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We demonstrate ballistic spin transport of an integrable unitary quantum circuit, which can be
understood either as a paradigm of an integrable periodically driven (Floquet) spin chain, or as
a Trotterized anisotropic (XXZ) Heisenberg spin-1/2 model. We construct an analytic family of
quasi-local conservation laws that break the spin-reversal symmetry and compute a lower bound on
the spin Drude weight which is found to be a fractal function of the anisotropy parameter. Extensive
numerical simulations of spin transport suggest that this fractal lower bound is in fact tight.

Introduction.– Understanding transport in various
out-of-equilibrium setups, in particular in low dimen-
sions, is one of the main challenges of theoretical con-
densed matter physics [1]. Experimental evidence cor-
roborates the seemingly controversial proposal [2, 3] that
integrable systems generically exhibit ballistic transport
even at high temperatures [4–6]. This proposal has re-
ceived rigorous justification in terms of the existence of
an extensive number of quasi-local conserved quantities
[7–12] which form a basis for the hydrodynamic theory
of interacting integrable systems [13–15].
Recently, periodically driven (Floquet) spin chains

with local interactions have attracted considerable at-
tention. This was in particular due to the possibility
of exhibiting generalized thermalization towards non-
equilibrium steady states [16] and distinct dynamical
phases with respect to the spontaneous breaking of
time-translation invariance [17, 18]. Still, the possi-
bility of strictly ballistic transport in interacting quan-
tum integrable Floquet systems has never been explored
(see [19, 20] for a classical lattice setting), even though a
peculiar robustness of transport to integrability breaking
has been observed a while ago [21, 22] (also [23]).

For concreteness, let us consider spin transport. With-
out resorting to the spectroscopic approach [24], which is
harder to justify in Floquet systems, ballistic transport
can be defined as a linear growth of the spin current in
time, after the system has been prepared in an initial
state supporting a small gradient of magnetization. This
can be formulated in terms of a nonzero Drude weight

D = lim
t→∞

lim
N→∞

lim
µ→0

〈J(t)〉µ
2Ntµ

, (1)

where J =
∑

n jn is the extensive spin current operator
on a spin chain of length N and J(t) its time dependence.
〈•〉µ denotes the average in the initial state with a small
gradient of magnetization µ, say ρµ ∼ exp (µ

∑
n nσ

z
n),

where σz
n is a local spin variable. A formula similar to (1)

holds even if the system is initially prepared in two equili-
brated halves at different magnetizations µL and µR with
µ ∼ (µL−µR)/N representing the effective gradient [25–
27]. This partitioned initial state is easier to simulate
using state-of-the-art tensor network simulations.
Expanding to the first order in µ, the Drude weight

can be expressed solely in terms of equilibrium auto-
correlation functions using the Kubo formula, see Ap-
pendix A of the Supplemental material (SM) [28]. This
can in turn be bounded from below by means of the
Mazur inequality [3, 29, 30] (see [7] for a rigorous deriva-
tion in extended systems)

D = lim
t→∞

lim
N→∞

1

2N

1

t

t∑

τ=1

〈JJ(τ)〉

≥ lim
N→∞

1

2N

∑

k

|〈J,Qk〉|
2

〈Qk, Qk〉
.

(2)

Here Qk are conserved quantities orthogonal with respect
to the inner product 〈A,B〉 = tr[A†B]/2N , assuming that
the reference equilibrium state is the maximum entropy
state ρµ=0 = 2−N1 and the local Hilbert space dimen-
sion is 2. In order for the bound to be finite the con-
served quantities should be linearly extensive or quasi-

local, 〈Qk, Qk〉 ∝ N , and should have a finite overlap
with the spin current, 〈J,Qk〉 6= 0. For the latter to
hold, Qk must not be symmetric, PQkP 6= Qk, with re-
spect to the spin-reversal operator P, which flips the spin
current PJP = −J . In the easy-plane (gapless) regime
of the HeisenbergXXZ model, for example, the integrals
of motion with all of the required properties have been
shown to exist [8–11].
In the present paper, we aim to rigorously establish

a regime of ballistic transport in a Floquet driven inte-
grable model related to the Trotterized XXZ spin-1/2
chain. We introduce the dynamical protocol as a local
quantum circuit, establish its connection with the six-
vertex R-matrix and integrability structure of the XXZ
model, and define the spin currents and continuity equa-
tions arising from the global U(1) symmetry of the model.
Despite its driven nature, we construct a set of quasi-local
conservation laws which break the spin-reversal symme-
try. We then show how to evaluate the optimized Mazur
lower bound on the spin Drude weight. Extensive numer-
ical simulations using the time-evolving block decima-
tion (TEBD) algorithm strongly suggest that this bound,
which is a fractal function of parameters, is in fact satu-
rated, similarly as in the continuous-time case [27, 31].
The model.– Consider a spin-1/2 chain with N ∈ 2Z

sites and periodic boundary conditions. The local phys-
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ical space on each site will be denoted by Vp ≡ C2. We
are interested in a discrete-time Liouville-von Neumann
equation for a density matrix ρt+1 = U ρt U

†. The prop-

FIG. 1. Schematics of the time evolution. The red gates
represent Ueven and the blue ones Uodd. The direction of the
time is upwards. The schematic shows two full time steps in
the bulk of the system.

agator U = Uodd Ueven acts in two steps

Uodd =

N/2∏

n=1

U2n,2n+1 , Ueven =

N/2∏

n=1

U2n−1,2n , (3)

where

Un,n+1 = e−iJ (σx
nσ

x
n+1+σy

nσ
y

n+1
)−iJ ′ (σz

nσ
z
n+1−1) (4)

is a unitary gate acting on two neighbouring sites labelled
with n and n + 1, see Figure 1. Here σα (α = x, y, z)
are Pauli matrices. By considering infinitesimally small
couplings J and J ′ and an infinite number of time steps
we recover the continuous-time dynamics of the XXZ
model, according to the Trotter-Suzuki formula.
The local 2-site unitary gate can be rewritten as

Un,n+1 = Řn,n+1(λ) where

Ř(λ) =




1 0 0 0

0 sin η
sin(λ+η)

sinλ
sin(λ+η) 0

0 sinλ
sin(λ+η)

sin η
sin(λ+η) 0

0 0 0 1


 (5)

denotes the braid form of the R-matrix of the XXZ
model. The new parameters η and λ can be implicitly
expressed as unique functions of J and J ′ through the
following pair of relations

e2i(J±J ′) =
sin η − sinλ

sin(η ± λ)
. (6)

The continuous-time limit is recovered as an expansion
in small λ which gives Un,n+1 = 1+λhn,n+1+O(λ

2) with
the local Hamiltonian density

hn,n+1 =
1

2 sin η

(
σx
nσ

x
n+1 + σy

nσ
y
n+1 +∆(σz

nσ
z
n+1 − 1)

)
,

(7)

with ∆ = cos η being the anisotropy parameter. Clearly,
real η and imaginary λ correspond to the gapless/easy-
plane regime, shown in Figure 2, whereas imaginary η
and real λ correspond to the gapped/easy-axis regime.

