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ABSTRACT An elastic-shell-based theory for calculating the thermal conductance of graphene ribbons of arbitrary width w is presented.
The analysis of vibrational modes of a continuum thin plate leads to a general equation for ballistic conductance σ. At low temperature,
it yields a power law σ ∼ T�, where the exponent � varies with the ribbon width w from � ) 1 for a narrow ribbon (σ ∼ T, as a
four-channel quantum wire) to � ) 3/2 (σ ∼ wT3/2) in the limit of wider graphene sheets. The ballistic results can be augmented by the
phenomenological value of a phonon mean free path to account for scattering and agree well with the reported experimental
observations.

KEYWORDS Thermal transport, graphene, carbon, theory

The ever-increasing demands for heat dissipation in
microelectronic circuits, which are approaching a
power density of 100 W/cm2 in hot spots,1 add to the

challenge of sustaining Moore’s law.2 Traditional heat dis-
sipation remedies rely on forced convection through metallic
Cu or Al fins, with thermal conductivities on the order of a
few hundred W/m K. More efficient cooling solutions rely
on novel material structures with superior thermal conduc-
tivity. Recent experiments3,4 suggest graphene as a good
candidate, with measured thermal conductivities of
3000-5000 W/m K for layer lengths l of ∼10 µm. This
high thermal conductivity surpasses graphite and is in part
attributed to the long phonon mean free path λ in carbon
nanostructures, exceeding 500 nm in nanotubes5,6 and
graphene sheets.3 Therefore, it is expected that thermal
transport at the nanoscale will be dominated by a ballistic
rather than a diffusive mechanism. On the basis of
phonon spectra obtained from an atomistic description
of graphene, two independent calculations for the ballistic
thermal conductance of a graphene sheet have been
reported.7,8 In particular, a low-temperature dependence
of ∼T1.5 was obtained for an infinite graphene sheet.7 Here
we present analytical expressions for the ballistic thermal
conductance of a ribbon of limited width w, approximat-
ing its phonon spectra by the vibrational modes of an
elastic shell. With a choice of just a few elastic parameters,
this provides an accurate description of the long-wave-
length acoustic branches. Because phonons obey Bose-
Einstein statistics,9-11 at low T only acoustic modes are
populated and hence continuum elasticity provides an
accurate description of thermal transport in this regime.
At high T, however, the engaged optical phonons add little
to the energy flow because of low group velocities and the

acoustic modes remain dominant.9,12 Therefore, a shell
model (proven to be efficient in nanoscale mechanics13)
should also serve as a good approximation of the vibra-
tional spectra with application to transport over a broad
temperature range.

For a ribbon, its length l is much greater than its width
w, which in turn is larger than the effective thickness t (i.e.,
l . w > t). Accordingly, in reciprocal space its vibrations are
represented by discrete wave vector values qw (∆qw ) π/w)
in the transverse direction but by the very dense ql (∆ql )

2π/l) in the longitudinal direction (continuum ql corresponds
to lf ∞). The vibrational frequencies for a ribbon are given
by dispersion relations (Supporting Information, SI.I)

for the bending b, longitudinal LA, and transverse TA
acoustical and torsion τ polarizations. Here, cb

