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Ballooning-Mode Theory of Trapped-Electron Instabilities in Tokamaks 

C. Z. Cheng and Liu Chen 

Plasma Physics Laboratory, Princeton University, 
Princeton, NO 06544 

Employing the ballooning-mode formalism, the two-
dimensional eigenmode equation for trapped-electron 
instabilities in tokamaks is reduced to a o..e-dinvensional 
integro-differential equation along the magnetic field 
lines; which is then analyzed ooth analytically and 

numerically. Dominant toroidal coupling effects ate 
due to ion magnetic drifts which create quasi-
bounded states. The trapper-electron response can b-5 
treated as perturbation and is found to destablize 
the quasi-bounded states. 
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In tokamaks, the trapped-electron instability is basically 
a drift wave driven unstable by the presence of trapped elec
trons. It has been suggested that the trapped-electron in
stability may give rise to anomalous transports in high tempera
ture tokamaks. A complete understanding of the linear eigenmode 
problem, however, is essential for studying its nonlinear 
behavior and consequences. Since dynamics associated with ion 
magnetic drifts and trapped electron terms can lead to coupling 
between different poloidal harmonijs, the linear eigenmode analysis 
of the trapped-electron instabilities is intrinsically two-
dimensional. Recent numerical calculations^ of the trapped-
electron instabilities by employing the ballooning-mode formalism 

4 
have yielded good agreements with a two-di;.iensional code embodying 
identical physical assumptions. It is the purpose of the present 
work to study the two-dimensional trapped-electron instabilities 
analytically by using the ballooning mod'- formalism. 

The damping effect of drift waves in a sheared magnetic 
field is related to the anti-well potential in which wave energy 

5 convects away from the mode rational surface. However, in a 
toroidal plasma the curvature and magnitude of the magnet-.c field 
i3 not uniform over a magnetic surface. This nonuniformity of 
the toroidal field can cause coupling between the eigenmodes 
which centered on different mode rational surfaces. Recently, 
we have studied the two-dimensional drift wave eigenmodes in a 

7 8 9 toroidal plasma ' ' using the ballooning mode formalism. Due 
to toroidal coupling effects of ion magnetic drifts, two types 
of eigenmodes are identified: (1) The slab-like (Pearlstein-Berk 
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type) branch, which has anti-well potential structures, is found 
to experience enhanced shear damping due to the toroidsl coupling. 
(2) The toroidicity-indueed eigensnode branch, which has no counter 
part in slab geometry, is characterized by potential structures 
with local potential wells which inhibit convection of wave 
energy, in the absence of electron dissipation, it corresponds 
to a cjuasi-roarginally stable, quasi-bounded state aad experience 
negligible shear damping through tunneling leakages. With the inclu
sion of electron Landau damping or electron-ion collision, it becomes 
absolutely unstable. The existence of the toroidicity-induced 
eigenmodes clearly indicates that, contrary to conventional 
thinking, toroidal coupling effects due to ion magnetic drifts 
cannot be simply regai-ded as perturbations to the slab eigenmode 
branch. In this respect, one may think that the toroidal coupling 
effects associated with the tra. .>ed electron may also play the 
role of introducing new eignemode branches in addition to the 
usual dustablizing role. However, as we will show later, the 
trapped-eiectron toroidal coupling effects come in through trapped 
electron average of the fluctuation potential and only serve to 
enhance the toroidal coupling effects due to ion magnetic drifts, 

previous analytical studies^* of the two-dimensional 
trapped electron instability were focused on the slab eigenraode 
branch with ion magnetic drifts neglected and trapped-eiectron 
contributions considered s perturbations. In this work, we have 
found that the most unstable trapped electron mode is related to 
the toroidicity-induced eigenmode branch induced by the toroidal 
coupling effects due to ion magnetic drifts. 



