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BALLS IN QUATERNIONIC HYPERBOLIC MANIFOLDS

Wensheng Cao

Abstract

By use of the Zassenhaus neighborhood of Spðn; 1Þ, we obtain an explicit lower

bound for the radius of the largest inscribed ball in quaternionic hyperbolic n-manifold

M ¼ Hn
H=G. As an application, we obtain a lower bound for the volumes of quater-

nionic hyperbolic n-manifolds.

1. Introduction

Let F be real numbers R, complex numbers C or quaternions H, and Hn
F the

n-dimensional hyperbolic space over F. Let G be the linear groups which act as
the isometries in Hn

F. For F ¼ R, C and H, G are usually denoted by POðn; 1Þ,
PUðn; 1Þ and PSpðn; 1Þ, respectively. The elements of G are classified into three
types: elliptic, parabolic and loxodromic according to the cardinality of their fixed
points and their locations [6]. The quotient Hn

F=G of Hn
F by a discrete subgroup

G of G is denoted by Q. Such a quotient Q is called a hyperbolic n-manifold M
if G contains no elements of finite order, and a hyperbolic n-orbifold O otherwise.
A quotient Q is closed (or compact) when G does not contain parabolic elements
and cusped (or noncompact) when it does; and arithmetic when G can be derived
by a specific number-theoretic construction.

We can descend the volume form from Hn
F to Q and integrate it over the

quotient space. This defines the hyperbolic volume of Q. The hyperbolic
volume is an important topological invariant. For example, the famous
Mostow-Prasad rigidity theorem implies that every geometric invariant of a
finite volume hyperbolic n-manifold (or orbifold) of dimension nb 3 is a topo-
logical invariant.

Work by Jørgensen and Thurston says that the hyperbolic volumes of
complete real hyperbolic 3-manifolds form a well-ordered subset of R of order
type oo [25]. In the general case, the results of Wang and Gunther imply that
the hyperbolic volumes of Q form a discrete subset of R [9, 26, 27]. More-
over, for each dimension nb 3 the number of the isometry classes of the
quotients with the same volume is finite. These facts ensure the existence of
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the minimal volumes of certain classes of hyperbolic manifolds and orbifolds.
The search of promising candidates for hyperbolic manifolds and orbifolds of
minimal volume has long been a topic of interest. In general speaking, such
works will involve several methods ranging from analytical, combinatorial to
arithmetic techniques.

For a cusp quotient Q, one often involves in finding the maximal horoball
quotient embed in Q and then approximate the volume of such a quotient. One
of the most important tools is Shimizu’s lemma, which gives a necessary condi-
tion for a subgroup of PSLð2;RÞ containing a parabolic element to be discrete.
In geometric point of view, it says that the horoball of a parabolic element is
precisely invariant (that is elements of the group either map the horoball to itself
or to a disjoint horoball). Therefore, Shimizu’s lemma may be thought of as an
e¤ective version of the Margulis constant in the case of cusps. There have been
many generalizations in Hn

R and Hn
C. Such generalizations play an important

role in estimating the minimal volumes in [14, 15, 16, 24]. Recently Cao and
Parker [4] obtained a full version of Shimizu’s lemma for any parabolic isometry
of Hn

C or Hn
H for all nb 2.

For a compact quotient Q, one often involves in finding a maximal em-
bedded tubular neighborhood of the simple closed geodesic in Q. One of the
most important tools is Jørgensen’s inequality, which gives a necessary condition
for a non-elementary two generator subgroup of PSLð2;CÞ to be discrete.
Shimizu’s lemma is a special case of Jørgensen’s inequality. Cao and Parker
[3] obtained analogues of Jørgensen’s inequality for non-elementary groups of
isometries of quaternionic hyperbolic n-space generated by two elements, one
of which is loxodromic. They used the quaternionic version of Jørgensen’s
inequalities to construct embedded collars about short, simple, closed geodesics in
quaternionic hyperbolic manifolds and showed that these canonical collars are
disjoint from each other.