2 ≡ D/F, cLA
2

≡ C/F(1 - ν2), cTA
2 ≡ C/2F(1 + ν), and cτ

2 ≡ 8(1 - ν)/Fw2,
with q ≡ (ql, qw) and q ≡ |q|. cLA, cTA, and cτ represent the
usual speeds of sound, and the quadratic dispersion of the
bending mode causes its speed of sound to depend explicitly
on the wavelength as ∼cb|q|. We also note that cτ for the
torsion mode vanishes as ∼1/w in the limit of a wide ribbon
(cτ ∼ 1/w originates simply from the moment of inertia scaling
as ∼tw3 and the torsional rigidity is only ∼t3w). All acoustic
branches of the ribbon are fully defined by its surface mass
density F, the in-plane rigidity C, and the flexural rigidity D.
It is instructive to relate C and D further to the elastic
parameters of “effective material”, the Poisson ratio ν, and
Young’s modulus Y: C ) Yt and D ) Yt3/12(1 - ν2). An
important advantage of the shell model relative to exces-
sively detailed atomistic descriptions is its transferability to
other materials. Indeed, eq 1 can be used for any isotropic
planar structure (e.g., graphane CH or fluorinated graphene
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ωb ) cbq
2,ωLA ) cLAq,ωTA ) cTAq, ωτ ) cτql (1)
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CF) as long as basic elastic properties are known. To apply
specifically to graphene ribbon, we use F ) mcN/wl ) 0.75
mg/m2 (mc is the mass of the carbon atom and N is the total
number of carbon atoms) and the elastic parameters ob-
tained from ab initio calculations,14 C ) 345 J/m2, D ) 1.46
eV, ν ) 0.15, and t ≈ (D/C)1/2 ) 0.88 Å. (This thickness
correctly describes the physicomechanical behaviors, i.e.,
stiffness, vibrations, speeds of sound, etc., and is distinct
from the volumetric nominal value s ) 3.5 Å that merely
represents van der Waals c-spacing in graphite; their differ-
ence has long caused debate in the literature, which is
referred to as the Yakobson paradox.15-17) We thus obtain
for graphene cb ) 5.6 × 10-7 m2/s, cLA ) 2.17 × 104 m/s,
cTA ) 1.42 × 104 m/s, and cτ ) (1.46 × 10-6/w) m/s.

In counting the vibrational modes, we retain the discrete
summation for the width direction (qw ) jπ/w, j ) 0, 1, ...,
w/a). The wave vector ql is treated as a continuum, and its
cutoff (|ql|e qD) is chosen, in the spirit of the Debye model,
to satisfy the correct number of degrees of freedom 3N - 6
≈ 3N,

Here, p ) b, TA, LA, that is, the bending and the TA and LA
polarizations are included in the first term and the second
term corresponds to torsion. Accordingly, the cutoff is

where ns ) N/lw ) 0.38 atoms/Å2 is the surface number
density of atoms and a is a primitive cell size so that w/a

represents the total number of modes to be included in
the width direction. In the limit of a wide ribbon (wf ∞),
the cutoff defined by eq 2 becomes size-independent, qD

) πnsa, as expected for a 2D sheet. Figure 1 shows for
each polarization branch (p) the two lowest modes (j ) 0,
1 only), according to eq 1. The bending, TA, and LA for
qw ) 0, π/w, and the single torsion branch are shown as
a function of the ql wavenumber, |ql| e qD. As the width
w of the ribbon increases, the curves corresponding to
various j’s get closer together, whereas the speed of sound
in the torsion mode decreases as 1/w. In the limit of a very
wide plate w f ∞, the torsion mode disappears, the
wavenumber qw ) jπ/w becomes continuous, and the sub-
branches merge into three surfaces consisting of a con-
centric paraboloid (b) and two concentric cones (TA and
LA), as the inset shows.

Ballistic heat flux (energy/time) through a ribbon with
temperatures T + (∆T/2) and T - (∆T/2) maintained at
its opposite ends and negligible scattering over its length

l can be written as a balance of phonons propagating in
opposite directions,

Here, n(ω, T) ) [exp(pω/kBT) - 1]-1 is the Bose-Einstein
distribution and vp,l ) Dωj/Dql represents the group velocities
along the ribbon in the p-th polarization branch. The prime in
the Σ′ indicates that only branch j ) 0 should be included for
the torsion mode. In defining the thermal conductance along
the ribbon as σ ) lim∆Tf0 Q̇/∆T, we differentiate n(ω, T) over
T, then integrate explicitly over ql (while retaining the summa-
tion over qw), and after some algebra obtain

where fn(x) ≡ ∫0
x dx′ x′nex′/(ex′ - 1)2. The characteristic temper-

atures are defined individually for each polarization: θb )

pcbqD
2/kB and θp ) pcpqD/kB for p ) LA, TA and τ. Equation 4 is

∑
p)TA,LA,b

∑
j)0

w/a-1
l

2π
∫
-qD

qD dql +
l

2π
∫
-qD

qD dql ) 3N

qD )
3πns

3/a +1/w
(2)

FIGURE 1. Dispersion relations for a narrow ribbon of width w ) 4
nm obtained from an elastic shell model. The first and second (j )
0, 1) lowest branches are displayed for transverse acoustic TA,
longitudinal acoustic LA, and bending b, plus a single branch for
torsion τ. The right-hand side shows the corresponding density of
states (DOS) for these modes together. For a very wide ribbon
(infinite 2D-sheet limit, wf ∞), branches j ) 0, 1, 2,... condense to
form a continuum surface for each polarization, as the inset shows.

