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a b s t r a c t

Protecting a soldier’s head from injury is critical to function and survivability. Traditionally, combat hel-

mets have been utilized to provide protection against shrapnel and ballistic threats, which have reduced

head injuries and fatalities. However, home-made bombs or improvised explosive devices (IEDs) have

been increasingly used in theatre of operations since the Iraq and Afghanistan conflicts. Traumatic brain

injury (TBI), particularly blast-induced TBI, which is typically not accompanied by external body injuries,

is becoming prevalent among injured soldiers. The responses of personal protective equipment, espe-

cially combat helmets, to blast events are relatively unknown. There is an urgent need to develop head

protection systems with blast protection/mitigation capabilities in addition to ballistic protection. Mod-

ern military operations, ammunitions, and technology driven war tactics require a lightweight headgear

that integrates protection mechanisms (against ballistics, blasts, heat, and noise), sensors, night vision

devices, and laser range finders into a single system. The current article provides a comparative study

on the design, materials, and ballistic and blast performance of the combat helmets used by the US Army

based on a comprehensive and critical review of existing studies. Mechanisms of ballistic energy absorp-

tion, effects of helmet curvatures on ballistic performance, and performance measures of helmets are dis-

cussed. Properties of current helmet materials (including Kevlar� K29, K129 fibers and thermoset resins)

and future candidate materials for helmets (such as nano-composites and thermoplastic polymers) are

elaborated. Also, available experimental and computational studies on blast-induced TBI are examined,

and constitutive models developed for brain tissues are reviewed. Finally, the effectiveness of current

combat helmets against TBI is analyzed along with possible avenues for future research.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Helmets have been used for head protection for centuries. The

Sumerians, Assyrians, ancient Greeks, and Romans wore them

throughout the middle ages. The Napoleonic era saw the introduc-

tion of ornate helmets, which continued to be used by the French

army in World War I. However, these helmets provided very little

protection against artillery shells. The French Adrian helmet was

the first modern steel combat helmet. Steel helmets similar to

the French Adrian helmet were soon adopted by other warring na-

tions. The original World War I French and British helmet designs

were adapted by the US Army to form the Hadfield steel helmet.

The Hadfield helmet was eventually re-designed for lower weight,

better comfort, and higher protection to produce the famousWorld

War II M1 steel helmet (see Fig. 1) [150].

In the early 1960s, the US Army embarked on a program to re-

place the M1 steel helmet design with a single-walled, lighter, and

more protective configuration. After considerable research and

development efforts, the improved Personnel Armor System for

Ground Troops (PASGT) combat helmet (made using Kevlar� fi-

bers) replaced the steel M1 helmet. Since the PASGT helmet, the

US Army has introduced two more kinds of combat helmets. The

first is the Advanced Combat Helmet (ACH), and the second is

the lightweight helmet (LWH) of the US Marine Corps. These mod-

ern-era helmets have saved many lives and received great praise.

Since their successful implementation, the trend for helmet devel-

opment has been mainly towards weight reduction, and the con-

cept of ‘‘a soldier as effective as a tank’’ (e.g., [16]) has become

appealing to the Army. It has been envisioned that an advanced

helmet should have a remote sight, a night vision device, a GPS,

and a laser range finder to make an individual soldier a more effec-

tive fighter. Incorporating all these desired features in the helmet

would require a radical change in the functionality and helmet

design.

Improvised explosive devices (IEDs) have been increasingly

used in recent conflicts, exposing soldiers to blast events. Blast in-

duced traumatic brain injury (TBI) is the most prevalent injury in

the Iraq and Afghanistan wars. Very little is known about the effec-

tiveness of the ACH against a blast event and its subsequent influ-

ence on a human head. There have been a number of research

initiatives to design a blast-resistant lightweight combat helmet.

This article provides a comprehensive and critical review of exist-

ing studies in the topical area. Several key factors that affect the

combat helmet performance, such as mechanisms of ballistic en-

ergy absorption, ergonomic aspects of ballistic helmet design,

and material systems, are comparatively studied by analyzing pub-

lished technical reports and research articles. In addition, recent

experimental and computational studies performed to understand

the complex injurious mechanisms of TBI and to develop constitu-

tive models for brain tissues will also be critically examined.

2. Ballistic helmets

2.1. Mechanisms of ballistic energy absorption

The basic function of a combat helmet is to provide protection

against shrapnel and ballistic threats. The ballistic performance

of a material can be measured using the ballistic limit (e.g., [34]).

For a given projectile, the ballistic limit is defined as the projectile

velocity at which the projectile is expected to penetrate the armor/

helmet 50% of the time. Also, when a bullet strikes a helmet, a cone

is formed on the back face of the helmet. The depth of this back-

face signature (a conical bulge) is required not to exceed a critical

value. If the depth exceeds this value, the helmet shell can strike

the skull, resulting in behind armor blunt trauma (BABT) (e.g.,

[18,124,17,65,110]).

Impact events are of three types (e.g., [98]): lower velocity im-

pact, high velocity impact, and hyper-velocity impact. Low velocity

impact is defined as an impact event where the time for the projec-

tile in contact with the helmet exceeds the period of the lowest

vibrational mode. In a low velocity impact event, the boundary

conditions of the structural component are important in order to

accurately describe the impact response. In a high velocity impact

(ballistic or blast impact) event, the local material behavior in the

Fig. 1. Changing designs and materials of the US Army helmet from World War I to the latest headgear system [151].
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impacted zone governs the impact response of the structure. In a

hyper-velocity impact event, the locally impacted material be-

haves like a fluid and very high stresses are induced.

The PASGT and the ACH are made from ballistic fabrics

(Kevlar�). Most ballistic fabrics exhibit a weave pattern formed

by warp and weft yarns (e.g., [53,34,103]). When a woven fabric

is impacted by a projectile, transverse and longitudinal waves

are generated (e.g., [11]). These longitudinal and transverse waves

travel along the yarns until they encounter an obstacle like a fab-

ric edge or a fiber cross-over point. The waves are reflected at the

obstacles and collide with the outward traveling waves. The ki-

netic energy carried by these stress waves is dissipated through

a number of mechanisms, including cone formation on the helmet

back face, deformation of secondary yarns, primary yarn breakage,

inter-yarn friction, and friction between the projectile and the

fabric (e.g., [58]). Shear plugging has also been observed as one

energy dissipating mechanism [98]. As the strain within a fiber

exceeds a critical value (called the dynamic tensile strain), the fi-

ber fails. Each successive fabric layer absorbs the un-dissipated

energy until the projectile is defeated. Failure of all fabric layers

results in complete perforation. If the projectile velocity becomes

zero before complete penetration, then the projectile has been

successfully defeated.

2.2. Effects of curvature

The majority of research on ballistic performance has been con-

ducted on flat laminates. However, the curvature given to a helmet

during its manufacturing from flat laminates leads to stretching

and shortening of fibers. Therefore, the ballistic response of a hel-

met to high velocity impact can be different from that of a flat pa-

nel laminate. A number of authors (e.g., [146,67]) have studied the

effect of curvature on the impact resistance of a helmet. It was ob-

served in van Hoof et al. [146] that the back-face deformation on a

helmet induced by a projectile was greater than that on a flat panel

fabricated from the same material. The curvature effect on the bal-

listic limit of a Kevlar helmet was investigated in Tham et al. [144],

where the helmet was found to have a higher ballistic resistance

than that of a Kevlar laminate.

Delamination is a major energy absorbing mechanism in ballis-

tic impact. The effects of curvature on stresses generated in curved

beams and delamination failures have been investigated in Nguyen

[100], where finite element and analytical studies on graphite–

epoxy curved beams were carried out for three different radii of

curvature. It was found that the radial stress increases as the radius

decreases. That is, the radial stress is the lowest for a flat beam that

has an infinitely large radius of curvature.

All these studies indicate that reducing the radii of curvature of

a helmet increases its ballistic impact resistance. However, a direct

study comparing the ballistic impact resistance of a helmet chang-

ing with its radii of curvature has not yet been performed. Hence,

both flat laminates and the actual helmet should be tested for their

ballistic impact responses when a helmet is manufactured from

new materials. It is also desirable to determine the optimal radii

of curvature of a helmet (if existing) in order to maximize the bal-

listic protection.

2.3. Performance measures of ballistic helmets

An infantry soldier carries all his/her equipment. The duties of

such a soldier are physically demanding, and any addition to the

weight carried generates considerable impairment to the endur-

ance of the soldier. Therefore, weight is a primary consideration

in designing any new helmet system. In addition to weight, other

criteria considered in a helmet design include the following

[106]:

1. Ballistic performance – Ballistic protection is a primary consider-

ation in the fielding of a new helmet. For example, for theWorld

War II steel M1 helmet, the ballistic performance was measured

by the helmet’s ability to defeat a pistol ball traveling at a cer-

tain velocity [16]. The ballistic performance of a composite hel-

met depends on the material used, helmet thickness, and

fabrication method. A compromise often has to be made

between the weight allowed and the ballistic protection

requirements. Because of the use of improvised explosive

devices (IEDs) in urban warfare, an infantry soldier is exposed

to blast events with an increasing frequency [123,19,118].

Hence, it has become necessary to examine whether the current

ballistic standards for a combat helmet are valid for new and

emerging fighting environments.

2. Location of center of mass – The ideal location for any weight on

the head is on the straight line connecting the center of mass

(CM) of the head and the CM of the body. Any shift in the weight

balance on the head from the natural CM of the head will result

in straining and fatigue of neck muscles. It will also hinder the

body balance during other movements like running, crouching,

jogging, or walking, because of muscular accommodations

required [115]. The force exerted on the skull base is the accel-

eration multiplied by the mass of the helmeted head (in case of

impact). The magnitude of the center of gravity (CG) offset tor-

que is proportional to the CG offset distance, acceleration, and

helmet/head mass. Therefore, it is important to have the small-

est possible offset distance between the CG of the helmet and

the CG of the head.

