants as requirements for test-suite
reduction (potentially combined with the more traditional
test-suite reduction based on statement coverage) to achieve
lower loss in fault-detection capability (at the expense of
lower reduction in test-suite size).

Inadequate Reduction We evaluate inadequate reduction
that relaxes the constraint of covering all requirements when
performing test-suite reduction to achieve higher reduction
in test-suite size (at the expense of higher loss in fault-
detection capability).

Evolution-aware Metrics We propose novel evolution-
aware metrics to evaluate the impact of software evolution
on reduced test suites.

Extensive Evaluation We explore the trade-offs of test-
suite reduction based on killed mutants and inadequate re-
duction with both traditional and our proposed evolution-
aware metrics on 18 projects with a total of 261,235 tests,
over 3,590 commits, and spanning 35 years of cumulative
evolution history. To the best of our knowledge, this is the
largest dataset used for evaluating test-suite reduction.

The results show that traditional reduction based on state-
ment coverage can reduce test-suite size on average 62.9%
but loses up to 20.5% in killed mutants. In contrast, the
reduction based on killed mutants achieves no loss in killed
mutants with 11.9pp? increase in size over test suites re-

!Note that test-suite reduction does not explicitly consider
software changes from software evolution, unlike regression
test selection that chooses tests based on software changes.
2Here “pp” stands for “percentage points” which are used to

duced using statement coverage. The reduction based on
both statement coverage and killed mutants has no losses in
those requirements but has 2.7pp increase in test-suite size
compared to the reduction based on killed mutants. Hence,
a test engineer who plans to permanently remove redundant
tests may prefer to use one of the reductions based on killed
mutants instead of the traditional reduction based on cov-
ered statements.

Further, by allowing the reduced test suite to satisfy 95%
instead of 100% of the original test suites’ requirements, the
median reduction in test-suite size increases by 17.14pp. We
show how relaxing the coverage further results in even higher
reductions in test-suite size. Hence, a test engineer who
plans to use both the reduced test suite and the original test
suite may prefer to use some inadequate reduction instead
of the traditional adequate reduction.

Finally, we evaluate for all kinds of reductions how the
killed mutants of reduced test suites change as software
evolves. We find the numbers to remain fairly stable, drop-
ping on median by at most 0.76pp even after many software
versions. Hence, a test engineer deciding whether/how to
use the reduced test suite can be relatively confident that
making the decision based on the current software version is
likely to reflect what happens in the future software versions.

2. BACKGROUND

We first describe the traditional test-suite reduction and
commonly used reduction algorithms. We then revisit the
three properties frequently shared in traditional test-suite
reduction research: (1) requirements are defined by code
coverage criteria, (2) reduction algorithms perform adequate
test-suite reduction, and (3) evaluations of reduction algo-
rithms use only one software version.

DEFINITION 1. Traditionally [38], a test-suite reduction
algorithm Algo takes two inputs: (1) a function p that re-
turns the set of satisfied requirements for a given test suite
and (2) the original test suite O to be reduced. It returns
a reduced test suite R C O that satisfies the same require-
ments as the original test suite:

Algo(p,O) = R, such that p(O) = p(R)

2.1 Requirements

Code coverage is widely used for measuring the quality of
test suites. A coverage criterion defines a set of requirements
and measures which requirements a given test suite satisfies.
For example, statement coverage measures which statements
are covered during a test-suite run.

Previous research on test-suite reduction has often used
statement coverage to detect redundant tests [11,13,14,22,
41], i.e., the first argument of Algo was the stmt function
that returns the set of covered statements for a given test
suite. Other criteria were also used for test-suite reduction,
e.g., block coverage [35, 36], branch coverage [24, 31], and
def-use coverage [23,24]. In the remaining text, we use the
term technique to refer to an algorithm instantiated with a
function that returns the satisfied requirements.

describe differences between values expressed in percentages
to avoid the following example ambiguity: if a value is 51%
and increases 11.9%, does it become 57.06% or 62.9%7 The
increase of 11.9pp means that it becomes 62.9%.



2.2 Reduction Algorithms

The most popular traditional reduction algorithms cre-
ate reduced test suites that satisfy the same requirements
as the original test suite, i.e., p(O) = p(R). We thus call
them adequate test-suite reduction algorithms. Specifically,
when a traditional test-suite reduction algorithm is instanti-
ated with statement coverage, we call it Statement Adequate
Reduction (SAR) technique.

The most widely used algorithm is Greedy [14], which iter-
atively selects the test that satisfies the most requirements
not previously satisfied. More precisely, starting with an
empty set of tests R, and an empty set of satisfied require-
ments p(R), the Greedy algorithm selects at each step a
test ¢t € O that satisfies the highest number of requirements
not in p(R), and adds the selected test to R. This process
continues until p(O) = p(R). When two or more tests sat-
isfy the same number of requirements, various strategies can
be used to break ties to determine the next test to add to
R. We currently break ties randomly as commonly done in
prior work [13,14,23,31,32,41,42].

The other commonly used algorithms for test-suite reduc-
tion are GE, GRE, HGS, and ILP; their details are available
elsewhere, e.g., in the regression-testing survey [38].

