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Ballooning mode spectrum in general toroidal systems RR.
R .L. Dewar and A. H. Glasser 
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544 

(Received 24 March 1982; accepted 20 June 1983) 

A WKB formalism for constructingnormal modes of short-wavelength ideal hydromagnetic, 
pressure-dnven mstabthtles (balloomng modes) in general toroidal magnetic containment devices 
with sheared magnetic fields is developed. No incompressibility approximation is made. A 
dispersion relation is obtained from the eigenvalues of a fourth-order system of ordinary 
differential equations to be solved by integrating along a line of force. Higher-order calculations 
are performed to find the amplitude equation and the phase change at a caustic. These conform to 
typical WKB results. In axisymmetric systems, the ray equations are integrable, and semiclassical 
quantization leads to a growth rate spectrum consisting of an infinity of discrete eigenvalues, 
bounded above by an accumulation point. However, each eigenvalue is infinitely degenerate. In 
the nonaxisymmetric case, the rays areunbounded in a four-dimensional phase space, and 
semiclassical quantization breaks down, leading to broadening of the discrete eigenvalues and the 
accumulation point of the axisymmetric unstable spectrum into continuum bands. Analysis of a 
model problem indicates that the broadening of the discrete eigenvalues is numerically very small, 
the dominant effect being broadening of the accumulation point. 

I. INTRODUCTION 

Ideal hydromagnetic stability theory currently plays an 
important role in design studies for high-beta) (/3 = plasma pres-
sure/magnetic pressure) toroidal magnetic confinement de-
vices.1 

Although the validity of the ideal model is limited to 
modes with wavelengths much greater than particle gyrora-
dii, and with growth rates faster than the diamagnetic drift 
frequency, resistive rates, etc., its simplicity makes accurate 
inclusion of geometric effects possible. Thus, a practical way 
to proceed is, first, to determine the ideal hydromagnetic 
instability spectrum; then, to examine the eigenmodes for 
consistency with the use of the ideal model; and, finally, to 
use a more physically correct model where necessary. 

Assuming that the plasma is not unstable to a gross free 
boundary mode (kink), one finds the rather surprising result 
that the most unstable ideal modes (interchanges and bal-
looning modes) always lie outside the domain of validity of 
the ideal model since they are localized to an indefinitely 
small region. Even if such localized modes survive (as drift 
waves) in a finite-Larmor-radius treatment, they would not 
be expected to be catastrophic for confinement. 

Interest then shifts to more extended modes with wave-
lengths short compared with the machine size but long com-
pared with a gyroradius. We shall call this the intermediate 
regime. In axisymmetric geometry (tokamaks), such modes 
do indeed exist,and can be treated by a modified version of 
WKB theory. 3 The limitation on the validity of ideal theory 
comes from violation of the criterion that the growth rate be 
larger than the diamagnetic drift frequency. 4 Even with this 
limitation, there is still an intermediate regime where finite-
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Larmor-radius (FLR) effects are negligible. 
One might assume that the intermediate regime exists 

quite generally in machines which are sufficiently close to 
axisymmetry. It is the main result of this paper that this is 
not strictly the case, despite the fact that locally the balloon-
ing formalism generalizes naturally.5 Due to a previously 
overlooked degeneracy in the axisymmetric spectrum, the 
breaking of axisymmetry has a profound effect, coupling en-
ergy to arbitrarily short wavelengths. The relevance of ideal 
ballooning theory to nonaxisymmetric systems is thus called 
into question. A similar conclusion has been reached in mir-
ror geometry.6 Numerical study of a model for a tokamak 
with strong toroidal ripple, however, shows that the cou-
pling is very weak for low-order modes. 

In Sec. II we set up the coordinates and function space 
in which solutions are to be found. The periodicity prob-
lem 7-

1 1 is treated by using the concept of a covering space, 12 

rather than through the use of the "ballooning transforma-
tion" (a critique of which is given in Appendix A). 

In Secs. III and IV we review the linearized equation of 
motion, its relation to the energy principle, and its expansion 
under the WKB and ballooning (modified-WKB) orderings. 
In Sec. V we give an exact formal elimination of the longitu-
dinal component of the plasma displacement, and we show 
that the structure of the equation is such that the ballooning 
expansion can (in principle) be carried through to all orders 
in the expansion parameter without encountering a violation 
of the ordering. This remains true in the boundary layer or-
dering needed in the vicinity of a bounding caustic, which is 
treated in Sec. X, after the dispersion relation, ray, and am-
plitude equations are discussed in Secs. VI-IX. A numerical 
model for a tokamak with ripple is presented in Sec. VIII. 
The periodicity problem is discussed in Secs. VII and XI, 
where the quantization condition for the axisymmetric case 
is derived, and a qualitative argument is given for the break-
down of the Kolmogorov-Arnol'd-Moser (KAM) 
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theorem 13 in the nonaxisymmetric case, based on the theory 
of one-dimensional mappings. This argument shows that 
ballooning modes are generically singular, and that there is 
an unstable continuous spectrum in ideal hydromagnetics in 
apparent contradiction with accepted belief. 14

•15 The origin 
of the discrepancy is that the type of singularity normally 
considered in axisymmetric geometry is localized to a single 
magnetic surface, whereas the ballooning singularities span 
a range of surfaces. We show in Appendix B that the result 
for the surface singularities does generalize to the nonaxi-
symmetric case. The spectrum is computed for the model 
problem as a function of the ripple parameter in Sec. XI. 

II. COORDINATES AND FUNCTION SPACES 

There is considerable analytical and computational ad-
vantage to be gained from using coordinates (¢,0,;) in which 
the field lines are "straight," 16 that is, in which the equilibri-
um Il'Mlgnetic field B can be represented in the form 

B = v; xv¢ + q(¢)V¢xve, ( 1) 

where 2m/! is the poloidal magnetic flux between the magnet-
ic axis and a magnetic surface, ¢ = canst (assuming nested 
toroidal surfaces), and() (r) and; (r) are, respectively, general-
ized poloidal and toroidal angles (Fig. 1 ). The function q( ¢)is 
the safety factor=2JT/rotational transform. 

The existence of nested toroidal surfaces is not guaran-
teed in nonaxisymmetric geometry, but it is reasonable to 
assume that any containment device will be designed so that 
Eq. (1) can represent B to a good approximation, at least at 
low /3. The study of high-/3 stability can be viewed as a first 
step towards ascertaining the existence of surfaces under fu-
sion conditions. 

The domain of the position vector r(O,;) on a given mag-
netic surface is normally taken to be the square unit cell 

D 1: 0<,0<,2JT, O<.; < 2JT, 
with the edges() = 0, 2JT,; = 0, 27T, topologically identified. 
However, r can be analytically continued to a function peri-
odic in() and; defined on the infinite domain 

D"": -oo<B<oo, -oo<;<oo, 
with the topology of the plane (i.e., D"" =R2

). The domain 
D"', together with the function r, forms a covering space 12 for 
the torus. 

The length element in both cases is ldrl, so what we 
have done is to invent a fictitious plasma with the metric of a 
torus, but with the topology of a slab. The advantage of this 
trick is that a broader class of solutions of the equations of 
motion is admissible on the covering space than on the unit 
cell, thus making the k·B = 0 constraint (Sec. IV) easy to 
satisfy. The physical solutions, those 27T periodic in() and;, 
must lie within the completion of the solution space, so we 
have not lost anything by going over to the covering space. 
However, to recover the physical solutions we must first 
construct the general solution on the covering space. This 
approach is contrasted with the ballooning transformation 
approach in Appendix A. 

Although we do not pretend to great rigor, we seek to 
construct the theory within the framework provided by stan-
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FIG. 1. A square grid on a unit cell D 1 of the covering space Doc (a) is 
mapped onto a grid on a toroidal magnetic surface by the position function 
r(t/J,{},; ), with t/1 = const. The position function is periodic on the square 
lattice shown in (a). The oblique dotted line in (a) is a typical magnetic field 
line: t =a+ q(t/J){}, with a= const. (b) shows an axisymmetric case with 
q= 1.185. 

dard functional analysis. 17 In particular, we suppose the 
space of functions defined on the covering space to be a Hil-
bert space; a space of normalizable functions with the norm 
being provided by an inner product. The inner product 
which arises naturally is that which makes the force operator 
Hermitian. 