3. Maintenance of head movement – An infantry soldier must be

able to scan his/her surroundings for any sign of threats or tar-

gets. This implies that there should be no impairment of the

head-neck movement. In addition, vision and hearing should

be maintained. Particular care should be taken of any attach-

ment on the helmet. Any new attachment should enhance the

vision and hearing of a soldier rather than impairing it. It is nec-

essary to test the new helmet in field settings before imple-

menting it. There is a possibility that loose hanging wires or

cables may entangle with other items/equipment pieces like

guns, surrounding vegetation, field telephones, or gas masks.

4. Cost and user acceptance – Any helmet that is far too costly to

implement will not be fielded. Other factors to consider are

availability and cost of materials and ease of fabrication. A hel-

met that can be produced in large volumes at a reasonable cost

has a better chance of being accepted. User acceptance depends

on the actual fit of the helmet, comfort level, and benefits in

actual combats. Engaging the end users in the development

process as frequently as possible will increase the acceptance

possibility. Any additional attachments to the combat helmet

should be easily removable by the soldier. If the benefits of a

new helmet for mission completion and survivability are evi-

dent to a soldier, some additional weight or discomfort may

be tolerated.

5. Helmet sizing and fit – Modern-day helmets are designed to pro-

vide much more than just ballistic protection. If the fit of the

helmet were not comfortable, the helmet user would be reluc-

tant to wear it. The fit of the protective head gear thus affects

the performance of the soldier. Fit of an item depends on the

anthropometry. Traditionally, there have been two ways for

determining the size and fit: (a) starting with a basic size and

using grade rules to predict higher sizes, and (b) anthropomet-

ric sizing [120]. However, both of these methods have draw-

backs and could lead to designs with incorrect sizes and

wrong anthropometric fit regions. Traditional anthropometric

methods account for the head circumference variation, but do

not consider the variation in head curvature. There are many

examples of uncomfortable and bulky helmet designs that do
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not accommodate the entire range of users. The recent develop-

ment of 3-D scanning technology has opened up new opportu-

nities for creating more accurate human head models for

design, evaluation, and optimization of helmet fit. New tech-

niques have been developed to acquire and analyze helmet fit

data. 3-D laser scanning has been used for a representative

sample population to establish a helmet sizing criterion [64].

The standoff distance (gap between the head and the helmet)

was fixed as 12.5 mm. Based on the head length and breadth,

the population was divided into groups with medium, large,

and extra-large head sizes. 3-D laser scanning technology cou-

pled with Fourier transforms was used to measure 3-D surface

dimensions of a head [64]. 3-D coordinates of the head were

extracted from MRI scans and stored as data points. This

resulted in considerable data saving, compared to storage of

MRI scan images for all the samples. The boundary of the head

surface was then fit by Fourier transforms. The coefficients of

the Fourier transforms replaced the data points. The coefficient

values differ for different head sizes. Finally, all the samples

taken were divided into nine standard head forms based on

the head breadth and height. In another work, the variations

in the shape and size of a Chinese male/female head were stud-

ied and a methodology of creating a homologous head/face

model was developed [161]. By using 3-D laser scanning, 3-D

head information was collected for 144 participants (72 male

and 72 female). The data were processed and aligned, and land-

marks (virtual and anatomical) were chosen on the head and

the face. In order to generate a homologous head/face model,

the Delaunay triangulation was carried out based on the land-

marks selected. A symmetric mesh was generated for the left

and right sides of the face. Principal component analysis (PCA)

was carried out separately for a male head and a female head

to find the largest varying dimension amongst individuals. After

the PCA analysis, average male and female head models were

developed. Based on the calculated head width, height and

depth for the samples, it was found that the changes in the head

width and depth are larger than the change in the head height.

The same trend was observed for both the males and the

females. This study provided a methodology to convert the

raw data obtained from 3-D head scanning to a 3-D homologous

head model. Traditional anthropometric methods have been

unable to create helmet sizes that fit the entire range of users.

Proper helmet size, fit, and stability are critical to personnel

safety. If the helmet sits too low on the head, it interferes with

the line of vision. If the helmet sits too high, the risk of injury

increases. If it is too tight or too loose, the helmet can be a con-

stant bother. The use of advanced helmet development pro-

cesses (such as 3-D laser scanning, computer aided design,

new surface generation software, and stereo lithography) for

helmet sizing can enhance the comfort level for the end user.

Greater accuracy and design control can be obtained through

better fitting, thereby reducing the number of sizes, inventory,

and logistical costs and enhancing helmet performance and

acceptance.

3. Conventional material systems

3.1. Personnel Armor System for Ground Troops

The first combat helmet was the French Adrian steel helmet.

This was adopted by other nations including the US to form the

Hadfield helmet, which was used during the First World War.

The Hadfield helmet was re-designed for better comfort and pro-

tection to produce the M1 helmet. The M1 helmet was the longest

serving helmet. The M1 helmet could defeat a pistol shot fired at a

certain velocity, as required by the ballistic criterion imposed then

[16]. However, the M1 helmet was manufactured in only one size

(e.g., [79]). In addition, it retained heat, did not protect the tempo-

ral area, and had to be removed before using tele-communication

devices. To mitigate these difficulties, the New Helmet Design Pro-

gram was initiated in 1972. Composites had already been devel-

oped by that time, with the Kevlar� fibers developed in 1965.

This program led to the development of the new Kevlar� fiber-

based Personnel Armor System for Ground Troops (PASGT) helmet

[150], which overcame the drawbacks of the M1 helmet and re-

placed the M1 steel helmet in the 1980s. The PASGT helmet was

manufactured in four sizes, had improved ventilation, and covered

a larger part of the head. The shell was made of layers of Kevlar�

K29 fibers and offered protection against 0.22 caliber, Type 2 frag-

ment simulating projectile. The V50 ballistic limit for the PASGT

helmet was required to be not less than 610 m/s [144]. The PASGT

helmet was in service for 20 years and demonstrated great field

durability. However, with its standard 9 mm thickness shell, it

barely met the operational needs. The PASGT helmet also had fit-

ting problems.

3.2. Modular Integrated Communications Helmet and Advanced

Combat Helmet

With an aim to reduce the weight of the PASGT helmet, the US

Army launched a new helmet development program. Two new hel-

mets were introduced, namely the Modular Integrated Communi-

cations Helmet (MICH) and the Advanced Combat Helmet (ACH).

The MICH utilizes Kevlar� fibers and provides less coverage

than the PASGT helmet. However, this causes less vision obstruc-

tion for the wearer and combines well with the interceptor body

armor. For the PASGT helmet, the high collar of the interceptor

body armor pushed the helmet forward, thus obstructing vision

in prone position.

The ACH, derived from the MICH, is made from the Kevlar�

K129 fiber. The Kevlar� K129 fiber has an areal density of

around 185 g/m2 compared to 270 g/m2 for the Kevlar� K29 fi-

ber, but has a strength which is 40% higher than that of the Kev-

lar� K29 fiber (used for the PASGT helmet). The Kevlar� K129

fiber also has a higher energy absorption capacity than the Kev-

lar� K29 fiber [12]. The ACH thus has a higher ballistic and im-

pact protection capability than the PASGT helmet at a smaller

weight.

The ACH also has a pad system inside the helmet, replacing the

nylon cord suspension system used in the PASGT helmet. This pro-

vides a better fit to the wearer and can give a higher protection

against blunt trauma in case of ballistic impact (e.g., [1,96]). Re-

cently, a survey on soldiers’ satisfaction with ballistic helmets

was conducted by Ivins et al. [72]. The survey indicated a strong

preference of the soldiers for the ACH over the PASGT helmet.

The survey also identified some problems with the ACH. Table 1

lists a brief summary of the survey.

Table 1

Comparison of the ACH helmet with the PASGT helmet [72].

Problem type Percentage of

all ACH users

(n = 535)

Percentage of

all PASGT users

(n = 570)

Loose screws 11 1.8

Loose/broken straps 5.8 3.7

Hard/loose pads 4.1 No padding

Heat retention 1.5 0.9

Poor fit 0.6 4

Falls from head 0.6 0.7

Weight satisfaction 84.7 6.4

Other 1.1 1.8
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4. Modern material systems

4.1. Polymers

There are many factors that control the response of a material to

ballistic impact. However, the main source of kinetic energy

absorption is the straining and breakage of primary and secondary

fibers. Therefore, the stress–strain curve and the fiber tensile

strength play a major role in predicting the impact response of a

ballistic fiber. Table 2 shows the tensile properties for various ar-

mor-grade fibers. Kevlar� fibers, variants of a rigid rod liquid crys-

talline synthetic polymer fiber developed by DuPont in 1965, have

been used in most modern body armor systems. The PASGT helmet

uses the Kevlar� K29 fiber. The ACH, which was fielded in 2003 to

replace the PASGT helmet, uses the Kevlar� K129 fiber and pro-

vides an improvement in ballistic performance and user interface.

The new padding system inside the ACH affords better comfort and

higher protection. Like the PASGT helmet, the ACH utilizes a ther-

moset resin shell (as the matrix material) bonded to Kevlar� K129

fibers.

Thermoplastic resin shells have been considered as an alterna-

tive to thermoset resin shells. Thermoplastic resins are sufficiently

tough and chemical resistant. Thermoplastics are also melt-pro-

cessable. It has been shown that the elasticity of a matrix greatly

affects the energy absorption capacity of a composite. A rigid ma-

trix reduces the ballistic performance as compared to a flexible

matrix [45]. However, thermoplastics have lower tensile strength

than thermoset resins. This has an adverse effect on the structural

stability and the transient deformation characteristics of the hel-

met. Thermoplastics (as matrix materials) are therefore used with

fibers having a higher tensile modulus than the Kevlar� fibers to

augment the matrix stiffness.