FIG. 2. The coloured area corresponds to real η and imagi-
nary λ. The blue and yellow lines are constant λ and constant
η contours, respectively. The continuous time limit corre-
sponds to J , J ′ → 0. Note: η = π/2 corresponds to the
free model (J ′ = 0). In the limit λ → ∞ (J → π/4) the
local propagator (4) reduces to a SWAP gate with some J ′-
dependent phase.

In the gapless regime of the continuous-time limit
(|∆| < 1) the Drude weight has rigorously been shown to
be nonzero for a dense set of anisotropies parametrized
by η = l π/m, where l and m are coprime integers [9, 10].
In this paper we extend this discussion for the same set
of anisotropies to a discrete time, i.e., to all imaginary λ.
This will cover the ballistic regime in the phase diagram
of our model, shown in red in Figure 3, which is de-
termined by adapting the numerical method of Ref. [32].
We stress that we observe ballistic transport for any ratio
J ′/J , even for |J ′| > |J |, unlike in the continuous-time
case. Note also that the other two transport regimes can
be clearly established numerically – the super-diffusive in
yellow and the diffusive in blue.
Spin currents.– Due to the U(1) symmetry of the

propagator (5) the total magnetization M =
∑N

n=1 σ
z
n

is a conserved quantity. As a result of the discrete time
propagation we identify two continuity equations, sepa-
rately for odd/even sites

U† σz
2n+1 U − σ

z
2n+1 = −j2n+2 + j′2n+1,

U† σz
2n U − σ

z
2n = −j′2n+1 + j2n

(8)

Through them we can define two local current densities,
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FIG. 3. A schematic phase diagram of the model based
on TEBD simulations. The three circles mark the values
of J and J ′ used in the right plot, which in turn depicts
the time-dependence of the exponent α, defined through
the transport of magnetization between two half-chains [32]
α(t) = (d/d log t) log

(
∑t

τ=0
〈jN/2+1(τ)〉

)

. We can recognize
ballistic, super-diffusive and diffusive regimes (red, yellow and
blue respectively). Here we have used bond dimension 64 on
a chain of length N = 3600.

the even current j2n and the odd, j′2n+1. The even one is

j2n =
4 sinλ sin η

cos 2η − cos 2λ

(
σ+
2n−1 σ

−
2n − σ

−
2n−1 σ

+
2n

)
+

+
2 (sinλ)2

cos 2η − cos 2λ

(
σz
2n−1 − σ

z
2n

) (9)

while the odd current can be computed as j′2n+1 =
U†
even j2n+1 Ueven and operates on four adjacent sites. In

the continuous-time limit both local currents reduce to

jn = j′n = −
2λ

sin η

(
σ+
n−1 σ

−
n − σ

−
n−1 σ

+
n

)
+O(λ2), (10)

with the pre-factor (sin η)−1 coming from the Hamilto-
nian (7).
The total extensive spin current is now defined as J =∑N/2
n=1(j2n + j′2n+1). It is clearly anti-symmetric under

spin-reversal P =
∏N

n=1 σ
x
n, i.e., PJP = −J . We now

proceed to construct the relevant conservation laws for all
imaginary λ and for a dense set of commensurate values
of the anisotropy parameter η = l π/m.
Quasilocal integrals of motion.– The construction

of anti-symmetric conservation laws is similar as in the
continuous-time limit [10]. However, they are now gen-
erated by the staggered transfer operator

T (ϕ, s) = tra

[ N∏

n=1

Ln,a

(
ϕ− (−1)n λ

2 , s
)]
. (11)

Here, Ln,a(ϕ, s) denotes the Lax operator acting on the

n-th physical space Vp in the string
⊗N

n=1 Vp as a 2 × 2
matrix

L(ϕ, s) =
1

sinϕ

(
sin(ϕ+ η Sz

s) sin(η)S−
s

sin(η)S+
s sin(ϕ− η Sz

s)

)
(12)

whose elements are themselves matrices in the auxiliary

space Va. For η = l π/m the latter is an m-dimensional
complex spin-s representation of the quantum group
Uq(sl2) (q = eiη) traced out in the final expression (11).
Its generators have an explicit form reminiscent of the
angular momentum generators

Sz
s =

m−1∑

k=0

(s− k) |k〉 〈k| ,

S+
s =

m−2∑

k=0

sin(k + 1)η

sin η
|k〉 〈k + 1| ,

S−
s =

m−2∑

k=0

sin(2s− k)η

sin η
|k + 1〉 〈k| .

(13)

Together with Ř(λ) given in (5), the Lax opera-
tor (12) satisfies the Yang-Baxter equation which implies
[T (ϕ, s),U ] = 0 and [T (ϕ, s), T (ϕ′, s)] = 0 (see Appen-
dices B and C of the SM [28]).

For λ = 0 the spin-reversal asymmetric conservation
laws of the XXZ spin 1/2 chain were previously pro-
duced [9–11] as

Z(ϕ) =
1

2η sin η
∂sT (ϕ, s) |s=0, (14)

and shown to be linearly extensive (quasi-local) inside an
analyticity strip |Reϕ − π

2 | <
π
2m . Here we will simply

show that this expression can be extended to arbitrary
values of parameter λ if the staggered form (11) of the
transfer matrix is used. Since λ is purely imaginary, the
region of quasi-locality remains the same. The detailed
construction of these conservation laws for finite λ is pre-
sented in Appendix D of the SM [28].

