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 Abstract 

In this paper, experimental studies on the ballistic impact behaviour of nanomodified glass fibre-

reinforced polymer (GFRP) are reported. The epoxy matrix of the GFRP was modified by the 

addition of graphene platelets (GNPs), carbon nanotubes (CNTs), combined hybrid hexagonal boron 

nitride nanosheets (BNNS)/CNT, and combined boron nitride nanotubes (BNNTs)/GNPs 

nanoparticles. 

Ballistic impact tests were carried out on GFRP laminates at two projectile velocities of 761 m s
−1

 

for full-field deformation measurements and 134.31.7 m s
−1

 for perforation tests. The behaviour of 

the plates during impact was recorded using digital image correlation (DIC), in order to monitor 

strain and out-of-plane deformation in panels with nanoreinforced matrices. Following penetrative 

impact tests, pulse thermography was used to characterise the delamination of impacted plates. The 

results of full-field deformation, exit velocity and energy absorption measurements from the ballistic 

tests show significant improvements in impact resistance for the panels made from nanomodified 

epoxies relative to laminates with the unmodified epoxy matrix. The highest absolute absorbed 

energy was observed for the GFRP panels fabricated using the epoxy matrix loaded with 

BNNT/GNP at 255.7 J, 16.8% higher than the unmodified epoxy matrix.  
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1. Introduction 

Many advanced structures use fibre-reinforced polymer (FRP) composite materials extensively, such 

as fuselages of aircraft [1] and wind turbine blades [2]. For example 22% of the primary structures in 

the Airbus A380 are made from GLARE, a laminate consisting of Aluminium/GFRP alternating 

layers and the Boeing 787 Dreamliner contains about 50% by weight of carbon fibre-reinforced 

polymer (CFRP) in the fuselage [3], saving 20% of the overall weight compared to aluminium alloys 

[4]. FRP composites offer higher specific strength, improved corrosion resistance, enhanced damage 

tolerance and superior fatigue resistance in comparison with traditional metallic alloys such as 

aluminium and steel. The resulting reduction in aircraft and automobile mass reduces fuel 

consumption and hence contributes to a reduction in air pollution. 

During the service life of aerospace, marine and automotive structures, there is the possibility of 

foreign objects causing ballistic impact loading from events such as bird strikes, hailstones, shrapnel, 

runway debris, bullets and blast fragments. As well as the potential of penetration, such impacts can 

lead to extensive delamination, resulting in degradation of the structural performance [4, 5]. The 

majority of these structures are not designed to act as armour, and due to the possibility that they are 

likely to be subjected to high-velocity impacts with low-mass fragments, full knowledge of their 

response to ballistic impact loading and the associated damage mechanisms is required.  

During a ballistic impact, a propelling object generally of low mass and high velocity, strikes the 

structure and causes the propagation of stress waves in the material [6, 7]. On impact, instantaneous 

stresses are generated around the impacted area but these stresses do not immediately transmit to all 

parts of the structure. In fact, areas of the structure remote from the impacted zone remain 

undisturbed until the stress waves, which propagate through the body at velocities dependant on the 

material properties, reach them. Regardless of how the impact load is applied, the propagation of 

these stress-waves depend only on the target material properties. 

Protection against external high velocity projectile impact is one of the critical requirements of FRP 

composite structures. Such impacts can result in indentation, partial penetration or perforation of the 
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FRP composite target depending on mass, shape, size, and velocity of the projectile and the 

geometry and mechanical properties of the target FRP structure.  

The ballistic impact and energy absorption capacity of glass fibre-reinforced polymer (GFRP) 

composite structures has been studied by many researchers both experimentally [8, 9, 10, 11] and 

using finite element analysis [12, 13]. Experiments were performed to study the effect of thickness 

and fibre orientation on the ballistic limit and exit velocity. It is reported that the laminates with 

(0/90) lay-up sequences are most effective in impact resistance and absorbed energy is increased 

non-linearly with increase in thickness of laminates. Studies carried out on glass fibre–aluminium 

laminate (GLARE) showed that energy absorption and the ballistic limit of either the Aluminium or 

glass fibre composite from which it was made has been increased [14, 15].  