Q̇ ) ∫0

qD
dql ∑

p)TA,LA,b,τ
∑
j)0

w/a-1

′ 1
2π
pωp(q) vp,l(q) ×

[n(ωp(q), T +
∆T

2 ) - n(ωp(q), T -
∆T

2 )] (3)

σ )
kB

2
T

h { ∑
p)b,LA,TA,τ

f2(θp

T ) +

∑
j)1

w/a-1 { ∑
p)LA,TA

[f2(θp√1 + (jπ/qDw)2

T
) - f2( θpπj

qDwT)] +
f2(θb[1 + (jπ/qDw)2]

T ) - f2(θb[jπ/qDw]2

T
)}}

(4)
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rather general and permits either numerical computation or the
analysis of different temperatures and ribbon-width limits.

As depicted in Figure 1, the vibrational spectrum has a
“gap” separating the four acoustic (j ) 0) modes p ) TA, LA,
τ, and b from the higher ones (j g 1). The size of the gap
scales inversely with the ribbon width as ∼w-1 for p ) LA,
TA, and τ but as ∼w-2 for p ) b. Accordingly, one can define
for each polarization the characteristic temperatures Rb ≡

(pcb/kB)w-2 and Rp ≡ (pcp/kB)w-1 for p ) LA, and TA, above
which the first nonacoustic modes become thermally excited
according to the Bose-Einstein distribution. Torsion is a
single acoustic mode populated at arbitrary low tempera-
tures. In the limit T , Rp for all Rp, it can be shown (SI.II)
that the asymptotic behavior of the function fn(x) for n ) 2
is f2(x) ≈ (π2/3) + x2 exp(-x) when x . 1. By substituting
this limit into our general equation 4, we obtain the limit for
the thermal conductance at low temperature:

This expression shows that at low temperature the graphene
ribbon behaves as a four-channel thermal quantum wire
with a thermal conductance ∼T. All four channels conduct
equally, and each corresponds to one of the acoustic modes,
including torsion. We note that this result agrees with the
low-T limit of the thermal conductance of a carbon nano-
tube.7 For wide ribbons, the spectrum becomes denser, with
this effect being more dramatic for the bending mode as
reflected in Rb becoming extremely small. Numerically, for
a ribbon of 4 nm width the bending characteristic temper-
ature is Rb ≈ 0.3 K whereas it is as low as 5 × 10-6 K for a
micrometer-wide ribbon. In the latter, the four-channel
picture is unreachable at any conceivable temperature and
the total thermal conductance is proportional to width w.

For the high-temperature limit, we obtain from eq 4

In this expression, we defined a phase-space average speed of
sound for the three acoustic modes, c̄ ) [0.65(cLA + cTA) +
cbπnsa]/3 (details in SI.III). Recall that ns is the number surface
density and that the bending mode has a quadratic dispersion.
For graphene, the eq 6 limit in our model is achieved at T ≈

2000 K (on the order of the Debye temperature in graphite).
The graphene sheet case corresponds to a plate of very large

width, then cτ ∼
1/wf0andhence the torsionalmodedisappears

whereas both components of the wave vector q become quasi-
continuous. In eq 4, the discrete sum over j becomes an integral
over qw with density w/π so that the resultant conductance scales
as ∼w and should be better defined per unit width as

In the high-temperature limit, the thermal conductance
is again given by eq 6. Let us now consider the low-
temperature limit. As shown in SI.IV, the contribution
from the TA and LA modes is (σ/w)LA +(σ/w)TA ) 0.41(1/
cLA + 1/cTA)kB

3T2/p2 whereas the contribution from the
bending mode is

It is clear that at low temperatures σ ∼ T1.5 for an infinite
graphene sheet because of the contribution from the bending
mode. This trend agrees with that previously obtained7 from
atomistic calculations, after numerical diagonalization of the
dynamic matrices, to obtain the phonon spectra for an infinite
graphene sheet. Here, we also see that as the temperature
increases, the in-plane LA and TA modes introduce an ad-
ditional ∼T2 contribution into the thermal conductance.

