
c© British Computer Society 2001

Balancing Traffic Load for

Multi-Node Multicast in a Wormhole

2-D Torus/Mesh

SAN-YUAN WANG1 , YU-CHEE TSENG2 , CHING-SUNG SHIU3 AND

JANG-PING SHEU3

1Department of Information Engineering, I-Shou University,

Kaohsiung, 840, Taiwan
2Department of Computer Science and Information Engineering, National Chiao-Tung University,

Hsin-Chu, 300, Taiwan
3Department of Computer Science and Information Engineering, National Central University,

Chung-Li, 320, Taiwan

Email: sywang@isu.edu.tw

This paper considers the multi-node multicast problem in a wormhole-routed 2-D torus/mesh, where

an arbitrary number of source nodes each intends to multicast a message to an arbitrary set

of destinations. To resolve the contention and the congestion problems, we propose to partition

the network into subnetworks to distribute, and thus balance, the traffic load among all network

links. Several ways to partition the network are explored. The network-partitioning idea was used

in earlier works for single-node broadcast and single-node multicast. This paper contributes in

extending its applicability to multi-node multicast and demonstrating its capability to balance load

on torus/mesh. Simulation results show significant improvement over existing results for torus and

mesh networks.

Received 10 January 2000; revised 8 March 2001

1. INTRODUCTION

In a multicomputer network, processors often need to

communicate with each other for various reasons, such

as data exchange and event synchronization. Efficient

communication is critical for high-performance computing.

This is especially true for those collective communication

patterns, such as broadcast and multicast, which involve

more than one source and/or destination. Applications

of collective communication include parallel numerical

algorithms, graph algorithms, image processing algorithms,

cache coherence and barrier synchronization [1, 2, 3,

4]. Some collective communications have also been

implemented on standard communication libraries such

as message-passing interface (MPI) [5] and collective

communication library (CCL) [6].

Wormhole routing [7, 8] is becoming a mature switching

technology for interconnection networks. It is characterized

with low communication latency and is quite insensitive

to routing distance in the absence of link contention.

Such technology has been adopted by the Intel Touchstone

DELTA [9], Intel Paragon [10, 11], MIT J-machine [12],

Caltech MOSAIC [13], nCUBE 3 [14], Cray T3D and T3E

[15, 16] and Myrinet [17].

This paper considers the multi-node multicast problem in

a 2-D torus/mesh with wormhole, dimension-ordered and

one-port routing capability. There are an arbitrary number

of source nodes each intending to send a multicast message

to an arbitrary set of destination nodes. We approach

this problem by using multiple unicasts to implement

multicast. The challenge is that there may exist serious

contention when the source set or destination set is large

or when there exist hot-spot effects (i.e. sources and/or

destinations concentrated in some particular area). To

resolve the contention problem, we apply two schemes,

network partitioning and load balancing. We first partition

the network into a number of ‘subnetworks’ and then

evenly distribute these multicasts, by rerouting them to these

subnetworks with the expectation of balancing the traffic

load among all network links.

In the literature, more attention is on the single-node

multicast problem [18, 19, 20, 21]. The work in [19]

suggests connecting destination nodes as a Hamiltonian

path, on which the multicast message can be sent in a

pipelined manner. A widely used approach is the U-torus

(respectively U-mesh) scheme by [20] (respectively [21]),

in which destination nodes are connected as a binomial

tree. With only one multicast, routing is guaranteed to be

congestion free. The idea is further generalized by [18],

where a Fibonacci tree is used instead. Works for multi-

node multicast include [22] (for meshes with dimension-

ordered routing) and [23, 24, 25] (for tori/meshes with non-

dimension-ordered routing and multi-destination routing

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

BALANCING TRAFFIC LOAD FOR MULTI-NODE MULTICAST IN A WORMHOLE 2-D TORUS/MESH 355

FIGURE 1. A 4 × 4 torus and the generic node architecture for wormhole routing.

capability). The work in [22] shows how to modify the U-

mesh scheme to relieve the contention problem when there

are multiple multicasts.

Our work is not to propose a completely brand-new

scheme, in the sense that after a torus/mesh is partitioned,

the obtained subnetworks are each a ‘dilated’ network still

maintaining a similar torus/mesh topology. Thus, it is

possible to apply the best available multicast schemes on

these subnetworks. The details are in Section 2, where

several ways to partition the torus/mesh are proposed. It

is worth noting that the network-partitioning idea was

originally proposed by the same authors in [26] and

[27] for single-node broadcast and single-node multicast,

respectively. The contribution of this paper is in extending

its applicability to multi-node multicast, demonstrating its

capability to balance load, and exploring more ways to

partition a torus/mesh. Through extensive simulations, we

justify that our network-partitioning approach can achieve

better load balance and reduce multicast latency. Significant

improvement can be obtained over the U-mesh/U-torus style

of schemes [20, 21, 22] (which also assume dimension-

ordered routing), especially when the traffic load is heavy

or when there exists hot-spot behavior.

The rest of this paper is organized as follows. Prelimi-

naries are in Section 2. Ways to partition a torus/mesh are

presented in Section 3. Routing algorithms and simulations

results on tori and meshes are in Section 4 and Section 5,

respectively. Conclusions are drawn in Section 6.

2. PRELIMINARIES

This section contains a variety of information that serves

as backgrounds for the materials to be presented later.

Section 2.1 describes our network model. Section 2.2

describes the concept of network partitioning, where the

definitions and properties of subnetworks, for wormhole

networks in particular, are given. Without knowing how to

partition torus and mesh, Section 2.3 gives a general three-

phase multi-node multicast scheme based on subnetworks.