Adeboye obtained an explicit lower bound for the volume of a real hyper-
bolic orbifold depending on the dimension [1]. The main tool is the spectral
radius of the involved matrices. Such a technique was employed by Fu and
Wang to treat the analogous problem in complex hyperbolic spaces [8]. Recently
Adeboye and Wei reconsidered such a question using the theory of Lie group
and Lie algebra [2]. Let G be a semisimple Lie group without compact factor,
let id be the identity of G, let r be the distance function derived from a canonical
metric, and let

Bðid;RGÞ ¼ fx A G : rðid; xÞaRGg:
Wang [26] obtained that for any discrete subgroup G of G, there exists f A G
such that

Bðid;RGÞV fGf �1 ¼ fidg:
Adeboye and Wei used the above result to produce an inscribed metric ball
on the fundamental domain of SUðn; 1Þ=G. And then they obtained their main
result in [2] mainly by Gunther’s result [9] and the Riemannian submersion
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P : SUðn; 1Þ=G ! Hn
C=G. One can refer to the last section of [2] for more

current results on complex hyperbolic volume.
We mention that the mechanism of lower bound of the volume of quotient Q

in geometry is mainly attributed to the isolation of the identity in G in algebra.
Jørgensen’s inequality and Wang’s result are useful tools to describe such
isolation in quantity in di¤erent categories. They all provide di¤erent types
of quantitative version of the well-known result of Kazhdan-Margulis [18].

For simplicity, we focus on the case of manifolds in what follows. Let Fn

be the set of all hyperbolic n-manifolds and define

rn ¼
1

2
inf
G AFn

sup
o AH n

F

inf
f AG

rðo; f ðoÞÞ;ð1Þ

where rð� ; �Þ is the hyperbolic distance in Hn
F.

It is obvious that rn is the largest number such that every hyperbolic
n-manifold contains an inscribed ball of that radius. A positive lower bound on
rn will provide geometric information about all hyperbolic n-manifolds, such as
the lower bounds for the volumes of hyperbolic manifolds and the thick and thin
decomposition of such manifolds. We mention that such a ball is contained in a
canonical collar for a compact manifold and it may be contained in a cusp for a
cusp manifold. For example, Parker showed that there is an embedded ball of
a fixed size in any complex hyperbolic orbifold with a pure parabolic cusp [23].

It has long been known that for each dimension there is a lower bound of rn
in real hyperbolic space. This follows from a theorem of Kazdan and Margulis
[18] in their proof of Selberg’s hypothesis, see also in [26, 29]. The method of
proof found by these authors consists of a compactness argument together with
the existence of Zassenhaus neighborhoods.

For the real hyperbolic 3-manifolds, Waterman [28] obtained the bound
r3 b 0:04000. Gering and Martin [10] improved this bound to r3 b 0:05725. By
use of the generalized Jørgensen’s inequality [20], Martin [21] obtained an explicit
lower bound for rn depending only on the dimension n. Using the Jørgensen’s
inequality for discrete groups in normed algebras, Friedland and Hersonsky [7]
improved this result to

rn >
0:0025

17½n=2�
;

where ½n=2� is the integer part of n=2.
As interest in quaternionic hyperbolic space has grown, many of real and

complex hyperbolic problems have been translated into the quaternionic arena, in
which the problems are almost always vastly more complicated [3, 4, 5, 19].

In this paper, we consider the lower bounds of rn in quaternionic hyperbolic
manifolds. Let G be a discrete non-elementary torsion free subgroup of Spðn; 1Þ:
Motivated by the ideas of Martin, Friedland and Hersonsky [21, 7], we will
obtain in Section 3 that there is an f A Spðn; 1Þ such that

khk kh� Inþ1kbo;ð2Þ
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for all h A fGf �1, where oA0:385458. This formula is crucial for our con-
struction of inscribed ball in quaternionic hyperbolic manifolds.

Our main result is the following theorem.

Theorem 1.1. Let M ¼ Hn
H=G be a quaternionic hyperbolic n-manifold. Let

rn be given by (1). Then

rn >
0:0114

17nþ1
:

We will show the following proposition in Section 4.

Proposition 1.1. The quaternionic hyperbolic volume of a geodesic ball of
radius r is

VolðBðrÞÞ ¼ ð4pÞ2n

ð2nþ 1Þ! sinh
4n r

2

� �
1þ 2n cosh2 r

2

� �� �
:

As an application of Theorem 1.1, we obtain a lower bound for the volume
of a quaternionic hyperbolic n-manifold.