2.3 Evaluating Reduction Algorithms

Studies [11, 22,24, 26,29, 31, 32, 35, 36, 41] that evaluated
test-suite reduction algorithms used mainly two metrics—
reduction in test-suite size and loss in fault-detection ca-
pability—to measure the quality of the reduced test suites
on the one software version on which the reduction is per-
formed. The size reduction was measured as the ratio of
tests removed from the original test suite over the number
of tests in the original test suite:

SizRed = (|O| — |R])/|O| x 100

The loss in fault-detection capability was measured as the
ratio of the number of faults missed by the reduced test suite
over the number of faults detected by the original test suite:

MutLoss = (Jmut(O)| — |mut(R)])/|mut(O)| x 100

where mut is the function that returns the set of detected
faults for the given test suite. Due to the challenges in
collecting a large number of known real faults per project,
researchers most commonly evaluated reduction algorithms
using mutation testing or manually seeded faults.

Mutation testing [8,15,21,22,25,39-41] systematically in-
serts syntactic changes, called mutants, in code and mea-
sures how many of these mutants are killed by a given test
suite; a mutant is considered killed if at least one of the tests
fails (and the same test passes in the non-mutated run).
The quality of a test suite is measured as the ratio of the
number of killed mutants over the total number of system-
atically inserted mutants; this ratio is called the mutation
score. Previous research on test-suite reduction measured
the effectiveness of reduction algorithms by comparing the
mutation score of the reduced test suite to the mutation
score of the original test suite [22,41]. We also use mutation
score to evaluate a test suite’s fault-detection capability.

Interestingly, previous studies reported conflicting find-
ings in terms of the loss of fault-detection capability: re-
duced test suites sometimes had low loss [35, 36, 41] and
sometimes had high loss [22,24, 29,31, 32].

Additionally, Yoo and Harman [37] used multi-objective

optimizations to consider multiple metrics at once (includ-
ing execution cost, approximated by the number of instruc-
tions to obtain a machine-independent metric). While they
applied these optimizations to perform test selection and
prioritization, one could apply them also to test-suite re-
duction. However, in this study, we use only the size of the
test suite as a proxy for execution cost.
Limited Evaluation: To summarize, we are concerned
with three properties of test-suite reduction research. (1) Re-
quirements based on code coverage may result in relatively
small reduced test suites that do not preserve well the fault-
detection capability of the original test suites. (2) Adequate
test-suite reduction may result in relatively large reduced
test suites, and if more size reduction is acceptable, the loss
in the fault-detection capability may not be high. (3) All
previous studies evaluated each reduced test suite only on a
single software version on which the suite is reduced, which
may not give enough insight into the quality of reduced test
suites through evolution.

3. NEW EVALUATION METHODOLOGY

We next describe our evaluation that extends the tradi-
tional research on test-suite reduction. Specifically, we eval-
uate (1) requirements for test-suite reduction based on killed
mutants, (2) inadequate reduction that achieves higher re-
ductions in test-suite size by relaxing the requirements that
a test-suite reduction algorithm has to satisfy, and (3) novel
metrics to evaluate test-suite reduction algorithms by mea-
suring the impact of software evolution on the reduced test
suites produced by each algorithm.

3.1 Requirements

Considering the importance of preserving the high mu-
tation score after test-suite reduction, we evaluate require-
ments defined by killed mutants and requirements defined
by a combination of statement coverage and killed mutants.

3.1.1 Mutant Adequate Reduction

Mutant Adequate Reduction (MAR) technique reduces a
test suite based on killed mutants [30]. Instead of finding
a reduced test suite that covers the same statements as the
original test suite (as done by SAR), MAR finds a reduced
test suite that kills the same mutants (and thus achieves
the same mutation score) as the original test suite. In other
words, the first argument in the reduction algorithm, i.e.,
p in Algo (Definition 1), is the mut function that returns
the set of mutants killed by a given test suite. All test-
suite reduction algorithms we evaluate can then use killed
mutants instead of covered statements as requirements.

3.1.2 Statement-Mutant Adequate Reduction

Statement-Mutant Adequate Reduction (SMAR) technique
reduces a test suite based on both statement coverage and
killed mutants. It creates one joint set of requirements of
all statements covered and all mutants killed by the origi-
nal test suite. Although SMAR by definition preserves both
statement coverage and killed mutants, it is important to
explore the reduction in test-suite size that SMAR provides.

3.2 Reduction Algorithms

Most traditional test-suite reduction algorithms aim to
find a reduced test suite that satisfies all requirements sat-
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Figure 1: Visualized collected data used to calculate
novel metrics, where p = {stmt, mut}

isfied by the original test suite, be the requirements all state-
ments covered (SAR) or all killed mutants (MAR) or both
(SMAR). However, if the goal is to greatly reduce the test-
suite size, it may be acceptable to have some loss in both
statement coverage and killed mutants [37].

We evaluate inadequate reduction: instead of producing a
reduced test suite that satisfies 100% of the requirements of
the original test suite, the reduced test suite can satisfy less
than 100% of the requirements (e.g., 95% of the statements
covered by the original test suite).

DEFINITION 2. An inadequate reduction algorithm takes
three inputs: (1) a function p that returns the set of satisfied
requirements for a given test suite, (2) the original test suite
O, and (8) the percentage 0 <1 < 100 of requirements that
must be satisfied. It returns a reduced test suite R C O that
satisfies (at least) 1% of the requirements satisfied by O:

InAlgo(p, O,1) = R, such that |p(R)| > 1/100 x |p(O)|

Note that InAlgo is a more general form of Algo, i.e., InAlgo
with [ = 100 is equivalent to Algo.