In order to maximize the Mazur lower bound (2) for the
spin Drude weight we need to minimize the norm of the
conservation laws Qk ∼ Z(ϕ) without reducing the over-
lap with the spin current 〈J,Qk〉. Due to the asymmetry
of the current operator PJP = −J , only the spin-reversal
anti-symmetric component Z−(ϕ) = 1

2 (Z(ϕ)−PZ(ϕ)P)
contributes to the lower bound. Furthermore, we can
subtract a term proportional to the total magnetization,
Z−
⊥ (ϕ) = Z−(ϕ) − 1

N 〈M,Z(ϕ)〉M , since the latter is
orthogonal to the spin current, see Appendix E of the
SM [28]. The overlap between Z−

⊥ (ϕ) and the current is
now given by

j(ϕ) = lim
N→∞

1

N
〈Z(ϕ̄), J〉 =

sinλ

(cosλ− cos 2ϕ) sin η
. (15)

The quasi-locality of Z−
⊥ (ϕ) is seen from the N -

independence of K(ϕ,ϕ′) ≡ limN→∞
1
N 〈Z

−
⊥ (ϕ̄), Z−

⊥ (ϕ′)〉
with the following conjectured analytical result



4

K(ϕ,ϕ′) =

(
cos(ϕ− ϕ′ + λ) + cos(ϕ− ϕ′ − λ)− 2 cos(ϕ+ ϕ′)

)
sin[(m− 1)(ϕ+ ϕ′)] + (sinλ)2 sin[m(ϕ+ ϕ′)]

4 (sin η)2 (cos 2ϕ− cosλ) (cosλ− cos 2ϕ′) sin[m(ϕ+ ϕ′)]
.

(16)

Expressions j(ϕ) and K(ϕ,ϕ′), given by (15) and (16)
respectively, are the essential ingredients for the lower
bound on the Drude weight, which we discuss next.
Mazur bound.– We now attempt to bound the spin

Drude weight by means of the Mazur inequality as elab-
orated on in Ref. [10]. It can be rewritten in an integral
form

D ≥ DMazur =
1

2
Re

∫
d2ϕ j(ϕ̄)f(ϕ), (17)

where f(ϕ) solves the following Fredholm equation

∫
d2ϕ′K(ϕ,ϕ′)f(ϕ′) = j(ϕ). (18)

The integrals are formally taken over the area of quasi-
locality |Reϕ− π

2 | <
π
2m . However, due to holomorphic-

ity, a single line of integration centred at Reϕ = π
2 is

sufficient, which makes for an efficient quasi-exact nu-
merical procedure of computing DMazur. The full Mazur
lower bound has a fractal dependence on η and a con-
tinuous dependence on |λ|. It has been calculated nu-
merically and compared to TEBD [33, 34] simulations –
see Appendix H of the SM [28]. The dependence on η is
shown in Figure 4, and the dependence on |λ| in Figure 5.

In Figure 4 we have re-scaled the Drude weight and
the lower bound by a factor of (sin η)2 [see Eq. (7)].
This allows us to make a comparison with the established
continuous-time result [10]

D′
Mazur =

[
sin η

sin(π/m)

]2 (
1−

m

2π
sin(2π/m)

)
, (19)

found by expanding (sin η)2DMazur = λ2D′
Mazur+O(λ

3)
around λ = 0. We can see this by noting, that the small-
λ expansion of Eqs. (17) and (18) reproduces the corre-
sponding equations in the continuous-time case.
The integral equations can be solved analytically for

m → ∞, corresponding to an irrational value of η/π.
The details are discussed in Appendix G of the SM [28]
and the result is the enveloping function

lim
m→∞

DMazur = 2

(
1−

Gd(|λ|)

sinh(|λ|)

)
, (20)

where Gd denotes the Gudermannian Gd(x) =
2 arctan(ex) − π/2. This represents a continuous strict
lower bound on top of which an additional fractal struc-
ture, shown in Figure 4 for |λ| = 1, emerges.

FIG. 4. Drude weight at |λ| = 1 as computed using the
Mazur inequality (blue) and TEBD (yellow-red). The colour
scales from yellow to red as the simulation time increases from
t = 50 to t = 1000. The TEBD simulations were performed
using a bond dimension of 64 and a system size N = 3600.
The inset in the centre of the lower panel shows a more precise
set of simulations using a bond dimension of 128 for a small
section of cos η. The top-left inset of the lower panel shows
convergence towards the fractal peak at η = 3π/4 for bond
dimension 256. To demonstrate fractality, the upper panel
only shows the Mazur bound without the rescaling.

On the free fermion line (J ′ = 0 or m = 2) exact
diagonalization shows the saturation of the lower bound
which includes only a single conserved quantity Z(π/2).
It can easily be computed to give

DMazur = 2 (1− sech(|λ|)). (21)

For a complete |λ| dependence of the Mazur lower bound
see Figure 5. Note that the |λ| → ∞ limit is always
2. This can easily be explained, since there, the local
propagator reduces to a SWAP gate. As such, transport
becomes perfectly ballistic with no scattering at all.
Discussion.– We have demonstrated and proven bal-

listic transport in a periodically driven interacting quan-
tum spin chain, namely in the Trotterized XXZ spin-1/2
model. We have used the notion of ballistic spin trans-
port referring to a linearly growing extensive spin current
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FIG. 5. A comparison between the analytic and numerical
results. Additionally we show m = 3 case as an example of
more generic behaviour with respect to |λ|. For all m, the
|λ|-dependence lies between the m = 2 and m → ∞ curves.

after a quench from an inhomogeneous initial state with
either a linear gradient or a step bias in the magnetization
profile. We argue that this is the most natural definition
of ballistic transport in the case of discrete-time propaga-
tion. Using the quasi-local conservation laws that we con-
structed by means of quantum-group theoretic methods,
we have calculated the lower bound on the spin Drude
weight and explicitly showed its fractal dependence on
the anisotropy parameter. Extensive numerical simula-
tions suggest the saturation of the lower bound – see Fig-
ure S-2 in Appendix H of the SM. Note, however, that
for a fixed commensurate anisotropy η = l π/m the con-
vergence with time seems to become extremely slow with
increasing m, certainly beyond ultimate verification with
state-of-the art numerical methods.
In the continuous-time limit we correctly reproduce the

well established results of ballistic spin transport in the
XXZ model. However, since the thermodynamic Bethe
ansatz has not yet been developed for driven integrable
systems [35], our results open interesting new avenues for
research. The conservation laws that we proposed (see
also Ref. [36]) can be directly applied for construction of
complete generalized Gibbs ensembles and development
of generalized hydrodynamics in integrable Floquet sys-
tems.

The authors thank M. Žnidarič for helpful discussions
on the topic. The authors acknowledge support by the
European Research Council (ERC) through the advanced
grant 694544 – OMNES and the grant P1-0402 of Slove-
nian Research Agency (ARRS).
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Appendix A: Drude weight and Kubo formula

In this appendix we derive the Kubo form of the Drude weight starting from an initial state with a linear gradient
of magnetization

ρµ =
1

2N

(
1− µ

N∑

n=1

(
n−

N + 1

2

)
σz
n

)
. (S-1)

Here µ is a perturbative parameter which corresponds to a local gradient in magnetization. Our goal is to examine the
time dependent average 〈J(t)〉µ = tr[ρµ J(t)] of the extensive current J =

∑
n jn for small µ, where J(t) = U−t J U t.