Corollary 1.1. Let M ¼ Hn
H=G be a quaternionic hyperbolic n-manifold.

Then

VolðMÞ > ð4pÞ2n

ð2nþ 1Þ! sinh
4n 0:0057

17nþ1

� �
1þ 2n cosh2 0:0057

17nþ1

� �� �
:ð3Þ

We would like to mention that although the above formula gives the first
explicit lower bounds for the volumes of quaternionic hyperbolic manifolds that
depend only on dimension, we believe that the lower bounds can be improved
rapidly when we consider the each special cases with more special tool for
involved categories of manifolds. To some extent, this is mainly due to the facts
that the inscribed ball is just a part of the tube or the horoball involved and
general method is not so e¤ective for each special cases.

The paper is organized as follows. Section 2 contains some necessary
background material for quaternionic hyperbolic geometry. In Section 3, we
obtain the Zassenhaus neighborhood of Spðn; 1Þ. From this we obtain the
characteristic (2) of the isolation of the identity in discrete subgroup G. In
Section 4, we obtain the volume form of ball model of quaternionic hyperbolic
n-space. From this we deduce the volume formula of hyperbolic geodesic ball of
radius r. Section 5 contains the proof of Theorem 1.1. Section 6 contains an
analogue result in complex hyperbolic geometry.

2. Preliminaries

In this section, we give some necessary background materials of quaternionic
hyperbolic geometry. More details can be found in [5, 6, 11, 19].
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Let Hn;1 be the vector space of dimension nþ 1 over H with the unitary
structure defined by the Hermitian form

hz;wi ¼ w�Jz ¼ w1z1 þ � � � þ wnzn � wnþ1znþ1;

where z and w are the column vectors in V with entries ðz1; . . . ; znþ1Þ and
ðw1; . . . ;wnþ1Þ respectively, �� denotes the conjugate transpose and J is the
Hermitian matrix

J ¼ In 0

0 �1

� �
:

We define a unitary transformation g to be an automorphism of Hn;1, that is, a
linear bijection such that hgðzÞ; gðwÞi ¼ hz;wi for all z and w in V . We denote
the group of all unitary transformations by Spðn; 1Þ.

Following Section 2 of [6], let

V0 ¼ fz A V � f0g : hz; zi ¼ 0g;
V� ¼ fz A V : hz; zi < 0g:

It is obvious that V0 and V� are invariant under Spðn; 1Þ. We define V s to be
V s ¼ V� UV0. Let P : V s ! PðV sÞHHn be the projection map defined by

Pðz1; . . . ; zn; znþ1Þ t ¼ ðz1z�1
nþ1; . . . ; znz

�1
nþ1Þ

t;

where � t denotes the transpose.
We define Hn

H ¼ PðV�Þ and qHn
H ¼ PðV0Þ. The Bergman metric on Hn

H is
given by the distance formula

cosh2 rðz;wÞ
2

¼ hz;wihw; zi

hz; zihw;wi
; where z A P�1ðzÞ; w A P�1ðwÞ:ð4Þ

Alternatively, the Bergman metric [22] is given by

ds2 ¼ �4

hz; zi
det

hz; zi hdz; zi

hz; dzi hdz; dzi

� �
:ð5Þ

The holomorphic isometry group of Hn
H with respect to the Bergman metric

is the projective unitary group PSpðn; 1Þ ¼ Spðn; 1Þ=GInþ1 and acts on PðHn;1Þ by
matrix multiplication.