While InAlgo can be applied to any set of requirements, we
particularly identify Statement Inadequate Reduction (SIR),
which achieves less than 100% statement coverage of the
original test suite (InAlgo is evaluated with the stmt func-
tion and ! < 100), and Mutant Inadequate Reduction (MIR),
which achieves less than 100% killed mutants of the origi-
nal test suite (InAlgo is evaluated with the mut function and
[ < 100). Both SIR and MIR can be instantiated to any
I between 0 and 100, which we call inadequacy level. We
adjust the Greedy algorithm to select tests for the given in-
adequacy level. Note that the actual percentage of satisfied
requirements may be higher than the given [ if no set of tests
can achieve the exact value.

3.3 Evaluating Reduction Algorithms

Previous research measured the size reduction (SizRed)
and the loss in fault-detection capability (MutLoss) of each
reduced test suite on only one single version. We propose an
approach for evaluating reduction techniques by measuring
how the quality of each reduced test suite varies over multi-
ple project versions. Furthermore, we propose several other
metrics, besides killed mutants, to better characterize the
quality of the test suite over multiple versions. We believe
that our metrics, by accounting for software evolution, give
a better insight into the effectiveness of test-suite reduction
techniques than the previously used metrics give.

As our evaluation introduces a temporal dimension (along
software versions), we extend our previous notation to in-
clude this new dimension. We denote the original test suite
at version ¢ as O; and the reduced test suite (obtained by
a reduction technique on O;) at version ¢ as R;. We use 7;
to refer to any test suite at version i. The function p’(7;)

returns the set of requirements satisfied at version j by the
test suite 7; N O;. As earlier, p € {stmt, mut}, i.e., it either
returns the set of covered statements or the set of killed
mutants. Note that p?(7;) accounts for the tests that were
removed between versions ¢ and j (7; \ O;). In our exper-
iments, the tests are considered removed if they are either
deleted altogether or renamed/moved. p?(7;) ignores newly
added tests (i.e., O; \ 7;) because our goal is to evaluate
how the quality of the reduced test suite compares relative to
the original test suite as software evolves. In other words, if
a test engineer needs to decide whether to use the original
test suite or the reduced suite, what matters is the compar-
ison among those two and not the fact that both of them
can be further extended with more tests as software evolves.
Finally, we introduce a function dist(%, j) that calculates the
distance between versions i and j, i.e., 7 — ¢ if ¢ and j are
integer version numbers and ¢ < j.

Figure 1 visualizes the computation of p values at each
version. Columns and rows correspond to the sequence of
project versions used to evaluate a reduction algorithm. For
each row/version i, we evaluate p?(0;) and p?(R;) for each
column /version j. Namely, we measure the number of state-
ments covered and the number of mutants killed for the orig-
inal test suite at version 7 (and reduced test suite at version
1) on version j, with version j later than version ¢ in history.

3.3.1 Impact of Evolution on Statement Coverage

We measure how the evolution impacts statement cover-
age of the reduced test suite with respect to the coverage of
the original test suite. To measure this impact, we define
statement coverage loss between two project versions.

DEFINITION 3. Statement coverage loss between versions
i and j is:

StmtLoss! = (|stmt? (0;)] — |stmt?(R;]))/|stmt? (O;)| x 100

Namely, the statement coverage loss measures the ratio
of statement coverage missed by the reduced test suite over
the statement coverage achieved by the original test suite,
at the same version or subsequent versions.

In the traditional evaluation approach, the statement cov-
erage loss would always be 0, because the original test suite
and the reduced test suite achieve the same statement cov-
erage by construction on the current version ¢, and no other
versions would be considered. In other words, the tradi-
tional approach only considers the diagonal elements from
Figure 1. In contrast, our approach measures the statement
coverage loss for all versions 7 and j such that dist(z, j) > 0.

We measure the statement coverage loss for the follow-
ing reasons. First, the statement coverage of the reduced
test suite can vary as software evolves. It is important to
quantify the variation and evaluate if the reduced test suite
remains equally good (compared to the original test suite) as
on version ¢ on which the reduction was performed. Second,
if test-suite reduction is performed using algorithms param-
eterized with our requirements, it is important to evaluate
the impact of such reduction on statement coverage and con-
trast the loss in statement coverage with the loss in killed
mutants, which we discuss next.

3.3.2  Impact of Evolution on Killed Mutants

We measure how the killed mutants vary between versions
for the original and reduced test suites. Previous research



only evaluated the effectiveness of the reduced test suite on
the version on which the reduction was performed (the el-
ements on the diagonal in Figure 1). The effectiveness was
often measured using MutLoss.

We introduce the mutants killed loss, which measures the
impact of evolution on the effectiveness of the original and
reduced test suites.

DEFINITION 4. Mutants killed loss between two versions i
and j is:

MutLoss! = (|mut’(O,)| — [mut! (R;)])/|mut’ (O;)| x 100

Namely, the mutants killed loss measures the ratio of mu-
tants not killed by the reduced test suite over mutants killed
by the original test suite, at the same version or subsequent
versions. Note that by setting i = j, we get the formula
commonly used in the traditional approaches for evaluating
test-suite reduction techniques.

3.3.3 Relative Evolution Change

To further compare the changes in both statement cov-
erage and killed mutants across different software versions
between different projects, we introduce Relative Evolution
Change (REC).