Thermoplastics for ballistic applications have been studied

extensively [12,150,151]. Both manufacturing and design aspects

of thermoplastics were investigated in Walsh et al. [150,151],

where various Kevlar� fiber-thermoplastic matrix systems were

explored. The weight was the primary consideration in preparing

the samples. An increase in ballistic resistance was obtained at a

much lower weight. However, the depth of the back-face signature

increased considerably compared to that for a thermoset resin

based helmet, thus increasing the possibility of blunt trauma in-

jury. A detailed study of thermoplastics for ballistic applications

was conducted in Song [132], where semi-crystalline and amor-

phous polymer matrices were examined. The materials used for

the samples were Kevlar� K29 fiber/nylon 66 matrix laminates,

Kevlar� K29 fiber/polyetheretherketone (PEEK) matrix laminates,

Kevlar� K29 fiber/polycarbonate matrix laminates, Kevlar� K29 fi-

ber/polysulfone matrix laminates, Kevlar� KM2 fiber/polysulfone

matrix laminates, and Kevlar� KM2 fiber/linear low-density poly-

ethylene (LLDPE) matrix laminates. The effects of processing tem-

perature, cooling rate, polymer morphology, fiber-wetting

characteristics, reinforcing fabric configuration, and composite

stiffness on the ballistic impact resistance of thermoplastic-based

composites were investigated in Song [132]. The main energy

absorbing mechanisms identified for the laminated composites

were fiber failure in tension, matrix cracking, and delamination.

Processing temperature had a significant effect on the ballistic per-

formance of amorphous and low crystalline polymer composites.

Increasing processing temperature improved the wet-ability, lead-

ing to dense packing of the matrix molecules. This resulted in a

stiffer matrix, diminishing the energy absorption capacity. For

semi-crystalline polymer composites, processing temperature

changes the nature of the crystals formed. However, this was found

to have very little effects on ballistic properties.

Fabric configuration also has a significant influence on ballistic

properties (e.g., [26,34]).

The Enhanced Combat Helmet (ECH), which has been under

development since 2007 for the US Marine Corps and US Army,

makes use of the Dyneema� HB80 unidirectional composite mate-

rial, which consists of a matrix of ultra high molecular weight poly-

ethylene (UHMWPE) reinforced by carbon fibers (e.g., [160]). The

values of the ballistic limit for UHMWPE and several other materi-

als are shown in Fig. 2.

The weathering and gamma radiation effects on ballistic prop-

erties of UHMWPE composite armor have been studied in Alves

et al. [3]. The composite plates were subjected to weathering (2

and 4 months) and gamma irradiation (25 kGy and 250 kGy). The

plates were then tested for hardness, Charpy impact, flexure, and

ballistic limit. The ballistic impact testing was carried out for a

standard 9.0 mm 8-g full metal jacket (FMJ) bullet. It was found

that exposure to weathering for 4 months did not cause significant

changes in the ballistic impact resistance. However, it significantly

increased delamination failures in the plate under a projectile im-

pact. This was attributed to oxygen diffusion between the layers,

reducing the interfacial resistance. Also, it was observed that expo-

sure to gamma radiation reduced the ballistic resistance. The high-

er the gamma radiation dosage was, the larger the local damaged

area was. This is shown in Table 3. It was concluded that exposure

to weathering and gamma radiation induces modification in the

Table 2

Tensile properties for various fibers [12,34,132].

Material Properties

Density

(g/cm3)

Breaking

strain (%)

Tensile

strength (MPa)

Tensile

modulus (GPa)

Nylon 66 1.14 18.2 1006 5

Kevlar� K29 1.44 3.5 2794 67

Kevlar� K129 1.44 3.3 3429 96

PBO 1.58 3.8 7386 195

Spectra 1000 0.97 2.7 2995 172

Dyneema� 0.97 3.8 2500 120

Fig. 2. Ballistic limits for various materials (e.g., [34,132]). The value for the CNT

was based on molecular dynamics simulations [97].

Table 3

Increase in damaged area of the UHMWPE composite armor with weathering and

gamma irradiation [3].

Condition of composite Average damaged

area of ballistic impact (cm2)

As received 6.25

Weathered for 2 months 7.12

Weathered for 4 months 7.69

Gamma irradiation of 25 kGy 8.65

Gamma irradiation of 250 kGy 40.77
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UHMWPE molecular structure, leading to changes in the mechan-

ical and ballistic properties of the composite. It is therefore neces-

sary to test the UHMWPE based helmet periodically to ensure that

weathering and gamma radiation do not compromise the ballistic

impact resistance of the helmet.

4.2. Nanomaterials

Carbon nanotubes (CNTs) are one allotrope of carbon, which

have tubular structures, nanometer diameters, and large length-

to-diameter ratios. The mechanical, electrical, optical, and chemi-

cal properties of CNTs have been studied in detail (e.g.,

[101,51,52,109,97]). CNTs have high strength, lightweight, and

good energy absorption capacity. It can be seen from Fig. 2 that

the ballistic limit of CNTs (based on molecular dynamics simula-

tions) is considerably higher than that of any material currently

used for making ballistic helmets. Therefore, polymer matrix

nano-composites, where a polymer matrix is reinforced by nano-

particles like CNTs (e.g., [52,80]), can be good candidate materials

for ballistic applications. The most commonly used nano-particles

and polymer matrices are listed in Table 4.

Mechanical properties, energy absorption capabilities, and

bonding mechanisms of polymer matrix nano-composites have

been extensively investigated (e.g., [125,55,137]).

Material properties related to energy absorption capabilities of

nano-composites include particle stiffness, particle geometry, vol-

ume fraction, inter-particle distance, particle size, interfacial adhe-

sion, particle size variation, and matrix strength [137]. It has been

shown [41] that the optimum nano-particle size for ballistic energy

absorption should satisfy two criteria: (a) It should be smaller than

the critical size for polymer fracture; (b) it should have a debond-

ing stress smaller than the polymer yield strength. Increasing the

volume fraction of nano-fillers can increase both the toughness

and modulus [112]. The matrix material also has a significant effect

on the modulus and toughness of a nano-composite. Some polymer

materials may not bond well with nano-fillers, causing a decrease

in mechanical properties. It was reported [137] that CNTs, organ-

clay, titanium oxide, aluminum oxide, calcium carbonate, silica,

and silicon carbide are good nano-fillers for improving the energy

absorption of polymer matrix nano-composites. Pre-dominant en-

ergy absorption mechanisms in fabric-reinforced polymer matrix

composites are breakage of primary and secondary yarns, delami-

nation, and shear plugging. However, for nano-scale reinforce-

ments, some of these factors for energy absorption and

dissipation are not relevant [137]. Debonding and particle fracture

are important mechanisms in kinetic energy absorption in polymer

matrix nano-composites [24]. It has been shown [156] that energy

absorption by fiber pullout and by fiber fracture is more for a set of

nano-particles than for a corresponding macro fiber. Another en-

ergy absorption mechanism is the bond formation and interfacial

forces [164,80,6] between nano-particles and a polymer matrix.

When the nano-particles are of molecular size, covalent and van

der Waals bonds are formed between the particles and the matrix

[7]. This increases the shear strength and the adhesion force, there-

by increasing the energy required for debonding. In contrast, the

bonding energy between a single macro fiber and a polymer matrix

is only due to van der Waals or electrostatic forces. In addition, if a

nano-particle is surface treated, an interphase is formed between

the particle and the matrix. Interfacial properties are different from

those of the constituent materials and add to the debonding energy

[80]. Surface morphology also has an effect on energy absorption

and dissipation characteristics (e.g., [165,74]). The nature of a ma-

trix material has a significant effect on the bonding between a

nano-particle and the matrix (e.g., [59,42]). Different matrix mate-

rials provide different ballistic impact resistance for the same

nano-particles, and the same matrix material and different nano-

particles produce significantly different energy dissipation charac-

teristics. Nano-particle dispersion within a polymer matrix also

has an effect on the ballistic properties of the resulting nano-com-

posite. Depending on the inter-particle distance, nano-composites

can be classified as clustered, exfoliated, and intercalated. How-

ever, there has been no consensus (e.g., [153]) amongst researchers

on the best dispersion method for highest ballistic resistance. In

addition to the above-mentioned mechanisms, other energy dissi-

pating mechanisms in nano-composites include crack pinning,

crack deflection, debonding, void nucleation, shear banding, and

micro-cracks.

Experimental studies have been conducted to understand bal-

listic resistance of nano-composites. Ma et al. [86] performed bal-

listic and blast experiments on nanoclay reinforced nano-

composite armor. Each armor sample consisted of an aluminum

back plate and a ceramic face plate. The face plate was a combina-

tion of ceramic pellets and gluing polymer. The gluing polymer

used was either pure epoxy or nanoclay reinforced epoxy. Two

types of projectiles were employed in the ballistic testing – armor

piercing M2 (APM2) bullets and armor-piercing incendiary full me-

tal jacket (B32) rounds. Each armor sample was shot first by APM2

bullets and then followed by B32 rounds. It was found that the face

plate containing nanoclay particles maintained its integrity even

after two bullet hits, in contrast to the face plate made of pure

epoxy. Each armor sample was also subjected to 600 psi air blasts.

The maximum deflection for the pure epoxy resin face plate was

5.1 mm compared to 2.9 mm for the nanoclay reinforced face plate.

More recently, Laurenzi et al. [81] performed experiments to study

impact resistance of nanostructured composite materials rein-

forced with multi-walled CNTs. The ballistic panels were made

from Kevlar� K29 fiber reinforced epoxy matrix nano-composites

containing multi-walled CNTs (MWCNTs) with diameters 20–

30 nm and lengths 10–30 lm. The samples were tested using Char-

py impact tests. A 44% increase in energy absorption capacity was

obtained for the composite containing 0.1 wt% MWCNTs, and a 56%

increase for the composite with 0.5 wt% MWCNTs. For the compos-

ite containing 1 wt% MWCNTs, no change in impact resistance was

observed, indicating a MWCNTs concentration threshold between

0.5 wt% and 1 wt%. These impact tests indicate that MWCNTs can

significantly improve the ballistic properties of the Kevlar� K29 fi-

ber–epoxy composite laminates.