If g A Spðn; 1Þ, by definition, g preserves the Hermitian form. Hence

w�Jz ¼ hz;wi ¼ hgz; gwi ¼ w�g�Jgz

for all z and w in V . Letting z and w vary over a basis for V we see that
J ¼ g�Jg. From this we find g�1 ¼ Jg�J. That is:

g�1 ¼ A� �b �

�a� anþ1;nþ1

� �
for g ¼ ðaijÞi; j¼1;...;nþ1 ¼

A a

b anþ1;nþ1

� �
:ð6Þ
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Using the identities gg�1 ¼ g�1g ¼ I we obtain:

AA� � aa� ¼ In; �Ab � þ aanþ1;nþ1 ¼ 0; �jbj2 þ janþ1;nþ1j2 ¼ 1;ð7Þ
A�A� b �b ¼ In; A�a� b�anþ1;nþ1 ¼ 0; �jaj2 þ janþ1;nþ1j2 ¼ 1:ð8Þ

Following Chen and Greenberg [6], we say that a non-trivial element g of
Spðn; 1Þ is:

(i) elliptic if it has a fixed point in Hn
H;

(ii) parabolic if it has exactly one fixed point which lies in qHn
H;

(iii) loxodromic if it has exactly two fixed points which lie in qHn
H.

If g A Spðn; 1Þ has fixed point q0 ¼ ð0; . . . ; 0Þ t A Hn
H, then g has the form

g ¼ diagðA; aÞ;

where A A Uðn;HÞ and a A Uð1;HÞ. We denote such an isotropy group of q0
by G0. We mention that G0 contains elliptic elements of the form g ¼ aInþ1,
a A Uð1;HÞ: Such a type of elliptic elements is exclusive in Spðn; 1Þ. For a B R;
the set of fixed points of such an element is a totally geodesic submanfold which
is equivalent to Hn

C [6].

3. The Zassenhaus neighborhood of Spðn; 1Þ

For an element A of Mnþ1ðHÞ, the algebra of ðnþ 1Þ � ðnþ 1Þ quaternion
valued matrices, let sðAÞ denote the right spectra of A, i.e., the set of all right
eigenvalues of A. If l A sðAÞ then there exist nonzero vector v A Hnþ1 such
that Av ¼ vl. Thus Avu�1 ¼ vu�1ulu�1 for any 00 u A H, i.e., ulu�1 A sðAÞ.
Right eigenvalues are conjugacy invariants for matrices A A Mnþ1ðHÞ [30]. The
number

rsðAÞ ¼ max
l A sðAÞ

jlj

is defined to be the right spectral radius of A. We denote its spectral norm as

kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsðA�AÞ

p
:ð9Þ

As in the complex case [17], we can show that the above norm is a matrix norm
induced by the vector norm on Hnþ1. That is

kAk ¼ maxfjAvj : v A Hnþ1 and jvj ¼ 1g:ð10Þ

This norm has the following properties:

rsðAÞa kAk; kA�k ¼ kAk ¼ kUAVk; EU ;V A Uðnþ 1;HÞ:

It is obvious that

kgk ¼ 1; Eg A G0:

We mention that this norm isn’t a conjugacy invariant.
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Proposition 3.1. Let g A Spðn; 1Þ. Then

kg�1 � Inþ1k ¼ kg� Inþ1k; kg�1k ¼ kgka 1þ kg� Inþ1k:

Proof. Since g�1 ¼ Jg�J, we have

kg�1 � Inþ1k ¼ kJg�J � Inþ1k ¼ kJðg� Inþ1Þ�Jk ¼ kg� Inþ1k
and

kg�1k ¼ kJg�Jk ¼ kgk ¼ kInþ1 þ g� Inþ1ka 1þ kg� Inþ1k: r

Set

B0ðInþ1; rÞ ¼ fX A Mnþ1ðHÞ : kX � Inþ1k < rg
and

~BB0ðInþ1; rÞ ¼ fX A Mnþ1ðHÞ : kXk kX � Inþ1k < rg:

Denote by t the positive solution of

2tð1þ tÞ2 ¼ 1; tA0:297156:

We obtain the Zassenhaus neighborhood of Spðn; 1Þ as follows.

Theorem 3.1. Let G be discrete subgroup of Spðn; 1Þ. For any 0 < r < t,
the group generated by the elements GVB0ðInþ1; rÞ is nilpotent. That is, there
exists an m so that for any sequence:

fi A B0ðInþ1; rÞ; i ¼ 0; 1; . . . ; hi ¼ ½ fi; hi�1�; i ¼ 1; 2; . . . ; h0 ¼ f0;ð11Þ

hm ¼ Inþ1. In particular, if the subgroup h f ; gi generated by f ; g A Spðn; 1Þ is
discrete group and

k f � Inþ1k < t; kg� Inþ1k < t;ð12Þ

then h f ; gi is a nilpotent group.