This general scheme will later be fitted into particular

partitioning methods and networks in subsequent sections.

2.1. Network model

A wormhole-routed multi-computer network consists of a

number of computers (nodes) each with a separate router to

handle its communication tasks [8]. From the connectivity

between routers, we can define the topology of a wormhole-

routed network as a graph G = (V ,C), where V is the node

set and C specifies the channel connectivity. We assume the

one-port model, where a node can send, and simultaneously

receive, one message at a time. The opposite is the all-

port model, where a node can send and receive messages

via all its ports simultaneously. A generic architecture of a

wormhole router and a torus connected by routers are shown

in Figure 1. In this paper, we will consider networks that

are connected as torus or mesh with dimensional-ordered

routing.

In wormhole routing, a message is partitioned into a

number of flits to be sent in the network. The header flit

governs the routing, while the remaining flits simply follow

the header in a pipelined fashion. In the contention-free

case, the communication latency for sending a message of

L bytes is commonly modeled by Ts + LTc [8], where

Ts is the startup time (for initializing the communication)

and Tc is the transmission time per byte. In this paper,

different combinations of these parameters will be used for

performance comparison.

2.2. Subnetworks of a wormhole network

DEFINITION 1. Given a wormhole network G = (V ,C),

a subnetwork G′ = (V ′, C′) of G is one such that V ′ ⊆ V

and C′ ⊆ C.

For instance, Figure 2 shows four subnetworks, Gi , i =

0 . . .3, in a 16 × 16 torus. There are some subtleties in the

above definition that need special attention.

• A subnetwork is not necessarily a ‘graph’ in standard

graph theory. Specifically, suppose channel (x, y) ∈

C′. Then the vertices x and y are not necessarily

in the vertex set V ′. For instance, in Figure 2,

the subnetwork G0 contains links (p0,0, p0,1) and

(p0,1, p0,2). However, only node p0,0 is in G0’s node

set.

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

356 S.-Y. WANG et al.

FIGURE 2. Four dilated-4 subnetworks, each as an undirected

4 × 4 torus, in a 16 × 16 torus. (For clarity, the wrap-around links

on the boundaries are not shown.)

• The previous point carries special meanings for

wormhole routing. For instance, each Gi in Figure 2

can be considered as a 4 × 4 torus, with each

link ‘dilated’ by four links. However, the dilated

torus can work almost like an ordinary torus, since

communication in wormhole routing is known to be

quite distance insensitive.

• A subnetwork, though capable of using all links in

its link set, should be constrained in its capability in

initiating/retrieving packets into/from the subnetwork

subject to its node set. For instance, in Figure 2, nodes

p0,1 and p0,2 are neither allowed to initiate a new worm

into, nor retrieve a pass-by worm from, the subnetwork

G0. They can only passively relay worms they receive

according to the routing function.

Our approach in this paper is to use multiple subnetworks

in a torus to balance the communication load in different

parts of the torus, thus eliminating congestion and hot-

spot effects. This is of importance particularly for massive

communication problems such as multi-node multicast. This

leads to an important issue of making each subnetwork

less dependent on other subnetworks, as formulated in the

following definition.

DEFINITION 2. Given two subnetworks G1 = (V1, E1)

and G2 = (V2, E2), G1 and G2 are said to be node-

contention-free if V1 ∩ V2 = ∅, and link-contention-free if

E1 ∩ E2 = ∅.

Intuitively, the freedom of node contention implies that

we can freely schedule communications in each subnetwork

without worrying that a node has to simultaneously initiate

(and similarly, retrieve) worms for the two subnetworks.

Similarly, freedom of link contention implies that two

worms from different subnetworks will never contend with

each other on the same link.

In cases where subnetworks are not fully disjoint, we

use the following definition to identify the levels of sharing

among nodes and links.

DEFINITION 3. Given a set of subnetworks G1,G2,

. . . ,Gk , the level of node contention (respectively level of

link contention) among these subnetworks is defined to be

the maximum number of times that a node (respectively,

link) appears in these subnetworks, among all nodes

(respectively, links) in the network.

2.3. A general model for multi-node multicasts

A multi-node multicast instance can be denoted by a set of 3-

tuple {(si,Mi ,Di), i = 1 . . .m}. There are m source nodes

s1, s2, . . . , sm. Each si , i = 1 . . .m, intends to multicast

a message Mi to a set Di of destinations. Note that the

destination sets need not be equal. The goal is to complete

these multicasts as soon as possible.

Next, we derive a general approach to multi-node

multicast based on the concept of subnetworks. Given

any network G, we construct two kinds of subnet-

works from G: data-distributing networks (DDNs) and

data-collecting networks (DCNs). Suppose we have

α DDNs, DDN0,DDN1, . . . ,DDNα−1 and β DCNs,

DCN0,DCN1, . . . ,DCNβ−1. We require the following

properties in our model.

P1 DDN0,DDN1, . . . ,DDNα−1 together incur on each

node about the same level of node contention and

similarly on each link about the same level of link

contention.

P2 DCN0,DCN1, . . . ,DCNβ−1 are disjoint and they

together contain all nodes of G.

P3 DDNi and DCNj intersect by at least one node, for all

0 ≤ i < α and 0 ≤ j < β.

Now given a problem instance {(si,Mi ,Di), i = 1 . . .m},

a general approach is derived as follows.

Phase 1. Each multicast (si ,Mi ,Di), i = 1 . . . m, selects

a target data distribution network, say, DDNa to

distribute its message. The selection should be done

with load balance in mind. Then si chooses a node

ri ∈ DDNa as a representative of si in DDNa and sends

Mi to ri .