Mutiscale simulations have also been performed to model dy-

namic responses of nano-composites under impact and blast load-

ing. Using a multiscale method known as molecular structural

mechanics (e.g., [84,52]), Rafiee and Moghadam [113] studied the

impact and post impact behaviors of a carbon nanotube (CNT) rein-

forced polymer matrix composite based on a cylindrical represen-

tative volume element (RVE) consisting of a single walled CNT

embedded in a polymer resin matrix. Each C–C bond in the lattice

structure of CNT was modeled using an equivalent 3-D beam ele-

ment. A volume fraction of 5% for the CNT in the RVE was consid-

ered. The CNT was simulated at the nanometer scale, while the

polymer resin matrix was modeled at the micron scale. The inter-

phase region between the polymer matrix and CNT was treated as

a non-bonded interaction and was modeled using van der Waals

forces. The van der Waals interactions between the carbon atoms

in the CNT and the nodes of the inner surface of the resin matrix

Table 4

Common polymer matrix and nano-scale reinforcement materials [125].

Polymer matrix Nano-particle reinforcement

Nylon Titanium oxide

Polyolefins Fumed silica

Epoxy resins Nano-clays

Polyurethane Carbon nano-fibers

Polyethylene Carbon nanotubes
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were modeled using 3-D non-linear spring elements. The proper-

ties of the non-linear spring elements were described by the Len-

nard–Jones (L–J) potential. Simulations were also carried out for

a neat resin (not reinforced with any CNT) RVE. Axial impact load-

ing was applied to one end of the cylinder, and zero displacement

boundary conditions were imposed at the other end. The simula-

tions showed that the maximum axial deflection of the neat resin

was six times greater than that of the CNT reinforced composite.

Also, the magnitude of the maximum tensile stress at the fixed

end was higher for the neat resin case. The simulation results of

Rafiee and Moghadam [113] revealed that even a small volume

fraction of CNTs improves the impact resistance of the polymer

matrix. Very recently, Volkova et al. [149] performed meso-scale

simulations to study shock wave propagation in a SiC/Al nano-

composite reinforced with inorganic fullerene WS2 (IF–WS2)

nano-particles. A statistical volume element (SVE) with particles

distributed randomly in the matrix was modeled. Simulations were

conducted for three different configurations – IF–WS2 nano-parti-

cles in an Al matrix, in a SiC matrix, and in a SiC/Al composite.

The effective properties of the SVE were obtained using the self-

consistent method of Budiansky [15]. The IF–WS2 nano-particles

were modeled as perfectly spherical and represented as a trans-

versely isotropic material. The elastic constants for the IF–WS2
nano-particles were calculated using density functional theory-

based MD simulations. A particle velocity was applied to one face

of the SVE, zero displacement boundary conditions were imposed

on the opposite face, and rolling boundary conditions were pre-

scribed on the rest of the faces. The simulations revealed that stress

propagates faster through the IF–WS2 particles than through the Al

matrix. This leads to stress fingering and dispersion. These two ef-

fects are influenced by the volume fraction of the particles (inclu-

sions), with stress fingering and dispersion increasing with the

increase of the volume fraction of the inclusions. In addition, a

greater mismatch in the moduli of the matrix and inclusions re-

sults in a greater degree of stress dispersion.

The main drawbacks of using nano-composites in ballistic

applications are manufacturing difficulties and high cost. Cost-

effective production of nano-composites is still a topic of active re-

search (e.g., [78,114,92,94]). The major methods for synthesis of

carbon nanotubes are arc discharge, laser ablation, and chemical

vapor deposition. Electro-spinning [117] and solution spinning

[32] have also emerged as new methods for fabricating strong

nano-fibers.

Although nano-composites, especially CNT-reinforced polymer

matrix composites, are promising materials with several functional

advantages, their manufacturing feasibility and cost effectiveness

remain to be explored. The development of appropriate techniques

for cost-effective fabrication of reinforcing nano-particles and their

dispersion in matrix materials will decide whether such new nano-

structuredmaterials will be able to replace traditional and contem-

porary armor materials used in personal protection equipment,

which include aluminum foams and elastomer–steel laminates

(e.g., [48,85,121]).

5. Traumatic brain injury (TBI)

Traumatic brain injury (TBI), also known as intra-cranial injury,

is a damage to the brain (see Fig. 3) induced by external mechan-

ical forces, resulting in permanent or temporary impairment of the

brain functions. Since Operation Enduring Freedom and Operation

Iraqi Freedom, explosive devices have been responsible for many

injuries of US soldiers. Improvised explosive devices, roadside

bombs, and suicide car bombs have caused about 60% of American

casualties in Iraq and about 50% in Afghanistan [158]. Among

civilians, TBI can be caused by motor vehicle accidents, sports

and work related accidents, and terrorist bombings. Because of

its high economic impact on the society and families of the af-

fected, TBI is also an important social problem. Traumatic brain in-

jury caused by blast is called blast-induced traumatic brain injury

(BTBI).

5.1. Mechanism of blast

A blast wave is generated from an explosion by sudden release

of a large amount of energy in a very small volume (see Fig. 4). A

blast wave usually consists of a shock wave and a blast wind

[30]. Nonlinear physics that explains shock waves is also used to

describe blast waves [140,141]. A wave can propagate in a medium

with the speed of sound. The speed of sound depends on the tem-

perature and pressure of the medium. If the pressure or tempera-

ture increases, the speed of sound also increases. A shock wave

travels at a supersonic speed relative to the undisturbed medium.

The arrival of a shock wave results in a sudden local rise of pres-

sure, density, and temperature in the medium. Explosion usually

results from a chemical reaction. When the detonation of an explo-

sive material occurs, a hot high-pressure volume of gas is created,

which is surrounded by a thin hot layer of air. This volume of gas

expands as the shock wave. The surrounding air is accelerated by

this expanding shock wave and propagates at a very high velocity,

which forms the blast wind. An observer exposed to an explosion

will be first subjected to the high-pressure shock wave and then

to the high-speed blast wind. In a closed environment, the blast

wave interacts with the surrounding structure, changing its char-

acteristics and creating multiple wave reflections. Even in open-

field conditions, the blast wave reflects from the ground, resulting

in an increase in the blast pressure. With the blast wind being

highly non-linear, it is difficult to predict the exact characteristics

of the reflected waves. However, reflected waves significantly in-

crease the blast pressure and the speed of the blast wind. Depend-

ing on the locations, an observer may be subjected to a single blast

wave or multiple blast waves. For an observer far away from the

blast site, the wave might consist of only reflected components

of the primary blast wave. It is probable that a person close to

the explosion will have lesser injuries, as compared to someone

farther away [30].

5.2. Blast-induced traumatic brain injury – experimental models

Numerous experimental and computational studies have been

conducted to identify the potential mechanisms of blast-induced

traumatic brain injury (BTBI).

In experimental studies, compressed air impact tests, shock

tubes, blast tubes, and open-field explosion testing are typically

used, and animals and human head models are employed. Ta-

ble 5 gives a brief summary of various experimental models

and the related observations. Various theories for TBI have been

proposed [134]. Even though these theories have been sug-

gested for direct impact injuries, they have a strong relevance

to BTBI. The leading theories for TBI include the vibration the-

ory, the liquor strike theory, the theory of inertial intracranial

dislocation of the brain, the rotational acceleration theory [68],

the theory of stereotactical phenomena [105], and the pressure

gradient theory [57].

Based on existing experimental studies, the following causes

have been identified for BTBI:

1. Primary blast injury is caused by the direct interaction of the

high-pressure blast wave with the body. Several mechanisms

have been suggested for this. One of them is the passage of

the blast wave through the skull, with the skull absorbing

very little incident pressure [19]. Impedance mismatch
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between the skull material and air leads to considerable pres-

sure amplification across the air–skull interface [2]. This sug-

gests that blast overpressures far less than those required to

cause immediate death could result in TBI. The mass differ-

ence between the skull and the brain tissue is another cause

of TBI (as explained by the vibration theory and the inertial

intracranial dislocation theory). Direct impact of the blast

wave induces translational cranial motion. Since inertia of

the skull is more than that of the brain, the skull stops vibrat-

ing before the brain. This gives reverse impact between the

brain and the skull, leading to intracranial pressure changes.

In the area opposite to the point of impact, negative pressure

induces cavitation bubbles, which cause brain damage when

collapsed. Such injuries are called tensile/compression inju-

ries. Thoracic mechanisms have also been identified as possi-

ble causes of BTBI [29]. As the entire body is subjected to

blast, the kinetic energy of the blast is transferred through

the abdomen to the body’s fluids. This initiates waves that

deliver the kinetic energy to the brain. Multiple wave reflec-

tions are also causes of primary brain injuries.

2. Secondary blast injury is induced by the debris propelled by the

high-speed blast wind. In case of terrorist bombings or IED

explosions, there is a substantial probability of secondary

injuries. In most cases, IEDs contain metal pieces, nails, glass,

or ball bearings that are akin to bullet strikes. In addition, these

shrapnels travel much farther than where the high pressure blast

wave can go, increasing the probability of secondary injuries.

3. Tertiary blast injuries are predominantly caused by the acceler-

ation of the body parts by the blast wind. Wind speeds in a Cat-

egory four hurricane can reach around 210–249 km/h, while a

blast wind can travel at around 2400 km/h [130]. Any body part

can be affected, but the head and the neck are particularly sus-

ceptible, because their acceleration differs from the rest of the

body. In a rotational head motion, inertial forces are exerted

on the brain, skull, and brain tissue. As the inertia of the skull

is greater than that of the brain tissue, high shearing strains

are generated in the intra-cranial region. These types of injuries

are called ‘‘Diffuse Axonal Injuries’’ or shearing injuries.