Note, that in our case the local current densities on even and odd sites are different. In the main text (MT) they
are denoted by j2n and j′2n−1, respectively. Using the continuity equation U† σz

n U − σ
z
n = −jn+1 + jn (Eq. (8) of the

MT), which can be recast as

U σz
n U

† − σz
n = U (jn+1 − jn)U

†, (S-2)

we see, for an arbitrary observable A,

〈A(t)〉µ = 〈A〉 −
µ

2N

N∑

n=1

(
n−

N + 1

2

)
tr[U tσz

n U
−tA] = 〈A〉 −

µ

2N

N∑

n=1

(
n−

N + 1

2

)
tr[U t−1σz

n U
−t+1A]−

−
µ

2N

N∑

n=1

(
n−

N + 1

2

)
tr[U t(jn+1 − jn)U

−tA] = 〈A(t− 1)〉µ +
µ

2N

N∑

n=1

tr[jn U
−tAU t] = 〈A(t− 1)〉µ + µ 〈JA(t)〉.

(S-3)

Using this recurrence we get

〈J(t)〉µ = 〈J〉µ + µ

t∑

τ=1

〈JJ(τ)〉 (S-4)

for the total extensive spin current J . Now, our definition of the Drude weight (Eq. (1) of the MT) gives the Kubo
formula (Eq. (2) of the MT)

D ≡ lim
t→∞

lim
N→∞

lim
µ→0

〈J(t)〉µ
2Ntµ

= lim
t→∞

lim
N→∞

1

2N

1

t

t∑

τ=1

〈JJ(τ)〉. (S-5)

Taking the local current jn instead of J in (S-4) we see

lim
t→∞

lim
N→∞

lim
µ→0

〈jn(t)〉µ
2tµ

= lim
t→∞

lim
N→∞

1

2t

t∑

τ=1

〈Jjn(τ)〉. (S-6)

Combining (S-5) and (S-6) for even and odd n and using the invariance of the equilibrium average 〈•〉 under the
translation for two sites we now realize

D = lim
t→∞

lim
N→∞

lim
µ→0

1

2tµ
〈
j2n(t) + j′2n−1(t)

2
〉µ, (S-7)

which shows that it is enough to measure the weight locally at any pair of neighbouring sites.
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Appendix B: Integrability of the driven model

In this appendix we formulate the integrable structure of our driven model. Let P denote the permutation operator
which acts on the tensor square of the local physical space, Vp⊗Vp, and has the explicit form Pn,n+1 = 1

2

(
1+σn ·σn+1

)
,

where σ = (σx, σy, σz). Our local propagator, given by Eq. (4) of the MT, is a unitary matrix which can be written
as U = Ř(λ) = PR(λ) (see also Eq. (5) of the MT), where

R(λ) =




1 0 0 0

0 sinλ
sin(λ+η)

sin η
sin(λ+η) 0

0 sin η
sin(λ+η)

sinλ
sin(λ+η) 0

0 0 0 1


 (S-8)

satisfies the Yang-Baxter equation R1,2(λ − µ)R1,3(λ)R2,3(µ) = R2,3(µ)R1,3(λ)R1,2(λ − µ) defined on the triple
Vp ⊗ Vp ⊗ Vp. This implies the commutation of transfer matrices [T (ϕ), T (ϕ′)] = 0,

T (ϕ) = tr0

[ N∏

n=1

Rn,0(ϕ− (−1)n λ
2 )
]
. (S-9)

Index 0 in (S-9) denotes a copy of the physical vector space Vp, which is traced out by the partial trace tr0. Elementary
calculation yields

T (−λ
2 )

−1 T (λ2 ) = UoddUeven = U , (S-10)

with Uodd and Ueven defined in Eq. (3) of the MT. This establishes integrability, since T (ϕ) generates local integrals
of motion through logarithmic derivatives. For λ = 0, the transfer matrix (S-9) reduces to the one of the Heisenberg
XXZ model with the local Hamiltonian density

hn,n+1 =
1

2 sin η

(
σx
nσ

x
n+1 + σy

nσ
y
n+1 + cos η (σz

nσ
z
n+1 − 1)

)
. (S-11)

Appendix C: Transfer matrix from the complex spin representation

In this appendix we introduce the Lax operator and the transfer matrix which produces the spin-reversal asymmetric
quasi-local integrals of motion Z(ϕ). Such integrals exist only for η = l π/m, where l and m are co-prime integers. In
our model λ should then be purely imaginary. The starting point is the Lax operator of the XXZ model,

L(ϕ, s) =
1

sinϕ

(
sin(ϕ+ η Sz

s) sin(η)S−
s

sin(η)S+
s sin(ϕ− η Sz

s)

)
(S-12)

which acts on the pair Vp ⊗Va. Va is an m-dimensional complex spin-s representation of the quantum group Uq(sl2),
where q = eiη. Its generators satisfy [S+

s ,S
−
s ] = sin[2η Sz

s ]/ sin η, [S
z
s ,S

±
s ] = ±S

±
s and can take the following form

Sz
s =

m−1∑

k=0

(s− k) |k〉 〈k| ,

S+
s =

m−2∑

k=0

sin(k + 1)η

sin η
|k〉 〈k + 1| ,

S−
s =

m−2∑

k=0

sin(2s− k)η

sin η
|k + 1〉 〈k| .

(S-13)

Along with the R-matrix (S-8), the Lax operator (S-12) satisfies another Yang-Baxter equation

R1,2(ϕ− ϕ
′)L1,a(ϕ, s)L2,a(ϕ

′, s) = L2,a(ϕ
′, s)L1,a(ϕ, s)R1,2(ϕ− ϕ

′) (S-14)
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on the triple Vp⊗Vp ⊗Va. As in Appendix B, we can use the Lax operator to construct a family of transfer matrices

T (ϕ, s) = tra

[ N∏

n=1

Ln,a

(
ϕ− (−1)n λ

2 , s
)]
. (S-15)

Yang-Baxter equations imply [T (ϕ, s), T (ϕ′, s)] = 0 and [T (ϕ, s), T (ϕ′)] = 0. As we will see, the spin-reversal asym-
metric integrals of motion are

Z(ϕ) =
1

2η sin η
∂sT (ϕ, s) |s=0 . (S-16)