Phase 2. From node ri , perform a multicast (ri ,Mi,D
′
i)

on DDNa , where the destination set D′
i is obtained

from Di by the following transformation. For each

DCNb, b = 0 . . . β − 1, if DCNb contains one or

more destination nodes in Di , select any node d ∈

DDNa ∩ DCNb (by P3) as the representative of the

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

BALANCING TRAFFIC LOAD FOR MULTI-NODE MULTICAST IN A WORMHOLE 2-D TORUS/MESH 357

recipients of message Mi in DCNb. Then we join d

into D′
i .

Phase 3. In each DCNb, b = 0 . . . β − 1, after the

representative node d receives Mi , it performs another

multicast (d,Mi ,Di ∩ DCNb) on the subnetwork

DCNb.

Intuitively, DDNs serve as the backbone to distribute

multicast messages around the network, while DCNs will

collect multicast messages for further forwarding. Phase 1

uses property P1 to achieve load balance. Phases 2 and 3

are still a multicast, but they are on subnetworks DDN and

DCN, respectively. So the model is in some sense a recursive

one. Note that how to perform multicast in Phases 2 and 3 is

left unspecified here.

The following two properties are not a necessity, but

would offer regularity in designing phases 2 and 3.

P4 DDN0,DDN1, . . . ,DDNα−1 are isomorphic.

P5 DCN0,DCN1, . . . ,DCNβ−1 are isomorphic.

In the next section, we will discuss how to define the

DDNs and DCNs in tori and meshes that satisfy our needs.

3. SUBNETWORKS OF A 2-D TORUS/MESH

We first discuss how to find DDNs and DCNs in a torus.

Then we briefly summarize how to modify the definitions

for a mesh.

3.1. DDNs and DCNs in a 2-D torus

A 2-D torus Ts×t consists of s × t nodes each denoted as

px,y , where 0 ≤ x < s and 0 ≤ y < t . Node px,y has a link

connected to each of p(x±1)mod s,y and px,(y±1)mod t . In the

following, Definition 4 to Definition 7, we give four possible

ways to define DDNs. Then in Definition 8 we will give a

definition of DCNs to be used by all DDNs.

DEFINITION 4. Given a torus Ts×t and any integer h that

divides both s and t , define h subnetworks Gi = (Vi , Ei),

i = 0 . . . h − 1, such that

Vi =

{

px,y |x = ah + i, y = bh + i,

for all a = 0 . . .
s

h
− 1 and b = 0 . . .

t

h
− 1

}

Ci = {all channels at rows ah + i

and at columns bh + i}.

Intuitively, G0 contains all nodes at the intersection of

rows ah and columns bh, and Gi is obtained from G0 by

shifting G0’s nodes by i positions on both indices. In our

terminology, each subnetwork is a ‘dilated-h’ torus of size

(s/h) × (t/h). Figure 2 shows an example, with four

subnetworks (each as a dilated-4 4 × 4 torus) in a 16 × 16

torus.

LEMMA 1. The subnetworks Gi , i = 0 . . . h − 1, defined

in Definition 4 are free from both node and link contention.

Observe that in Definition 4, all links in the original torus

have been used, so it is impossible to add more subnetworks

without increasing link contention. However, there are

still some nodes (e.g. nodes p1,0 and p0,1) that are not

included in any subnetwork. The following definition tries to

utilize these unused nodes to add more subnetworks without

increasing node contention.

DEFINITION 5. Given a torus Ts×t and any integer h

that divides both s and t , define h2 subnetwork Gi,j =

(Vi,j , Ei,j), i, j = 0 . . . h − 1, such that

Vi,j =

{

px,y |x = ah + i, y = bh + j,

for all a = 0 . . .
s

h
− 1 and b = 0 . . .

t

h
− 1

}

Ci,j = {all channels at rows ah + i

and at columns bh + j }.

LEMMA 2. The h2 subnetworks Gi,j , i, j = 0 . . . h − 1,

defined in Definition 5 are free from node contention, but

have link contention of h.

In the above definition, every node and every link have

been used by some subnetwork(s), so it is impossible

to add more subnetworks without increasing node and

link contentions. However, we have only considered

subnetworks with undirected links. With duplex capability,

an undirected link can be regarded as two directed links in

opposite directions. If we allow such separation, further

improvement is possible. Let us call a direct link a positive

link if it goes from a lower index to a higher one, and a

negative link otherwise. The following is an extension of

Definition 4.

DEFINITION 6. Given a torus Ts×t and any integer h that

divides both s and t , define h subnetworks G+
i = (V +

i , E+
i),

i = 0 . . . h − 1, such that (refer to Definition 4)

V +
i = Vi

C+
i = {all positive links in Ci},

and h subnetworks G−
i = (V −

i , E−
i), i = 0 . . . h − 1, such

that

V −
i =

{

px,y |x = ah + i, y = bh + i + δ,

for all a = 0 . . .
s

h
− 1 and b = 0 . . .

t

h
− 1

}

C−
i = {all negative links at rows ah + i

and at columns bh + i + δ},

where δ is any constant satisfying 1 ≤ δ ≤ h − 1.