Proof. Let c ¼ r=t < 1. We claim that

khi � Inþ1k < ciþ1t; i ¼ 0; 1; . . .ð13Þ

We proof this claim by induction. As h0 ¼ f0 A B0ðInþ1; rÞ. (13) holds trivially.
Assume that (13) holds for i ¼ k. Note that c < 1 and 2tð1þ tÞ2 ¼ 1. By
Proposition 3.1, we have

khkþ1 � Inþ1k ¼ kð fkþ1hk � hk fkþ1Þ f �1
kþ1h

�1
k k

¼ k½ð fkþ1 � Inþ1Þðhk � Inþ1Þ � ðhk � Inþ1Þð fkþ1 � Inþ1Þ� f �1
kþ1h

�1
k k

a 2k fkþ1 � Inþ1k khk � Inþ1k k f �1
kþ1k kh�1

k k
a 2k fkþ1 � Inþ1k khk � Inþ1kð1þ k fkþ1 � Inþ1kÞð1þ khk � Inþ1kÞ
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< 2ctð1þ ctÞð1þ ckþ1tÞckþ1t

< ckþ2t½2tð1þ tÞ2�

¼ ckþ2t:

Since G is discrete, there exists a e such that GVB0ðInþ1; eÞ ¼ Inþ1: Let m be
the smallest positive integer so that cmþ1t < e. Then (13) implies that hm A
B0ðInþ1; eÞ. Hence hm ¼ Inþ1 and this implies that the group generated by the
elements GVB0ðInþ1; rÞ is nilpotent.

Suppose that (12) holds. Consider the sequence (11) with fi ¼ f , i ¼
0; 1; . . . : We can get hm ¼ Inþ1 and this implies that h f ; gi is a nilpotent group.

r

Denote by o the positive solution of

2oð2o2 þ 1Þ ¼ 1; oA0:385458:

Since the norm of all right eigenvalue of g A Spðn; 1Þ is bagger that 1, we have
that kgkb 1. Hence kg� Inþ1ka kgk kg� Inþ1k, we get

~BB0ðInþ1; rÞHB0ðInþ1; rÞ:

We need the following theorem for our purpose.

Theorem 3.2. Let G be discrete subgroup of Spðn; 1Þ. For any 0 < r < o,
the group generated by the elements GV ~BB0ðInþ1; rÞ is nilpotent.

Proof. Consider the following sequence

fi A ~BB0ðInþ1; rÞ; i ¼ 0; 1; . . . ; hi ¼ ½ fi; hi�1�; i ¼ 1; 2; . . . ; h0 ¼ f0:ð14Þ

Let c ¼ r=o < 1. We claim that

khik khi � Inþ1k < ciþ1o; i ¼ 0; 1; . . .ð15Þ

As h0 ¼ f0 A ~BB0ðInþ1; rÞ. (15) holds trivially. Assume that (15) holds for
i ¼ k. Note that fkþ1 A ~BB0ðInþ1; rÞ. As in the proof of Theorem 3.1, we get

khkþ1 � Inþ1ka 2k fkþ1 � Inþ1k khk � Inþ1k k f �1
kþ1k kh�1

k k
¼ 2k fkþ1k k fkþ1 � Inþ1k khkk khk � Inþ1k

< 2ckþ2o2:

Therefore

khkþ1k khkþ1 � Inþ1ka ð1þ khkþ1 � Inþ1kÞkhkþ1 � Inþ1k

< ð1þ 2ckþ2o2Þ2ckþ2o2

< ð1þ 2o2Þ2ckþ2o2 ¼ ckþ2o:
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Since G is discrete, there exists a e such that GVB0ðInþ1; eÞ ¼ Inþ1: Let m be
the smallest positive integer so that cmþ1o < e. Then (15) implies that hm A
~BB0ðInþ1; eÞ. Hence hm ¼ Inþ1 and this implies that the group generated by the
elements GV ~BB0ðInþ1; rÞ is nilpotent. r

By Theorem 3.2, we have the following corollary, which is the crucial result
in our construction of inscribed geodesic ball.