Because B must satisfy the equilibrium condition 
Vp = jXB, (2) 

where p(¢) is the equilibrium pressure and j = VXB the 
equilibrium current density, the angles ; and () are not en-
tirely arbitrary. From Eq. (2) we see that j•V¢ = 0, whence 
we have the condition 

V•(IV¢1 2Vs;) = qV·(jV¢j2Vs8 ), 
where 

(3) 

(4) 

I being the unit dyadic. Equation (3) shows that one of either 
() or ; may be arbitrarily specified, but that the angle not 
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specified must be found by solving a two-dimensional Pois-
son's equation. Alternatively, we can specify the Jacobian 

J = (Vt/J-VO XVt )- 1, (5) 

and determine both t and 0. Although there is some analyti-
cal simplification to be had by requiring J to be a function of 
If alone, in the manner of Hamada, 16 computational exper-
ience2'18 with high-.8 equilibria has shown that it is preferable 
to retain control over ()by allowing J to vary within a sur-
face. 

In (!f,O,t) coordinates, the operator B•V is represented 
as 

(6) 

where a6 denotes (a ;ao )~.¢· 
Equilibrium quantities are invariant under the discrete 

symmetry operations T (toroidal rotation through 21T ra-
dians), and P (poloidal rotation through 21T radians): 

T: (!f,O,t) r--+ (!f,O,t + 21T), 
P: (!f,O,t) r--+ (¢,0 + 21r,t ). (7) 

Cl 
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FIG. 2. A square grid on a portion of the covering space (a) is mapped onto a 
grid on the magnetic surface (b) by the position function r(a,l{J,B ). Since r is 
periodic on the skewed lattice shown in (a), the image mesh is broken along 
the image of 8 = 21T [field lines do not close on themselves if q is irrational, 
and horizontal lines in (a) are field lines). 
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In the following work, it will be found convenient to 
introduce the Clebsch representation for the full magnetic 
field 

B=VaXV¢, (8) 

where 

a= t- qO, (9) 

and to use the set (a,!f,O) as our coordinate system (Fig. 2). 
In (a,¢,0) coordinates, the B·V operator becomes 
B·V= J- 1ae, (10) 

where now ae==.(a ;ao la . .P and J = (Va·VI/IXVO )- 1 
= (Vt/J-VO XVt)- 1, as in Eq. (5). 

In these coordinates the symmetry operations are rep-
resented as fol1ows: 

T: (a,¢,0) r--+ (a + 21T,!f,() ), 
P: (a,¢,8) r--+ (a - 21Tq,!f,() + 21T). (11) 

Ill. LINEARIZED EQUATION OF MOTION 

Following Bernstein eta/. 19 we denote by ~the infinite-
simal displacement of a fluid element from its equilibrium 
position, and assume a normal mode to be excited, so that the 
time dependence of~ is as exp( - icut ). Then the equation of 
motion is the eigenvalue equation 

(12) 

where F is the force density operator, 19 and p is the mass 
density. To exclude kink modes from consideration, we as-
sume there to be a conducting wall at the edge of the plasma, 
so that the boundary condition there is ~·V¢ = 0. 

We use a representation ofF corresponding to a form of 
oW introduced by Furth et a/. 20

•
21 

F = P1 ·(V- 2K)B 2(V + 2K)•P1 + VypV 
- [(V!f)B·V(Va/B)- (Va)B·V(V¢/B )] 
·[(V¢/B)B·V(Va)- (Va/B)B·V(Vl/1)] 
+ u[(V!f)B·V(Va)- (Va)B•V(V¢)] + 2KVp, (13) 

where P1 projects onto the plane perpendicular to e8 =B/B, 
P1 =1-e8 e8 , (14) 

K is the equilibrium field line curvature vector 

~<=e 8 •Ve 8 = B -zp1 ·V(p + B 2/2), (15) 

and u==.j•B/ B 2 measures the parallel equilibrium current 
density. In Eq. (13), thc;,V operator acts on everything to its 
right (except in Va, V!f, and Vp). Hermiticity ofF under the 
inner product for functions defined on D" ( = D1 or D ~ ), 

( f,g)n = i"'a d!f J L. da d() J f*•g, ( 16) 

follows from the identity 
B•Vu= 2BXVp•K/B 2. (17) 

Since19 

(18) 

there is a one-to-one correspondence between the terms of 
Eq. ( 13) and those of oW.20•

21 The first term ofEq. (13) corre-
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sponds to the stabilizing field line compression term 
IQ•B- ~·Vpi 2 1B 2 [where Q=VX(~XB)], the second term 
corresponds to the stabilizing fluid compression term 
rpiV·~I 2 , and the third to the stabilizing field line tension 
term I Q X B 12 I B 2• The fourth term corresponds to 
-a-S* XB•Q, which represents the potentially destabilizing 

influence of the parallel current, giving rise to the kink insta-
bility. The fifth term corresponds to --'- 2~·Vp~*·~e, which 
represents the potentially destabilizing interaction of plasma 
pressure gradient and field line curvature. It is this term 
which gives rise to ballooning instability. 

IV. BALLOONING ORDERING 
In the standard WKB theory for hydromagnetic 

waves, 22 one orders both the wave vector k and the frequen-
cy w to be large, thus finding the Alfven wave 

wi p = (k·Bf, ~-kXB, (19) 
and the slow and fast magnetosonic waves, whose respective 
dispersion relations and polarizations, in the limit lk•B/k I 
.(1, are 

w~ p;:::; ;(k·B)2' s-(B 2 + yp)k 2B- ypk•Bku (20) 
+rp 

w~ p;:::;(B 2 + yp)k 2, s-rpk·BB + (B 2 + yp)B 2k1 , (21) 

where k1 is the projection ofk perpendicular to B. The field 
line and fluid compression terms in Eq. ( 13) enter symmetri-
cally into both the slow and fast magnetosonic dispersion 
relations. 

Because F is Hermitian, w2 must be real: Instability oc-
curs if w2 < 0. Thas, higher-order corrections can never de-
stabilize the fast magnetosonic wave, but they can destabi-
lize both the Alfven and slow magnetosonic modes when 
w2 = 0 to lowest order. That is, when k•B = 0; in which case 
we also have k·~ = 0. Thus we conclude that short-wave-
length instabilities are locally flute-like, approximately in-
compressible, and are a combination of Alfven and slow 
magnetosonic waves. 

The ballooning ordering, then, is one where k is large, 
but k•B and w are finite. Equivalently, we can introduce an 
expansion parameter E, write 

s = ~(r,E)exp[iE- 1 S (r) - iwt ], (22) 

and define k=VS to be 0 (E0 ). Because the amplitude ~ can 
describe slow deviations from flute-like behavior, we are free 
to constrain k•B to vanish to all orders. That is, we require 

B·VS=O. (23) 
From Eq. ( 10) we see that the solution isS= S (a,tf), so that 
exp(iE- 1S) is not a single-valued function ofr. Thus we are 
forced from the outset to consider solutions defined on the 
covering space. 

In systems with magnetic shear [q'(t/1)#0], it is conven-
ient to use the representation 

k=kaVa+kqVq, (24) 

where ka(a,tf) aas, and kq=(a.,S)!q'. Unlike the stan-
dard WKB case, k has only two degrees of freedom. Fortu-
nately, this constraint does not lead to problems at any order 
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in the WKB expansion which we are now about to develop. 
The aim is to expand~ and Eq. ( 12) in a power series in E. 

We can formally require Eq. (12) to be satisfied locally to all 
orders in E, but this asymptotic equality is weaker than exact 
equality since an exponentially small error term can remain. 
In fact, we shall find a multitude of seemingly independent 
local solutions. By using asymptotic matching where the E 

expansion breaks down, and requiring toroidal and poloidal 
periodicity, we can find the correct linear superposition of 
the locally independent asymptotic solutions to form a phy-
sically acceptable global normal mode. 

