
BAMSE: A Balanced Mapping Space Exploration Algorithm for GALS-based
Manycore Platforms

Mohammad H Foroozannejad
Brent Bohnenstiehl

Soheil Ghiasi

Electrical and Computer Engineering

University of California, Davis

e-mail: {mhforoozan, bvbohnen, ghiasi}@ucdavis.edu

Abstract— We study the problem of mapping concurrent tasks
of an application modeled as a data flow graph onto processors
of a GALS-based manycore platform. We propose a mapping
algorithm called BAMSE, which exploits the characteristics of
streaming applications and the specifications of the target archi-
tecture to optimize the mapping solution. Different configuration
parameters embedded into the algorithm enable one to strike a
balance between scalability of the approach and the quality of
generated solutions. Experiments with several real life applica-
tions show that our algorithm outperforms hand-optimized man-
ual mappings up to 65% in terms of longest inter-processor com-
munication link, and as high as 19% with respect to total length of
the links, when the two criteria are used as primary and secondary
optimization objectives, respectively. Additionally, our algorithm
delivers superior mappings compared to ILP generated solutions
after 10 days of solver runtime.

I. INTRODUCTION

While the conventional uniprocessor architectures have
slowed in improving performance and power consumption in
the past several years, different variations of chip multiproces-
sor (CMP) architectures have shown a promising approach to
improve both factors [1, 2].

Network-on-Chip (NoC) systems have been developed in
recent years to address the communication challenge in dis-
tributed memory platforms. While packet-switch NoCs [3, 4]
have become the default choice of interconnect in the multicore
space, Globally Asynchronous Locally Synchronous (GALS)
paradigm [5, 6] offers a promising alternative for improving
the communication speed and its energy dissipation by alle-
viating the complications of clock distribution in large CMP
systems [2, 7].

Although different variations of domain-specific many-cores
promise large gains in performance and energy efficiency, de-
velopment of application software for their utilization remains
a major challenge. Part of the difficulty lies in providing ab-
stractions and methodologies for productive development of
concurrent tasks that faithfully implement the application spec-
ification [8, 9]. Furthermore, there is a pressing need for tools
that would efficiently map application concurrent tasks to plat-
form resources. This paper presents our work and results on
the latter category of challenges considering the requirements
of a GALS communication paradigm.

Specifically, we study the problem of mapping concurrent
tasks of a streaming application modeled as a data flow graph

onto processors of a GALS-based CMP platform. We show
that even though communication features of GALS architec-
tures can potentially increase the performance of the system,
processor mapping plays a major role in this achievement. We
propose a mapping algorithm called BAMSE which exploits
the specific characteristics of such systems. Although there ex-
ist a number of tools in the literature to address the mapping
problem in general NoC architectures [10–12], to the best of
our knowledge we are the first to consider limitations and re-
quirements of GALS platforms in solving this problem.

BAMSE is an acronym for “BAlanced Mapping Space Ex-
ploration” which stresses the capability of the algorithm to
strike a balance between tool runtime and quality of generated
solutions. This feature of the algorithm becomes very impor-
tant especially in online mapping scenarios in which, the tool
run time for mapping is constrained. In design of the algo-
rithm, we use a number of configuration parameters to effi-
ciently steer the exploration engine on the time-quality tradeoff
spectrum. These parameters also guarantee the scalability of
the tool when dealing with a large number of application tasks
and platform cores.

II. TARGET PLATFORM/APPLICATIONS

In this section we discuss the basic architectural specifica-
tions of AsAP2 processor as an example for GALS based CMP
architectures and also the target applications discussed in this
paper. Although our approach and discussions are generic in
nature and applicable to other manycore GALS architectures,
discussing this example before entering the details of the main
approach can add more clarity and justification to some of the
decisions we make in designing the algorithm.

AsAP2 [2] is an academic many-core GALS architecture
processor and contains 167 programmable cores with a mesh
inter connect topology. Each core in AsAP2 is connected to
a router, and each router is connected directly to its four near-
est neighbor routers with two unidirectional links in each di-
rection. Longer communications are possible by connecting a
series of links between cores. In theory, each core can com-
municate with any other core on the chip, however, as it is dis-
cussed in [13] (also shown in figure 2), long communications
highly affect the nominal frequency of the source core even if
the volume of the communication is very low.

Figure 1 illustrates the architectural specifications of AsAP2
[2]. Figure 2 shows the effect of interconnect distance be-
tween communicating processors and the clock frequency of
the source processor in this particular CMP platform [13]. The
same clock used to supply the source processor is used for the

978-1-4673-3030-5/13/$31.00 ©2013 IEEE

5D-4

479

Fig. 1. Architectural specifications of AsAP2 [2].

Fig. 2. Measured maximum clock frequencies for interconnect between

AsAP2 processors over various interconnect distances [13].

communication regardless of the data bandwidth between the
connecting cores. Therefore even a simple control signal slows
down the source if it has to go too far to get to the receiver.

Another limiting factor in GALS NoC architectures is the
restricted network resources. In circuit-switch architectures
when a connection is made between two cores it cannot be used
for any other connection, whereas in packet-switch architec-
tures the limitation is on the total bandwidth of each link and
not the number of physical connections. Even a simple con-
trol signal occupies the resources used for the connection for
the entire run of the application. In AsAP2 there are only two
bidirectional links between any two neighboring cores indicat-
ing the importance of the link assignment step in the resource
allocation process. Sometimes finding any solution in map-
ping complex applications becomes the ultimate goal for the
designer.

Minimizing the total communication distances, and the cor-
responding communication energy, is also desired as it is in
regular packet-switch NoC architectures [10].