In recent years, the use of one-dimensional (1D) and two-dimensional (2D) nanomaterials as a 

reinforcing material in a polymer matrix has attracted much research attention with significant 

improvements in fracture toughness reported [16, 17]. Some published works have shown that 

effective dispersion, as well as improved interfacial properties, were achieved by introducing two-

component hybrid 1D/2D nanoadditives to the polymer matrix to generate a synergistic effect [18, 

19, 20]. For example, Domun et al. [16] studied two hybrid nanoparticles systems; one consisted of 

functionalized f-MWCNT with hexagonal BNNS and the other was made of plasma-functionalised f-

GNP with BNNT to improve the fracture toughness of the resultant epoxy nanocomposites. Hybrid f-

MWCNT/BNNS at (0.1:0.1) wt.% loading content resulted in an increase of 71.6% in fracture 

toughness compared with the unmodified epoxy. For the hybrid f-GNP/BNNT system at (0.25:0.1) 

wt.% loading, the fracture toughness of the epoxy nanocomposite was increased by 91.9% relative to 

the unmodified epoxy. The toughening mechanisms were associated with crack bridging, crack 

pinning and deflection as observed from fractography analysis [21]. 

Using nanoadditives in the polymer matrix has been shown to improve the ballistic performance of 

FRP composites. This is evidenced by numerous published works, such as Tehrani et al. [22] and 

Laurenzi et al. [23], who have shown that the enhancement of the ballistic impact resistance of FRP 

composites was achieved by adding CNT to the polymer matrix. Rahman et al. [24] experimentally 
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studied the ballistic impact behaviour of E-glass/epoxy modified with MWCNT. They reported an 

increase in the ballistic limit of around 5% for the composite with the addition of MWCNT. Pandya 

et al. [25, 26] investigated the ballistic impact behaviour of CNT and nanosilica modified resin and 

GFRP composites. They concluded that the inclusion of nanoparticles in the epoxy matrix improves 

the ballistic limit, i.e. the velocity required for a projectile to reliably (at least 50% of the time) 

penetrate the material,, and energy absorption, while damage size around the point of impact 

decreased. Pol et al. [27, 28] studied the effect of the loading ratio of nanoclay on the impact 

behaviour of 2D woven glass/epoxy/nanoclay composite by ballistic impact tests. The composite 

showed the best ballistic behaviour with the addition of 3 wt.% nanoclay at an incident velocity of 

134 m s
-1

.  

Avila et al. [29] modified fibre glass/epoxy with nanoclay, graphene and ceramic layers in ballistic 

tests under incident velocities of 242 m s
-1

 and 355 m s
-1

. In general, they concluded that nanoclay 

and graphene sheets improve the ballistic behaviour of the composite and affect the failure 

mechanism of the composite at the same time. Crack propagation energy is increased by addition of 

the filler materials, leading to increased interlayer shear failure and delaminations. 

The effects of low-dimensional nanoparticles in improving the fracture toughness of bulk epoxy 

resins have been previously reported [30] [16].  In the current work, we extend this study to 

investigate the ballistic impact performance of GFRP laminates with nanomodified epoxy matrix. 

Ballistic tests have been carried out, confirming that significant improvements in impact resistance 

of the composites made with the reinforced matrix have been achieved in the highly dynamic impact 

tests. Enhancement in ballistic impact resistance of the nanomodified resin is measured by the exit 

velocity of the projectile and specific energy absorption (SEA). 

2. Materials and methods 

2.1. Materials 

The resin used in this study was a two-part low viscosity epoxy, Araldite® LY 564 resin and 

cycloaliphatic polyamine Aradur® 2954 hardener supplied by Huntsman. The normal ratio of resin 
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to hardener of 100:35 by weight was used, giving a gel time of approximately 90 min at 60C. 

Graphene nanoplatelets were supplied by Haydale Ltd., which had undergone a proprietary plasma 

process (        GNP-   -STD, Batch Number: 8039). They were used without further 

modification. Multi-walled carbon nanotubes (MWCNT) NC3100 were purchased from Nanocyl SA 

(Sambreville, Belgium) which were produced by catalytic chemical vapour deposition (CVD) 

process. The average diameter of the MWCNT was given by the supplier as ~9.5 nm with an average 

length of 1.5 μm and a carbon purity of >95.0%. The HNO3, methanol and ethanol were of analytical 

grade and were obtained from Sigma-Aldrich (Poole, UK). Multi-walled boron nitride nanotubes 

(BNNT) purchased from NAiEEL Technology (Daejeon, South Korea) had an average diameter of 

100 nm with length >1 μm and were used as-received. Hexagonal boron nitride powder (h-BN) was 

purchased from UK Abrasives, Inc (Northbrook, IL, USA). 