V. ELIMINATION OF THE LONGITUDINAL COMPONENT 
Substituting Eq. (22) in Eq. ( 12) and commuting the ex-

ponential factor with F (so that V---+ iE-
1k + V), we find 

(E- 2F<-ll + E-tf:<-o + pw21 + f:<ol)·~ = 0, (25) 

where 
f:<-2l = - (B 2 + yp)kk, 

f:<-ll=FL + FR, 
f:<ol=F. 

A 

The two terms in F<- n are defined by 
A 

FL==i[Pl·(V- 21C)B 2 + Vyp]k, 

where P1 is defined in Eq. (14). 

(26) 
(27) 

(28) 

(29) 

(30) 

It is also convenient to define a projector onto the plane 
transverse to ek=klk [where k ==:(k·k)112] 

(31) 

This projector acts as an annihilator for the leading terms of 
F, 

P ·AF(-2) = ""'F(-2l,p - p :F"' - AF .p -0 
I ,- 1 R- L 1- • (32) 

We decompose~ into its longitudinal and transverse parts 

(33) 

where ~~=PA. 
Using Eqs. (32) we can now effect an exact formal elimi-

nation of the longitudinal component, 

t 1 = EGek·[FR + EV>w2
1 + f:<ol)]·~,, (34) 

with Green's function G defined by inverting 
G -I=Go-l- Eek·F(-l),ek- cek·V>w21 + f:<o))·ek, (35) 

where 
G 0- 1=- ek .f:<-2l·ek = k 2(B 2 + yp). (36) 
Substituting back into Eq. (25) we obtain a formally 

exact equation for the transverse component 

P 1 ·L·~ 1 = 0, 
where 

L pw
21 + F 

(37) 

A A 

+ [FL + E(pw
2
1 + F)J·ekGek·[FR + EV>w21 +F)]. 

(38) 
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The expansion of L is facilitated by using the identity 

L =(I- EFL •ekGoek)- 1·(lo + ~Lo·ekGek·lo) 
·(1- EekGoek•FR)- 1

, (39) 

which eliminates F in favor of the lowest order term of L, 

Lo pw21 + F + F L •ek G0ek ·FR. (40) 
On calculating Lo explicitly in (a,tf;,O) coordinates 

lo = w)JI + (~all + 2K) ~pB 
2 (_!_ a11 ~- 2K) 

JB (B +yp) J B 
- J -t(Vtf; a11 Va- Va a11 Vtf;)(JB 2)- 1 

·(Vtf; a11 Va - Va a11 Vtf;) 
+ uJ -t(Vtf; a11 Va- Va a11 Vtf;) + 2p'KVt/J, (41) 

we notice the crucial fact that the operators a a and a"' in the 
V'soccurringinEq. (40) cancel, leavingonlya11 =JB•V. That 
is, Lois an operator only along a magnetic line of force. From 
Eq. (39) we see that the order in a a or a"' of a term of the 
expansion of Lis given by its order in E. This is the fundamen-
tal reason why ballooning modes can be treated by a form of 
WKB theory projected onto the a-tf; plane. 

Two more important observations are that Lo does not 
contain k, and that P,·Lo·P, does not contain the kinking 
term, proportional to u in Eq. (41 ). 

Finally, we observe that Lois Hermitian not only under 
the inner product defined by Eq. ( 16), but also under an inner 
product restricted to a line of force (a = const, t/J = const), 

( f,g) = J_'"'"" ds f*·g, (42) 

where ds==J dO = dl I B, where dl is the length of a field line 
element. 

VI. LOWEST ORDER: EIGENVALUE EQUATION 
Setting 
~ = ~(0) + €~(1) + ~~(2) + ... , 

and expanding Eq. (37) to 0 (~). we have 

P,·Lo·s~o, = o. 

(43) 

(44) 

Owing to the properties of Lo discussed in the previous 
section, Eq. (44) is an ordinary differential equation ins, giv-
ing rise to a dispersion relation 

w2 =A. (a,t/J,k
9
/ka), (45) 

Where A < 0 iS an eigenvalue SUCh that the norm of S~O), de-
fined by the inner product Eq. (42), is finite. Marginal modes 
(A. = 0), being at the edge of the continuous spectrum exist-
ing for A. > 0, are not necessarily normalized, and they need 
to be treated as a special case. 2•

9 

The special form of the k dependence of A. arises from 
the fact that k enters into Eq. (44) only through the unit 
vector in the k direction 

ek = (1Val 2 + 20k Va•Vq + 0~ IVqi 2)- 112(Va + Ok Vq), 

where Ok(a,tf;) is the ratio of the two components ofk, 

Ok=kq/ka. 

(46) 

(47) 

To obtain a more practical form for the eigenvalue 
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equation, we define a line-averaged Lagrangian 

JP(a,t/J)=!(~<ol*,P,•lo•P,·~<Ol). (48) 

Equati~n (44) is the Euler-Lagrange eq_uation which extre-
mizes 5I' under arbitrary variations of s(O). The Lagrangian 
is defined with ~<OJ• as the first member of the inner product 
in order that it be valid in an evanescent region, where k is 
complex. In this paper, however, we are concerned only with 
real k. 

We now write ~~o) ( = ~<ol, since t )0 l = 0) in the represen-
tation 

~~ 0 l=f'BXk/B 2 ka +7]B, (49) 

so that s = ~<ol·Vtf;, 17 = ~<ol·B/ B 2• Substituting into Eq. (48), 
we find 

2'=-_!._J"" ds[ rpB2 (iJ-2K·Bxks)2 
2 -"" (B 2 +yp) B 2ka 

+ k
2t 2 

-2p' K·BXk c 
k;B 2 B 2ka 

-w2p( k2s2 +B21Jz)]· (50) 
k;B 2 

where g =df' /dx, ~=d1]/ds. As remarked in Sec. V, the 
kinking term does not contribute at this order. Varying sand 
1], we find the Euler-Lagrange equations 

!!._(~) + 2K•BXk 
ds k;B 2 B 2ka 

X [ ypB
2 

(~- 2K•BXkf)+p's] 
(B 2 + yp) B 2ka 

w2pk 2 
+--f'=O, 
B

2
k~ 

!!._ [ ypB 
2 

(~ _ 2K•BXkf )] + w2pB 21] = O. 
ds (B 2 + yp) B 2ka 

(51) 

(52) 

This is a coupled pair of ordinary differential equations, and 
can easily be solved numerically, given an equilibrium. It is a 
fourth-order system because the usual approximation of in-
compressibility has not been made. 

Again we observe that the k dependence occurs only 
through the ratio Ok = k

9
/ka, since 

klka = Va + Ok Vq = (V;- qVO)- (0- Ok )Vq. (53) 

Because Vq, VO, and v; are quantities periodic in 0, the only 
aperiodic term in Eqs. (51) and (52) comes from the secular 
term - (0- Ok)Vq in Eq. (53). This term arises from the 
interplay between the ftutedness requirement, Eq. (23), and 
magnetic shear, 23 which means that the wave fronts 
(S = const) must twist around as we follow a field line (Fig. 
3). Thus, although there is a channel around 0-::::;0k, where 
the wave is approximately in phase on different surfaces 
(Vtf;-VS-::::;0), the phase must change more and more rapidly 
(Vtf;-VS---. ± oo) as 0---. ± oo. 

We argue in Appendix B that the asymptotic behavior 
of ~<ol as I 0 I - oo, for w2 < 0, ~is quasiexponential growth or 
decay. The requirement that s(O) be within the Hilbert space 
defined by Eq. (42) restricts us to the decaying solutions and 
imposes a sufficient number of constraints (4) that we expect 
to be able to find discrete eigenvalues as assumed in Eq. (45). 
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8 

FIG. 3. Peloidal section plot for a group offour field lines contained in two 
phase fronts S = const. As the field lines wind around the torus those on 
different surfaces get farther apart owing to magnetic shear. Thus the phase 
fronts are pulled closer together and k=:VSbecomes larger in the direction 
normal to a magnetic surface. 