DEFINITION 5. Given a test suite reduced at version i, the
Relative Evolution Change at version j is:

REC/ = Loss! — Loss!

where Loss € {StmtlLoss, MutLoss}, i.e., REC can be cal-
culated for either statement coverage loss or mutants killed
loss. REC is defined to be the loss in evolution metrics
some number of versions after reduction. The higher the
REC, the more loss, and therefore the worse the reduced
test suite performs (compared to the original test suite) as
the software evolves across versions. The metric reported
for every project is a relation between the reduced test suite
and the original test suite, so the REC can be compared
across projects. Therefore, we can define REC; = {REC! |
for all ¢ and j such that d = dist(, j)}, i.e., REC is parame-
terized only by the distance from the initial reduction. This
allows us to compare REC, for various distances across var-
ious projects. Our goal is to evaluate the impact of distance
on the reduced test suites.

Note that REC, can have a positive value or a negative
value. A positive value would indicate that changes had
negative impact on the reduced test suite (more loss com-
pared to original test suite in a later version). On the other
hand, a negative value would indicate a positive impact on
the reduced test suite, i.e., the changes cause the reduced
test suite to be closer in quality to the original test suite.
We define REC stability as the difference between min and
max REC values across all versions considered.

4. EVALUATION

This section describes our evaluation of test-suite reduc-
tion on a set of 18 medium-sized, open-source projects from
GitHub. We first describe the projects used in our study.
We then describe the results obtained on a single software
version, as often done in the traditional test-suite reduc-
tion. We next describe the results obtained by analyzing
reduced test suites as software evolves as proposed in this

paper; overall, our experiments consider the evolution of the
projects over a total number of 3,590 commits. We finally
describe the results for inadequate reduction.

We ran all our experiments on a 2.66GHz Intel Xeon
X5650 machine with 16GB of RAM, running Scientific Linux
6.5 and Java OpenJDK 64-Bit Server version 1.7.0_51. The
total machine time to run all our experiments is approxi-
mately eight days.

4.1 Implementation

We use the PIT mutation tool [5] to collect the statement
coverage and killed mutants for each test suite. PIT uses 15
mutation operators, including these: replace numerical con-
stant, negate conditional, replace arithmetic operator, and
remove method calls. We chose PIT because it is somewhat
robust and has been recently deployed in industry, but we
still had to make two modifications to PIT to collect all the
data required for our experiments. First, we extended PIT
to collect the full coverage and kill matrices that record for
each test in the test suite the statements it covers and the
mutants it kills. Out-of-the-box, PIT stops running tests on
a mutant as soon as one test kills the mutant. However, to
evaluate test-suite reduction, we wanted to collect for each
mutant the set of all the tests that kill the mutant. That
way we can determine which mutants would be killed by
various reduced test suites directly from the matrices, with-
out rerunning PIT on those reduced test suites. We define
a mutant to be killed if a test fails or errors when running
on the mutated code; PIT ignores the cases where the test
times out on the mutated code. Second, we modified PIT to
ignore tests that fail on the original (not mutated) code due
to PIT instrumentation. By default, PIT stops execution
when a test fails on the original code. However, to collect
data for more projects, we changed PIT to ignore such tests
and to continue execution.

Following the traditional literature sources [11,13, 14,23,
41, 42], we implemented the Greedy, GE, GRE, HGS, and
ILP reduction algorithms that can operate on the collected
matrices. To implement the ILP algorithm, we used IBM’s
CPLEX Optimizer solver version 12.3 [2].

For baseline comparison, we also implemented random re-
duction that, given a test suite and a desired size, selects
a random subset of the given size from the given test suite.
We create random test suites of the same size as the reduced
test suites created by the other reduction algorithms, giving
a random test suite corresponding to each reduced test suite.

4.2 Projects

As subjects of our evaluation, we select Java projects
from GitHub that are built through Maven [4]. We focus
on Maven projects to simplify the automation of running
mutation testing using PIT, as PIT integrates well with
Maven. Initially, we downloaded the 2,000 most popular
Java projects on GitHub and selected the projects that sat-
isfy these four conditions: (1) the project uses Maven (876
out of 2,000); (2) the software history of the project has
more than 100 commits (655 out of 876); (3) PIT can suc-
cessfully run tests on the latest version of the project® (44
out of 655), i.e., without crashing or reporting an internal
error; and (4) after running PIT over several commits from
the project and eliminating runs for which PIT failed, the
project should have at least four data points (18 out of 44).

3In Git, the version we used is HEAD of the master branch.