The f-MWCNTs used in this study were prepared following a procedure described previously [16]. 

Briefly, unmodified MWCNTs (0.1 g) were dispersed in 100 ml of HNO3 (70%) in a round-bottom 

flask (250 mL) equipped with a condenser and refluxed at 135 °C for 24 h. Next, the mixture was 

diluted in deionised (DI) water (18.2 MΩ cm) and filtered on a Millipore™ Isopore filter membrane 

(Millipore, Watford, UK). The collected solid was then repeatedly washed with DI water, methanol, 

and ethanol until a neutral pH was reached, and subsequently dried in vacuum at 40 °C. 

Functionalized BNNS was prepared by the heat treatment of hexagonal boron nitride in air. In a 

typical experimental run, 20 g of h-BN powder was placed in a quartz tube in a tube furnace. The 

furnace was heated to 1000 °C and held at that temperature for two hours in air, and then the hBN 

washed with hot water. SEM images of nanoparticles used in this study are shown in Figure 1 

confirming the expected morphology of each filler type. 
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Figure 1. SEM images of nanoparticles  used in hybrid nanocomposites: (a) MWCNT; (b) f-GNP; (c) BNNS;  

(d) BNNTs [16]. 

2.2. Manufacturing nanocomposite laminates 

The fibre reinforcement used for this study was purchased from Marinewear Ltd (Eastleigh, UK). 

Non-crimp glass fibre fabric with a quasi-isotropic sequence [45/90/-45/0] was used to manufacture 

the specimens for ballistic impact tests. 

A hand lay-up process was used to produce the GFRP laminates, followed by vacuum bagging 

during curing of the epoxy matrix. The nanocomposite-based epoxy was developed using exactly the 

same procedures as described in [16]. The filler was dispersed in methanol by sonication and the 

epoxy was added dropwise. The solvent was extracted by evaporation under vacuum condition. A 

high-speed mixer was employed to mix the final nanocomposite compound. The resulting four epoxy 

modified nanofillers used were at 0.25 wt.% GNP, 0.1 wt.% CNT, 0.1:0.1 wt.% of (CNT:BNNS) and 

0.25:0.1 wt.% of (GNP:BNNT) in addition to a control sample of neat epoxy. 

3. Ballistic impact tests 

3.1. Ballistic test set-up 

High-velocity impact tests were conducted using a helium gas gun with a 4-litre pressure vessel, 

connected to a 3 m long barrel by a fast acting pneumatic valve. Two types of ballistic test set-up 

were employed: a high-energy test to investigate penetrative impact; and a lower energy test, 
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measuring out-of-plane deformation and in-plane strain. In the high-energy tests, shown in Figure 2a, 

the pressure of the vessel was set to 4 bar and the GFRP plates were impacted by a projectile at an 

average velocity of 134.31.7 m s
−1

. The aim was to investigate the exit velocity and energy 

absorption, as well as the post-perforation damage. All GFRP ballistic specimens had 24 layers with 

a quasi-isotropic sequence of (+45/90/-45/0)3/(0/+45/90/-45)3 with a nominal thickness of 3.80.2 

mm. For both series of tests, the GFRP plates had holes drilled around the periphery with a diameter 

of 8 mm. This allowed clamping of the specimens around the edges using twelve M8 bolts. A 

schematic drawing of the specimen and the clamp are presented in Figure 2c. The opening of the 

clamps is 70 mm × 70 mm as shown in Figure 2c. 

The projectiles were cylindrical with a hemispherical nose, with a diameter of 24.9± 0.1 mm (Figure 

2b). They were made from aluminium alloy with HV5 hardness of 192±5 and a mass of             g. No plastic deformation was observed in the projectile after impacting the target. The 

velocity of the projectile was measured using a pair of IR sensors located at the end of the barrel. 

Two high-speed cameras (Phantom Miro M/R/ LC310) were located perpendicular to the travel 

direction of the projectile (Figure 2a). One of the cameras was employed to measure the inlet 

velocity of the projectile before impact (the velocity measurements were compared against those 

measured by the two IR sensors and confirmed to be accurate). The second camera was used to 

measure the exit velocity of the projectile after perforations of the plates were attained. A transparent 

safety chamber, mainly made of thick polycarbonate panels, was used to confine the end of the barrel 

as well as the target area. 
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Figure 2. (a) Schematic of gas gun for high velocity impact test, (b) Schemat ic of a  target GFRP specimen in 

the clamp for ballistic test, (c) Technical drawings of projectile . 