Appendix D: Explicit form of the integrals of motion

Here we describe the explicit form of the conservation laws Z(ϕ). Let us introduce the components of the Lax
operator and its derivative at s = 0 through

L(ϕ, 0) =
∑

α∈{0,+,−,z}

σα ⊗ Lα(ϕ), ∂sL(ϕ, s) |s=0=
∑

α∈{0,+,−,z}

σα ⊗ L̃α(ϕ), (S-17)

where σ0 = 1 denotes the identity. Components Lα, L̃α act on the auxiliary space Va and explicitly read

L0(ϕ) =

m−1∑

k=0

cos(kη) |k〉 〈k| , L̃0(ϕ) = η

m−1∑

k=1

sin(kη) |k〉 〈k| ,

L+(ϕ) = −
1

sinϕ

m−2∑

k=1

sin(kη) |k + 1〉 〈k| , L̃+(ϕ) =
2η

sinϕ

m−2∑

k=0

cos(kη) |k + 1〉 〈k| ,

L−(ϕ) =
1

sinϕ

m−2∑

k=0

sin[(k + 1)η] |k〉 〈k + 1| , L̃−(ϕ) = 0,

Lz(ϕ) = − cotϕ

m−1∑

k=1

sin(kη) |k〉 〈k| , L̃z(ϕ) = η cotϕ

m−1∑

k=0

cos(kη) |k〉 〈k| .

(S-18)

We should now make the following observations:

1. Of the derivative components, only L̃z(ϕ) preserves the highest-weight state |0〉.

2. Of the Lax components, only L0(ϕ) preserves the highest-weight state |0〉.

3. No Lax component Lα(ϕ), where α ∈ {0,+,−, z} can lift us from the highest-weight state |0〉 into the reduced

subspace V ′
a = lsp{|1〉 , |2〉 , ..., |m− 1〉}.

Because of the partial trace over the auxiliary space in (S-15), the derivative with respect to s in (S-16) can always
be shifted to the rightmost position in the string of Lax operators. The trace can then be separated as tra(•) =

〈0| • |0〉+
∑m−1

k=1 〈k| • |k〉. As we will see, the first term will produce a linearly extensive contribution and the second
term a remainder which is exponentially small in the system’s size.
Suppressing the ϕ-dependence, let us first focus on the string 〈0|Lα1Lα2 ...L̃αN |0〉. Due to the first two observations,

if αN = z all αn for n < N must be zero. This produces the following magnetization-like terms

N/2−1∑

n=0

cot(ϕ− λ/2)

2 sin η
σz
2n +

cot(ϕ+ λ/2)

2 sin η
σz
2n+1. (S-19)

If αN = +, the only option is to have αL = − for some fixed L < N and αn = 0 for all n < L. This produces the
following terms

N/2−1∑

n=0

S2n
(N/2∑

r=1

q−2r(ϕ) +

N/2−1∑

r=1

q−2r+1(ϕ)
)
+ S2n+1

(N/2∑

r=1

q+2r(ϕ) +

N/2−1∑

r=1

q+2r+1(ϕ)
)
, (S-20)
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where Sn is an automorphism of operator algebra implementing a periodic shift for n lattice sites, defined by Sn(σα
L) =

σα
L+n, and

q±2r(ϕ) =
∑

α1,...,α2r−2

〈1|Lα1(ϕ± λ
2 )...L

α2r−2(ϕ∓ λ
2 ) |1〉

sin(ϕ+ λ
2 ) sin(ϕ−

λ
2 )

σ− ⊗ σα1 ⊗ ...⊗ σα2r−2 ⊗ σ+ ⊗ 1
⊗(N−2r),

q±2r+1(ϕ) =
∑

α1,...,α2r−1

〈1|Lα1(ϕ± λ
2 )...L

α2r−1(ϕ± λ
2 ) |1〉

[sin(ϕ∓ λ
2 )]

2
σ− ⊗ σα1 ⊗ ...⊗ σα2r−1 ⊗ σ+ ⊗ 1

⊗(N−2r−1).

(S-21)

The rest of the trace,
∑m−1

k=1 〈k|L
α1Lα2 ...L̃αN |k〉, will produce the remainder. Due to the third observation it can

be rewritten as

pN (ϕ) = ∂s

(
tr′a

[ N∏

n=1

(m−1∑

k′=1

|k′〉 〈k′|a

)
Ln,a

(
ϕ− (−1)n λ

2 , s
)(m−1∑

k=1

|k〉 〈k|a

)])

s=0

, (S-22)

where tr′a denotes the partial trace over the reduced subspace V ′
a = lsp{|1〉 , |2〉 , ..., |m− 1〉} onto which the Lax

components have been projected by
∑m−1

k=1 |k〉 〈k|a. Gathering all of the terms with explicit matrix product forms
provided by equations (S-21) and (S-22) we have

Z(ϕ) = Z∞(ϕ) + pN (ϕ),

Z∞(ϕ) =

N/2−1∑

n=0

{
S2n

(N/2∑

r=1

q−2r(ϕ) +

N/2−1∑

r=1

q−2r+1(ϕ)
)
+ S2n+1

(N/2∑

r=1

q+2r(ϕ) +

N/2−1∑

r=1

q+2r+1(ϕ)
)
+

+
cot(ϕ− λ/2)

2 sin η
σz
2n +

cot(ϕ+ λ/2)

2 sin η
σz
2n+1

}
.

(S-23)

By Z∞(ϕ) we have denoted the part of Z(ϕ) that survives the thermodynamic limit N → ∞, as we will see in
Appendix F.

Appendix E: Spin-reversal symmetric and anti-symmetric component

In this appendix we define the decomposition of the integrals of motion Z(ϕ) with respect to the symmetry under

the spin-reversal P =
∏N

n=1 σ
x
n. Let us assume limN→0 pN (ϕ) = 0 in (S-23). The spin-reversal symmetric and

anti-symmetric components of Z(ϕ) are defined as

Z±(ϕ) =
1

2
(Z(ϕ)± PZ(ϕ)P). (S-24)

Note, that the Lax operator (S-12) satisfies σx
nL

α
n,a(ϕ, s)σ

x
n = Lα

n,a(π − ϕ, s)
T , where (•)T denotes the partial trans-

position with respect to the physical space. This immediately implies

PZ(ϕ)P = Z(π − ϕ)T |λ→−λ . (S-25)

Since the operator Z(ϕ) is not symmetric [see Eq. (S-21)] the spin-reversal anti-symmetric component Z−(ϕ) is
nonzero. This is crucial, since it provides the overlap with the spin current.
We can now make these components orthogonal with respect to the total magnetization M =