4. Quaternary injuries are induced by the high temperature gases

following the explosion. This may include burns and respiratory

injuries caused by toxic gas inhalation. Permanent damage to

the brain tissue may result because of excessive heating of

the skull.

5. Besides traumatic brain injury, there are other physiological

effects due to exposure to blast [88,163,136,76]. Exposure to

blast causes compression of the thorax and abdomen because

Fig. 3. Basic anatomy of human brain [145].

Fig. 4. Effect of blast waves on a human body [19].
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of the presence of air-carrying organs [29]. This creates a surge

in blood flow. When this increased volume of blood flow

reaches the brain, it can lead to high pressures in the intra cra-

nial region. It is therefore necessary to study this mechanical

path from the abdomen to the brain. It has also been shown that

an explosion creates a low-frequency electromagnetic field

[83]. The effects of such an electromagnetic field on the brain

and tissue have been recently studied in Lee et al. [83]. It was

found that the bone piezoelectricity generates intense blast-

induced electromagnetic fields in the brain. The strength of

these generated fields is many times higher than that defined

in the IEEE safety standards. These intense electromagnetic

fields might be a potential mechanism of TBI. It is also well

established that a prolonged exposure to high temperatures

from the blast produces significant thermal effects. The skull

is not able to dissipate a sufficient amount of heat, leading to

a temperature increase in the tissue matter in the intra cranial

region. The effect of the temperature increase on the tissue mat-

ter needs further investigations. Explosive detonation is a com-

plex phenomenon. The nature of explosive, peak pressure,

impulse, shape of the 3-D pressure distribution, temperature,

velocity field, and structure frequency determine structural

response to the blast. When the blast wave strikes a structure,

the pressure loading is composed of two components: the

pressure developed by slowing down the blast wind, and the

pressure due to reflected waves. Studies conducted so far simu-

late only idealized pressure waves. An understanding of all

damage mechanisms is vital for developing a headgear that

can effectively protect against TBI.

As can be seen from Table 5, a very broad variety of methods

has been used to inflict head injury. Field experiments have been

predominantly conducted on pigs, rats, and mannequins. In almost

all cases, animals are anesthetized and fixed in special holders. This

prevents direct simulations of injuries caused by the blast wind

component of the blast wave. Shock tube and blast tube experi-

ments can only simulate idealized blast events. Therefore, compar-

ing experimental results with clinical findings remains a

challenging task.

5.3. Blast-induced traumatic brain injury – numerical simulations

A number of injury models have been proposed to capture brain

responses to blast waves. Finite element methods have been

widely used to model the damage to the body induced by blast

waves. To model the motion and response of the body and its inter-

nal elements, the simulations usually begin with generating geo-

metric models of varying complexity.

Three-dimensional (3-D) imaging data obtained from mag-

netic resonance imaging (MRI) or computed tomography (CT)

Table 5

Summary of important experiments carried out to study blast-induced neuro-trauma.

Type of

experiment

Explosive used Model used Finding Author

Shock tube.

Pressure levels

below 700 kPa

3 g charges of pentaerythritol

tetranitrate (PETN) plastic

explosive. Laboratory standoff

distances at 8–17 in.

Solid poly(methyl methacrylate) (PMMA) shell

skulls, PMMA shell skulls with features. Perma-

gel ballistic gelatin and polydimethylsiloxane

(PDMS) polymer to represent brain tissues.

Impedance mismatch among air, PMMA skull

(bone matter) and gelatin (tissue) causes

considerable pressure amplification across the

air-skull interface. The curved surface of the

shell also induces pressure amplification.

Acceleration measurements revealed extreme

accelerations experienced on the interior face.

Shock waves transmitting into the tissue lead to

separation of tissue interfaces, creating

instantaneous vacuum. This results in an abrupt

material collapse, generating localized pressure

waves.

Alley et al.

[2]

Shock tube.

Overpressures

ranged from

600 kPa to

8000 kPa used

Shockwave generator Head consisted of polyurethane skull and PDMS

skin. Head was attached to a flexible neck

structure. Cerebrospinal fluid (CSF) was

modeled as water. Additive gel mixed with

silicone gels was used to simulate brain matter.

This work mainly focuses on the

instrumentation and calibration

Large pressure build-up was found within the

skull, particularly at the center. A shock wave

that is planar at the time of impact becomes

non-planar at the time of entry.

Sogbesan

[131]

Blast tube. Blast

overpressures

from 129 kPa

to 769 kPa

1.3–3.0 g of PETN plastic

explosive

3 mm-thick ellipsoidal polycarbonate

transparent skull was used. Tissue matter was

Sylgard 527 gel. Six blasts were conducted with

various intensities, pressure, and orientations.

A low level of strain was observed in the brain.

The amplitudes of both positive and negative

pressures inside the skull increased with the

blast intensity. The skull material was found to

absorb very little of the blast pressure. The

pressure-driven (rather than strain-driven)

injury mechanism was found to be responsible

for the brain trauma.

Zhang

et al. [162]

Shock tube. Peak

pressure of

42 kPa

Compressed air Rats were used in the study. A pressure probe

was placed inside each rat’s brain.

It was found that the skull absorbs very little

blast wave.

Chavko

et al. [23]

Field study

conducted

5 kg C4 charges placed at 2,

2.5 and 3.5 m distances

Mannequin for the assessment of blast

incapacitation and lethality (MABIL) made of

polyurethane was used. Three scenarios – 50%

survivability, 90% survivability and lung

threshold – were tested for 1 ms and 5 ms

durations. Comparison was made based on the

mid-sternum acceleration and velocity.

Contradictory results were obtained. The

shorter duration blasts generated a higher mid-

sternum acceleration, while the longer duration

led to a higher velocity.

Bouamoul

et al. [13]

Open field, blast

tube, HMMVEE

surrogate and

building

Uncase explosive Pigs Air overpressure was found to be the primary

cause of brain injury. Prominent brain injuries

were white matter fiber degeneration and

astrocytosis.

Bauman

et al. [10]
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techniques can be utilized to generate geometric models of various

parts of a human head. In such image-based geometric modeling,

suitably smooth surfaces representing brain tissues can be ex-

tracted from 3-D MRI or CT imaging data. Once the geometric

model is created, standard tetrahedral or hexahedral meshing

algorithms can be implemented for finite element (FE) mesh

generation. Image based geometric modeling has been used by

Ganpule et al. [49] for generating geometric models of skull, facial

bones, neck bones, and brain tissues needed in their study on blast

induced TBI.

Another popular approach is voxel meshing [75]. This method

combines the surface detection and mesh creation stages in one

process. In this approach, volumetric pixels (voxels) are divided

into different regions using various segmentation techniques.

These regions are then exported as hex elements. This algorithm

is easy to implement, produces all hex mesh, and leads to confor-

mity of mesh at interfaces. A 3-D FE human head model for study-

ing brain trauma was proposed in Chen and Ostoja-Starzewski [25]

using the voxel meshing technique. The FE mesh of their head

model, consisting entirely of hexahedral elements, was developed

from MRI data sets using a custom developed C++ code. Five differ-

ent tissue types – scalp, skull, CSF, gray mater, and white mater –

were identified from the MRI imaging data using a segmentation

procedure. Voxel meshing was also employed by Taylor and Ford

[142] to construct a head model based on the segmentation of high

resolution photographic data using a pattern recognition

algorithm.

A few commercial software packages that provide image based

meshing capabilities are currently available, which include Amira

(Mercury Systems, MA, USA), Mimics (Materialise, NJ, USA), Simple-

ware (Simpleware Ltd., UK), and Scan23D (Dassault Systèmes Solid-

works Corp, Velizy, France). Mimics was used by El Sayed et al. [43]

to reconstruct FE mesh from MRI data. The resulting mesh con-

sisted of nine components – skull without facial bones, cerebrospi-

nal fluid (CSF) in the form of a 3-mm thick layer, gray matter, white

matter, cerebellum, corpus callosum, telencephalic nuclei, brain

stem, and ventricles.

The effect of primary blast waves on the skull has been studied

by Moore et al. [93]. The Bowen curve [14] was used to obtain a

threshold of 5.2 atm for lung injury, a lethal dose of 18.6 atm for

50% lung injury was adopted, and the upper and lower bounds

for survivable blast brain injury were established. In Nyein et al.

[104], a FE model for an unprotected head was proposed using a

mesh containing 808,766 elements (see Fig 5). The computational

model distinguished different parts of the head: ventricle, glia,

white matter, gray matter, eyes, venous sinus, cerebrospinal fluid

(CSF), air sinus, muscle, skin and fat. The volumetric response of

the brain tissue was described by the Tait equation of state, the

deviatoric response by the neo-Hookean elasticity model, and the

skull response by the Mie-Gruneisen/Hugoniot equation of state.

Significantly different strain distributions were observed in differ-

ent parts of the tissue material and brain. Based on the maximum

compressive/tensile stress and von Mises stress in the brain, it was

concluded that the blast intensity corresponding to 50% of the

lethal lung injury caused mild traumatic brain injury (mTBI). In

addition, direct blast propagation into the brain occurred with

the skull absorbing very little or no pressure intensity.

A similar study was carried out by Grujicic et al. [61]. The com-

parison of the von Mises stress for three blast intensities showed

that the stress values were not high enough to cause mTBI. How-

ever, direct passage of longitudinal and transverse pressure waves

within the intra cranial cavity could lead to mTBI.

The effectiveness of the skull in protecting the brain from blast

waves was studied by Teland [143]. A pig head model consisting of

the skull, brain, and CSF was used. The material was assumed to be

linearly elastic. It was found that the hard skull does not protect

the brain from the blast waves. The pressure waves were not ab-

sorbed by the skull material but traveled through the skull to the

brain.

Comparisons of brain responses to front and lateral impacts (see

Fig. 6) have been studied by El Sayed et al. [43]. In their study, the

load on the headwas applied as a pressurewave rather than a direct

blast. The pressure was applied as a semi-sinusoidal time distribu-

tion for six milliseconds (ms), with a peak magnitude of 7.90 kN.