A second series of lower energy impact tests were conducted according to the set-up reported by 

Kaboglu et al. [31]. The ARAMIS 3D Digital Image Correlation system was used to obtain the full-

field deformation map and major in-plane strains of GFRP composite plates with various matrices 

for velocities below the ballistic limit [32]. In these tests as shown in Figure 3a, the two high speed 

cameras were moved to the back side of the target separated by a distance of 410 mm and  925 mm 

from the centre point of the target and the angle between the two cameras was 25. The back surfaces 

of the specimens were illuminated by two halogen lamps to avoid any shadows from nearby objects, 

which were turned on a few seconds before the start of firing the projectile. The cameras were used 

to record at a rate of 39,000 frames per second. A pair of identical Nikon lenses with a fixed focal 

length of 50 mm was used for both cameras. These cameras were triggered simultaneously by the 

signal generated from the IR sensors at the beginning of the tests. One side of each specimen was 

painted with matt white spray paint to avoid getting reflection of light on the specimen and to 

conceal any imperfections on its surface and then speckled by hand using a matt black marker with 

the size of the black speckles around 1.5-2.0 mm. The high contrast, randomly generated unique 

speckle patterns on each facet were tracked by the ARAMIS software, and the deformation field was 

calculated from the sequence of images from the two high-speed cameras and strain was determined 

from the calculated displacement.  

The three critical length scales associated with DIC are speckle size, facet size, and facet step. 

Speckle pattern and size chosen prior to a ballistic test are based upon deformation, features of 
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interest, field-of-view, resolution, and structure length scale [33]. Facet size is the correlation 

window, i.e. a relatively small aperture that comprises multiple speckles used for intensity pattern 

matching. The last length scale facet step is defined as the facet overlap length usually about 2 

pixels. The latter two parameters – facet size and facet step – are chosen during the post-processing 

of DIC data. The size of the facets and the level of overlap are very important for measuring the 

strain. In this research, the area of the specimen is 70 mm × 70 mm and the image resolution is 256 × 

256 pixels. As a result, each pixel is 0.273 mm and the area of each pixel is 0.07477 mm
2
. The 

recommended minimum speckle size is 5 pixels resulting in speckle area of 0.374 mm
2
 and diameter 

of 0.7 mm. This minimum speckle size is the smallest readable size by the software. Anything larger 

is acceptable. In this research, the speckle has diameter of 1.5 mm resulting in approximately 1.77 

mm
2
 area, roughly 4.7 times the minimum acceptable size. The accuracy of strain is ca. 0.05% under 

best condition. Black and white paints were chosen to maximise contrast. An example of a specimen 

with a typical speckle pattern is shown in Figure 3b. 

The projectiles used for these experiments were the same as in the first series of ballistic tests. In this 

series of tests, the pressure of the vessel was set to 1.5 bar and the GFRP plates were impacted by a 

projectile at an incident velocity of 761 m s
−1

 (equivalent to 273.6 km/h) which resulted in all 

projectiles rebounding back. This speed is the upper limit in automotive accidents. The projectiles 

were retrieved after the impact tests, and after inspection, no plastic deformation of the projectile 

following impact was observed and almost all the impact energy was absorbed by the target plates. 

(a)  
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(b)       

Figure 3. (a) Schematic of gas gun for high velocity impact test with 3D DIC, (b) a  GFRP specimen with a 

speckle pattern before ballistic test. 

3.2. Ballistic test results and discussion 

3.2.1. Results of perforated ballistic tests 

In this series of tests, all specimens were perforated under ballistic impact with an average velocity 

of 134.31.7 m s
−1

 (equivalent to 482.4 km/h). Commercial aircraft approaching landing has speed 

around this range and bird strike is likely impact event during approach to landing. Following impact 

testing, the panels were visually inspected for damage. There was noticeably more damage on the 

rear face of the GFRP with (EP+BNNS+CNT) matrix compared to the other matrices, which showed 

little clear difference between them. Across all the specimens, similar behaviour in the crack 

propagation was observed along the fibre in ±45 direction as seen from the rear surface of impacted 

specimens.  