VII. PERIODICITY 

The parameter (} k has been defined so that it occurs 
with (}in the secular term through the combination (} - (}k. 
Connor et a/. 9 have introduced a similar quantity y0 as the 
arbitrary end point of a poloidal angle integral, but here(} k is 
seen as having a fundamental significance in determining the 
variation of the phase across surfaces. Owing to its universal 
occurrence in the secular term(}- (}k, it does nevertheless 
have angle·like symmetry properties: The coefficients in the 
Lagrangian are invariant under the transformation P, de-
fined by Eq. (7) or (11),provided (}k ~-+ (}k + 21T as well. The 
periodicity properties of the coefficients in the Lagrangian 
give rise to the following symmetry of the eigenvalues A. and 
associated eigenfunctions ~A. In variance under the Toper-
ation leads to 

A. (a + 21T,f/l,Bk) =A. (a,f/l,{}k ), 

~A (B Ia + 21T,f/l,Bk) = aT~A ((} la,f/l,Bk ), 
and in variance under the P operation gives 

A. (a - 21Tq,f/l,Bk + 21T) =A. (a,f/l,Bk ), 

(54) 

~A({}+ 21Tia - 21Tq,J/l,(}k + 21T) = ap~A ((} la,f/l,{}k ), (55) 

where aT and aP are arbitrary constants, which may conve-
niently be set to unity. Thus, A. has the same periodicity prop-
erties in (a,f/l,{}k) space as equilibrium quantities have in 
(a,f/l,B) space. This is sketched in Fig. 4 for a tokamak with 
rippled toroidal field (Sec. VIII). 

To construct a normal mode of the system, we can su-
perimpose any traveling waves with the same frequency. 
That is, for given w2

, we need to invert Eq. (45) to find all 
solutions kqlka = (}k (a,f/l;w2

). As we shall always be consid-
ering normal modes, the w2 argument will henceforth be sup-
pressed. 

In a typical WKB problem, the inversion of the disper-
sion relation gives rise to two branches, corresponding to an 
incident and reflected wave. The extraordinary feature of the 
ballooning problem is that the periodicity properties of 
A. (a,f/J,{}k) mean that there is an infinite number of branches, 
since the line a = canst, 7/J = canst must intersect the level 
surfaces A. = canst an infinite number of times as it traverses 
the lattice depicted in Fig. 4. This is an infinite degeneracy of 
the equation of motion, Eq. (12), within the WKB approxi-
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FIG. 4. Intersections of the level surfaces of A (a,r{I,O,) with a surface 
r/J = const. The (b,/) labeling of the different branches of the inverse function 
() t·" (a,l{r,A. = a?} is also illustrated. The most unstable surfaces (S) are topo-
logical spherical but localized. Less unstable but less localized surfaces (C) 
are topologically cylindrical. The model Eq. (74) was used to produce Fig. 4 
with q = 1.3, v = 0.06. 

mation, and this explains how we can find normalizable local 
solutions in apparent contradiction with the Bloch 
theorem. 24 We label the different branches with two indices, 
b and /. The index b distinguishes branches within a "unit 
cell" of the lattice in Fig. 4, whereas I determines the column 
in which the unit cell lies (for topologically cylindrical A. 
surfaces): 

(56) 

Equation (56) must be modified in magnetic confinement 
geometries in which a helical field is dominant, or for topolo-
gically spherical A. surfaces, but a similar classification can 
be devised. 

Introducing unknown coefficients a'b.n, we have the 
genera/local solution ofEq. (12) 

s(O) =I a(b,/)(a,f/l) ~~·/i((J la,f/l) 
b,l 

Xexp(iE- 1S 1b,il(a,f/l)- iwt], (57) 
where 

~~.II(() la,f/l)=~.< [ (} la,f/l,{} t.l 1(a,f/l)], (58) 
and S (b,ll is such that k=VS <b.!) has components obeying Eq. 
(47) with (}k = (} t·n. 

The symmetry relations (54) and (55) imply 

(} t·n(a,f/l) = (} t·l'(a + 21T,f/l) = (} t·l +II( a - 21Tq,f/l) - 21T, 
(59) 

and (with aT= ap=1) 

~~.ll((J la,f/l) = ~~· 11 ((} Ia + 27T,f/l) 
= ~~· 1 + 11 (B + 21Tia - 21Tq,J/l). (60) 

Periodicity of s(O) in the toroidal direction (i.e., invar-
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iance under the T operation) is thus ensured if 
alb,li(a + 2tr,t/J) = alb.li(a,t/J), (61) 

and there is an integer n (the toroidal mode number) such 
that 

s(b,ll(a + 2tr,t/J) = Sib,/)(a,t/J) + 2trEn. (62) 

Poloidal periodicity (in variance under the P operation) 
follows if 

(63) 

and 
Sib.l+ 11(a- 2trq,t/J) = Sib.ll(a,t/J) + 2trEn

1
, (64) 

where n1 is an integer. Assuming the eigenfunctions to be 
linearly independent, these conditions are also necessary for 
periodicity. In the following sections we show that some of 
these conditions can be satisfied trivially, while others give 
rise to "quantization" conditions which pick out the allowed 
values of w 2

• 

Since the desired periodic solution is not normalizable 
with the covering space norm, the sum in Eq. (57) can con-
verge only in the weak sense17 (i.e., its projection onto any 
basis function should converge). Weak convergence is en-
sured by the exponential decay of the eigenfunctions. 

VIII. RAY EQUATIONS 
The dispersion relation, Eq. (45), may be regarded as a 

first-order partial differential equation for the eikonal S lb. II 
(a,¢), whose solution will relate Sib.IJ on different field lines. 
In this section and the next we shall be considering only one 
branch at a time, so we shall suppress the (b,/) label. We also 
find it convenient to work with q rather than tf; as a surface 
label. Thus S = S(a,q), and kq=aq S. 

Local solutions ofEq. (45) may be found by the method 
of characteristics, that is, by solving the ray equations25 

. aA. ek aA. 
a = aka = -----;;-: aek ' 

(65) 

. aA. 1 aA. 
q=--=---, 

akq ka aek 
(66) 

a A. k = a - aa' (67) 

k. = aA. 
q --aq· (68) 

s = k aA. k aA. = o 
a ak + q ak ' 

a q 

(69) 

where dots denote derivatives with respect to a dummy 
"time" variable parameterizing the characteristics. GivenS 
and VS on some curve in the (a,q) plane, these equations can 
be used to continue S into a finite region of the plane. The 
question of whether this continuation procedure can be con-
tinued indefinitely to produce a smooth global solution is 
more subtle, however, 26 and is the main topic of the remain-
der of this paper. 

Equations (65)-(68) form a two-degree-of-freedom Ha-
miltonian system, with a four-dimensional phase space with 
canonical coordinates a, q, ka, and kq. Generically, such a 
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system is not integrable, u and a phase-space point will cover 
at least a finite part of the constant-Hamiltonian (i.e., 
A = w 2

) manifold ergodically. Herein lies the danger: The 
A = w

2 manifold is not compact. 
This follows from the fact that A depends on kq and ka 

only through their ratio ek = kqlka. Although ek may be 
bounded, the individual components kq and ka will increase 
without bound, unless prevented by one of two circum-
stances: (i) Equations (65)-(68) happen to be integrable (such 
cases form a set of measure zero), or (ii) the path of the phase 
point is blocked by an invariant toroid topologically the 
same as one belonging to a neighboring integrable case. Ac-
cording to the theorem ofKolmogorov, Arnol'd, and Moser 
(KAM), 13 cases where (ii) occurs typically form a set of finite 
measure when A. is sufficiently close to an integrable Hamil-
tonian. 

The special case of an axisymmetric system (such as an 
ideal tokamak) is integrable, since A does not depend on a, 
and ka is a constant of the motion, by Eq. (67). One might 
suppose that the KAM theorem would apply for systems 
close to axisymmetry, such as tokamaks with a finite number 
of toroidal field coils. It is the purpose of the remainder of 
this paper to show that, due to special properties of the ideal 
hydromagnetic dispersion relation, this is not strictly the 
case for ballooning modes. 