For the frontal impact, peak positive pressures were observed be-

neath the impact site, while negative pressures were observed in

the area opposite to the impact site. Irreversible cavitation damage

was also observed. However, no permanent shear damage was

found. For the lateral impact simulations, themagnitudesof thecoup

and countercoup pressures developed were much higher. In addi-

tion, the magnitude of the shear stress developed was ten times

higher than that in the frontal impact case, causing shear yielding.

This showed that a lateral impact had a more damaging effect on

the brain than a direct frontal impact.

A detailed headmodel was used in Chafi et al. [20] to predict the

pressure distribution, shear stress distribution, and principal strain

distribution in a brain subjected to a blast wave. The isotropic

Mooney–Rivlin model was used to describe the hyper-elastic con-

stitutive relation of the brain tissue material. The viscoelastic re-

sponse is represented in terms of a convolution integral, and the

relaxation modulus is described by a standard Prony series. The

Jones–Wilkins–Lee equation of state (EOS) was used to model

explosives, and the material parameters used in the EOS were

those of trinitrotoluene (TNT). Three blast intensities correspond-

ing to 0.0838, 0.205, and 0.5 lbs of TNT were used at a fixed stand-

off distance. In the simulations, no uniform pressure gradient was

observed across the brain tissue. In addition, the classical coup and

countercoup pattern was not observed (unlike in other studies).

Both positive and negative pressures were observed at the impact

site as well as at the opposite side. Based on the Ward criterion

[155], for the blast scenarios generated by 0.205 lb and 0.5 lb

TNT, the average peak positive pressure exceeded the established

thresholds. The brainstem, white matter, and corpus callosum

experienced maximum shear stresses. At early stages of impact,

Fig. 5. A detailed head model [104].
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the pressure intensities were higher than shear stress magnitudes.

However, the stress magnitudes elevated after these early stages.

The maximum principle strains were observed in the brainstem.

According to the criterion of Bain and Meaney [8], for a blast sce-

nario of 0.5 lb explosive, the principal strain values exceeded the

established threshold.

5.4. Ballistic helmet and traumatic brain injury

Traditionally, combat helmet design has been focused on pro-

viding protection against ballistic impact from projectiles. The Ad-

vanced Combat Helmet (ACH) made from the Kevlar� fibers was

designed to protect against shrapnel, fragmentation, and 9 mm

bullet shots (see Fig. 7).

The response of a Kevlar� helmet to ballistic impacts was stud-

ied in Tham et al. [144]. It was found that a Kevlar� helmet could

defeat a high-velocity 9 mm bullet and a 1.1 g fragment-simulating

projectile (FSP).

There has been a recent interest in testing the effectiveness of

the helmet against blast events and blunt trauma injuries. The re-

sponse of a combat helmet to blast waves was studied by Moss

et al. [96] by modeling the skull as a hollow elastic ellipsoid

containing viscoelastic CSF and using a simplified face, neck and

body system with no lower jaw. The head was subjected to a shock

wave with an overpressure of one bar over the ambient pressure

and a 450 m/s blast wind. For an unprotected head, the skull wall

deforms and collides with the brain. This develops large positive

and negative pressure spikes in the cranial cavity. It also creates

damaging shear strains. For a head protected with a helmet, the

1.3 cm gap between the helmet and the head creates an ‘‘under-

wash’’ effect. The gap allows the blast wave to wash in between

the helmet and the head. This causes more pressure on the skull

than in an unprotected head. For a helmet with padding, the hel-

met is coupled to the head and the underwash effect is mitigated.

It should be mentioned that without including lower jaw and ana-

tomical details (such as skull thickness variations, gray or white

matter, and ventricles), the model adopted by Moss et al. [96] is

overly simplified and needs to be validated, as also noted in Nyein

et al. [104].

In a recent study [49,50], it was observed that tight foam pads

between a head and a helmet can eliminate the underwash effect

and thus provide a better protection from blast.

The effect of an ACH and a conceptual face shield on stress wave

propagation within the brain tissue following a blast has been

Fig. 6. Head model used by El Sayed et al. [43].

Fig. 7. ACH and its parts.
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studied in Nyein et al. [104]. A human head model was used along

with a model of the ACH provided by the Natick Soldier Research

Development and Engineering Center. The material models were

the same as those used earlier in Moore et al. [93]. Simulations

were carried out for an unprotected head, a head with a helmet,

and a head with a helmet and a face shield. It was found that the

main transmission pathway of the blast waves to the brain was

through the soft tissues of the face. Tissue cavitation was also ob-

served as a possible mechanism of brain damage. The simulation of

a helmeted head with the current variant of the ACH showed that

the helmet provides no mitigation of blast effects on the brain tis-

sue, as it does not protect the face. The third simulation was carried

out for a head with the ACH and with a conceptual face shield at-

tached to it. It was observed that the presence of the face shield

significantly contributed to reducing the stress intensity in the

brain.

A similar study was carried out in Grujicic et al. [61]. The blast

intensity and material models were taken to be the same as those

used in Moore et al. [93]. Their simulations revealed that the blast

wave propagates through the skull. It travels faster in the intra cra-

nial cavity, and multiple reflections occur. Maximum compressive

stresses were found on the impacted side, while the maximum ten-

sile stresses were seen on the side opposite to the point of impact.

Intra cranial shear stress values were substantially lower than

those of the principle stresses. The maximum shear stresses were

located in the brain stem. For both 5.2 atm and 18.6 atm blast

intensities, no shear-induced mTBI was observed, while there

was a possibility of contusion type TBI. For a head protected by a

helmet, the findings obtained by Grujicic et al. [62] were contradic-

tory to those reported in Moore et al. [93] and Nyein et al. [104].

For the helmeted head, the load transfer path to the skull was

found to be different. The underwash effect observed in other sim-

ulations was also seen. However, for the helmeted head a 40%

reduction in the maximum principal stress magnitude and an 8%

reduction in the maximum shear stress magnitude were obtained.

No mention was made regarding the propagation of blast waves

through the soft tissue of the face. This is in contrast to the simu-

lations reported by others (e.g., [93,50]), where the helmet either

produced an increase in the pressure intensity on the skull or pro-

duced no significant reduction.

A comparative study on the blast wave mitigation capability of

suspension pad materials has been conducted by Grujicic et al.

[63]. The effects of blast waves on an unprotected head and a head

protectedwith anACHwithpolyurea as the suspensionpadmaterial

were studied. In the absence of information about the currently used

suspension pad material in the ACH, Ethylene-Vinyl-Acetate (EVA)

was chosen as a secondmaterial (other than polyurea). Thematerial

models and the pressure intensities were taken to be the same as

those used in their earlier study [62]. High peak axial stresses and

peak particle velocities were chosen as parameters for comparison.

Itwas found that polyurea lowered thepeak stresses andpeak veloc-

ities transferred to the skull (and hence to the brain). Because these

two are primary TBI causing mechanisms, it was concluded that

polyurea was a better suspension pad material than EVA.

The Department of Defense’s blast injury research program

[135] and the non-lethal weapons human effects program under

the guidance of the Air Force Research Laboratory [129] were initi-

ated to conduct biomedical research in order to improve the cur-

rent understanding of blast injuries. The goal of these programs

is to characterize the complete hazard caused by the blast waves.

The thoracic human body models used to study ballistic impact

of armor and the human head models employed to investigate

the physical effects of blast were combined to form the Advanced

Total Body Model [129,135]. An integrated finite element model

consisting of head, neck, thorax, and abdominal regions was em-

ployed to understand the mechanisms for BTBI.

A study on the effect of facial protective devices on injury mit-

igation in BTBI was conducted by Jason [73]. The head and material

models employed in this study were the same as the ones used in

Nyein et al. [104], and simulations were carried out for both the

ACH and the ECH. The blast wave was generated by an explosion

of 3.16 g of TNT in free air explosion at a 0.12 m standoff distance.

The model validation was carried out by comparing the simulated

results for a side blast with the experimental results obtained at

the Naval Sea Systems Command Warfare Center (with experi-

ments carried out on a series of mannequins) [104]. In order to

reduce the effect of the blast waves traveling through the soft

tissues of the face into the intra cranial cavity, a face shield (see

Fig 8) was added to the helmet. The material of the face shield

was the same as that of the helmet shell. The following simulations

were carried out on: (a) an ACH with a face shield, (b) an ECH with

a face shield, (c) an ACH with a pair of ski goggles, and (d) an ECH

with a pair of ski goggles. The material model of the goggles was

the same as that of the helmet shell. It was observed that the face

shield prevents the direct transmission of the negative and positive

pressure waves through the soft tissue of the face to the brain. The

transfer of the pressure waves occurs through the foam padding.

An undesirable effect of the face shield was also observed. There

is a late increase in the pressure imposed on the surface of the face

because of the air trapped between the face shield and the face. It

was also observed that the unprotected region in the rear of the

head causes an increase in the pressure exerted on the soft tissues

of the face. It was proposed to extend the helmet shell to cover the

neck. For the simulation with the goggles, it was observed that the

goggles protect the soft tissue of the face. However, physical inter-

action between the goggles and the head offers a new pathway for

pressure transmission. It was also observed that this secondary

pathway reduces the pressure transmitted to the head through

Fig. 8. Face shield and goggles suggested to improve blast mitigation capabilities of

combat helmets [73].

Fig. 9. Drilling channels in the liner of an ACH filled with an incompressible

material [56].
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the padding, i.e., it reduces the underwash effect. For the ECH, sim-

ilar phenomena were observed.