Intuitively, G+
i is the same as Gi except that G+

i contains

only positive links. Subnetwork G−
i is obtained from G+

i

by shifting each of the latter’s nodes along the second

dimension by δ positions and using only negative links. This

is to resolve the node contention. For instance, Figure 3

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

358 S.-Y. WANG et al.

(a)

(b)

FIGURE 3. Eight dilated-4 Type III subnetworks, each as a

directed 4 × 4 torus in a 16 × 16 torus. (a) Type III subnetworks

G+
0

, G+
1

, G+
2

and G+
3

; (b) Type III (with δ = 2) subnetworks G−
0

,

G−
1

, G−
2

and G−
3

.

illustrates this definition in a 16 × 16 torus with h = 4

and δ = 2 (for clarity, the eight subnetworks are drawn

separately according to their link directions). Note that in

the above definition, although each link is separated into

a positive link and a negative link, subnetworks remain

connected, in that each node in a subnetwork remains

reachable by all other nodes in the subnetwork. Otherwise,

routing would be difficult.

LEMMA 3. The 2h subnetworks G+
i and G−

i , i =

0 . . . h − 1, defined in Definition 6, are free from both node

and link contention.

The following is an extension of Definition 5.

DEFINITION 7. Given a torus Ts×t and any integer h

that divides both s and t , define h2 subnetworks G∗
i,j =

(V ∗
i,j , E

∗
i,j), i, j = 0 . . . h − 1, such that (refer to

Definition 5):

V ∗
i,j = Vi,j

C∗
i,j =

{

{all positive links of Ci,j }, if i + j is even,

{all negative links of Ci,j }, if i + j is odd.

LEMMA 4. The h2 subnetworks G∗
i,j , i, j = 0 . . . h − 1,

defined in Definition 7, are free from node contention, but

have a link contention of h/2.

In Table 1, we summarize the above definitions on the

levels of node and link contention incurred by different

subnetworks. In all cases, there is no node contention.

One interesting property is that the level of link contention

is proportional to the square root of the number of

subnetworks. Also, the maximum number of subnetworks

that can be obtained without incurring node and link

contention is 2h, given by Definition 7.

DEFINITION 8. Given a torus Ts×t and any integer h that

divides both s and t , define st/h2 data collecting networks

DCNa,b = (Va,b, Ca,b), a = 0 . . . s/h−1, b = 0 . . . t/h−1,

such that

Va,b = {px,y |x = a × h + i, y = b × h + j

for all i, j = 0 . . . h − 1}

Ca,b = {all (undirected) links induced by Va,b}.

Intuitively, we simply partition the torus into a number of

submeshes, each of size h × h. For instance, when h = 4,

Figure 2 illustrates the 16 DCNs (each as a 4 × 4 block) in

a 16 × 16 torus. The same DCN definition will be used on

all earlier four DDN definitions. Finally, it is not hard to see

that these definitions satisfy properties P1–P5.

3.2. DDNs and DCNs in a 2-D mesh

A 2-D mesh Ms×t is similar to a torus Ts×t except that

there are no ‘wrap-around’ links. The earlier four DDN

definitions for torus can be easily translated to the mesh case

by excluding the wrap-around links. However, reachability

will become a problem when subnetworks are directed, as

some nodes cannot reach all other nodes. This is in fact a

main difference between a torus and a mesh. So we only

consider using Definition 4 and Definition 5 to define our

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

BALANCING TRAFFIC LOAD FOR MULTI-NODE MULTICAST IN A WORMHOLE 2-D TORUS/MESH 359

TABLE 1. Comparison of levels of node and link contention incurred by different definitions of subnetworks in a torus.

Type Subnet. No. of subnet. Links Node cont. Link cont.

I Gi , i = 0 . . . h − 1 h Undirected No No

II Gi,j , i, j = 0 . . . h − 1 h2 Undirected No h

III G+
i ,G−

i , i = 0 . . . h − 1 2h Directed No No

IV G∗
i,j

, i, j = 0 . . . h − 1 h2 Directed No h/2

DDNs. The levels of node and link contention remain the

same. Also, the same DCNs in Definition 8 are used.

4. MULTI-NODE MULTICAST IN A 2-D TORUS

Given a multi-node multicast instance {(si,Mi ,Di), i =

1 . . . m}, next we show in more detail how to apply the

multi-node multicast model of Section 2.3 using the DDNs

and DCNs defined above. Throughout this section, let

DDN0,DDN1, . . . ,DDNα−1 be α DDNs obtained from

Definition 4, 5, 6 or 7, and DCN0,DCN1, . . . ,DCNβ−1 be

β DCNs obtained from Definition 8.

4.1. Phase 1: balancing traffic among DDNs

In this phase, each multicast (si ,Mi ,Di), i = 1 . . .m,

should be distributed to one of the DDNs. There are two

concerns to distribute the load. First, each DDN should

receive about the same number of multicasts. Second,

the overhead to achieve load balance should be as low as

possible.

There are two ways to solve this problem. The first

one is a centralized approach, where it is assumed that the

multicast pattern is known in advance. Recall that we need to

send each multicast to one target DDN. We can sequentially

process DCNs one-by-one by looking at the multicasts on

it. Specifically, for each DCN, we collect all multicasts

(si ,Mi ,Di) such that si is on the DCN. We assign these

multicasts to those nodes that belong to a DDN in this DCN

in a round-robin manner. Also, when doing such assignment,

we always start from those DDNs that receive less multicasts

in processing the previous DCN. In this way, only local

communication will occur inside this DCN. Also, global

load balance is achieved easily.

The second one is a distributed approach. We can

simply let each si randomly choose one DDN as its

target subnetwork. Since this is by randomization, the

probability of achieving load balance might be high. This

approach is more appropriate when the arrival of multicasts

is unpredictable or follows a stochastic model, such as that

assumed in [28]. One special case is when subnetworks of

Types II or IV are used, where each node must belong to

some subnetwork. It is possible to skip this phase by letting

si serve as its own representative node. Load balance might

be achieved automatically if sources are already distributed

uniformly enough.