1. 2 3 4. 5 6 7. 8. 9. 10. 11. 12. 13. 14.
LOC Tests Mutants Mut Score (%)
Project Ver Min Med Max Min Med Max Min Med Max Min Med Max
Commons-Lang 10 61,353 62,224 64,038 2,291 2,365 2,480 | 25,415 25,620 26,538 | 80.0 80.1 80.3
AssertJ-Core 8 | 55443 63,829 67,282 | 4,055 4,864 5269 | 7,601 8,988 10,004 | 82.1 853 87.4
Square Wire 4 6,410 10,327 12,019 19 49 61 3,415 4,736 5,625 | 77.1 788 79.1
Jasmine 6 1,640 3,912 4,348 7 82 118 377 1,005 1,210 | 43.5 59.9 61.4
Dropwizard 6 11,477 11,849 12,536 270 291 318 5,041 5,489 5,092 | 64.5 664 73.1
GS-Collections 10 | 147,899 168,088 205,637 | 12,627 13,519 16,612 | 44,417 49,347 57,600 | 83.9 84.1 84.6
Scribe-Java 8 2,497 3,803 5,957 38 59 99 579 974 1,622 | 34.7 49.5 59.4
Cloudera ML 4 5,142 6,417 8,366 14 16 39 2,723 3,283 4,641 | 35.6 37.7 414
Caelum V|raptor 5 31,176 31,964 32,997 985 1,081 1,124 9,338 9,667 9,733 | 725 751 753
Cloudfoundry 6 | 14957 19317 25,648 103 141 477 | 4155 5,737 9,852 | 45.8 51.1  52.9
LA4J 9 8,094 10,613 12,555 172 437 625 7,062 8,408 9,086 | 42.7 44.7 58.1
JodaTime 7 81,324 82,052 83,610 3,834 3,924 4,033 | 27,451 27,750 28,382 | 72.2 724 T4.3
MessagePack 10 | 23,724 34,381 41,542 428 1,117 1,148 | 6,243 6,856 11,452 | 37.2 53.7 59.4
SLF4J 10 10,356 11,292 12,023 76 85 106 2,486 2,618 2,992 | 27.2 285 289
JOPT-Simple 5 6,636 7,863 8,569 394 621 657 1,561 1,608 1,796 | 92.7 94.2 94.6
Java-APNS 8 1,362 2,822 3,839 15 62 87 337 734 1,122 | 30.3 40.9 574
Caelum Stella 9 19,100 27,229 36,002 387 524 660 4,341 4,653 5,615 | 66.7 68.4 74.5
SQL-Parser 6 13,632 15,532 17,5677 48 109 243 9,615 11,437 12,778 | 23.3 28.6 33.7
[ Mean over ver [ -1 36,838 | 1,994 | 11,366 | 60.7% |

Figure 2: Statistics of projects used in our experiments
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Figure 3: SizRed, StmtlLoss, and MutlLoss for different
requirements using Greedy algorithm

In the end, we obtained 18 projects, and we refer to their
commits for which we collected data as versions.

Overall, we collected data for a total of 131 versions from
all 18 projects. We select each version by counting back-
wards 30 commits at a time from the HEAD commit of
each project? up to 10 versions per project. (A project may
have fewer than 10 versions if either it did not use Maven in
the past or PIT starts failing at an earlier commit.) If the
project does not build or work with PIT at some commit, we
go back one commit at a time until we obtain a version that
works. Note that we regenerate new mutants for every soft-
ware version. We do not sample mutants but rather use all
mutation operators available in PIT. After collecting data
for all versions for a project, we automatically remove from
each version the tests that were manually renamed/moved
in subsequent versions.

Figure 2 shows, for each project, the number of versions
used in our experiments along with some statistics about
them. Columns 3-5 show the min, median, and max lines of

4We consider only commits on the master branch to properly
track the main (linear) software evolution.

code for the project across the versions used in the experi-
ments, obtained using SLOCCount [6]. Columns 6-8 show
min, median, and max number of tests across the versions
used in the experiments. Columns 9-11 show min, median,
and max number of mutants generated by PIT. The last
three columns show min, median, and max mutation score,
as reported by PIT. The last row in Figure 2 shows mean
values across all 131 versions.

4.3 Single Version Evaluation

In this section, we report the quality of the reduced test
suites by SizRed, StmtLoss, and MutlLoss for a single soft-
ware version at a time, i.e., diagonal elements in Figure 1.
Figure 3 summarizes the results. The values are calculated
across all 18 projects. SAR, MAR, and SMAR columns
show the values obtained by the Greedy algorithm using cov-
ered statements, killed mutants, or both as requirements,
respectively. (The values for other algorithms differ only
marginally; we further discuss difference between algorithms
in Section 5.) We compare the Greedy algorithm instances
for various requirements among each other and with our
baseline random reduction. We consider three randomly re-
duced test suites with the same sizes as the sizes of test suites
reduced through the Greedy algorithm with the various re-
quirements. We denote the algorithm on which the size is
based in the subscript (e.g., Randyar is random selection
with the same size as Greedy with MAR requirements).

Random Reduction The Rand columns in Figure 3 show
that random reduction performs worse than Greedy, regard-
less of the requirements. With the substantial loss in state-
ment coverage and killed mutants of up to 55.2% and 55.7%,
respectively, we use random reduction only for research com-
parison and do not suggest its use in practice.

Adequate Reduction As anticipated, SAR and SMAR
achieve the same statement coverage as the original test
suite, while MAR and SMAR achieve the same killed mu-
tants as the original test suite. Statement coverage for MAR
can be less than the original, ranging from 0.0% to 14.9%
(median of 2.1%) loss in statement coverage. For SAR, the
original loss in killed mutants ranges from 0.2% to 20.5%
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Figure 4: REC for StmtlLoss (left) and MutlLoss (right) for suites reduced randomly at the same size of their

corresponding Greedy reduced test suites
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Figure 5: REC for Stmtloss (left) and MutLoss (right) for suites reduced using Greedy

(median of 3.5%). Based on these metrics, SMAR achieves
the best for both requirements, having no initial loss in
statement coverage or killed mutants. The size of the test
suites shows that SAR gives the largest reductions in test-
suite size, ranging from 29.2% to 92.9% (median of 62.9%).
SMAR gives the smallest reductions in test-suite size, rang-
ing from 10.5% to 91.0% (median of 48.3%). MAR reduc-
tions in test-suite size fall between the other two, ranging
from 10.5% to 91.5% (median of 51.0%). Considering that
the most widely used traditional metric to evaluate the qual-
ity of reduced test suites is killed mutants, we believe that
using MAR is preferred over SAR; MAR achieves high killed
mutants, with good size reduction. However, considering
that SMAR has only a median of 2.7pp loss in reduction
of test-suite size compared to MAR, while SMAR achieves
maximum in both requirements, we believe SMAR could
be the best approach to test-suite reduction if sufficient re-
sources are available to run the reduced test suites.