The use of sandwich structures in helmet liners of the ACH for

pressure wave attenuation was studied by Goel [56]. The author

proposed to drill channels in the helmet liners, and fill these chan-

nels with an incompressible material, either fluid or solid, as

shown in Fig. 9. Experimental and computational analyses were

carried out on specially prepared samples but not on an actual hel-

met. Both solid (glass beads, aerogel, or solid foam) and liquid

(glycerin, water, or AgileZorb) filler materials were tested. Glycerin

was found to have the highest pressure attenuation ability among

all filler materials tested. It was revealed that lower-porosity mate-

rials (such as glycerin and glass beads) showed lower energy trans-

mission than high-density materials (such as aerogel). The use of

glycerin resulted in a 50% reduction in the peak pressure. However,

the use of glycerin led to a considerable increase in the weight of

the liners.

5.5. Damage criteria for brain

Damage criteria are useful for predicting the probability of TBI

under mechanical loading. The currently used injury criterion is

the head injury criterion (HIC) adopted by the National Highway

Traffic Safety Administration (NHTSA) based on the work of Gadd

[47]. The HIC is an empirical criterion mainly used in the automo-

bile industry and is based on the probability of injury due to a glo-

bal translational head acceleration. While the HIC is useful for

predicting injury in automobile accidents, it may not be applicable

for predicting blast induced TBI. This is because the HIC is based on

global kinematics data to predict injury, whereas the blast-induced

TBI is caused by intra cranial mechanical responses. Further, the

HIC is based on experimental data, for which only external impact

loading is applied. In addition, rotational head accelerations have

not been taken into account in developing the HIC. In order to over-

come these drawbacks, Newman proposed the Head Impact Power

(HIP) criterion [99]. This criterion is based on angular and linear

accelerations. However, both these criteria are proposed for impact

loading rather than blast loading. The two main known causes of

BTBI are penetration of pressure waves into the skull and rotational

acceleration.

In the past decade, many 3-D finite element head models have

been used to develop injury criteria for the brain. The Wayne State

University (WSU) head model (e.g., [162]), MIT DVBIC head model

[104], SIMon head model [138], and University of Louis Pasteur

(ULP) head model [157] are some of the popular 3-D head models

used in finite element analyses. Recent experimental validation

[87] has shown that the SIMon head model gives rather inaccurate

results for predicting TBI compared to the ULP model. This has

been attributed to the fact that the head model used in the ULP cri-

terion is closer to the real anatomy of a human head than the SI-

Mon model.

Various injury criteria based on stress, strain, strain rate, intra-

cranial pressure gradient, and type of explosives are summarized

in Table 6. Except for the criterion reported in Chafi et al. [20], none

of the criteria listed in Table 6 have been developed for blast

events. All the criteria have been developed for direct impact load-

ing, which is minimal for blast events.

Even though a lot of efforts have been made to understand the

mechanisms of TBI, injury thresholds for BTBI remain undeter-

mined. Protective equipment designed using the existing injury

criteria may be inadequate. The environment created by a shock

wave is quite complex. In addition, pressure waves are initiated in-

side the intra cranial cavity. The intensity of a blast, nature of

explosives used, and standoff distance all affect the brain tissue’s

response to loading. Superimposing tolerance curves for each kind

Table 6

Various local injury criteria based on pressure gradients, strains, stresses and strain rates.

Criterion Threshold Location of injury Probability (%) Application Reference

Stress

von Mises 6–11 kPa Corpus callosum 50 Rat brain/car crash injuries Shreiber et al. [127]

8.4 kPa Corpus callosum 50 Footballers (FEM) Kleiven [77]

>30 kPa Brain neurological lesions 100 Motorcyclists/footballers Willinger and Baumgartner

[157]>16 kPa Brain neurological lesions 50 Motorcyclists/footballers

(FEM)

Shear 8–16 kPa Diffuse axonal injuries 100 Sheep brain Anderson et al. [4]

11–16.5 kPa Diffuse axonal Injuries 100 Motorcycle Accidents Claessens et al. [27]

>10 kPa Mild TBI 80 Footballers (FEM) Zhang et al. [163]

Strain

e _e 30/s Gray matter 50 Multiple specimens Viano and Lovsund [148]

e _e 10.1/s Gray matter 50 Footballers (FEM) Kleiven [77]

e; _e e > 0:2 White matter 100 Tissue culture Morrison et al. [95]

_e > 10=s

Shear strain >0.24 Mild TBI 80 Footballers (FEM) Zhang et al. [163]

Lagrangian principal strain >0.21 Morphological injury 50 Guinea pigs Bain and Meaney [8]

>0.181 Electrophysiological

impairment

Cumulative strain P0.55 White matter 50 FEM Takhounts et al. [138]

Intra Cranial Pressure (ICP)

ICP <173 kPa Concussion 0 Animal/human cadavers

(FEM)

Ward et al. [155]

>235 kPa 100

>90 kPa Injury (coup side) 50 Footballers (FEM) Zhang et al. [163]

>�76 kPa Injury (counter coup)

Amount of explosives

0.205 lb TNT (standoff distance

160 cm)

ICP > 235 kPa Coup/counter coup side 100 FEM Chafi et al. [20]

Shear

stress > 16.5 kPa

Brain stem

Principal

strain > 0.22
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of head injury and defining the lowest curve as a head injury toler-

ance criterion might be one way of going forward.

5.6. Important findings about BTBI

Some important findings from existing computational and

experimental studies about BTBI are summarized below:

1. Storage of in vitro brain tissue creates a pre-conditioning

effect. This leads to underestimated results by 30–50%. There

is a considerable interspecies variation between the brain

tissues [21,107]. Human brain tissue is about 1.3 times stif-

fer than porcine brain matter, while monkey brain tissue is

stiffer than human brain tissue.

2. There are local differences in the brain material properties

(heterogeneity). The brain material also shows a non-isotro-

pic behavior [128,5].

3. The skull absorbs very little of the blast pressure wave.

Almost all of the incident blast overpressure is transmitted

to the intra cranial cavity. In addition, the impedance mis-

match among the air, skull material, and cerebrospinal fluid

causes considerable pressure amplification across the air–

skull interface. This pressure amplification continues for

hours after the blast.

4. There is no uniform pressure gradient across the cranial cav-

ity after impact. The maximum positive pressure is observed

at the point of impact, while the maximum negative pres-

sure is observed opposite to the point of impact. These posi-

tive and negative pressure variations cause sudden changes

in density, leading to the formation of cavitation bubbles.

Collapse of these cavitation bubbles results in brain

damages.

5. The blast wind exerts a rotational acceleration on the skull.

There is a time-scale lag between the wave impact and rota-

tional head motion. In a rotational head motion, the motion

of the brain lags behind the skull because of the difference in

inertia. This leads to high shearing stresses on the brain–

skull connection and in the brain tissue. These injuries are

known as diffuse axonal injuries (e.g., [154]).

6. A lateral explosion causes higher pressures and shear stres-

ses in the intra cranial cavity than a frontal explosion.

7. Exposure to a blast acceleration leads to the compression of

the thorax and abdomen because of the presence of air-car-

rying organs. This creates surges in the blood flow, causing

an increase in the intra-cranial pressure.

8. The presence of a helmet does not impede stress wave trans-

mission into the intra cranial cavity. The soft tissues of the

face are main pathways of wave transmission into the intra

cranial cavity. The presence of a face shield can significantly

reduce the internal pressure.

9. Optimization of personal protective equipment for mitiga-

tion of the effects of a blast impact still needs to be

performed.

10. No experimental validation of numerical simulations has

been performed. The material models used in the simula-

tions tend to be overly simplified. No material characteriza-

tion has been performed to evaluate the suitability of these

models for predicting actual human brain tissue responses.

11. When a surrogate head model is used in experiments, the

relation between the blast response of the surrogate model

and the blast response of a human/animal brain tissue is

not always clear.

12. The relation between mechanical damage (high stress/

strain) in numerical simulations and functional damage in

an actual brain tissue is not very well established. As there

is no clearly defined damage criterion for soft tissues, it is

difficult to determine what stress/strain magnitude initiates

a physical damage.

6. Constitutive modeling

As has been mentioned, experiments for studying blast-induced

traumatic brain injury are mainly carried out on specially prepared

models of human skulls and tissues, mannequins or dolls, and dif-

ferent animals. Numerical simulations are performed on geometri-

cal models of skull and other brain components, with or without a

helmet. All these experiments and simulations require constitutive

modeling in order to assign appropriate properties to the con-

structed models to obtain accurate results.

In an experimental study on human brain tissues, Donnelly and

Medige [39] investigated shear properties at different strain rates.

Brain tissues were obtained from fresh human cadavers. The brain

specimens consisted of samples cut from brain cerebrum. The

majority of the tests were performed at strain rates of 0, 30, 60,

and 90/s, with some additional tests performed at 120 and 180/s.

Thirty tests were performed at each strain rate, and all the samples

were tested up to a shear strain of 100%. The stress–strain curves

were fitted with a two-parameter power-law function of the form

r = AeB. A common value of 1.28 was used for the exponent B,

while the amplitude of A varied with the strain rate. It was found

that rate effects were predominant between 0 and 60/s, while no

rate effect was observed beyond 60/s. Shafieian et al. [126] per-

formed shear deformation tests on bovine brain tissues at strain

rates of 100–750/s. The average shear modulus varied from

11.17 kPa at 100/s to 22.44 kPa at 750/s. These results validated

the hypothesis of Donnelly and Medige [39] that the response of

a brain tissue in shear at strain rates higher than 100/s is indepen-

dent of the strain rate. More discussions on mechanical testing of

brain tissues can be found in a comprehensive review paper by

Chatelin et al. [21].

Table 7

Properties of some materials used for the US Army Helmets (e.g., [132,66,12,31]).

Helmet Material (shell/fabric) Properties Shell (matrix) Fiber (reinforcement)

Hadfield Steel Tensile strength (MPa) 250 –

Tensile modulus (GPa) 183 –

Breaking strain (%) 10 –

PASGT Thermoset resin/Kevlar� K29 composite Tensile strength (MPa) 7386 2794

Tensile modulus (GPa) 195 67

Breaking strain (%) 3.8 3.5

ACH Thermoset resin/Kevlar� K129 composite Tensile strength (MPa) 7386 3429

Tensile modulus (GPa) 195 96

Breaking strain (%) 3.8 3.3

ECH Dyneema� HB80 composite Tensile strength (MPa) Not available 2500

Tensile modulus (GPa) Not available 120

Breaking strain (%) Not available 3.5–3.7
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The material properties for the helmet are standard, depending

upon the helmet type. The properties of some materials used for

helmets are given in Table 7.