Corollary 3.1. Let G be a discrete non-elementary torsion free subgroup of
Spðn; 1Þ: Then there is an f A Spðn; 1Þ such that

khk kh� Inþ1kbo;

for all h A fGf �1.

4. The volume form of ball model

In this section, we will obtain the volume form of ball model in quaternionic
hyperbolic n-space. Using this volume form, we obtain a volume formula of
geodesic balls. The volume form of Siegel domain in quaternionic hyperbolic
n-space can be found in [19].

Proposition 4.1. In the ball model of Hn
H, let r2 ¼

Pn
i¼1 jzij

2
. Then the

volume form is given by

dVol ¼ 42n

ð1� r2Þ2ðnþ1Þ dvol;

where dvol ¼ r4n�1 drds and s is the Euclidean volume of the unit ð4n� 1Þ real
sphere.

Proof. Let z ¼ ðz1; z2; . . . ; znÞ A Hn
H and r ¼ jzj. Substituting in (5), we get

ds2 ¼ 4ð1� r2Þðjdz1j2 þ � � � jdznj2Þ þ 4jz1 dz1 þ � � � þ zn dznj2

ðr2 � 1Þ2
ð16Þ

Let zi ¼ xi þ yiiþ vijþ wik, where xi; yi; vi;wi A R and

i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1:

Note that jdz1j2 þ � � � jdznj2 ¼
Pn

i¼1ðdx2
i þ dy2i þ dv2i þ dw2

i Þ and

Xn

i¼1

zi dzi

�����
�����
2

¼
Xn

i¼1

ðxi dxi þ yi dyi þ vi dvi þ wi dwiÞ
" #2

þ
Xn

i¼1

ðxi dyi � yi dxi þ wi dvi � vi dwiÞ
" #2
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þ
Xn

i¼1

ðxi dvi � vi dxi þ yi dwi � wi dyiÞ
" #2

þ
Xn

i¼1

ðxi dwi � wi dxi þ vi dyi � yi dviÞ
" #2

:

Then we can rewrite the metric (16) as

ds2 ¼ ðdx1; dy1; dv1; dw1; . . . ; dxn; dyn; dvn; dwnÞgRð17Þ

ðdx1; dy1; dv1; dw1; . . . ; dxn; dyn; dvn; dwnÞT :
At the point P ¼ ð0; . . . ; rÞ A Hn

H, we have

gRjP ¼ 4

ð1� r2Þ2
diagð1� r2; . . . ; 1� r2; 1; 1; 1; 1Þ:

By computation, we can get

det gR ¼ 44n

ð1� r2Þ4ðnþ1Þ :

Hence the volume form is

dVol ¼ ffiffiffiffiffiffi
gR

p
dvol ¼ 42n

ð1� r2Þ2ðnþ1Þ dvol: r

With this volume form, we are ready to prove Proposition 1.1.

The proof of Proposition 1.1. Since the Euclidean distance r from 0 is
related to the hyperbolic distance r by

r ¼ tanh
r

2

� �
:

By Proposition 4.1, we have

VolðBðrÞÞ ¼
ð
2 tanh�1ðrÞar

42n

ð1� r2Þ2ðnþ1Þ r
4n�1 drds

¼ 42ns4n�1

ð tanhðr=2Þ

0

r4n�1

ð1� r2Þ2ðnþ1Þ dr:

Let r ¼ tanh
d

2

� �
¼ ed � 1

ed þ 1
: Note that s4n�1 ¼

2p2n

ð2n� 1Þ! : We have

VolðBðrÞÞ ¼ s4n�1

2
42n

ð r

0

cosh3 d

2

� �
sinh4n�1 d

2

� �
dd

¼ 42ns4n�1

ð r

0

sinh4nþ1 d

2

� �
þ sinh4n�1 d

2

� �� �
d sinh

d

2

� �
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¼ 42ns4n�1

sinh4nþ2 d

2

� �
4nþ 2

þ
sinh4n d

2

� �
4n

2
6664

3
7775
��������

d¼r

d¼0

¼ 42ns4n�1 sinh
4n r

2

� � sinh2 r

2

� �
4nþ 2

þ 1

4n

2
6664

3
7775

¼ 1

ð2nþ 1Þ! ð4pÞ
2n sinh4n r

2

� �
1þ 2n cosh2 r

2

� �� �
:

Remark 4.1. Recently the author came across the fact that Gray has
obtained the volume formula of quaternionic hyperbolic geodesic ball in [12,
page 341].