Employing the ballooning-mode formalism, the two-dimensional 
eigenmode equation for trapped-electron instability is reduced, 
in the lowest order, to a one-dimensional integro-differential 
equation along the magnetic field lines. The radial structure 
can be determined by a WkB procedure in the next order which 
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provides small corrections to the eigenfrequency. The analytical 
solutions of tne ID integro-differential equations are presented 
fcr the toroidicity-induced eigenmode branches. The analytical 
solutions are then compared with the numerical solutions of the 
ID integro-differential equation performed by using the cubic 

12 
B-spline finite element method in order to provide more under
standing. 

We consider long wavelength (k 1Dj < <!) electrostatic drift 
waves in a large aspect ratio, axisymmet-ic tokamak with concentric, 
circular magnetic surfaces. The perturbation * can be written 
in the form 

•l>(r,e,-,,t) = I * (s)exp[i<mo9+je-nc-ut>] U ) 
J 

where (r,@,0 correspond to the minor radial, poloidal and toroidal 
directions respectively, s = (r-rQ)/Ars, r Q is the minor radius 
*.* the reference mode rational surface with m Q = nq(r Q), Ar = 
l/k0s, k e = m o/r Q, s = (rq'/q) r = r and |j|<<|m0|. The tokamak 

O * r. 

magnetic field is given by B = Bo(l-e cos 9) (<;+e/q 9). 
The two-dimensional eigenmode equation for the trapped-electron 
mode in the limit (<ob t) i < <•> < ( w b t ) e is given by 
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( I . . - ~ Tx * T 2 ) * 3 ( S ) * 0 (2) 

where 

^ r ' 2 , , 2 , , 2 , , T ( n - l ) , ftt+i+tn (X-2bB/T) ( s - j ) ( 3 1 

L. * b e ( s d / d a - 1 ) - JH+1+n" + &T+1+HJ H V ~ ' { 3 ) 

flT+l+n. £ l - 5 b f l / 2 T ) „ d 

(4) 

T 2 « . = H 
f 1 2 -

S ¥ - v I 0 ( 8 - 1 , icj* ( s ) G ( a - p , i c ) , (5) 
*-KK> p = - » P 

( 2 e / V ' f l t " d t e x P { - t 2 J t i s [ ( ^ - l } - n e ( t ~ 3 / 2 ) l 

G ( S - P , K ) = J de e x p ( - i ( s - p ) 9 ) / ( K 2 - s i n 2 6 /2) \ (7) 
- e 

and b 6 » k ^ , T * V " V p g = < V < o c i , e n = r n / R . r R = /d2nN (r ) / d r | , 

% = ^ e / ^ ' ^ f f ' i S r ' n e , i - « * n T / d * n S l ^ K ( K ) i s t h e com-

*e 

plete elliptic integral of the first Kind with K, the pitch angle, 
defined by K2 = lHv2-vBQ U~e J ]/2cyBQ and 0^ = 2 si.n - 1U). 
In Eq. {7.), we have neglected the non-adiabatic circulating electron 
response and trapped-eletftron non-bounce averaged response. 

We employ the large n ordering which leads to the ballocning-
mode formalism. In the zeroth order, we have, with z = s-j. 
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^ ( s ) = <t>(z) anJ * j + p ' s ) = *(z-p); i.e., there is no phase shift 
between adjacent eigenmodes centered at each mode-rational sur
face. This corresponds to close-spaced turning points in the 
global radial direction. Fourier transforming Eq. (2) and with 
* f n) = 2̂f f <Mz>exp(inz)dz, we obtain a ID integro-differential 
equation 

.2 , \ 2 
dn i p=-K> J 

(8) 
where 

n 2n 2 (m+i+r^) 
D = ftT+l+n.(l-2bQA)' ( 9 ) 

1 0 

0<n) = o I _ ^ i - T 7 ? + b e ( l + s
2 n 2 > 

2 e n JlT+l+n, U - 5 b / 2 T ) 
+ —FT- — — r w t , , a — (cos n+sn sir. n) 1 fi ftT+l+r^ 

and ^ Q 

<lu'. 