∑N
n=1 σ

z
n which does

not contribute to the overlap with the spin current. We have

Z+
⊥(ϕ) = Z+(ϕ), Z−

⊥ (ϕ) = Z−(ϕ)−
1

N
〈M,Z(ϕ)〉M, (S-26)

with

lim
N→∞

1

N
〈M,Z(ϕ)〉 =

sin 2ϕ

2 sin η (cosλ− cos 2ϕ)
. (S-27)
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Appendix F: Quasi-locality and the inner product between the integrals of motion

This appendix describes the quasi-locality of Z(ϕ) given in (S-23) and provides explicit formulas for their overlaps.
We will refer to operators Z(ϕ) as quasi-local if 〈Z(ϕ), Z(ϕ)〉 ∝ N for large N , where 〈A,B〉 = tr(A†B)/2N denotes
the Hilbert-Schmidt inner product [10]. We will see that the following holds:

Proposition 1. Let λ be purely imaginary and η = l π
m with l and m co-prime integers. Operators Z(ϕ) in (S-23)

with terms given by (S-21) and (S-22) are quasi-local if |Reϕ− π
2 | <

π
2m .

We start by recalling the decomposition Z(ϕ) = Z∞(ϕ) + pN (ϕ) from (S-23) and writing the inner product

lim
N→∞

1

N
〈Z(ϕ̄), Z(ϕ′)〉 = lim

N→∞

1

N

(
〈Z∞(ϕ̄), Z∞(ϕ′)〉+ 〈Z∞(ϕ̄), pN (ϕ′)〉+ 〈pN (ϕ̄), Z∞(ϕ′)〉+ 〈pN (ϕ̄), pN (ϕ′)〉

)
,

(S-28)

where (•̄) denotes the complex conjugation. The first term can be written as

lim
N→∞

1

N
〈Z∞(ϕ̄), Z∞(ϕ′)〉 = K ′(ϕ,ϕ′) +

(sinλ)2 − sin 2ϕ sin 2ϕ′

4 (sin η)2 (cos 2ϕ− cosλ) (cosλ− cos 2ϕ′)
, (S-29)

where

K ′(ϕ,ϕ′) =
1

2

∞∑

r=1

(
〈q−2r(ϕ̄), q

−
2r(ϕ

′)〉+ 〈q−2r+1(ϕ̄), q
−
2r+1(ϕ

′)〉+ 〈q+2r(ϕ̄), q
+
2r(ϕ

′)〉+ 〈q+2r+1(ϕ̄), q
+
2r+1(ϕ

′)〉
)
. (S-30)

Using the Cauchy-Schwarz inequality, the absolute value of the last three terms in (S-28) can be bounded by the
Hilbert-Schmidt norms of Z∞(ϕ) and pN (ϕ). Proposition 1 then holds if the following is true:

Lemma 1. The Hilbert-Schmidt norm of the remainder pN (ϕ) is exponentially small in the system size N and

K ′(ϕ̄, ϕ) is finite if |Reϕ− π
2 | <

π
2m .

Figure S-1 shows the exponential suppression of the norm 〈pN (ϕ), pN (ϕ)〉 of the remainder (left) and the difference
K ′

(num)(ϕ̄, ϕ)−K
′(ϕ̄, ϕ) between the numerically computed K ′(ϕ̄, ϕ) (S-30) and our conjectured formula (S-35) which

is finite in the thermodynamic limit (right).

FIG. S-1. On the left, the norm 〈pN (ϕ), pN (ϕ)〉 of the remainder at λ = i 3
4
and ϕ = π

2
+ i 3

5
is shown. The right diagram shows

the difference between numerically computed K′(ϕ̄, ϕ) (S-30) and our conjecture (S-35), which is finite in the thermodynamic
limit.

In the following we describe how to calculate K ′(ϕ,ϕ′) and conjecture its explicit formula, which we also use in the
MT. To this end, let us define a transfer matrix T(ϕ,ϕ′) =

∑
α∈{0,+,−,z} L

α(ϕ)⊗ Lα(ϕ′) 〈σα, σα〉 over Va ⊗ Va. This
enables us to write down the inner products of the local densities in a computationally convenient form

〈q±2r(ϕ̄), q
±
2r(ϕ

′)〉 =
〈1| ⊗ 〈1|

[
T(ϕ∓ λ

2 , ϕ
′ ± λ

2 )T(ϕ±
λ
2 , ϕ

′ ∓ λ
2 )
]r−1

|1〉 ⊗ |1〉

4 sin(ϕ− λ
2 ) sin(ϕ+ λ

2 ) sin(ϕ
′ + λ

2 ) sin(ϕ
′ − λ

2 )
,

〈q±2r+1(ϕ̄), q
±
2r+1(ϕ

′)〉 =
〈1| ⊗ 〈1|T(ϕ∓ λ

2 , ϕ
′ ± λ

2 )
[
T(ϕ± λ

2 , ϕ
′ ∓ λ

2 )T(ϕ∓
λ
2 , ϕ

′ ± λ
2 )
]r−1

|1〉 ⊗ |1〉

4 [sin(ϕ± λ
2 ) sin(ϕ

′ ∓ λ
2 )]

2
.

(S-31)
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Calculating the matrix T(ϕ,ϕ′) we see, that it

1. preserves the vector |0〉 ⊗ |0〉 and

2. preserves the subspace spanned by the vectors of the form |k〉 ⊗ |k〉, k = 0, 1, ...,m− 1.

Due to the first property, any excursion from the reduced auxiliary space V ′
a = lsp{|1〉 , ..., |m− 1〉} in the string

of matrices T(ϕ,ϕ′) gives zero. This allows us to project these matrices onto the reduced auxiliary subspace V ′
a by

identifying |k〉 ⊗ |k〉 ←→ | sin(kη)| |k〉 and 〈k| ⊗ 〈k| ←→ | sin(kη)|−1 〈k|. The matrix T(ϕ,ϕ′) becomes

T(ϕ,ϕ′) =

m−1∑

k=1

(
[cos(kη)]2 + cotϕ cotϕ′[sin(kη)]2

)
|k〉 〈k|+

| sin(kη) sin[(k + 1)η]|

2 sinϕ sinϕ′

(
|k〉 〈k + 1|+ |k + 1〉 〈k|

)
. (S-32)

This matrix has two important properties:

1. For |Reϕ− π
2 | <

π
2m its eigenvalues are strictly below 1 in absolute value. This has been proven in [10]. Obviously

this also holds for T(ϕ± λ
2 , ϕ

′ ∓ λ
2 ) if λ is strictly imaginary.