Similarly we can work in complex hyperbolic space and obtain the follow-
ing proposition. One can also find such a result in [13, Lemma 6.18 and
Corollary A.3].

Proposition 4.2. In the ball model of Hn
H, let r2 ¼

Pn
i¼1 jzij

2
. Then the

volume form is given by

dVol ¼ 4n

ð1� r2Þnþ1
dvol;

where dvol ¼ r2n�1 drds and s is the Euclidean volume of the unit ð2n� 1Þ real
sphere. The complex hyperbolic volume of a geodesic ball of radius r is

VolðBðrÞÞ ¼ 1

n!
ð4pÞn sinh2n r

2

� �
:

5. The proof of main theorem

In order to prove Theorem 1.1, we need the following three lemmas.

Lemma 5.1. Let g A Spðn; 1Þ. Then

distðg;G0Þ ¼ inf fkg�Uk;U A G0ga etðet � 1Þ;

where t ¼ rð0; gð0ÞÞ
2

.

Proof. Let g be given by (6). Then

gð0Þ ¼ aa�1
nþ1;nþ1; cosh2 rð0; gð0ÞÞ

2
¼ janþ1;nþ1j2:
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By (8), we may assume without loss of generality that gð0Þ ¼ ð0; . . . ; 0; tanh tÞ.
Let

h ¼
In�1

cosh t sinh t

sinh t cosh t

0
B@

1
CAA Spðn; 1Þ:

Then hð0Þ ¼ gð0Þ and h�1g A G0. Note that khk ¼ et and kh�1 � Inþ1k ¼ et � 1.
Hence we have kgk ¼ khh�1gka khk kh�1gka khk and

distðg;G0Þa kg� h�1gka kh�1 � Inþ1k kgka kh�1 � Inþ1k khk ¼ etðet � 1Þ: r

Lemma 5.2. Let g A Spðn; 1Þ and h A G0. Then for each j > 1,

kg j � h jka etj � 1

et � 1
kg� hk:

where t ¼ rð0; gð0ÞÞ
2

.

Proof. We recall the expansion

g j � h j ¼ ðg� hÞg j�1 þ hðg� hÞg j�2 þ � � � þ h j�2ðg� hÞgþ h j�1ðg� hÞ:
Note that kgka et. Hence we have

kg j � h jka kg� hkðkg j�1k þ khk kg j�2k þ � � � þ kh j�1kÞ

¼ kg� hkðkg j�1k þ kg j�2k þ � � � þ 1Þ

a
etj � 1

et � 1
kg� hk: r

Lemma 5.3. Let g A G0. Then for each Q > 1 there is h A G0 such that for
some 1a qaQnþ1, hq ¼ Inþ1 and

kg� hka 2p

qQ
:

Proof. Without loss of generality, we assume that g ¼ diagðe iy1 ; . . . ; e iynþ1Þ,
yi A ½0; 2p�. Use the pigeon-hole principle, for any Q, there exists some 1a qa

Qnþ1 and pi such that

yi �
2ppi
q

����
����a 2p

qQ
:

Let h ¼ diagðe ið2pp1=qÞ; . . . ; e ið2ppnþ1=qÞÞ: Then hq ¼ Inþ1 and

kg� hk ¼ max
i

je iy1 � e ið2pp1=qÞj ¼ 2 max
i

sin

yi �
2pp1
q

2

��������

��������
a

2p

qQ
: r
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Theorem 5.1. Let GH Spðn; 1Þ be discrete torsion free non-elementary group.
Then there exists o A Hn

H such that for any g A G,

rðo; gðoÞÞb d;ð18Þ

where d ¼ 0:0228

17nþ1
.