(a)

(b)

FIGURE 4. Single-node multicast. (a) The U-torus scheme, and

(b) the U-mesh scheme.

4.2. Phase 2: multicasting in DDNs

In this phase, each multicast (si ,Mi ,Di) is translated into a

(ri ,Mi,D
′
i) to be performed in a DDN. Since each DDN

is still a torus under our definition (except that there is

some link dilation), this is still a multicast on a conceptually

smaller torus (due to the distance-insensitive characteristic

of wormhole routing). Also, it should be commented that

the way that Di is translated to D′
i will incur a concentration

effect and thus there is a high probability that |D′
i | < |Di |.

So, the multicast is on a smaller network with a smaller

destination set. Statistically, we can say that |D′
i | ≈ |Di |/α.

Overall, each DDN will still need to perform a multi-

node multicast. Improvement is expected if Phase 1 can

deliver some load-balancing effect. With the dimension-

ordered routing constraint, one possibility is to use the U-

torus scheme [21] for each multicast. For completeness,

we review the U-torus scheme below (using multicast

(ri ,Mi,D
′
i) as an instance).

1. Consider the node set {ri ,D
′
i}. We first sort the nodes

in the set in an ascending order as follows. Nodes in a

torus are totally ordered according to their indices such

that pi,j < pi′,j ′ if i < i ′ or i = i ′ but j < j ′.

2. Let the sorted list be x0, x1, . . . , xn, where n = 1 +

|D′
i |. Also let xa = ri . Then we ‘left-rotate’ the list

into Seq = xa, xa+1, . . . , xn, x0, x1, . . . , xa−1 (i.e. ri
becomes the leading element).

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

360 S.-Y. WANG et al.

FIGURE 5. Multicast latency in a 16×16 torus at various numbers of sources when there are (a) 80, (b) 112, (c) 176 and (d) 240 destinations

(Ts = 300 µs, Tc = 1 µs and |Mi | = 32).

3. Now, multicast is performed in a recursive-doubling

manner. Node ri first sends a multicast message request

to xb which is located at the half of Seq . Then ri and

xb will be responsible of multicasting Mi to nodes in

the first half and the second half, respectively, of Seq

recursively.

It is proved in [21] that such an ordering will incur no

contention if there is only one multicast in the torus. For

instance, consider a multicast (p4,2,D
′
i ,Mi) in a 8 × 8

torus, where D′
i = {p0,3, p1,1, p2,6, p3,4, p5,7, p6,0, p6,4}.

After Step 1, we will obtain an ordered list p0,3, p1,1, p2,6,

p3,4, p4,2, p5,7, p6,0, p6,4. After the left rotation of Step 2,

the list becomes p4,2, p5,7, p6,0, p6,4, p0,3, p1,1, p2,6, p3,4.

Finally, a recursive doubling message delivery as shown in

Figure 4a will be performed.

According to [21], when there is only one multicast in the

torus, the U-torus scheme takes time

Tut = ⌈log2 (1 + |D′
i |)⌉(Ts + LTc),

where Ts is the startup time, Tc is the transmission time per

flit and L is the length of Mi . As mentioned earlier, since D′
i

is expected to be smaller than Di , some level of saving can

be obtained in addition to the load balancing effect.

4.3. Phase 3: multicasting in DCNs

In this phase, each multicast (ri ,Mi,D
′
i) will incur a

multicast (d,Mi,Di ∩ DCNc) on each DCNc, c = 0 . . . β −

1. Since DCNc is a mesh and dimension-ordered routing is

required, one possibility is to apply the U-mesh scheme [20].

A review of this scheme is in Section 5.

4.4. Simulation and performance comparison

Since formal analysis is difficult to obtain, we have

developed a simulator to study the performance issue. We

mainly compared our scheme against the U-torus scheme

[21] under various situations. Developed by CSIM18 [29],

our simulator monitored communications at the flit level.

The parameters used in our simulations are listed below.

• The torus size is 16×16 (machines larger than this were

not able to be done due to the capacity of our platform).

• Startup time Ts = 30 or 300 µs; transmission time

per flit Tc = 1 µs. (Note that what is important here

is the ratio Ts/Tc, but not their absolute values. For

example, in T3D, Ts and Tc are about 1.5 and 0.033 ms

respectively, which gives a ratio of 45.)

• Dilation h = 2 or 4 (refer to Table 1).

• The problem instance is {(si,Mi ,Di), i = 1 . . .m}

with |Mi | = 32 ∼ 1024 flits, and m = |Di | = 16 ∼

240 nodes.

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

BALANCING TRAFFIC LOAD FOR MULTI-NODE MULTICAST IN A WORMHOLE 2-D TORUS/MESH 361

FIGURE 6. Multicast latency in a 16×16 torus at various numbers of sources when there are (a) 80, (b) 112, (c) 176 and (d) 240 destinations

(Ts = 30 µs, Tc = 1 µs and |Mi | = 32).

• A hot-spot factor of p = 25%, 50%, 80% or 100%

is used. Specifically, when generating Di , we first

choose p|Di | destination nodes which are common to

all destination sets Di , i = 1 . . .m. Then the remaining

(1 − p)|Di | destination nodes are chosen randomly

from the network. A larger p thus indicates higher

contention on destination nodes.

Below, we show our simulation results from several

prospects. We mainly observe the average multicast latency.