One peculiarity of the ballooning case is already appar-
ent in the ray equations. By Eq. ( 69), the eikonal is a constant 
on a ray trajectory. Thus, in a sense, Sis an integral of the 
system. However, it is precisely the question of whether a 
global analytic solution for S can be found that we are ad-
dressing. Nevertheless, this does suggest that it may be possi-
ble to reduce the dimensionality of the phase space, and in-
deed, by multiplying Eqs. (65) and {66) by ka and redefining 
the dummy time variable, we can write the ray equations as 
an autonomous system in a reduced (a,q,ek) phase space: 

a A 
a= - Bk aBk, 

. aA 
q = aek' 

ek = ek aA - aA . 
aa aq 

(70) 

(71) 

(72) 

The most general dispersion relation obeying the periodicity 
requirements, Eqs. (54) and (55), is of the form 

(73) 
m,n 

where ;k_a + qek. 
In order to gain insight into possible ray trajectories, we 

took a choice of n = 0 components which gave a typicaf2 plot 
(Fig. 5) for a tokamak 

ao,o = - 1 + 20(q- 1.3f + lO(q- 1)2
, 

a± I,o = - 5(q - 1 )2, (74) 

with all other components zero. We then added some toroi-
dal ripple by taking as the only symmetry-breaking compo-
nents 

a0• ± 5 = v/2, (75) 
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FIG. 5. Intersections of the level surfaces of A (a,f/!,Ok) with the surface 
a = const for the model Eq. (74), with v = 0 (axisymmetric case). There are 
0 points at (q,Ok) = ( 1.3, 21Tn), and X points at ( 1.15, 21Tn + 11'), n = 0, ± I, 
±2 .... 

where v was varied from 0 to 0.1. The choice of n = 5 ripple 
was influenced by a design study for a modular tokamak-
torsatron hybrid [the tokatron Ref. (27)], but it is not claimed 
that our model is realistic for this device. In particular, we 
have no helical component. 

From Figs. 4 and 5, we see that the level surfaces of A. 
fall into several categories. First, there are those which are 
continuously connected to surfaces in the axisymmetric case 
(v = 0). For A.<A.x (the value at the X point in Fig. 5) the 
surfaces are topologically cylindrical, infinitely extended in 
the a direction. We shall call these surfaces of type C. For 
A.>A.x, there are topologically planar surfaces, which we 
shall not discuss further in this paper. 

There are also various new types of surface which arise 
when v#O. We shall distinguish only the surfaces associated 
with the minima of A., the 0 point in Fig. 5. These are topolo-
gically spherical (type S), and are important as they contain 
the most unstable modes. 

Since Eqs. (71) have A. as a constant of the motion, the 
rays are constrained to lie on the level surfaces of A., and some 
qualitative statements about a ray are already possible once 
we specify the topological type of the surface. If the ray pro-
pagates on a surface of type S, it is not difficult to convince 
oneself that it must spiral out of an unstable fixed point and 
into a stable fixed point. 

On surfaces of type C, a ray can also be trapped by a 
stable fixed point (Fig. 6), it can be periodic in a (Fig. 7), or it 
can cover the surface ergodically (modulo 21T in a). If such an 
ergodic ray is allowed physically, then there is a KAM 
theorem for ballooning modes, but we show in Sec. XI that 
this is not the case. 
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FIG. 6. A ray trajectory on a A surface of type C. In this case (v = 0.1, 
A = - 0.370) there is an attracting fixed point on the surface, which ultima· 
tely traps the ray. 

We now specify more precisely the types of fixed points 
possible. From Eqs. (70)-(72), we see that the fixed points lie 
in one-parameter families defined by solving 

aA. = 8k aA. _ aA. = o. 
afJk aa aq 

(76) 

In our model problem, the fixed points are conveniently par-
ameterized by (Jk, since q and sin 5;k can be found analyti-
cally from Eq. (76). By scanning through all values of (Jk in 
the range 0 to 1T, we can generate all stable fixed points. 

Stability is determined by linearizing around a fixed 
point and evaluating the eigenvalues of a 2 X 2 matrix. We 

a 

-rr 

~----'.;A--=--~-;:=,~--~1.0 

II 

12 
q 

1.3 

14 

1.5 

FIG. 7. A ray trajectory on a A surface of type C, with v = 0.06, 
A = - 0.479. In this case there is no attracting fixed point. 
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find stability if and only if 

a A -<OandD>O, a a 
where D is the determinant 

~A [ ~A ~A ( ~A ~A )] 
D= ao~ Ok aaaq- aq2 -Ok Ok aa2 - aaaq 

+ aA ( ~A O a
2
A ) 

aa aqaok- k aaaok 

( 
azA a2A )2 

- aq aok - 0
k aa aok · 

(77) 

We conclude this section by pointing out that the fact 
that A is a constant of the motion may be used to further 
reduce the phase space. By solving Eq. (45) to give Ok = 0 ~,I) 
(a,q;w2

), we may delete Eq. (72) and obtain a two-dimensional 
autonomous set of ray equations, Eqs. (70) and (71 ). These 
equations are characteristics25 for the linear partial differen-
tial equation 

(78) 

IX. NEXT ORDER: AMPLITUDE EQUATION 

In order to find an equation connecting the amplitudes 
a!b,l) (a,¢') on different field lines, we proceed to 0 (E) in the 
expansion of Eq. (37), 

P,·lo·~\ 1 ) + P,·L(l)·~\ 0 ! = 0, 

where, from Eq. (39) 

(79) 

L0 > = F~- 1 l•e~c Goe~c ·lo + Lo·e~c Goek ·Fk- I)_ (80) 

The solution of the equation adjoint to Eq. (44) is ~<ol•, 
so the condition for solubility ofEq. (80) is 

(~<ol*,P,·L<1l.~\ 0 l) = 0, (81) 

which can be written as a conservation equation 
aa (~(Ol*,(Va)k - 2 k•lo·~\ 0 l) 

+ aq (~(Ol*,(Vq)k - 2k•Lo·;\0l) = 0. (82) 

Comparison with Eq. (48) shows that Eq. (82) may also 
be written in the standard form 22 for a wave action conserva-
tion equation 

aq rq + aara = 0, 

where the flux r I' is defined by 

r~'=- a.:? 
- ak • 

I' 

for J..L = q or a. 

(83) 

Observing that .!f depends on k~' only through the ratio 
O~c [by Eq. (53)] we see that 

ra= -O~crq, 

so that Eq. (82) can be written in the form 

aqrq- aawk rq) = 0. 

(84) 

(85) 

Comparing with Eq. (78), we see that rq obeys the adjoint of 
the eikonal equation, and has the same characteristics. 

To use Eq. (85) as an equation for the wave amplitude, 
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we write 
A(Q) A 
; = a(a,q);A (0 la,q,Ok ), (86) 

where ~A is the eigenfunction defined by Eqs. (51) and (52) 
with normalization 

a.!f (~A 1 
---!:~.;:..= 1. aw2 (87) 

Thus, 

a2 a 2' [~A ] a2 a A rq= =--, (88) 
ka aok ka aok 

using the fact that 2' [~A] = 0 for w2 =A (a,q,Ok) and the 
normalization equation (87). 

Since ka, O~c, and aA ;aok are real for propagating 
waves, the phase of a remains constant along a ray, except 
possibly near the edge of the domain of real values of 0 ~.I), 
where the ballooning ordering breaks down. This is the sub-
ject of the next section. 

X. CAUSTICS 

The connected parts of the boundary ap of the projec-
tion P of the A surfaces on the q-a plane (Fig. 8) are called 
caustics, and they are crucially important in determining the 
global mode structure since it is along these curves that one 
real branch of 0 ~·lJ converts into another (i.e., a left-going 
wave reflects into a right-going wave, or vice versa). Denote 
the two coalescing branches by 0 ~± .n, with 

0 ~ + .l>(a,q)>O ~- .IJ(a,q), for (a,q) E P, (89) 

a 

Qo 

FIG. 8. Projection of a A. surface of type C. The domain Pon which the rays 
propagate has a boundary ap consisting of a left-hand (sc = - I) and a 
right-hand (sc = + I) caustic, and on which aA. ;ae. goes through zero. 
The intersections of the rays with the line of section q = q0 define the map-
pings T 1'1 (a0) = a;. The orbit is the same as that in Fig. 7. 
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the equality applying if and only if (a,q) E aP. We also have 

a A -- = 0, for (a,q) E aP, (90) 
afh 

since the normal to the A surface must lie in the q-a plane at 
the boundary of its projection. It is not necessary that ()k be 
constant on aP, but in axisymmetric geometry it is typically 
a constant multiple of21T (assuming()= 0 is on the outside of 
the torus). 