2. Commutation [T(ϕ + λ
2 , ϕ

′ − λ
2 ),T(ϕ + µ

2 , ϕ
′ − µ

2 )] = 0, which is actually a result of the Yang-Baxter equa-
tion (S-14) and its transpose.

Using these two properties we can sum up the series over r in (S-30) to get

K ′(ϕ,ϕ′) =
1

8
〈1|
(
2 +

sin(ϕ+ λ
2 ) sin(ϕ

′ − λ
2 )

sin(ϕ− λ
2 ) sin(ϕ

′ + λ
2 )

T(ϕ+ λ
2 , ϕ

′ − λ
2 ) +

sin(ϕ− λ
2 ) sin(ϕ

′ + λ
2 )

sin(ϕ+ λ
2 ) sin(ϕ

′ − λ
2 )

T(ϕ− λ
2 , ϕ

′ + λ
2 )
)
|ψ〉 ,

(S-33)

where |ψ〉 =
∑m−1

k=1 ψk |k〉 is a solution of a non-homogeneous recurrence relation of the fourth order with non-constant
coefficients,

sin(ϕ+ λ
2 ) sin(ϕ

′ + λ
2 ) sin(ϕ−

λ
2 ) sin(ϕ

′ − λ
2 )
[
1−T(ϕ− λ

2 , ϕ
′ + λ

2 )T(ϕ+ λ
2 , ϕ

′ − λ
2 )
]
|ψ〉 = |1〉 . (S-34)

In order to compute the overlaps explicitly, a solution of the recurrence relation (S-34) is now needed. Up to now we
haven’t been able to solve it explicitly, however, we have guessed and extensively numerically checked the following:

Conjecture 1. Let λ be purely imaginary and η = l π
m , l, m co-prime integers. Sum (S-30) of the overlaps between

the local densities of Z(ϕ) is

K ′(ϕ,ϕ′) =

(
cos(ϕ− ϕ′ + λ) + cos(ϕ− ϕ′ − λ)− 2 cos(ϕ+ ϕ′)

)
sin((m− 1)(ϕ+ ϕ′))

2 (sin η)2 (cos 2ϕ− cosλ) (cosλ− cos 2ϕ′) sin(m(ϕ+ ϕ′))
. (S-35)

For small λ this expression correctly reproduces the continuous-time result – see [10]. Since the remainder pN (ϕ) in
the conservation laws Z(ϕ) vanishes in the thermodynamic limit N →∞ we have

lim
N→∞

1

N
〈Z(ϕ̄), Z(ϕ′)〉 = lim

N→∞

1

N
〈Z∞(ϕ̄), Z∞(ϕ′)〉 (S-36)

and the full overlap between the conservation laws can be computed from (S-29). Using (S-25) we also deduce

lim
N→∞

1

N
〈Z(ϕ̄),PZ(ϕ)P〉 = −

(sinλ)2 − sin 2ϕ sin 2ϕ′

4 (sin η)2 (cos 2ϕ− cosλ) (cosλ− cos 2ϕ′)
. (S-37)

It is now easy to compute the overlaps between the spin-reversal anti-symmetric components Z−(ϕ) given in (S-24)
and, separately, the magnetization-orthogonal components Z−

⊥ (ϕ) given in (S-26):

lim
N→∞

1

N
〈Z−(ϕ̄), Z−(ϕ′)〉 =

1

2
K ′(ϕ,ϕ′) +

(sinλ)2 − sin 2ϕ sin 2ϕ′

4 (sin η)2 (cos 2ϕ− cosλ) (cosλ− cos 2ϕ′)
,

lim
N→∞

1

N
〈Z−

⊥ (ϕ̄), Z−
⊥ (ϕ′)〉 =

1

2
K ′(ϕ,ϕ′) +

(sinλ)2

4(sin η)2 (cos 2ϕ− cosλ) (cosλ− cos 2ϕ′)
.

(S-38)

The last overlap is essentially Eq. (16) of the MT and is used in the Mazur inequality. Therefore, it deserves its own
symbol K(ϕ,ϕ′) ≡ limN→∞

1
N 〈Z

−
⊥ (ϕ̄), Z−

⊥ (ϕ′)〉. Explicitly it reads

K(ϕ,ϕ′) =

(
cos(ϕ− ϕ′ + λ) + cos(ϕ− ϕ′ − λ)− 2 cos(ϕ+ ϕ′)

)
sin((m− 1)(ϕ+ ϕ′)) + (sinλ)2 sin(m(ϕ+ ϕ′))

4 (sin η)2 (cos 2ϕ− cosλ) (cosλ− cos 2ϕ′) sin(m(ϕ+ ϕ′))
.

(S-39)
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Appendix G: Solving the integral equation

In this appendix we describe how to tackle the integral equation given by Eq. (18) of the MT. Numerics suggests
that it is enough to restrict the domain of integration to the line Reϕ = π/2, which can be understood in terms of
analyticity of the kernel. Taking ϕ = π/2 + i log x, ϕ′ = π/2 + i log x′ and λ = i|λ| = i log Λ we see, that the integral
equation and the lower bound (Eqs. (18) and (17) of the MT, respectively) are equivalent to

∫ ∞

0

dx′ K̃(x, x′)f̃(x′) = 1, D ≥ Re

∫ ∞

0

dx f̃(x)j̃(x), (S-40)

where

x f̃(x) =

[
f(ϕ)

(sin η sinλ)

]

ϕ=π/2+i log x, λ=i log Λ

, j̃(x) =

[
sin η sinλ

2
j(ϕ̄)

]

ϕ=π/2+i log x, λ=i log Λ

(S-41)

and

K̃(x, x′) =

[
K(ϕ,ϕ′)

j(ϕ)
(sin η sinλ)

]

ϕ=π/2+i log x, ϕ′=π/2+i log x′, λ=i log Λ

. (S-42)

K(ϕ,ϕ′) is given by (S-39), while Eq. (15) of the MT provides explicit formula for j(ϕ). Function f̃(x) has absorbed

the Jacobian 1/x of the coordinate transformation log x → x. The goal is now to solve for f̃(x) and plug it into the

lower bound, provided the explicit form of real functions K̃(x, x′) and j̃(x)

K̃(x, x′) =

(
2Λ +

(
Λ2 + 1

)
x2
) (

2Λ +
(
Λ2 + 1

)
x′2
)
(xx′)2m − x2x′2

(
Λ2 + 2Λx2 + 1

) (
Λ2 + 2Λx′2 + 1

)

8Λx2 (Λ + x′2) (Λx′2 + 1) ((xx′)2m − 1)
,

j̃(x) =

(
Λ2 − 1

)2
x2

4Λ (Λ + x2) (Λx2 + 1)
.