Based on the subnetworks that are used, our schemes will

be denoted as ‘HT[B]’, where H reflects the value of h,

T indicates the type of subnetworks (= I, II, III or IV),

and an optional B indicates whether we attempt to achieve

load balance in Phase 1 or not. With a B, attempts will be

made to evenly distribute multicasts to each DDN and each

node in a DDN. If the network type is II or IV, a no-load-

balance option is possible by skipping Phase 1 (refer to the

discussion in Section 4.1).

Effects of numbers of sources and destinations

Figure 5a shows the multicast latency when Ts = 300 µs,

Tc = 1 µs, |Mi | = 32 flits, and |Di | = 80 at various

numbers of sources. Undirected subnetworks (Types I

and II) have higher latency than that of the U-torus

scheme, while directed subnetworks (Types III and IV) have

lower latency than that of the U-torus scheme. This is

because the latter will utilize more subnetworks, thus giving

higher communication parallelism. Generally speaking,

subnetworks without link contentions perform better than

those with link contentions, so Type I is better than Type II

and Type III is better than Type IV. Overall, Type III

performs the best.

In Figures 5b, c and d, we enlarge the number of

destination nodes to observe the effect. The relative trend

remains the same, but the advantage of using our schemes

over the U-torus becomes more evident as there are more

destinations. When there are 240 destinations (Figure 5d),

all our schemes deliver better performance than the U-

torus scheme. This shows the importance of load balance

especially at high traffic load. When using Type III

subnetworks, the performance gain over the U-torus scheme

ranges between 2 to 6 times.

Effects of Ts/Tc ratio

We repeated the same simulations as above using a smaller

Ts/Tc ratio of 30. Figure 6 shows the results. As compared

to Figure 5, we see that the advantage of our schemes over

the U-torus scheme becomes slightly larger. Recall that in

Phase 1 we have to pay for the costs of re-distributing the

multicasts to achieve better load balance. The extra costs in

fact reduce as the ratio Ts/Tc decreases.

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

362 S.-Y. WANG et al.

FIGURE 7. Multicast latency in a 16×16 torus at various message sizes (a) 80 sources and destinations and (b) 176 sources and destinations

(Ts = 300 µs and Tc = 1 µs).

FIGURE 8. Effects of h on multicast latency in a 16 × 16 torus (a) 80 destinations and (b) 176 destinations (Ts = 300 µs, Tc = 1 µs and

|Mi | = 32).

FIGURE 9. Effects of load balance on multicast latency in a 16 × 16 torus (a) 80 destinations and (b) 176 destinations (Ts = 300 µs,

Tc = 1 µs and |Mi | = 32).

Effects of message lengths

Figure 7 shows the multicast latency at various message

sizes. The gain of our schemes over the U-torus scheme

enlarges as message size increases. This again indicates the

importance of load balance at heavier traffic load. The same

observation applies too if we compare Figure 7a and b (the

latter has more sources and destinations). So in subsequent

simulations, we will fix the message length at 32 flits,

whenever appropriate.

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

BALANCING TRAFFIC LOAD FOR MULTI-NODE MULTICAST IN A WORMHOLE 2-D TORUS/MESH 363

FIGURE 10. Effects of the hot-spot factor on multicast latency in a 16 × 16 torus (a) 80 and (b) 112 sources and destinations (Ts = 300 µs,

Tc = 1 µs and |Mi | = 32).

FIGURE 11. Multicast latency in a 16 × 16 mesh at various numbers of sources when there are (a) 80, (b) 112, (c) 176 and (d) 240

destinations (Ts = 300 µs, Tc = 1 µs and |Mi | = 32).

Effects of h

The value of h has two effects. First, it reflects the number

of subnetworks, and thus the level of communication

parallelism. So a larger h generally delivers better

performance. Second, for subnetwork Types II and IV,

it reflects the level of link contention, so a smaller h is

better for these subnetworks. Figure 8 compares subnetwork

Types III and IV when h = 2 and 4. The latency

trend matches the above observations. One exception

is Type 2IVB, which delivers better performance than

Type 2IIIB. This is because Type 2IVB offers 4 subnetworks

with link contention h/2 = 1 (refer to Table 1).

Effects of load balance

As mentioned earlier, subnetwork Types II and IV may be

used with a no-load-balance option. Figure 9 shows that the

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

364 S.-Y. WANG et al.

FIGURE 12. Multicast latency in a 16 × 16 mesh at various numbers of sources when there are (a) 80, (b) 112, (c) 176 and (d) 240

destinations (Ts = 30 µs, Tc = 1 µs and |Mi | = 32).

benefit of using load balance is more obvious when there are

less sources. With more sources, the benefit is less obvious.

In particular, for Type II subnetworks, a no-load-balance

option can even deliver slightly better performance when

there are ≥112 sources. This is because when there are many

sources spreading around the network, load balance can be

achieved automatically.

Effects of hot-spot factors

Figure 10 shows how the hot-spot factor p affects multicast

latency. A larger p will increase the latency. Among the

three schemes that are compared, subnetwork Type 4IIIB

seems to be most insensitive to the hot-spot effect.

5. MULTI-NODE MULTICAST IN A 2-D MESH

As mentioned earlier, in the case of meshes, we only use

undirected subnetworks (Types I and II). The discussion in

the previous section for tori can be directly applied, except

Phase 2, since DDNs are now (dilated) meshes instead of

tori.

5.1. Phase 2: modified multicasting in DDNs

To perform a multicast (ri ,Mi,D
′
i) on a mesh, one

possibility is to use the U-mesh scheme. There are actually

two variations of this scheme [20, 22], which are reviewed

below.