The exit velocity (Ve) of the projectiles in this series of tests together with the percentage in reduction 

of incident velocity (Vi) is shown in Figure 4a. The results show that all nanomodified epoxy 

matrices have reduced the exit velocity relative to the neat epoxy. The GFRP with neat epoxy 

experienced a reduction in the exit velocity by 67%, from 131.6 m s
-1

 to 43.4 m s
-1

.The highest 

reduction in the exit velocity was achieved by GFRP with (EP+BNNT+GNP) modified matrix. This 

matrix reduced the incident velocity by 89.1% from 135 m s
-1

 to 14.7 m s
-1

. Therefore, GFRP with 

(EP+BNNT+GNP) matrix contributed an additional 22.1% to the reduction of exit velocity on top of 

the reduction in exit velocity in GFRP with unmodified epoxy matrix. 

The absorbed energy (E) and specific energy absorption (SEA) were calculated from 
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                  (1) 

             (2) 

The highest absolute absorbed energy was observed for the instance of the GFRP with 

(EP+BNNT+GNP) matrix at 255.7 J, 16.8% higher than the unmodified epoxy matrix. However, the 

(EP+BNNT+GNP) specimen was heavier than the neat epoxy specimen. The mass of glass fabric 

(       in both specimens was the same and the difference is due to the surplus of matrix (see 

Table 1). The (EP+BNNT+GNP) specimen had 8.7% more resin than the neat epoxy specimen. This 

effect can be compensated for by comparing specific energy absorption (SEA) for all specimens in 

Table 1 and Figure 4b. It is evident that even with this adjustment, all nanomodified GFRPs have 

higher SEA than unmodified GFRP, but the best performing matrix based on the SEA criteria is 

(EP+BNNS+CNT) with 16.3% higher SEA than the unmodified epoxy matrix. Overall, the average 

increase in SEA for nanomodified epoxy GFRPs relative to unmodified epoxy GFRP is 11.4%. It is 

evident that the change in the fibre volume fraction had a direct effect on the exit velocity. The 

(EP+BNNT+GNP) specimen had 8.7% more resin relative to the unmodified epoxy specimen. It is 

reported that stick-slip frictional motion between the nanoparticles and the epoxy resin is the source 

of interface damping [34] and debonding slippage occurring between nanoparticles and the matrix 

under external force, resulting in interface friction, which in turn led to energy dissipation [35]. The 

reduction in exit velocity seen for (EP+BNNT+GNP) specimen is partly due to the excess resin, as 

polymers have a damping effect on the projectile. 

Table 1. Summary of perforated ballistic tests results 

Matrix 
      

(g) 

   

(g) 

Vi  

(m s
-1

) 

Ve  

(m s
-1

) 

%  of 

decrease 
in Ve 

Absorbed 

energy (J) 

SEA  

(kJ kg
-1

) 

%  change of 

SEA relative 

to neat 

epoxy 

Neat epoxy  123.4 28.4 131.6 43.6 67.0 218.9 1.77 - 

EP+GNP 121.8 28.4 135 30.6 77.3 245.5 2.02 +13.6 

EP+CNT 132.2 28.5 135 20.1 85.1 253.9 1.92 +8.3 

EP+BNNS+CNT 121.5 28.4 135 23.9 82.3 250.7 2.06 +16.3 

EP+BNNT+GNP 134.1 28.4 135 14.7 89.1 255.7 1.91 +7.5 

 



 

12 
 

 

(a) 

 

(b) 

 

Figure 4. Effect of nanomaterials on (a) reduction of exit velocity, and (b) specific energy absorption by GFRP 

plates in perforating ballistic tests. 

3.2.2. Unperforated ballistic tests 

Figure 5 shows the variations of major strains along the centre line (CL) at the end of loading (when 

projectile has come to a stop) and at the end of the unloading (when the projectile loses contact with 

the panel) for all specimens with different matrices. The duration of the impact for all specimens was 

identical. It is noticeable that in the loading cycle the epoxy behaved as the most compliant laminate 

with the highest strains. At the end of unloading, the average residual strain in the neat epoxy 

specimen is also the highest, showing the most permanent damage occurring within this specimen. 

The minimum residual strain at the end of the test is attributed to the GFRP with (EP+BNNT+GNP) 

matrix, demonstrated by the minimum permanent damage. 
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(a) 

 

(b) 

Figure 5. Principal strain at the end of (a) loading and (b) unloading for all specimens. 