Implicit in the WKB expansion is the assumption that k 
is analytic and slowly varing, so that its a and q derivatives 
are 0 (1) quantities. Near a caustic, however, this ordering is 
violated. To see this, we expand A near a particular caustic 
c E aP. On the caustic, let 

A=w2, q=qc(a), ()~±.II=Oc(a). (91) 

Then, to lowest nontrivial order near the caustic 

/L = (J) + q- qc - + -((}k -()c) - + ... , 1 2 ( l ( aA) 1 2 ( J
2
A) 

aq c 2 ao~ c 
(92) 

where subscript c means evaluation on the caustic. Setting 
A= w 2 in P [so that sgn (q- qc) = - sgn(aq A lc], 

1
2 aA 1a 1'

12 

0~·/)=0c(a)+b a2AiaO~ c lq-qciii2+0(q-qc), 

(93) 

wherethebranchindexb = sgn(aA 1a0d = ± 1. By solving 
Eq. (78) in P, we find the eikonal near the caustic 

Sib.! I= S~b.il(a) + (kq)c(q- qc)- scb ( ~) 

X 12 aA laq 1'12 
(ka lc lq- qk 1

312 + ... , (94) 
a 2 AiaO~ c (1+0caaqc) 

where S~b.f 1 (a)=S 1 b.tl [ a,qc(a)], and sc = +I- on a 
right/left caustic, 

sc=sgn(aqA lc· 
From Eq. (88) 

(95) 

lafb,/)1 - a + (96) 
I 

(k rqfl2 1
114 1 

- (aqA)(a 2 AiaO~) c lq-qcl 114 .... 

Thus, not only is ()k nonanalytic on JP, but lal diverges 
there, according to the WKB ordering. 

In order to match the two branches()~± ·11 across a caus-
tic, we must introduce a boundary layer ordering. To esti-
mate the width of the boundary, we determine the distance 
beyond which the nonanalytic contribution to the phaseS IE 
becomes small. That is, we set the last term of Eq. (94) to be 
0 (E), whence we find that the boundary layer is in the region 
lq- qc I S 0 (c13 ). To find the boundary layer equation, we 
define a stretched coordinate x = 0 ( 1) such that 

(97) 

and assumes to vary on the x scale. We expands in powers 
of E 113 

s(a,x,O,t) = f En/J ~(n/J)(a,x,O )exp(iE- 1S- iwt ). (98) 
n=O 

Since both branches are coupled in the boundary layer, 
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we defineS to be given exactly by the first two terms of Eq. 
(94) and allow ~ to carry the residual phase information. 
From Eq. (97) we see that 

V = E- 213 [Vq- (aa qc)Va]ax + V101, (99) 

where V101 acts only on equilibrium quantities and on k. Since 
the formal elimination of l, goes through with arbitrary 
S(a,q), we may use Eq. (37) withSasdefined above. At 0 (E0

), 

we find 

(P,·lo·P,)c·~ 101 = 0, (100) 

which is satisfied by 

~ 101 = a(a,x)~c(() Ia), 

with ~c =(~,~ lc normalized as in Eq. (87). 
At 0 (EI/3 ), Eq. (37) gives 

(P,·lo·P,)c·~~~~31 + (P,·L·P,)<Ii31.~<m = 0, 

where 

(P,·L·P,)113 = [P,·(L0·e,u + ue,·L0 )·P, )c. a,, 
with 

u-k -I [Vq- (aa qc)Va]. 

The solubility condition for Eq. (102) is 

(101) 

(102) 

(103) 

(104) 

(~~.(P,·L·P,) 11131 ·~ 101 ) = 0. (105) 

Using the identity 

~P, = -k- 1[e,(V,a)+(V,a)ek) (106) 
aka 

(true also with a replaced by q), and the normalization Eq. 
(87) we can show that the left-hand side of Eq. ( 105) is 

lhs = i ( aA -(a a qc) aA ) ax a. 
akq aka c 

(107) 

This vanishes automatically, by Eq. (90). 
At 0 (E213), Eq. (37) gives 

(P,·Lo·P,)c·~<2i31 + (P,·L·P,)o/31.~11/J) 
+ (P,·L·PJ213I.~<ol = 0. (108) 

After a considerable amount of algebra, the solubility condi-
tion for Eq. (108) may be written 

(
(1+0kaaqc)2 a2A) ala-x(a A) a=O. (109) 

2k 2 ao 2 X q c 
a k c 

The solution of Eq. ( 109) evanescent in the region outside P 
[i.e., sc x > 0, see Eq. (95)] is 

a = Ac Ai(,ux), ( 110) 

where Ai is an Airy function of the first kind, 2x 

I 

2k~ a;.1aq 1
113 

/i-Sc 2 2 2 ' 
(1 + okaa qd a;. 1ao k c 

( 111) 

and Ac is an arbitrary constant. 
The asymptotic behavior of Eq. ( 110) as we go into the 

interior of P, sex - - 00 is2
K 

(112) 
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Equations (97), (101), (111), and (112) match the outer solu-
tions db·' ~~~.n exp(i£- 1 S 1b,l 1 ), with S ibJ 1 and ialb.l 11 given by 
Eqs. (94) and (96), provided we take all outer quantities to be 
continuous as we move from the ( - ) branch to the ( + ) 
branch at the caustic, except for the action flux rq, which 
changes sign, and the phase £- 1s, which suffers a discontin-
uity given by 

£- 1 s~ + Ji = £- 1 s~- .II+ (sc 1T/2) + 21TN0 (113) 

where Nc is an arbitrary integer. 
This is the expected result26 for typical wave equations, 

but we feel that it was necessary to check that nothing patho-
logical happens in the case of ballooning modes, in view of 
the fact that the conclusions of the next section depend criti-
cally on Eq. ( 113) being precisely correct (in the limitE --+ 0). 

XI. THE SPECTRUM 

The results of Sees. VIII-X allow us to find linear su-
perpositions of local solutions which are also global solu-
tions on the covering space; that is, which are valid not only 
within the propagating region, but at the caustics as well. 
However, we expect that only for certain values of w2 will 
these global solutions satisfy the periodicity conditions of 
Eqs. (61) and (62). 

Actually, since the assumed configuration (Fig. 4) of the 
A surfaces is such that branches with different I values are 
disjoint (no rays propagate between them), and since we ig-
nore tunneling (it is exponentially small), Eqs. (63) and (64) 
can be satisfied trivially by suitable choice of arbitrary con-
stants. Thus we restrict attention to the single projection 
shown in Fig. 8 and consider the implications of Eqs. (61) 
and (62). 

The ray trajectories are sketched in Fig. 8, and are seen 
to bounce back and forth between the caustics, with a mean 
drift in the negative a direction. By considering the intersec-
tion of a ray with a line of section, q = q0 (Fig. 8 ), we define a 
mapping T from a typical initial value a =a 1, to the final 
value a = a 2 after one complete bounce. That is, 

a 2 = T(a 1,w2
), (114) 

where Tis a 21T-periodic function of a 1 due to the periodicity 
of A. Thus, Tcan be regarded as a mapping of the circle onto 
itself. By iterating the mapping an infinite number of times, 
one can define a mean a drift per bounce, which we denote 
by - n (w2), the sign being chosen for agreement with con-
ventions used previously in the axisymmetric case. 2 

First, we express the ray tracing results and periodicity 
constraint in terms ofT. Since Sis constant on a ray, by Eq. 
(69), except for the jumps given by Eq. (113), the ray tracing 
for the phase increment over one bounce yields 

e- 1 [S[T(a)]- S(a)j = (2N + 1)1T, (115) 
where the radial mode number N is any integer 0 (E- 1

), and 
the argument q = q0 is suppressed. 