The original U-mesh scheme proposed in [20] has only

two steps. The first step is the same as that in the U-torus

scheme, which sorts the node set {ri,D
′
i} in an ascending

order by node indices. The second step then performs

multicast directly based on this list by a recursive-doubling

approach. Taking Figure 4a as an example, the multicast will

work as shown in Figure 4b.

As observed in [22], although the U-mesh scheme is

congestion free when supporting a single multicast, it will

incur intensive node contention when there are multiple

multicasts. For multi-node multicasting, it is then suggested

to ‘left-rotate’ each sorted multicast list such that the source

node is at the leading position. Interestingly, the adjusted

scheme, called source-partitioned U-mesh (SPU), works

exactly the same as the U-torus scheme [21], except that now

the platform is a mesh. It is shown in [22] that each adjusted

multicast itself still remains congestion free and that the

contention among multicasts can be reduced significantly.

5.2. Simulation and performance comparison

A simulator was developed to test the performance of our

scheme. The same parameters used in torus were used here.

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

BALANCING TRAFFIC LOAD FOR MULTI-NODE MULTICAST IN A WORMHOLE 2-D TORUS/MESH 365

FIGURE 13. Multicast latency in a 16 × 16 mesh at various message sizes (a) 80 sources and destinations, and (b) 176 sources and

destinations (Ts = 300 µs and Tc = 1 µs).

FIGURE 14. Effects of h on multicast latency in a 16 × 16 mesh (a) 80 destinations and (b) 176 destinations (Ts = 300 µs, Tc = 1 µs and

|Mi | = 32).

Comparisons were made among the U-mesh, SPU and our

schemes.

Effects of numbers of sources and destinations

When there are 80 destinations, Figure 11a shows that both

SPU and our schemes outperform the U-mesh scheme with

significant gain. Our scheme 4IB starts to outperform the

SPU when there are ≥80 sources. When there are more

destinations, Figures 11b–d reveal the similar trend. But the

benefit of our schemes (both Types 4IB and 4IIB) over the

SPU becomes more evident. This indicates that our network-

partitioning approach is more capable of avoiding contention

when load becomes heavier. The improvement on latency

over the SPU ranges from 10% to 90%.

Effects of Ts/Tc ratio

Figure 12 repeats the same simulations as above by changing

the startup cost Ts = 30 µs. Since our schemes need to pay

for the costs of redistributing multicasts (Phase 1), a smaller

ratio of Ts/Tc will favor our scheme. So Figure 12 shows

larger improvement over the SPU as compared to Figure 11.

Effects of message lengths

Similar to the torus case, Figure 13 shows that our schemes

are more favorable as message size becomes larger because

of the benefit of load balance.

Effects of h

As mentioned earlier, the value of h reflects (i) the level

of communication parallelism, and (ii) the level of link

contention for Type II. Figure 14 shows that the latter factor

plays a more important role. Overall, Type 4IB is the best

choice in most cases.

Effects of load balance

Type II may be used with a no-load-balance option.

Figure 15 compares Type 4II with 4IIB. The result shows a

similar trend as that in a torus—when the number of sources

is large, a no-load-balance option may be more favorable.

Effects of hot spots

Figure 16 shows how the hot-spot factor affects multicast

latency. All the three schemes tested will have slightly

higher multicast latency as the factor increases.

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

366 S.-Y. WANG et al.

FIGURE 15. Effects of load balance on multicast latency in a 16 × 16 mesh (a) 80 destinations and (b) 176 destinations (Ts = 300 µs,

Tc = 1 µs and |Mi | = 32).

FIGURE 16. Effects of the hot-spot factor on multicast latency in a 16 × 16 mesh (a) 80 and (b) 112 sources and destinations (Ts = 300 µs,

Tc = 1 µs and |Mi | = 32).

6. CONCLUSIONS

In this paper, we have developed a set of efficient schemes

for multi-node multicast in a torus/mesh. One interesting

feature of our approach is that the network is partitioned into

several ‘dilated’ subnetworks to achieve load balance and to

increase communication parallelism. Contentions on links

and nodes are thus separated evenly to the whole network.

Extensive simulations have been conducted, which show

significant improvement over existing U-torus, U-mesh and

SPU schemes. Our network-partitioning scheme can achieve

better load balance and reduce multicast latency, especially

when the traffic is heavy or when there exists hot-spot

behavior. Since one of the phases (Phase 2) in our schemes

is developed based on applying other existing schemes, the

possibility still exists of further improving the results in this

paper if in the future some better schemes are developed for

multi-node multicast in tori and meshes.

ACKNOWLEDGEMENTS

This work is supported by the National Science Council

of the Republic of China under Grant NSC89-2213-E-214-

023. A preliminary version of this paper has appeared

in the Proceedings of the 2000 International Parallel and

Distributed Processing Symposium.

REFERENCES

[1] Cheng, H. D., Tang, Y. Y. and Suen, C. Y. (1990) Parallel

image transformation and its VLSI implementation. Pattern

Recognition, 23, 113–129.

[2] Choi, J., Dongarra, J. J., Pozo, R. and Walker, D. W.

(1992) ScaLAPACK: a scalable linear algebra library for

distributed memory concurrent computers. In Proc. Symp. on

Frontiers of Massively Parallel Computation, pp. 120–127.

IEEE Computer Society Press.

[3] Li, K. and Chaefer, R. (1989) A hypercube shared virtual

memory. In Proc. Int. Conf. on Parallel Processing, vol. 1,

pp. 125–132.

[4] Xu, H., McKinley, P. K. and Ni, L. M. (1992) Efficient

implementation of barrier synchronization in wormhole-

routed hypercubes multicomputers. J. Par. Distrib. Comp., 16,

172–184.