Development of material models for biological brain tissues is

an area of on-going research (e.g., [71,28]). From the biomechanical

perspective, brain is a very complex organ involving many sub-

structures including brain stem, cerebral cortex, and thalamus.

Understanding how the loading and kinematic boundary condi-

tions applied to the skull/organ translate into the stress–strain

relation of the brain tissue is challenging because of the interplay

among a number of factors such as non-linear visco-elasticity,

anisotropy, rate dependency, hysteresis behavior in cyclic ten-

sion–compression tests, and sensitivity. Many biomechanical,

experimental, and numerical studies have been carried out to de-

velop constitutive models for the brain material. The constitutive

models developed can be divided into three main categories, as

listed below.

6.1. Linear viscoelastic models

Linear viscoelastic models (e.g., [54,102]) describe the creep

and relaxation responses. Standard viscoelastic models or some

variants of them are used to model tissue responses. The number

of material constants needed in such a model depends on how

many springs and dashpots are used (e.g., [35–38]). However,

linear viscoelastic models are suitable only over a small strain

regime and are not adequate to describe tissue responses under

blast loading.

6.2. Large strain hyper-elastic models

The Helmholtz free energy function is ordinarily used to define

a hyper-elastic material or Green elastic material. Fung [46] pro-

posed such a function, called a pseudo-strain energy function, to

describe a particular aspect of an inelastic material. One approach

in hyper-elastic modeling is to use polynomial strain energy func-

tions to describe the material response [46,147]. The material

parameters used in a polynomial function are numerous and may

not have any physical meaning. These models tend to be numeri-

cally unstable at high strains [9], violate convexity conditions

and do not satisfy the stress-free reference configuration condition.

Another approach is to use the invariants of the deformation gradi-

ent tensor (e.g., [69,91,40]). This approach can be used to describe

the anisotropic behavior of soft tissues by decoupling a strain en-

ergy density function into contributions from fiber and matrix

phases. This is the most often used approach. However, hyper-elas-

tic models represent only elastic or quasi-static deformations.

These models alone cannot capture the complexities of the tissue

response such as permanent deformations and memory effects.

In the decoupled framework, the energy contribution from the ma-

trix depends on the first and second invariants of the Cauchy–

Green strain tensor, while the fibers are considered as non-linear

springs with the energy contribution depending on the fourth

invariant of the Cauchy–Green strain tensor. An extensive litera-

ture review has shown that almost all current phenomenological

models use this approach (e.g., [159,22]). However, a strain energy

density function depending only on the fourth invariant is inade-

quate to describe the brain tissue behavior at medium to high

strains, especially for shear loading. This is particularly important

for simulating blast injuries, as shearing failures (such as diffuse

axonal injuries) are a primary cause of TBI. In addition, the bulk

modulus of the brain tissue is considerably higher than the shear

modulus [133,89]. Therefore, it is necessary that a constitutive

model developed to simulate TBI mechanisms accurately charac-

terize the shear as well as the tension/compression behavior of

the brain tissue.

6.3. Large strain hyper-viscoelastic models

Hyper-viscoelastic constitutive modeling combines the meth-

odologies of linear viscoelasticity and hyper-elasticity.

The Mooney–Rivlin hyper-elastic model and the Neo-Hookean

material model are the most commonly used constitutive equa-

tions to represent quasi-static responses of brain tissues. For exam-

ple, Mendis [90] used hyper-viscoelastic modeling to characterize

large deformations of brain tissues. The quasi-static deformation

(hyper-elastic part) was represented by an incompressible two

parameter Mooney–Rivlin model. The material parameters for

the viscoelastic model were determined by fitting with experimen-

tal data from rate-dependent compression tests. Wang and Win-

eman [152] constructed a continuum mechanics model for the

probe test of Fallenstein and Hulce [44] by treating the brain tissue

as a homogenous, isotropic, linear, viscoelastic material. They as-

sumed that the skull is entirely filled by the brain and the skull

is rigid with zero deformation. Also, the shear effects at the

brain–skull interface are ignored in their model. A numerical meth-

od was implemented to solve for the shear stress relaxation func-

tions in terms of measured displacements and forces by the probe.

Darvish and Crandall [33] proposed a third-order non-linear

Green–Rivlin viscoelastic model and compared it with a third-or-

der quasi-linear viscoelastic model. For both the models, the elastic

response was represented by a second-order Rivlin strain energy

density function. They also tested bovine brain tissues in simple

shear using forced vibrations from 0.5 to 200 Hz up to a Lagrangian

shear strain of 20%. The third-order non-linear properties were

characterized by applying simple, double, and triple harmonic in-

puts. The fully non-linear Green–Rivlin model also contains inter-

modular distortions: frequency combinations of the fundamental

frequencies and their integer harmonics. This study was continued

by Takhounts et al. [139], where bovine and human brain tissues

were compared. A linear viscoelastic shear strain limit of 17.5%

was established for the brain tissues. The quasi-linear viscoelastic

model was found to be suitable up to a strain value of 50%, while

the Green–Rivlin non-linear model was seen to work for any shear

strain range.

Hyper-viscoelastic models also use a decoupled representation

of the Helmholtz free energy function. One way is to decompose

the total deformation gradient tensor into an elastic part and a vis-

coelastic part. El Sayed et al. [43] and Prevost et al. [111] developed

two non-linear models based on this decomposition technique. El

Sayed et al. [43] proposed a generalized framework where a num-

ber of Maxwell-type relaxation viscoelastic networks were consid-

ered in parallel with viscoplastic networks. The number of material

constants adopted varied with the number of networks used. By

utilizing this model, they were able to capture the hysteretic and

dissipative characteristics of soft tissues in tension up to a strain

of 50%. Prevost et al. [111] used an elastic network to represent

instantaneous deformations and a viscoelastic network for dissipa-

tive responses. Hrapko et al. [70] used a Mooney–Rivlin viscoelas-

tic network along with a non-linear hyper-elastic spring to model

shear and compressive responses up to a strain rate of 1/s. This

methodology of decomposing the deformation gradient tensor into

an elastic part and a viscoelastic part is based on the theory devel-

oped by Lee [82]. However, this decomposition is built upon the

assumptions that the body is isotropic in the reference configura-

tion and the origin in the stress space always lies inside the body

[60]. Therefore, this method cannot be extended to model the

anisotropic response of a soft tissue. Another way of implementing

hyper-viscoelastic models is to decompose the deformation gradi-

ent tensor into a dilatational part and a volume-preserving part.

This method, unlike the one by Lee [82], is not restricted to isot-

ropy. This volume preserving and volume changing decomposition

technique has been used to develop constitutive models for knee
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ligaments and tendons [108], musculoaponeurotic system and fa-

cial skin tissue [122], bovine liver tissue [119], porcine brain tissue

[70], arteries [69], and caterpillar muscle [40]. All these models

have been developed to capture tissue responses in a uniaxial ten-

sion and have been validated for a limited range of loading regimes

and low strain rates. Several studies have been conducted to deter-

mine the range of strains and strain rates associated with TBI.

Strains greater than 10% and strain rates greater than 10/s have

been observed to cause severe damage to brain tissues [116].

Therefore, any material model developed to capture brain tissue

responses in blast events should be able to represent different

mechanical behaviors (and loading regimes) in one general frame-

work and should be validated for large strains and high strain rates.

7. Concluding remarks

The design, materials, performance measures, and energy

absorption mechanisms of various US Army combat helmets are

discussed in this review article. It has been found that curvature

has a significant effect on the ballistic limit of a helmet (as a lam-

inated composite shell). Development of 3-D scanning techniques

has opened up new avenues for head and helmet sizing. Computer

aided design along with 3-D laser scanning can be used to obtain

accurate information about head size variations and generate

appropriate helmet sizes. Ballistic performance measures of con-

ventional helmet materials (such as Kevlar� K29, K129 fibers and

thermoset polymers) and new materials (like UHMWPE, thermo-

plastic polymers, nano-composites, and CNTs) are elaborated in

view of weight, tensile properties, energy absorption capabilities,

manufacturing ease, cost effectiveness, and environmental con-

cerns. It has become known that UHMWPE/carbon fiber compos-

ites can provide higher ballistic protection at a reduced weight

than the composites used in the current helmets. Polymer matrix

nano-composites, especially those reinforced by carbon nanotubes,

can potentially offer the highest ballistic protection. However, their

viability in terms of manufacturing feasibility and cost effective-

ness needs to be further explored.

Blast induced traumatic brain injury has been a signature injury

of Iraq and Afghanistan conflicts. Numerous experimental and

computational studies have been conducted to determine brain re-

sponses to blast waves and helmet effectiveness against blast

events. Passage of blast waves through skull and thoracic mecha-

nisms have been identified as possible causes of TBI. Regarding

the effectiveness of the current helmets against blast waves, the

limited studies available in the literature present contradictory re-

sults. There has been no consensus about whether the current hel-

met designs are effective for preventing blast induced traumatic

brain injury (BTBI). Helmets with face shields have been suggested

as a possible modification to the current helmet designs to prevent

BTBI. The material models used in published BTBI simulations tend

to be overly simplified and remain to be experimentally validated.

It is necessary to verify the suitability of these models for repre-

senting brain tissue behaviors in different loading regimes. While

the mechanisms behind BTBI have been getting better understood,

there is an urgent need for identifying TBI injury criteria, develop-

ing experimental models for validating computational simulations,

and optimizing the current head protection equipment to mitigate

occurrence of blast induced traumatic brain injuries.
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