The equation for the amplitude is found by applying 
Gauss' theorem to the action conservation equation, Eq. 
(85), on a narrow strip bounded by two rays. We get 

(116) 
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Thus, rq is proportional to the probability density of an 
infinitely iterated initial point (taking the iterates modulo 
21T). 

The periodicity conditions, Eqs. (61) and (62), imply 
rq(a + 21T) = rq(a), (117) 

and 
£- 1[S(a + 21T)- S(a)] = - 21Tn, ( 118) 

where the toroidal mode number n is any integer 0 (E- 1 
). The 

requirement that Eqs. (115) and (118) be simultaneously sat-
isfied is to provide our quantization condition. 

A great deal is known on the general properties of circle 
mappings owing to the investigations of Poincare and Den-
joy,29 Arnol'd, 30 and Herman. 31 Herman proved a conjec-
ture of Arnol' d that, provided Tis a smooth invertible func-
tion of a, there is for almost all fl a smooth, invertible change 
of variable 

a= h ({3), (119) 
to a new angle variable in which the mapping appears as a 
rigid rotation through the angle - n 

(32 = (31 - n (w2
). ( 120) 

However, if fl is a rational multiple of21T, the mapping or an 
iterate (say T 1m 1) has fixed points (modulo 21T), called m cy-
cles, and the theorem breaks down29 because them cycles act 
as attractors for successive iterates, either under forward it-
eration ofT (stable cycles) or backward iteration ofT (unsta-
ble cycles). Since the rationals have measure zero on the unit 
interval, this would appear to be a nongeneric case. How-
ever, there is a "lock in" phenomenon30 which causes fl !21T 

to assume rational values over a finite (perhaps small) band 
of values of any physical variable of which it is a function. In 
our case this is w 2

. 

Herman's theorem is much stronger than the KAM 
theorem for Hamiltonian systems, since the measure of ex-
ceptional values of fl remains strictly zero even for mappings 
far from the rigid rotation. This indicates that the lock in 
"widths" of them cycles must become small very rapidly as 
m increases. This has been confirmed numerically (see later). 

We proceed tentatively by first supposing that fl /21T is 
irrational, so that, by Herman's theorem, the transformation 
defined by Eq. ( 119) almost always exists. Then Eq. ( 116) has 
the smooth solution 

rq(a) = F0/h '[h - 1(a)], (121) 
where F 0 is a constant. This means that the iterates cover the 
circle ergodically with a smoothly varying probability den-
sity. Equation ( 117) is satisfied automatically. We express the 
wave phase ¢J S /£as a function of /3, 

¢J (/3) = e- 1S[h ( /3 )]. (122) 
Then Eqs. ( 115) and ( 118) become 

¢ (/3- fl)- ¢ (/3) = (2N + l)1r, (123) 
¢(/3+21T)-¢(/3)= -21Tn. (124) 

The smooth solution of these equations is 
ifJ(/3)= -n/3= -21T[N+(ll2)]/3/fl, (125) 

whence we have the quantization condition 
fl (w2 )/21T = (2N + 1)/2n. (126) 
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We now observe that n !21T has been selected by the 7.-------,---,-----,-----,------, 

physics to be a rational fraction, which contradicts our origi-
nal assumption. Thus we now assume that n /21T is a rational 6 
fraction. Indeed, as we shall now show, it is the number given 
by Eq. (126). 

Suppose (2N + l)/2n = P /Q, where P and Q are rela-
tively prime integers. Then, one can verify that Eqs. (115)-
( 118) are satisfied by the singular solutions 

E-
1S(a) = -

2 ~n (t
1 
O(a- a;)- •=~"" O(a,- a)). 

00 

rq(al= I 8(a-a;), 

(127) 
(128) 

i= - 00 

where 0 (·)and 8 (·)are, respectively, the Heaviside step func-
tion and the Dirac delta function. The set I a; J is a Q cycle 
obeying the conditions 

T(a;)=a;_p (129) 
and 

a;+21T=a;+Q' (130) 
Equation (127) represents a descending staircase with riser 
height 21rn/Q. The general solution is the superposition of 
all such solutions from disjoint Q cycles, of which there may 
be many (or even an infinite number, in the axisymmetric 
case). 

Since the rays we have been using are the projection on 
theq-a plane of the Hamiltonian system Eqs. (65)-(68) on the 
unbounded constant-A. manifold, in four-dimensional phase 
space, we have no reason to expect a smooth probability 
density rq to exist in general; phase space elements can be 
arbitrarily elongated in a direction transverse to the q-a 
plane. 

Since no is a function of w2
, the bands in no for which 

Eq. (126) is satisfied correspond to continua in the eigen-
mode spectrum. Previous workers 14•15 have not found this 
unstable continuum in systems with magnetic shear because 
they assumed that continuum eigenfunctions must have a 
singularity localized to a magnetic surface (cf. Appendix B), 
whereas the singularity for ballooning modes is localized to 
the ray passing through the fixed points a 0 and spans a 
range of magnetic surfaces. Spies32 has recognized the possi-
bility of such a continuum in systems with everywhere-
closed field lines. 

There is one case where a smooth h exists (trivially), viz. 
the ideal axisymmetric tokamak for which a is an ignorable 
coordinate. In this case, we can write3 

n (w2
) = f ek dq, (131) 

where the integral is over a complete bounce of a ray trajec-
tory. The quantization condition Eq. (126) is then the same 
as that used in a numerical comparison with a finite element 
code,2 where it was found that the WKB method gave good 
results for n ;(: 5. What was not previously noticed, however, 
is that Eq. ( 126) predicts an infinite degeneracy in the bal-
looning mode spectrum. If Eq. ( 126) is satisfied for the pair 
(n0 ,N0 ), then it is satisfied, with the same value of w2 , for the 
pairs (3n 0 ,3N0 + 1), (5n 0 ,5N0 + 2) .... Thus, it is not surpris-
ing that even the tiniest amount of symmetry breaking cou-
ples energy up to indefinitely high harmonics of n0 , and gives 
rise to a singular mode. 
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FIG. 9. Plot of the departure from rigid rotation 6 •. N~a 2 • 

- a0 + (2N + 1)217' in the case n = 5, N = 0, v = 0.06, A= - 0.479 (cf. 
Figs. 7 and 8). The circles show successive passages of a ray trajectory. Note 
the accumulation near the stable zeros of 6 ..... (a). 

We have computed T 12n1(a) for the model dispersion 
relation, Eqs. (73) and (74). An example (n = 5) is shown in 
Fig. 9. Since n = 5 is resonant with the assumed toroidal 
ripple, the amplitude of the variation in T 12

n 1(a) is relatively 
large. Even in this case, however, the variation is numerical-
ly quite small. 

The model spectrum determined by Eq. (126) has been 
plotted in Fig. 10, where it is seen that the width of the con-
tinuum bands associated with values of n0 S 50 can hardly be 
resolved. A much more dramatic effect is the broadening out 
of the n0 ---+ oo accumulation point into a continuum band. 
The "eigenfunctions" in this continuum are 8 functions at 
the attracting fixed points defined by Eqs. (76) and (77). A 
continuum band also develops at v = 0.0068, due to the ap-
pearance of stable fixed points near the X points in Fig. 5. 
The two bands merge when v ;(: 0.08. 

The dummy time variable in Eqs. (70)-(72) is not the 
physical time. In fact, to get real characteristics when w 2 < 0, 
we must take the physical time to be imaginary. Thus the 
choice of stable fixed points is not dictated by causality, and 
we could equally well evolve our dummy time backwards 
and find the unstable fixed points as solutions. These two sets 
of solutions are completely uncoupled within the WKB ap-
proximation, and are degenerate. 

Finally, we remark that although k goes to infinity on 
the fixed points and cycles, the WKB ordering breaks down 
there since the amplitude variation (assumed slow) becomes 
infinitely rapid. Thus a localized calculation should be per-
formed with a new ordering appropriate to fixed points. 
However the WKB prediction of a singularity in the neigh-
borhood of a fixed point is presumably still correct. 
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FIG. 10. Plot of the allowed eigenvalues o/ as a function of ripple parameter 
v. Selected continuum bands associated with various toroidal mode 
numbers n0 of the axisymmetric case (with N0 = 0) have been plotted, as 
well as the much wider continuum band growing out of the n0 ~oo accu-
mulation point. 