In Figure 2, to make a fair comparison of ribbons of
different widths w (and also to permit comparison with bulk
materials), we show the thermal conductance per unit cross
section calculated from eq 4. The nominal cross section is
ws, with the s ) 3.5 Å “thickness” based on the interlayer
spacing in graphite.3,4,7 We notice that at low temperature
the thermal conductance per unit cross section approxi-
mately follows a power law of σ/ws ∼ T� where the exponent
� varies with the ribbon width. For small ribbons, � ) 1
corresponds to the quantum wire behavior, with 4 quanta
of thermal conductance as explained above (eq 5); each of
the conduction channels of the wire corresponds to one
acoustic mode, including torsion. For wider ribbons, the
torsion contribution vanishes while the exponent increases
toward � ) 1.5 in the infinite graphene sheet, as in eq 8. In
the latter case, we showed that exponent � ) 1.5 emerges
from the bending mode dominant contribution at low T.

The analysis above does not account for any scattering of
phonons as they propagate from the hot end to the cold end
unobstructed (cf. eq 3). To apply to more realistic situations,
we can introduce an intrinsic (sample-length-independent)
mean-free path λ into our ballistic theory in a phenomenologi-
cal way. Some insight into its role can be gleaned from
comparing the thermal conductance calculated by eq 4 with
molecular dynamics (MD) simulations. We use a direct method
with periodic boundary conditions in the width direction to
minimize edge scattering and compute the thermal conduc-
tance of graphene ribbons of different lengths l. A strong
dependence of the thermal conductivity on the sample length
obtained from MD has been reported.18 Similar data from MD

σ )
4π2

kB
2
T

3h
+ O([αT ]2

e-α/T) (5)

σ

w
) (32)kBnsc̄ + O(w-2) (6)

σ

w
) ∑

p)b,LA,TA
∫ql>0

d2q

(2π)2
pωp(q)vp,l(q)

∂nB(ωp, T)

∂T
(7)

σ

w
)

0.23kB
5/2

T
3/2

cb
1/2
p

3/2
(8)
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for carbon nanotubes19 has been empirically fitted to a depen-
dence κ ∼ lR. This power law is inspired by theoretical results
for classical 1D chains, with R ) 1 corresponding to ballistic
transport.9,20 There is no rigorous justification in extending the
results to 2D systems because the effective relaxation times for
scattering processes scale differently depending on the dimen-
sionality of the system.9,21,22 Moreover, in the case of nano-
tubes the exponent R was not unique but varied with length
l.19 In a different approach, we add the scattering to the ballistic
theory through a common heuristic argument. The inverse of
conductance, resistivity (1/κ), must be proportional to the
frequency of scattering events, with additive contributions from
the ribbon ends (∝ 1/l) and from intrinsic scattering (∝ 1/λ), that
is, 1/κ ∝ 1/l + 1/λ.

9,23 To reproduce the ballistic results correctly
in the case of very short samples (l , λ), the general κ(l)
expression should have the form

Now the data obtained from MD for a series of samples can be
used to plot 1/κ as a function of 1/l, as shown in the Figure 3 inset.
From the slope and intercept values, one can extract λMD ) 46
nm, which is low, likely as a result of excessive scattering in
MD. Moreover, (σ/sw)MD ) 6.7 × 109 W/m2 K is close to the
results of our ballistic theory, although one should not expect
numerical accuracy from the empirical potential-based classical
MD model. More essential here is that the data closely follows

the dependence in eq 9 and thus supports the relaxation rates’
additivity.9 One can therefore rely on eq 9, with σ/sw plotted in
Figure 2 as computed with our ballistic theory accounting for
correct quantum statistics9-11,24,25 through the Bose-Einstein
distribution, and choose λ as one fitting parameter when
comparing with experimental measurements.

Before comparing with experimental data, we evaluate the
relative contribution from electrons. In graphene, the Fermi
surface corresponds just to the K-points in reciprocal space,

FIGURE 2. Ballistic thermal conductance per unit cross section (σ/ws) as a function of temperature, calculated from eq 4, that does not depend
on length l but varies with the width w of the ribbon. The curve becomes independent of width for w > 500 nm, reaching the limit of an
infinite graphene sheet. Also shown for comparison is our calculated curve for a (10, 10) carbon nanotube.27 Notice that the narrow graphene
ribbon displays the same low-T behavior, ∼T, as carbon nanotubes, in agreement with the universal limit in eq 5. Very wide ribbons show a
low-temperature dependence of ∼T3/2 in agreement with eq 8. The inset shows the high-T behavior.