In summary, the loss in killed mutants for the traditional
SAR does not rise above 20.5%. In comparison with some

prior studies that found significant losses (around 40%-50%
in most cases) in fault-detection capability on the version
of reduction [22, 24,29, 31, 32], our results show that test-
suite reduction has less significant losses on killed mutants,
similar as reported by some other studies [35,36,41].

4.4 Evolution-Aware Evaluation

Following the methodology described in Section 3, we eval-
uate how different test-suite reduction techniques perform
over 131 versions of all projects. Similar to the previous
section, we compare the Greedy algorithm, instantiated for
various requirements, with our baseline random reduction.
We compare the REC trends for all these techniques by com-
paring the stability of REC values. To show the distribution
of RECs, we use boxplots. Each boxplot (figures 4 and 5)
shows a distribution of RECs for all projects for one of the
distance values; the i-th boxplot shows distribution of all
REC;. We use red @, blue @, and orange O to illustrate how
the number of killed mutants of the reduced test suite varies
as software evolves for SAR, MAR, and SMAR respectively.
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(The light blue 0 and yellow O boxplots are for MIR and
SIR as described later.)

Random Reduction Figure 4 shows the REC trends for
the randomly reduced test suites. The left and right plots
in Figure 4 show trends for statement loss RECs and mu-
tant loss RECs, respectively. We cut the boxplots to only
show 10% over the whiskers for better visualization. First,
we can observe that random reduction variants (i.e., vari-
ous targeted size) achieve similar stability. Second, REC
of statement coverage is less stable than REC of killed mu-
tants for all three sizes considered. While statement cover-
age can be more significantly affected (-8pp to 4pp), REC of
killed mutants changes less as software evolves (-6pp to 2pp).
This surprising result—higher stability—illustrates that the
killed mutants of reduced test suites are not influenced even
after a large number of commits.

Adequate Reduction Figure 5 shows the REC trends for
SAR, MAR, and SMAR (that use the Greedy algorithm);
the left and right plots in Figure 5 show trends for state-
ment loss and mutant loss RECs, respectively. We noticed,
similar to random reduction, that REC for statement loss
(ranging from -4pp to 4pp) is less stable than REC for mu-
tant loss (-3pp to 2pp). For all requirements used for re-
duction, the overall trend is a slight increase in loss over
versions. Surprisingly, although SAR starts at a lower level
of killed mutants, it is on average slightly more stable than
MAR and SMAR. For all of SAR, MAR, or SMAR, the loss
in killed mutants is at most 15.76pp from the initial loss in
killed mutants due to reduction, regardless of which type of
reduction is performed.

Figure 6 additionally summarizes the comparison of all
techniques across multiple versions of all projects. For each
evolution point (i.e., each element in the matrix in Figure 1)
we do a pairwise comparison of SAR, MAR, and SMAR and
measure how many times each is better (dominant), equal,
or worse than the other. Similar to our previous conclu-
sions, we conclude that in terms of killed mutants, MAR
and SMAR are the best techniques to use.

4.5 Inadequate Reduction

Finally, we compare inadequate reduction (Section 3.3)
with random and adequate reduction. We perform two inad-
equate reductions: (1) SIRaar is coverage-based reduction
targeting the same statement coverage as achieved by MAR
and (2) MIRsar is mutant-based reduction targeting the
same percentage of killed mutants as achieved by SAR. Fig-
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Figure 7: Reduction in size for inadequate test suites

ure 3 includes values for SIRymar and MIRsar at a single
software version (last two columns). Further, figures 4 and 5
include stability for inadequate reduction. We use light blue
O and yellow O for SIR and MIR, respectively. Although the
test suites produced by inadequate reduction are similarly
stable as test suites produced by other reduction algorithms
(figures 4 and 5), these test suites lead to higher initial loss
in killed mutants and statement coverage (Figure 3).

To further explore the trade-offs of inadequate reduction,

we evaluated how it targets a range of values for sizes of re-
duced test suites. Figure 7 shows how the size of a reduced
test suite changes based on the amount of loss in require-
ments we set for inadequate reduction. The horizontal axis
shows the inadequacy level for the requirements we set for
the reduction algorithm, and the vertical axis shows the re-
duction in the test-suite size (compared to the original test
suite). The boxplots are drawn from data gathered from
reducing on all projects and versions. We find that for ade-
quate reduction, the size of the reduced test suite is (median
of) 62.9% of the original test-suite size (first boxplot); by
dropping down to 95% of the requirements, the reduction
in size of the reduced test suite can increase 17.14pp (third
boxplot). Further decreases in the inadequacy level reduces
the size of the reduced test suite even more, eventually re-
ducing 34.25pp from the median reduction in test-suite size
of the adequately reduced test suite when only 50% of the
requirements are satisfied. At an extreme of 10%, the me-
dian of reduction in test-suite size goes up to 99.77%, which
is 36.90pp more reduction in size than the adequately re-
duced test suite. These trends are seen in both statement
coverage and killed mutants requirements.
Additional Results: Due to space constraints, we only
report detailed results for Greedy algorithm. Additional
results for other algorithms along with details about the
projects and versions that we used can be found at

http://mir.cs.illinois.edu/evolred

S. DISCUSSION

Reduction Algorithms While the previous section re-
ported and visualized values obtained by running Greedy
algorithm, we also evaluated other algorithms mentioned in
Section 2 (i.e., GE, GRE, HGS, and ILP). We found that
they produce very similar results to Greedy. Across all al-
gorithms, we found the difference in size reduction to be at
most 5.26pp for all types of requirements. Furthermore, the
difference in StmtlLoss for algorithms that use MAR is at
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most 4.15pp, and the difference in MutLoss for algorithms
that use SAR is at most 7.15pp. For stability, we found
that the median REC;, at every distance ¢, varied by at most
0.33pp for MutLoss and 0.67pp for StmtLoss across all algo-
rithms.