gU,n) = — 5 5 u • (11) 
J (K -sin'ie/2)^ -6 o 

Equation (8) is the lowest-order ballooning-mode equation describing 
trapped-electron modes along the magnetic field lines. It yields 
perturbations centered at the outside of the torus. The boundary 
condition imposed on ;q. (8) is that for large n, it corresponds 
to outgoing wave energy propagation. We also note that the above 
procedure of obtaining the lowest-order ballooning mode equation 
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is equivalent to the usual ballooning-mode formalism. In ob
taining Eq. (8), the Poisson sum formula £ exp(inp) = 2irj'<5(n-2itp) 

P P 
has been employed. It is also obvious that the trapped electron 
response vanishes for 4> being odd with respect to n=0. Therefore, 
we will only consider even solution of <$>. 

we will solve Eg. (8) by using standard perturbation 
technique with the trapped-electron term treated as perturba
tion which will be justified by comparing with numerical solutions 
of Eq. (8). Typically, tokamaks have shear, s > H, and the 
potential -Q(,\) for toroidicity-induced branch has local potential 
wells shown by the solid curve in Fig. 1. To proceed with 
analytical investigation, we approximate -Q(n) by a double potential 
well shown by dotted line in Fig. 1 with 

Q(n c) + Q"(n 0)(n-n 0) 2/2, n > 0 
Q(n) = (12) 

Q(n Q) + 0"(no) (n+n Q) 2/2, n _< 0 

where n Q is determined by Q'(+Ji0) = 0. The zeroth order equation 
of Eq. (8) can be rewritten as 

[d 2/dt 2 - (A+t 2/4)H 0(t) = 0, (13) 

for ln|^o, where t 2 = C-2Q" (nQ5) ̂ ( n - ^ ) 2 and X = -Q(n )/(-2Q"<n ))%. 
The solution of Eq. (13) with decaying asymptotic behavior is 
given by the parabolic cylinder function A = U(A,t) 1 4 where 
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UU,t) = (cos [(£+J)i,] r<J-£) M(^+i,|,|i)/2 V 2 + 1/ 4 

. 1 ii.i n 3 XJ ^ Mfit 3 3 t 2
w,V2-l/4, exp(-t2/4) -sin M^+T' 7 7 1 r(T~'?' M(7fT'2"''2—''2 ' — ^ — — ' 

(14) 

P is the gamma function and H is the confluent hypergeometric 
function. The boundary condition at n=0 for even solution is 
given by 

1^ UU o,t(n=0>) = 0, (15) 

which provides the eigenvalue X Q and the Eeroth order eigen-
frequency ft . Including the trapped-electron contribution 
perturbatively, the dispersion relation is given by 

* = * + > , (16) 
o J-

wYiere ^ 
.2 

and 

h = °a f 41W ^ ( | d T i g < < ' r D < l > 0 ( 2 F p - n > ) 2 / I * 0

2 d t , (17) 

D = D/(-20"(no)),S . (IB) 

Note that X. is evaluated at n=Q . Equations (15) and (16) can 
be combined to give the eige,..alue ft when n Q is determined by 
Q'(n ) = 0- Now, 



9 

Q",n0> =2D(b 9s 2n 0 + ~ |i - s^bg/ZTtnT+l+n^) 

(fs-l) sin nD + s n 0 cos n0)} <19) 

E n *2 
s i n c e t o r o i d i c i t y - i n d u c e d branch g e n e r a l l y e x i s t s for JJ- > b g s 
and |n | > 1, we f i n d t h a t n Q * n/2 for s ~ 1 . Then, we have 

Q«(nQ) 5 2D f b 0 s Z - - J J J - [1 - 5 n i b 9 / 2 T f f l i + l + n i n ) (20) 