(S-43)

Since j̃(x) = j̃(x−1), changing the variables according to x→ 1/x in the second equation of (S-40) suggests f̃(x−1) =

x2f̃(x). Using this symmetry, we can rewrite the first equation of (S-40) as
(
1 + 2Λx2 + Λ2

)
G(x−1) +

(
1 + 2Λx−2 + Λ2

)
G(x) = 1, (S-44)

where

G(x) =

∫ ∞

0

dx′
f̃(x′)L(x′)

1− (x′/x)2m
, L(x) =

x2(1 + 2Λx2 + Λ2)

8Λ(Λ + x2)(1 + Λx2)
. (S-45)

Taking the limit m→∞ now gives

G(x) =

∫ x

0

dx′f̃(x′)L(x′), f̃(x) =
G′(x)

L(x)
. (S-46)

If we define g(x) = (1 + 2Λx−2 + Λ2)G(x), we have g(x) + g(x−1) = 1. So we can assume the following expansion

g(x) =
1

2
+

∞∑

m=1

cm
xm − x−m

2
, (S-47)

for some coefficients cm. If we use this in the second equation of (S-46) we see that G(x) = x4G(x−1) must hold for

f̃(x−1) = x2f̃(x) to be true. Together with (S-44) this is enough to solve for G and then f̃ , which produces

f̃(x) =
32Λx

(
Λ + x2

) (
Λx2 + 1

)

(Λ2 + (Λ2 + 1)x4 + 4Λx2 + 1)
2 . (S-48)

It is now easy to compute the lower bound (S-40) which, after substitution Λ = e|λ| becomes

D ≥ 2

(
1−

Gd(|λ|)

sinh(|λ|)

)
. (S-49)

This is the enveloping function given in Eq. (20) of the MT. Gd denotes the Gudermannian function with explicit
formula Gd(x) = 2 arctan(ex)− π/2.
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Appendix H: Numerical approaches

Mazur bound calculation.– In order to compute the Drude weight bound numerically (for general m), we
discretize the region of integration (|Reϕ − π

2 | <
π
2m ) into L equally-sized rectangles and choose a cut-off value

|Imϕ| ≤ C. In our experience cut-offs C = 5 and C = 10 are already indistinguishable and thus the first one (C = 5)
is sufficient for accurate results. It also appears we can limit ourselves to the line Reϕ = π

2 as increasing the number
of points in the real direction does not affect the value significantly.
Having discretized the region, the integral equation (Eq. (18) of the MT) reduces to a system of linear equations

which can be written in matrix form

K · f = j (S-50)

and solved efficiently for f . Here, K represents a square matrix with elements K(ϕ,ϕ′) which are computed from
(S-39) at the points ϕ and ϕ′ defining our discretization. These points act as a row and a column index, respectively.
Similarly f and j are vectors with components f(ϕ) and j(ϕ), respectively (see Eq. (15) of the MT).
The solution f is now used in a simple scalar product

D ≥ Re

(
j′† · f

2

)
, (S-51)

which gives the lower bound (compare with Eq. (17) of the MT). Here j′ is a permuted vector j, its components
being j(ϕ̄) instead of j(ϕ). Symbol (•)† denotes the conjugate transpose.

It appears that even relatively crude discretizations of roughly L = 200 points along the relevant line provide
excellent results, essentially indistinguishable from more precise discretizations. Still, we perform calculations with L
up to 5000 to verify these results.

Tensor network simulations.– In order to check how well our bound describes the actual value we attempt to
obtain numerical values for the spin Drude weight through an alternative approach. To this end, we simulate an
inhomogeneous quench where the two halves of the system are initially prepared in a slightly polarized product state

ρµ =

(
eµLσz)⊗N/2

⊗
(
eµRσz)⊗N/2

tr
[
(eµLσz )

⊗N/2
⊗ (eµRσz )

⊗N/2
] . (S-52)

We take µR = −µL with µL = µ/2 typically being small (usually of order 10−2 or smaller), since this increases the
stability of the simulation. In order to obtain the Drude weight, we use the linear response expression

D = lim
t→∞

lim
N→∞

lim
µ→0

〈J(t)〉µ
2tµ

, (S-53)

recently used in [25–27], with J being the total extensive current. We compute its expectation value using a TEBD
algorithm. Formula (S-53) differs from (S-5), derived in Appendix A, since this particular protocol gives rise to
nontrivial dynamics only inside the light-cone, emerging from the contact between the two halves of the chain.

Typically we simulate chains of length N = 3600 and N = 7200 if longer times are needed. The times we can
reach are roughly a quarter of the chain’s length, at which point the boundary effects may start affecting the accuracy
of our Drude weight estimates. Finally, the size of the bias µ can be taken to be around 10−2. Taking a smaller
magnetization step appears not to be necessary. For the most part, we take a bond dimension of χ = 64 which appears
to be sufficient to obtain moderately accurate results with errors in the ∼ 1% range (as compared to a somewhat
more precise simulation at χ = 128 or even χ = 256 which were made occasionally for comparison). Increasing the
bond dimension helps increase the Drude weight at points where the less precise calculation might duck under the
theoretical lower bound. This can be seen at the peaks at commensurable η/π (”the fractal spikes”), an example
being shown in Figure S-2.
We stress that the numerical simulations clearly suggest convergence to a limiting fractal spin Drude weight as

given by the Mazur bound. This convergence is quantitatively illustrated in the inset of Figure S-2, where the full
width at half maximum (FWHM) of finite-t DMRG data converges to zero as ∼ t−1/2.
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FIG. S-2. The unscaled fractal Drude weight at |λ| = 1 as computed by two approaches: quasi-exact numerical solution of
the Fredholm equation yielding the Mazur lower bound (blue) and the numerical TEBD/DMRG algorithm at long but finite
times (yellow-red curves). The TEBD simulations in the main plot were performed using system size N = 3600 and bond
dimension χ = 64. The left inset shows the full width at half maximum (FWHM) of the TEBD results around the central
peak (corresponding to commensurate anisotropy η = π

2
). Comparing two different bond dimensions, it appears that FWHM

converges to zero as t−1/2 (left inset). The right inset shows more precise simulations (bond dimension χ = 128) for one of the
regions where the TEBD results for χ = 64 seem to be below our strict theoretical lower bound. These occurrences are hence
shown to be a result of small bond dimensions. Using larger bond dimension clearly improves the situation.
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