SIR and MIR We instantiate and evaluate SIR and MIR
with inadequacy levels based on the statement coverage and
killed mutants results of MAR and SAR, respectively. We
choose to set the inadequacy to these levels to compare how
the inadequately reduced test suites compare to the ade-
quately reduced test suites, i.e., comparing the killed mu-
tants of a test suite with the same statement coverage as a
MAR test suite that has no loss in killed mutants.

Code Change vs. Loss We quantify how the amount of
code change correlates with loss in requirements satisfied by
the reduced test suite.

DEFINITION 6. We quantify code change between two ver-
stons © and j by using normalized change:

CC! = (Removed) + Added?)/SLOC;, where i < j

where Removed] and Added! represent the number of re-
moved and added lines, respectively, between versions ¢ and
j. We obtained these values by using Git’s diff command.
SLOC; represents the total number of source lines of code
at version 1.

Figure 8 plots the correlation between the amount of code
change and the REC for killed mutants. The z-axis shows
the C'C, and the y-axis shows the REC for MutLoss. We use
different colors for each distance, e.g., for all (CC{, RECY)
for which dist(¢,7) is 1 (i.e., subsequent versions), we use
green. We also measure the correlation between the amount
of change and REC for StmtLoss and MutLoss. We com-
puted coefficient of determination (R?), Spearman’s and
Pearson’s coefficients for all algorithms. The data shows
a weak correlation between change and RECs. Across all
algorithms and reduction criterion, R? varies between 0.013
and 0.509, Spearman’s coefficient varies between 0.09 and
0.83, and Pearson’s coefficient varies between 0.03 and 0.71.

Statement Loss for MAR We find that MAR may not
achieve the same statement coverage as the original test
suite. This can happen for several reasons. First, there
might be statements that cannot be mutated by any mu-
tation operator. Second, although reached, some mutants
might not be killed by the original test suite (e.g., a mutant
is equivalent or there is no test oracle that fails). In either
of the two cases, it can happen that some statements are

not covered by a test suite produced by MAR, although the
original test suite covers them.

6. THREATS TO VALIDITY

External (projects and tools): Our results may not
generalize to projects beyond the scope of those used in
our evaluation. To mitigate this threat, we considered ac-
tively developed projects with real evolution from GitHub.
Although we excluded some projects due to the fact that
PIT could not run their tests, we used 18 projects that
vary in size, number of developers, number of tests, and
mutation score (23.28%-94.60%). Several of the projects
used in our study are larger and include more tests than
any project used in previous studies on test-suite reduc-
tion [11,13,14,22,24,29,31,32,35-37,41,42].

We used PIT [5] to collect statement coverage and per-
form mutation testing. The results might not be gener-
alizable to other tools that perform similar functionality,
e.g., Javalanche [3] or Major [27]. We used PIT because
it scales to large projects, and Major was not available at
the time of our study. In addition, PIT has been used in
research [20] and in industry (most notably in the Apache
Lucene project [1]).

Internal (correctness of our implementation): To
the best of our knowledge, no implementations of the test-
suite reduction algorithms mentioned in Section 2.2 are pub-
licly available. Therefore, we implemented those algorithms
ourselves, following the usual literature [11,13,14,23,41,42].
To ensure the correctness of our implementation, we in-
spected the results of several small runs, wrote unit-tests,
and peer-reviewed our code.

Construct (metrics and versions): We measure the
fault-detection capability of test suites using mutation score.
Although mutants are not real software faults, previous re-
search has shown that a test suite’s ability to kill mutants
can highly correlate with its ability to reveal actual soft-
ware faults [8,9,17,28,41]. Another threat is that we do not
identify and remove equivalent mutants generated by PIT.
Note however that the users of a mutation-testing tool would
likely not identify equivalent mutants either and would base
their evaluation of the test suites on all generated mutants.

Measuring statement coverage loss for SAR and mutants
killed loss for MAR may bias the results. To mitigate this
threat, we measure reduction in size, statement coverage
loss, and mutants killed loss regardless of the reduction tech-
nique used. In addition we measure these values at multiple
versions (that are far apart). We assume mutants approx-
imate real faults on a single version [28]. Therefore, as we
regenerate mutants on future versions, we expect the stabil-
ity of the real-faults detected loss to mirror the stability of
the mutants killed loss.

Previous research on test-suite reduction has used differ-
ent kinds of code coverage to perform reduction. We com-
pare with the traditional approach to test-suite reduction
using only statement coverage. However, statement cover-
age is the most commonly used criterion in practice, and it is
widely used in research on test-suite reduction [11,13,14,41].

We define a version for a project to be 30 commits, which
covers a significant portion of software evolution history for
the 18 projects we used in our evaluation. Regardless of the
difference in scale of changes for versions between different
projects, our conclusions remained the same.