XII. CONCLUSION 

We have shown that no strict KAM theorem exists for 
ideal ballooning modes in machines close to axisymmetry, 
and the eigenmodes are singular for all nonaxisymmetric 
systems. There are various ways to resolve this nonphysical 
conclusion by extending the model. One way is to look at the 
initial value problem for a smooth wave packet with the hope 
that nonlinear effects set in before the ray focusing effect. 
The degeneracy of the spectrum, however, suggests that sin-
gularities will still develop because of nonlinear coupling to 
infinite n modes. This is borne out by computer experi-
ments. 33 However, the extremely narrow width of the low-n0 
spectral bands means that a wavepacket quasimode will re-
tain its form for many exponential growth times. Thus, from 
a practical point of view discrete eigenvalues do persist in the 
linear theory of nonaxisymmetric systems. For instance, a 
Galerkin method calculation of normal modes might be ex-
pected to give the appearance of convergence to discrete ei-
genvalues. 

We can stay within ideal hydromagnetics also by allow-
ing flows in the background state. Velocity shear may be 
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expected to damp the modes at high n. Such an effect has 
been predicted for internal gravity waves,34 whose disper-
sion relation bears some resemblance to that of ballooning 
modes. 

Finite-Larmor-radius effects4
•
6

•
35 will also resolve the 

singularity by introducing a lkl 2 dependence in A and can 
stabilize the modes (or at least reduce their growth rate). 

Presumably, only the high-n0 quasimodes are suscept-
ible to FLR stabilization, so that it is only if the critical (J at 
n0 = 20 (say) is much greater than that at very large n0 that 
FLR effects can be an important stabilizing mechanism, just 
as in tokamaks. 2.4 The width of the continuum band asso-
ciated with the accumulation point also suggests that the 
most unstable modes, corresponding to localized regions of 
bad curvature, must rapidly couple to very high n and thus 
must be easily susceptible to FLR stabilization. Thus averag-
ing methods for ideal hydromagnetic stability may give a 
truer picture than might at first appear. 
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APPENDIX A: DOES THE BALLOONING 
TRANSFORMATION PROVE THE EXISTENCE OF THE 
PERIODIC REPRESENTATION? 

In this appendix we seek to determine the restrictions 
placed on the Fourier analysis/transform technique9 by the 
requirement that the individual components of the infinite 
sum each obey the same equation as the sum itself. For ease 
of comparison, we use the same notation as Ref. 9, where it is 
shown that an arbitrary periodic function ,P 1fJ) = !.mam 
X exp( - imB) may be mapped on a function ,P (TJ), square 

integrable on the domain - oo < 1J < oo, by three steps: 
Fourier analysis (r/J f--->o am), interpolation between the inte-
gers [all' f--->o a(s)], and inversion as a Fourier transform 
[il(s) f--->o ,P (1J}]. 

The interpolation formula (A3) of Ref. 9 is a special case 
of the more general algorithm 

il(s) =I am F(s- m), (Al) 
m 

where F(s) is a function with zeros at s = ± 1, ± 2, ... , and 
such that F(O)#O. In Ref. 9, F(s) =(sin 11'S)hrs. 

The third step is Fourier inversion 

~ (TJ) = J: oo ds exp( - isTJ)il(s). (A2) 
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Poisson's sum formula can now be used to show ¢J (0) 
= ~m ¢ (0- 21rm)/F(O). 

Substituting Eq. (Al) in Eq. (A2), we find 

¢ (77) = F(77)¢ (77). (A3) 

where 

F(77) = f~ ~ ds exp(- is77)F(s). (A4) 

We shall normalize F(s) so that F(O) = 1. As in Ref. 8, we 
assume that ¢J (0) obeys the equation 

L (ae )¢ (0) = ).cp (0 ), (A5) 

for 0 < (}<,21T, and, by analytical continuation, for 
- oo < e < oo. Equation (A3) then implies that¢ (77) obeys 

the equation 

This is to be compared with the equation 

L 1a" J¢ (77) = ;t¢ (77), 

(A6) 

(A7) 

which expresses the assumption made in Ref. 9 that ~ (77) 
obeys the sa me equation as¢ (0 ). Equations(A6_land(A 7)can 
only be satisfied simultaneously in general if F(77) = 1 [so 
that F(s) = o(s)]. By Eq. (A3), this implies that the transfor-
mation is the identity transformation! We conclude that the 
Fourier construction, at least in its simple form, devoid of 
asymptotic arguments, 11 actually proves nothing regarding 
the existence or otherwise of square integrable solutions on 
the infinite domain. 

APPENDIX 8: LARGE J OJ BEHAVIOR 
We can remove the secular terms from the coefficients 

in the Lagrangian, Eq. (50), by the change of variable 

5 = ka v/k. (Bl) 

To leading order in 10 l- 1
, kalk ~ 1/lq'OVif'l, all aperiodic 

terms cancel, and we have 

.Y + - - ...!._ J ds [ ~pB 2 (~ + v sgn(q'(}) B•Vu )2 
~ 2 (B + yp) p'IVI/'1 

+ ;
2

2 - uip (;
2

2 + B 
2772

) ]. (B2) 

where .Y + denotes the contribution k from e greater/less 
than some large positive/negative value. We have used Eq. 
( 17) to express the geodesic curvature in terms of B·V u. 

At finite(} the coefficients are not quasiperiodic, but the 
important point is that they are now bounded for all e. 

We now show that if there is some value of ui < 0 for 
which there is a solution pair (v,77) of the Euler-Lagrange 
equations such that v and 71 are uniformly bounded as 
I(} I ----. oo, then the solution must in fact be square integrable. 
That is, ~< 01 lies in the Hilbert space corresponding to Eq. 
(42), and (1}

2 is a point in the discrete spectrum of P, ·L0·P,. 
This generalizes to the nonaxisymmetric case the result that 
there is no unstable continuum associated with singularities 
occurring on a single magnetic surface, 14

•
15 the relation to 

singularities coming through the question of the conver-
gence of the sum in Eq. (57). 
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To demonstrate this result we use reductio ad absur-
dum: suppose v and 71 are not square integrable. Consider 
.Y +' which we take to be an integral from e + to 2(} +' where 
e + ----. oo. Integration by parts, using the Euler-Lagrange 
equations, gives (taking q' > 0) 

- 1 [ ypB
2 

(· B·Vu) vv]ze. 
!.t' + = -2 {B 2 + yp) 71 + v p'JVI/'J 71 + B 2 e 

(B3) 

From the assumption that v and 71 are bounded as e----+ oo, 
we see that Y + must also be bounded as e + ----+ oo. However 
we can also write Y + in the form 

Y + = (J}
2c5V + - 'J/'+• (B4) 

where % + and '!/'+ are positive integrals which, by hy-
pothesis, diverge as e + ____.. oo. Thus, as e + ----+ oo, 

'IF+/%+ ----. (1}
2

• (B5) 

But '!/.+/% + ;;:>0, in contradiction to the assumption 
(1}2 < 0. 

In the axisymmetric case we can show that the large-e 
behavior of v (and 77) may be represented by a series in inverse 
powers of e in the form 

v(O) = (}"' /',e [ d01((}) +(}-I v~ 11 (0) + ... ) , {B6) 

where the coefficients are 21r-periodic functions of e, and#; 
and A; (i = 1, ... ,4) are characteristic exponents for each of 
the four independent solutions. We can use Floquet theory36 

to show that A; = ± A1, ±). i so that there are two large 
solutions as e ____.. oo and two as e ____.. - oo. Suppression of the 
large solutions gives a well-posed eigenvalue problem. 

Characterization of the precise asymptotic behavior in 
the nonaxisymmetric case, when the coefficients of the 
Euler-Lagrange equations are only quasiperiodic, is more 
difficult although the theory of Sacker and SeW7 gives some 
insight. We can appeal to a general theorem38 on the stability 
of discrete eigenvalues to small perturbations to support our 
assumption, in Sec. VIII, that). (a,¢,e,) depends analytically 
on the parameter v representing the departure from axisym-
metry. 
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