[5] Message Passing Interface Forum (1993) Document for

Standard Message-passing Interface. Technical Report CS-

93-214, Department of Computer Science, University of

Tennessee, USA.

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

BALANCING TRAFFIC LOAD FOR MULTI-NODE MULTICAST IN A WORMHOLE 2-D TORUS/MESH 367

[6] Bala, V., Bruck, J., Cypher, R., Elustondo, P., Ho, A.,

Ho, C. T., Kipmis, S. and Snir, M. (1994) CCL: a portable and

tunable collective communication library for scalable parallel

computers. In Proc. Int. Parallel Processing Symp., Cancun,

Mexico, April 1994, pp. 835–843.

[7] Dally, W. J. and Seitz, C. L. (1986) The torus routing chip.

J. Distrib. Comp., 1, 187–196.

[8] Ni, L. M. and McKinley, P. K. (1993) A survey of wormhole

routing techniques in directed networks. IEEE Comp., 26, 62–

76.

[9] Intel Corporation (1990) A Touchstone DELTA sys-

tem description. Intel Corporation. Intel Supercomput-

ing Systems Division, http://nhse.npac.syr.edu/hpccsurvey/

orgs/intel/intel.html#Touchstone-Delta.

[10] Foschia, R., Rauber, T. and Runger, G. (1997) Modeling

the communication behavior of the Intel Paragon. In

Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, pp. 117–124. IEEE Computer

Society Press.

[11] Almasi, G. S. and Gottlieb, A. (1994) Highly Parallel

Computing. Benjamin/Cummings.

[12] Nuth, P. R. and Dally, W. J. (1992) The J-machine network.

In Proc. IEEE Int. Conf. on Computer Design: VLSI in

Computer and Processors, pp. 420–423. IEEE Computer

Society Press.

[13] Athas, W. C. and Seitz, C. L. (1988) Multicomputers:

message passing concurrent computers. IEEE Comp., 21(8),

9–24.

[14] Duzett, B. and Buck, R. (1992) An overview of the nCUBE

3 supercomputer. In Proc. Symp. on Frontiers of Massively

Parallel Computation, pp. 458–464. IEEE Computer Society

Press.

[15] Lessler, R. E. and Schwazmeier, J. L. (1993) CRAY T3D: a

new dimension for Cray Reasearch. In COMPCON, pp. 176–

182. IEEE Computer Society Press.

[16] Cray Research Inc. (1995) CRAY T3E scalable parallel

processing system. Cray Research Inc. http://www.cray.com/

products/systems/crayt3e/.

[17] Boden, N., Cohen, D., Felderman, R., Kulawik, A., Seitz, C.,

Seizovic, J. and Su, W. (1995) Myrinet—a gigabit per second

local area network. IEEE Macro, 15(1), 29–36.

[18] Coster, L. D., Dewulf, N. and Ho, C.-T. (1995) Efficient multi-

packet multicast algorithms on meshes with wormhole and

dimension-ordered routing. In Proc. Int. Conf. on Parallel

Processing, vol. 3, pp. 137–141.

[19] Ho, C. T. and Raghunath, M. T. (1992) Efficient communi-

cation primitives on hypercubes. Concurrency: Practice and

Experience, 4, 427–457.

[20] Mckinley, P. K., Xu, H., Esfahanian, A.-H. and Ni, L. M.

(1994) Unicast-based multicast communication in wormhole-

routed networks. IEEE Trans. Par. Distrib. Syst., 5, 1252–

1265.

[21] Robinson, D. F., Mckinley, P. K. and Cheng, B. H. C. (1995)

Optimal multicast communication in wormhole-routed torus

networks. IEEE Trans. Par. Distrib. Syst., 6, 1029–1042.

[22] Kesavan, R. and Panda, D. K. (1999) Multiple multicast

with minimized node contention on wormhole k-ary n-cube

networks. IEEE Trans. Par. Distrib. Syst., 10, 371–393.

[23] Agrawal, N. and Ravikumar, C. P. (1997) An Euler-path-

based technique for deadlock-free multicasting. In Proc. Int.

Conf. on Parallel Processing, pp. 378–383.

[24] Lin, X., McKinley, P. K. and Ni, L. M. (1994) Deadlock-

free multicast wormhole routing in 2D mesh multicomputers.

IEEE Trans. Par. Distrib. Syst., 5, 793–804.

[25] Tseng, Y.-C., Yang, M.-H. and Juang, T.-Y. (1998) An Euler-

path-based multicasting model for wormhole-routed networks

with multi-destination capability. In Proc. Int. Conf. on

Parallel Processing, pp. 366–373.

[26] Tseng, Y.-C., Wang, S.-Y. and Ho, C.-W. (1999) Efficient

broadcasting in wormhole-routed multicomputers: a network-

partitioning approach. IEEE Trans. Par. Distrib. Syst., 10, 44–

61.

[27] Wang, S.-Y., Tseng, Y.-C. and Ho, C.-W. (1996) Efficient

multicast in wormhole-routed 2d mesh/torus multicomputers:

a network-partitioning approach. In Proc. Symp. on Frontiers

of Massively Parallel Computation, pp. 42–49. IEEE

Computer Society Press.

[28] Stamoulis, G. D. and Tsitsiklis, J. N. (1993) Efficient routing

schemes for multiple broadcasts in hypercubes. IEEE Trans.

Par. Distrib. Syst., 4, 725–739.

[29] Schwetman, H. D. (1988) Using csim to model complex

systems. In Proc. 1988 Winter Simulation Conf., pp. 246–253.

THE COMPUTER JOURNAL, Vol. 44, No. 5, 2001