In Figure 6a, the out-of-plane displacement maps of the five different specimens during loading and 

unloading are compared. The duration of the impact for all specimens is the same. However, the 

maximum out-of-plane displacement areas (shown in red) are different and it is at minimum for 

specimen with (EP+BNNT+GNP) matrix. The map of major strain distribution during 0.4 ms impact 

duration is shown Figure 6b. 
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(b) 

Figure 6. DIC fu ll field images of (a) out-of-p lane deformation and (b) major strain of GFRP laminated plates 

during ballistic impact with different epoxy nanocomposites under incident velocity of 761 m s
-1

 when 

projectile  rebounded. 

Figure 7 illustrate the post-impacted images of the front and rear surfaces of the GFRP plates for 

neat epoxy and various nanocomposite matrices. The damage in laminate with (EP+BNNS+CNT) 

matrix is noticeably the highest and for (EP+GNP), (EP+CNT) and (EP+BNNT+GNP) matrices are 

relatively lower. The main energy-dissipation mechanisms observed during ballistic impact were: (i) 

localised fibres tearing along the projectile path due to the out-of-plane shear stresses induced by the 

projectile, (ii) propagation of interply delamination cracks across the plate from the impacted region 

(see Figure 8), (iii) spread of matrix crushing and cracking over a larger area along the projectile 

path, and (iv) tensile fibre failure at the back layers. 
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 Figure 7. Images of front and rear faces of impacted GFRP laminates with (a) neat epoxy, (b) EP+GNP, (c) 

EP+CNT, (d) EP+BNNS+CNT and (e) EP+BNNT+GNP matrices.  

4. Post-ballistic impact damage assessment using pulse infrared thermography 

Among various non-destructive testing (NDT) techniques, active thermography techniques and 

specifically pulsed infrared thermography (PT) has shown great potential. This technique has a fast 

inspection rate capability. The system is contactless, has high spatial resolution and sensitivity, with 

internal defect detectability using heat conduction [36].  

In this work, the extent of the damage in the GFRP specimens after post-ballistic tests is examined 

by flash-pulse infrared thermography. The flash thermography system used in this project was a 

Phoenix Medium Wavelength Infrared (MWIR) camera (FLIR systems), recording the IR emissions 

from the surface of the specimen at 50 Hz frame rate with a Thermal wave
 
commercial image 

processing software package called MOSAIQ

 [37]. A Xenon flash tube lamp with energy output of 

2 kJ were used to generate pulsed thermal waves with total pulse duration lasting 30 ms. When this 

pulsed thermal energy is applied, a thin layer of material on the surface is heated  by a few degrees 
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centigrade. The surface temperature decays as heat is transferred by conduction through the 

specimen [38, 39]. The presence of any discontinuities such as delaminations in the laminate hinders 

the heat transfer locally. As a result, the surface cooling rate adjacent to the defects is reduced and 

temperature above discontinuities remains higher than the undamaged areas. The IR camera captures 

the surface temperature evolution during the entire thermal transient period. The contrast in surface 

temperature distribution above the defects in comparison with the surface temperature over 

undamaged areas is used to determine the location and the size of defects such as delaminations. In 

these series of tests, the lamps and the IR camera were located on the same side of the specimen. The 

MOSAIQ

 software is used to control the camera and flash unit to acquire a short video clip around 

2 min long. From the video clips, the location, shape and size of the defect can be measured from the 

temperature distribution on the surface of the inspected structure. By monitoring changes as a 

function of time, the depth of defects can also be inferred, with deeper defects observed later, and 

with a reduced contrast. The elapsed time   is approximately a function of the square of the depth   

and the loss of contrast   is proportional to the inverse of the cube of the depth    [40], i.e.          and         where        is thermal diffusivity of the material,   the density of the 

material,   heat capacity and   thermal conductivity [41]. 

4.1. Test results 

The PT images of the first derivatives [42] of heat amplitude with respect to time from the post-

ballistic tests with projectile penetration are shown in Figure 8 and Figure 9. The plane slice 

images of the raw, the first and second logarithmic derivatives at time 2.29 s shown in 

Figure 8 demonstrate that the raw data images do not accurately identify the damage areas.  
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Figure 8. Raw (left), 1
st

 (centre) and 2
nd

 time differential (right) images of perforated GFRP plates obtained 

2.29 s after the flash on GFRP p lates with (EP+BNNT+GNP) matrices. 