κ(l) )
( σ

sw)l
1 +

l

λ

or
1
κ
)

sw

σ

1
l
+

sw

σλ
(9)

FIGURE 3. Calculated thermal conductivity κ(l) for a graphene sheet
at room temperature as a function of length, after eq 9. The
experiment-based estimate of phonon mean free path λ ) 750 nm,3

and our theoretical calculation of the ballistic conductance per unit
cross section σ/sw ) 5.28 × 109 W/m2/K at room temperature have
been used. For comparison, the curves for λ ) 600 and 1000 nm
are also included. The inset shows the data from direct MD simula-
tions (T ) 300 K, ribbon w ) 2 nm and graphene) plotted as 1/κ versus
1/l to support eq 9. Vertical gray bars correspond to the range of
values obtained experimentally.3,4
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where valence and conduction bands π and π* do cross. The
dispersion in the vicinity of this point, often called the Dirac
point, is linear and isotropic,26 ε( (q) - εF ) (pυF|q - qF|.
Similar flux considerations as in the case of phonons (eq 3) lead
to the electronic part in the ballistic conductance,

The latter pertains to the low-temperature limit (details in SI.V),
where for common metals electrons usually dominate. Here,
however, the electronic contribution at low T is σel/w ∼ T2

whereas the phonon contribution is σphon/w ∼ T1.5, that is,
thermal conductance in graphene is in fact dominated by
phonons. (This unusual low-temperature dependence has been
obtained in ref 8 by a different method.)

We now can compare the predictions of our model with
experimental values reported for single graphene sheets in ref
3. This group measured, for graphene sheets with dimensions
of l ≈ 10 µm and w)5 µm, thermal conductivities in the range
of 3080-5150 W/m K. They have also estimated the phonon
mean free path at room temperature as λ ≈ 750 nm in
graphene.3 In Figure 3, we plot the thermal conductivity as a
function of length, predicted from eq 9. (We assume, as in ref
3, that the nominal graphene thickness is s ) 3.5 Å.) Notice in
this plot that eq 9 captures the fact that for l , λ scattering is
negligible and the effective thermal conductivity is proportional
to the length l of the sheet whereas the saturation of the curve
toward a size-independent, intensive value of the thermal
conductivity is achieved for lengths exceeding the average
mean free path to a value of κ) 3960 W/m K according to our
theory. The ballistic model, which correctly accounts for the
quantum statistics of vibrations and is augmented for scattering
by one phenomenological parameter λ, is in good agreement
with the reported experimental values of 3080-5150 W/m K
at room temperature.3

In summary, we presented a theoretical model to estimate
the ballistic thermal conductance of a finite-width nanoribbon.
It leads to the analytical expressions from a continuum shell
model of the ribbon, as an approximation of the acoustic
branches in the phonon spectrum, while it preserves the
discrete spectrum in the width direction to allow for the
treatment of narrow ribbons. At low temperature, our theory
predicts a power law for the ballistic thermal conductance of
∼T�, with a size-dependent exponent that ranges from � ) 1
for narrow ribbons (small w) to � ) 1.5 for a large graphene
sheet (w f ∞). In the first limit, we show that the ribbon
manifests the conduction properties of a thermal quantum wire
with four quanta of thermal conductance, one from each of the
acoustic modes: bending, LA, TA, and torsion. Because the
speed of sound in the torsion mode is inversely proportional
to the ribbon width, in the limit of a very wide graphene sheet

the torsion contribution vanishes. For this limit, we show that
thermal conduction at low temperature is dominated by the
bending mode, with a power law of ∼T1.5 (the exponent agrees
with numerical calculations previously reported for infinite
graphene sheets). The electronic contribution is ∼T2 (at low T)
and can generally be neglected, and the pure-phonon predic-
tions of our theory agree well with experimental values (κ )

3960 W/m K vs the range of κ) 3080-5150 W/m K from the
experiments with micrometer-sized graphene flakes at room
temperature).
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