7. RELATED WORK

Elbaum et al. [18] investigated the effect of software evo-
lution on coverage. While we also measure how coverage is
impacted by software evolution, we do this for reduced test
suites. Our findings (on reduced test suites) seemingly con-
tradict theirs (on original test suites): we find that coverage
of reduced test suites, relative to the original test suite, is
not greatly impacted by the changes; note that this can hold
even if the absolute values of both reduced and original test
suites are greatly impacted by the changes.

Previous studies on test-suite reduction find conflicting re-
sults on the fault-detection capability of reduced test suites.
Wong et al. [35, 36] reported insignificant losses in fault-
detection capability when performing test-suite reduction on
small programs. Zhang et al. [41] also found small losses
in test-suite reduction evaluated on Java programs from
the Software Infrastructure Repository [16]. In contrast,
Rothermel et al. [31,32] found significant losses in fault-
detection capability in their evaluation on the same pro-
grams that Wong et al. used. Our results show that test-
suite reduction does not significantly impact killed mutants
for the projects we studied. We find the loss in killed mu-
tants does not vary due to software evolution either. Our
evaluation was conducted on a large number of actively de-
veloped real Java projects downloaded from GitHub as op-
posed to curated projects from the Software Infrastructure
Repository. Our choice of using mutants and projects could
explain some differences between our results and the results
of previous research.

Previous research also looked into improving the fault-
detection capability of reduced test suites by adding in ex-
tra tests beyond those necessary to preserve code coverage
requirements. Jeffrey and Gupta [24] suggested adding in
extra tests which cover a secondary set of requirements, e.g.,
reducing first based on requirements defined by block cover-
age but then adding in tests that satisfy a set of requirements
defined by def-use coverage. Lin and Huang [29] proposed
adding tests based on a secondary set of requirements only
when breaking ties in traditional reduction algorithms. Our
SMAR technique is similar to these previously proposed al-
gorithms in that we use a secondary set of requirements to
gain higher quality reduced test suites. However, we use
killed mutants as another set of requirements as opposed to
some other type of structural code coverage.

Previous research also considered fault-detection capabil-
ity to some degree when performing test-suite reduction.
Black et al. [11] proposed a bi-criteria ILP solution to test-
suite reduction. While the ILP formulation they proposed
would find a minimal set of tests that cover all statements, it
could be configured to take seeded faults into account. Their
ILP algorithm can be used to add tests known to detect at
least one fault. At the extreme, all tests which are known to
detect faults would be added to the reduced test suite. Hao
et al. [22] proposed a reduction algorithm that seeks to re-
duce the loss in killed mutants. They collect statistics about
killed mutants on the individual statement level of various
programs and apply those statistics to perform reduction
using an ILP formulation. We differ from both these algo-
rithms in that we directly reduce based on killed mutants as
requirements: we remove redundant tests based on mutants
unlike the bi-criteria ILP algorithm which keeps redundant
tests, and we directly apply killed mutants instead of using
statistics about them.

Yoo and Harman [37] proposed and evaluated Pareto-
optimal multi-objective algorithms for regression testing that
explored the Pareto frontier where a specified requirement
could be set to an inadequate level. While they mainly fo-
cused on test-suite selection and prioritization, their work
can be applied to inadequate reduction as well. Moreover,
they considered multiple metrics (code coverage, execution
cost, and fault history) while we use only statement cover-
age and killed mutants as our requirements. More generally,
inadequate reduction is similar to test prioritization or un-
safe test selection that execute only a subset of tests from the
original test suite. For example, Elbaum et al. [19] evaluated
a number of prioritization techniques, including two that use
fault-exposing-potential based on mutants. Our evaluations
based on SAR and SMAR are larger than any previous eval-
uation, and we are the first to consider evolution effects on
inadequate reduction.

Offutt et al. [30] described a test-suite reduction algorithm
called ping-pong which relied on mutation testing. The al-
gorithm orders the tests in the test suite based on heuristics
and runs the tests in those orders until all mutants are killed.
Their work uses mutants as requirements for test-suite re-
duction, but the ping-pong algorithm does not compute all
the mutants killed by each test; rather, it computes only the
additional (previously non-killed) mutants that are killed by
each test when run. In contrast, SAR and SMAR use the full
test-to-mutants-killed matrix to compute the reduced test
suites. Although computing the full matrix is more expen-
sive, the reduced test suites that SAR and SMAR compute
cannot be larger than the ones computed by ping-pong.

8. CONCLUSIONS

We evaluated several trade-offs in test-suite reduction al-
gorithms that balance the goals of high reductions in size
and small losses in code coverage and fault-detection capa-
bility. Specifically, we evaluated adequate test-suite reduc-
tion with requirements defined by killed mutants, evaluated
inadequate reduction that conducts reduction without sat-
isfying all the requirements as the original test suite, and
introduced novel evaluation metrics based on software evo-
lution. We performed an extensive evaluation on 18 projects
with 261,235 tests, 3,590 commits, and representing 35 years
of total development time. We find that the reduction based
on killed mutants is more attractive because it produces re-
duced test suites with the same, stable killed mutants as the
original test suite, but it does have slightly larger reduced
test suites compared to the reduction based on statement
coverage. In addition, inadequate reduction can achieve sig-
nificantly higher reductions in test-suite size. Finally, we
find test-suite reduction algorithms to be robust to software
evolution, regardless of requirements used.
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