Figure 9 shows the first logarithmic derivatives at time 1.02 s, 4.02 s and 7.02 s after the flash 

showing the delaminated areas were spread from the point of impact. The thermal diffusivity of 

GFRP is about         mm
2 

s
-1

 [43]. Therefore, the images’ time are equivalent to looking at the 

depths close to the front, mid-plane and back surface of the plates, which have an average thickness 

of 3.80.2 mm. Note however that information from other depths will also be visible in a given 

frame.  

The PT images reveal that the ballistic impact damages are localised around the point of the 

projectile impact. Visual inspection revealed that there was no evidence of damage on the surface of 

the laminates except at the projectile impact area and its proximity. All delamination can be observed 

from the raw thermal images as ‘hot spots’, but the thermal contrast of smaller or deeper 

delaminations is very weak in the raw images. The contrast intensity of the delaminations in the first 

derivatives images is very good, and they show the extent of delamination. The first derivatives are 

at the peak in part of delamination area, while the peaks for other shallower delamination occurred at 

shallower depths (or earlier times). 

As shown in Table 1 the highest energy absorption occurred in GFRP with (EP+BNNT+GNP) 

matrix. This is consistent with the PT images for this GFRP in Figure 9e showing the highest 

delamination area in many layers. The minimum damage occurred in neat epoxy GFRP (see Figure 

9a), the projectile entered and left the specimen with minimum energy absorption by the laminate. 

The extents of the damage shown in Figure 9 are matching the energy absorption value reported in 

Table 1 for all types of laminates. 
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(a) Neat epoxy matrix at time 1.02 s, 4.02 s and 7.02 s (from left to right).  

   
(b) (EP+GNP) matrix at time 1.02 s, 4.02 s and 7.02 s (from left to right). 

   
(c) (EP+CNT) matrix at time 1.02 s, 4.02 s and 7.02 s (from left to right).  

   
(d) (EP+BNNS+CNT) matrix at time 1.02 s, 4.02 s and 7.02 s (from left to right).  

   
(e) (EP+BNNT+GNP) matrix at time 1.02 s, 4.02 s and 7.02 s (from left to right).  

Figure 9. 1
st

 time d ifferential PT images of perforated plates obtained at certain times after the flash on GFRP 

plates with (a) EP, (b) (EP+GNP), (c) (EP+CNT), (d) (EP+BNNS+CNT) and (e) (EP+BNNT+GNP) matrices 

impacted with a projectile at 134.31.7 m s
−1

. The areas identified with damage or delamination are  outlined in 

red to aid the eye. 
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5. Conclusions 

In the present work, the effect of the modification of GFRP with additive nanoparticles to the epoxy 

matrix undergoing ballistic impact has been investigated. GNP, CNT, hybrid BNNS+CNT and 

hybrid BNNT+GNP are used to modify the epoxy matrix.  

The ballistic impact tests at two projectile velocities were carried out on the GFRP made from non-

crimp quasi-isotropic lay-up of [(45/90/-45/0)3/(0/45/90/-45)3] with different types of resins. At a 

projectile velocity of 761 m s
−1

 the full-field deformation and major strain are measured without 

introducing any visible impact damage using DIC system. At a projectile velocity of 134.31.7 m s
−1

 

all GFRP laminated specimens were perforated.  

The ballistic tests results showed that different nanoparticles within the matrix have an effect on the 

impact behaviour and damage mechanisms of the GFRP composites. All nanomodified epoxy 

GFRPs recorded exit velocities lower than neat epoxy GFRP at an incident velocity of 134.31.7 m 

s
−1

. The neat epoxy GFRP specimen reduced the exit velocity by 67%, from 131.6 m s
-1

 to 43.4 m s
-

1
.The highest reduction in exit velocity was achieved in the instance of the GFRP with 

(EP+BNNT+GNP) modified matrix. This matrix reduced the incident velocity by 89.1%, an 

additional 18.1% reduction of exit velocity on top of the reduction in exit velocity with the neat 

epoxy GFRP. Overall, the average increase in specific energy absorption (SEA) achieved for 

nanomodified epoxies GFRPs relative to the neat epoxy GFRP was 11.4%. 

Non-destructive flash-pulsed thermography was employed for post-impact analysis. The images 

from this method showed that the damage was localised and limited to areas around the impacted 

point with internal delaminations. To conclude, the incorporation of the various nanoparticles into 

the epoxy system resulted in a reduction in the exit velocities as well as providing further 

enhancement in the energy absorption.  
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