Thus , w i th n i b 8 / ( i ( a T + l + n i ) ] <<: 1 and (-Q'^no))* 1 << | Q ( l 0 ) | which 

i s e q u i v a l e n t t o t h e approKimation of -Q by two c o m p l e t e l y s e p a r a t e d 

w e l l s , t h e s o l u t i o n of Eq. (16) i s approximate ly g i v e n by 

it = fiQ + Qx, IfijJ << \ii [, where 

1 - sen - (H-n,)ba(l+s2ir2/4)/-! 
0 l + b 9 a + s 2 n 2 / 4 > 

<21) 

and 
e_sn 

2 1 2 ^ - f l - | V i / ( n + , 1 + V A ) > - b 9 s V h n = 2 __ • (22) 
nsIl+b9(l+S'dTrV4)] [(fi-;+l+ni)/(0T+l+ni(l-2bQ/T)) ]"» 

It is important to point out that as T decreases, -Q (n=0) 
also decreases and becomes negative. Hence, the double-well 
structure reduces to a single-well structure with a small bump 
at the origin. The approximation of Q(n) by Eq. (12) is still good 
and so are the dispersion relations, Eqs. (15) and (16). 
However, the approximation of -Q" (nQ) by Eq. (20), which leads to the 
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eiqetiErequenciea in Eqs, (21) and (221 , breaks down. 
From Eq. (17) , we note that X. is proportional to the trapped-

electron energy integral H. Examining Eq. (6) we find that, for 

o n 

( 2 E / T T ) ^ T n. 2 3 3 

H - fl T + 1 + n ([-^ d+2r+2!;JZ(0)-{n-l+|ne)(l+U(U)] o i 

"° i-i*5 (o iJ„ i /2+3i. . 3/2, — (•') - ( " Q ^ W {~T~]to ]> (23) n 

2 3/2 
where c = <-\/ c

n' t i + i t ^ * /SI ) '' a n d z i s t h e P l a s m a diaoersion 
function. While for t > n

0 / £ n > 1' w e h a v e " " y
e i ~ • 

Numerical solution of the integro-differential Eq. (8) has 
12 beei. performed by using the cubic B-spline finite element method 

in order to verify the perturbative treatment and provide more 
understanding. The values taken for the fixed parameters were 
b Q = E r = 0.1, n e = 1, n^ = 0, x = 10, s = q = 1. In Fig. 2, we 

show Q(=ft +ifl-) versus V-J/W*. f o r E = 0.1. perturbative solu
tions given by Eqs. f15) and (16) are also calculated numerically 
and shown in Fig. 2. We note that the agreement between perturba
tion theory and numerical solutions of Eq. (8) is very good. The 
behavior of SI is consistent with that of H. Figure 3 shows Si 

as a function of £ for v -/u* =0.1. flu e gets larger, the 
results of the perturbative theory becomes worse but the behavior 
of 7i is still good. This implies that the trapped-electron 
response can be considered as perturbation (for modest value of E) 
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and the dominant toroidal coupling effect is due tro ion magnetic 
drifts. In the above numerical examples, we found that keeping 
only p=0 term in the trapped-electron response in Eq. (8) is 
sufficient because the mode structures are well localised within 
the interval [-77,11], It must be emphasized that the analytical 
calculation presented in the present work is for s > *j and deals 
with the toroidicity-induced eigea^ode with wave energy trapped 
in the off-center wells of ~Q(n) which gives rise to insta
bility. ' ' The employment of the strong coupling approxima
tions which is equivalent to expanding Q(n) around the origin 
will certainly lead to erroneous results. 
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Fig 1. Typical p o t e n t i a l s t r u c t u r e of -Q(r,) for t o r o i d i c i ty-induced eiqenmode 
Drancn with s i \. The approximation of -Q(-) i s shown by the broken l i n e . ' 
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T =IO,7y e = s = q = l (Only p=0) 

Pet turbol'ion 
Theory 

7Q n c i i 
Fig. 2. Plot of eigenmode frequencies Si versus v . /ui 

n ^ V ^ 7»f = Cn = °'1' T = 1 0< ^ - 0- Numerical sSlutiSns of Eq. (8) are compared with the results obtained from perturbation theory. 
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3. Plot of eigenmode freqnencies fi versus t foe 
=0.1. The other parameters are the same as in 