Proof. By Corollary 3.1, we know that there exists an f A Spðn; 1Þ such that
for any Inþ1 0 h A fGf �1,

khk kh� Inþ1kbo > 0:38545ð19Þ

We show that this theorem holds with o ¼ f �1ðq0Þ. Assume to the contrary that

(18) does not hold for some ĝg A G. Set g ¼ f ĝgf �1 and t ¼ rð0; gð0ÞÞ
2

. Then
et < ed=2. By Lemma 5.1, there exists h0 A G0 such that

kg� h0ka etðet � 1Þ:

By Lemma 5.3, there exists h1 A G0 with h
q
1 ¼ Inþ1 such that kh1 � h0ka

2p

qQand

khq
0 � Inþ1k ¼ khq

0 � h
q
1k ¼ kðh0 � h1Þhq�1

0 þ h1ðh0 � h1Þhq�2
0

þ � � � þ h
q�2
1 ðh0 � h1Þh0 þ h

q�1
1 ðh0 � h1Þka

2p

Q
:

By Lemma 5.2, we have

kgq � h
q
0ka etðetq � 1Þ;

kgqk ¼ kgq � h
q
0 þ h

q
0ka etðetq � 1Þ þ 1

and

kgq � Inþ1k ¼ kgq � h
q
0 þ h

q
0 � Inþ1ka etðetq � 1Þ þ 2p

Q
:

Noting that qaQnþ1 and et < ed=2; we have

kgqk kgq � Inþ1ka ½etðetq � 1Þ þ 1� etðetq � 1Þ þ 2p

Q

� �
ð20Þ

a ½ed=2ðedQnþ1=2 � 1Þ þ 1� ed=2ðedQnþ1=2 � 1Þ þ 2p

Q

� �
:ð21Þ

Let f ðxÞ ¼ ðxþ 1Þ xþ 2p

Q

� �
. Then f ðxÞ is increasing in the interview ½0;yÞ:

Let u be the positive solution of the equation

ðxþ 1Þðxþ 2p=17Þ ¼ o:
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Then

u ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p

17

� �2

þ 4 o� 2p

17

� �s
� 1� 2p

17

2
4

3
5 > 0:011483

Using the assumption that Q ¼ 17, d ¼ 0:0228

17nþ1
and nb 1, we know that

e0:0114=17
2ðe0:0114 � 1Þ < 0:01147 < u:

This implies that

kgqk kgq � Inþ1k < e0:0114=17
2ðe0:0114 � 1Þ þ 1�½e0:0114=172ðe0:0114 � 1Þ þ 2p

17

� �

< 0:385434 < o:

The above inequality contradicts (19). r

By Theorem 5.1, we have the following corollary.

Corollary 5.1. Let M ¼ Hn
H=G be a quaternionic hyperbolic n-manifold.

Then any fundamental domain corresponding to M contains a hyperbolic ball of
radius

r ¼ 0:0114

17nþ1
:

Since Theorem 1.1 is just the restatement of Corollary 5.1, the proof of
Theorem 1.1 is complete.

6. An analogue result in complex hyperbolic geometry

We will obtain an analogue result in complex hyperbolic geometry in this
section.

Working on the complex hyperbolic geometry, one has the privilege to
improve 1a qaQnþ1 to 1a qaQn in Lemma 5.3 because of PUðn; 1Þ ¼
Uðn; 1Þ=Uð1Þ [6, 11]. Thus we can reformulate (20) in complex hyperbolic
geometry as

kgqk kgq � Inþ1ka ½etðetq � 1Þ þ 1� etðetq � 1Þ þ 2p

Q

� �

a ½ed=2ðedQn=2 � 1Þ þ 1� ed=2ðedQn=2 � 1Þ þ 2p

Q

� �
:

Note that

e0:0114=17ðe0:0114 � 1Þ < 0:011473 < u:

As in Section 5, we obtain the following lemma.
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Lemma 6.1. Let GHPUðn; 1Þ be discrete torsion free non-elementary group.
Then there exists o A Hn

C such that for any g A G,

rðo; gðoÞÞb d;

where

d ¼ 0:0228

17n
:

Similarly as in quaternionic hyperbolic geometry, we obtain the following
theorem.

Theorem 6.1. Let M ¼ Hn
C=G be a complex hyperbolic n-manifold and rn be

given by (1). Then

rn >
0:0114

17n

and

VolðMÞ > ð4pÞn

n!
sinh2n 0:0057

17n

� �
:
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