A significant group of embedded applications are character-
ized by the requirement to process a steady stream of input
data as they are presented to the system. Such applications,
generally referred to as streaming applications, are well mod-
eled using various forms of data flow graph programming mod-
els and often targeted for parallel hardware platforms [14]. In
this paper we use a generic data flow graph model to present
the benchmark streaming applications used to evaluate the pro-
posed technique. In section A.1 we discuss these applications
in more details.

III. PROBLEM STATEMENT

Both application and hardware platform can be represented
in the form of graphs:

Task Graph: G = < V,E > (1)

Hardware Graph: H = < C,L,CAPL > (2)

In task graph G, V is the set of vertices which are known as
tasks at the application level, and E is the set of edges which
represents inter-task communication.

The hardware graph H consists of C, which represents a
set of available cores on the chip, and L, which is a subset
of C × C. L models possible direct physical links between
’neighboring’ cores. Here the assumption is that each core is
connected to its own router which is responsible for receiving
data from and sending data to other cores. These routers are
also connected to their neighbors and can pass the data from
one to another for longer communications. Since each core
has its own router, we assume that the connections are between
cores themselves for simplicity. CAPL is a function that as-
signs a capacity number to every member of L.

The solution consists of two sets; S and R:

map(G,H) →< S,R > (3)

S ⊂ V × C (4)

R = { pathij ∈ P (L) | eij ∈ E} P (L): power set of L(5)

All tasks must be assigned to cores, and a core can execute
at most one task. Formally:

∀ v ∈ V ∃ c ∈ C : (v, c) ∈ S (6)

(v1, c) ∈ S and (v2, c) ∈ S =⇒ v1 = v2 (7)

(v, c1) ∈ S and (v, c2) ∈ S =⇒ c1 = c2 (8)

The pathij in R is a lean subset of links that connects vi to vj
in the mapping solution. In this paper, we consider a path to
be valid if only the length of the path (|pathij |) is minimal (for
example the Manhattan Distance in mesh architectures).

The capacity constraints are formulated as the following:

∀ l ∈ L : CAP (l) ≤ ΣR paths that contain l (9)

The objective is to find the mapping, which will give the best
performance or energy. Since performance and energy are hard
to estimate at the mapping level, we use a cost function of
three mapping attributes as a proxy. Specifically, we use the
attributes Longest Connection (LC), Total number of Connec-
tions (TC), and Area(A):

LC = max
R

|pathij | (10)

TC = ΣR |pathij | (11)

A = Area(S,L) (12)

LC denotes the length of the longest path in the mapping. TC
is the total length of all paths in the mapping. A is a number
that represents some geometrical notion of area occupied by
the cores that are assigned a task. For example, it could be the
bounding box area of such cores.

The mapping has to optimize a multi-objective cost function
of attributes. In our work, we use the tuple (LC, TC, A) to
denote the cost of a mapping. Comparison between mapping
costs is lexicographical. Therefore, LC has the highest priority
for optimization. In comparison of two mappings with equal
LC, the one with smaller TC value would be considered to

5D-4

480

have a smaller cost.

IV. BAMSE ALGORITHM

BAMSE is a constructive approach which incrementally
maps the concurrent tasks of a task graph into the cores of the
given hardware platform. The key idea is to arrange the concur-
rent tasks in a sequence called Task Sequence and read through
this sequence to gradually construct the final mapping solution.

Given a list of promising partial mappings for a prefix of
length k in the Task Sequence, the algorithm augments the par-
tial mappings by mapping the k+1’th node in the sequence, ef-
fectively generating partial mappings for prefix of length k+1.
In order to avoid exponential blowup of maintained partial
mappings, the list of maintained partial mappings is trimmed
at every iteration.

In the remainder of this section, we discuss these three key
policies that make up BAMSE. Specifically, ordering of nodes
in the task sequence (Node Selection); augmentation of partial
mappings of prefix k to those of prefix k + 1 (Core Selection);
and judicious maintenance of a selected subset of partial map-
ping to avoid exponential growth of retained partial mappings
(Mapping Selection).

A. Node Selection

The process in which the Task Sequence is generated is
called ”Node Selection”. Since the ultimate goal is to place
each node of the task graph as close as possible to its neighbor-
ing nodes, the Breadth First Search (BFS) seems to be a natural
choice for generating the Task Sequence. In BFS, the immedi-
ate children of each node have the priority to be selected over
farther nodes in the graph.

From different variations of BFS we use the same princi-
ple used in Cuthill-McKee algorithm [15] which heuristically
tries to reduce the maximum distance (how many nodes are on
the way) between the place of any parent and the place of its
children in the sequence resulting from BFS. We use MDC for
this distance which is abbreviated from “Maximum Distance to
Children” in the remaining of this paper.

B. Core Selection

If a “Partial Mapping” is a mappings for a prefix of length
k in the Task Sequence in which k 	= |V |, the task number
(k+1) in the sequence is called “Next Node” (vnext). Since in
BFS the parents of each node are selected prior to the selection
of the node itself, in any Partial Mapping there is at least one
core (more than one in general) which is connected to the next
node. We call the set which contains all such cores “Connected
Cores” or “CC”.

In order to assign a core to vnext, the core selection pro-
cess nominates a few cores as being good candidates based on
the length of the paths between each of them and the cores in
CCvnext . The set which contains these nominees is called “Po-
tential Candidate Cores” of vnext (PCCvnext).

To determine PCCvnext in each Partial Mapping, the
“Neighboring Set” of each core in CCvnext is created level by

level and is called NSleveli
ci . From each level to the next, the ac-

cepted distance is increased by one unit (one directed link) and
thus the resulting set becomes larger. The intersection between
all the neighboring sets for all cores in CCvnext determines the

PCCleveli
vnext

in each level. Figure 3 illustrates an example.
We can continue expanding the neighboring sets until the

desired number of candidate cores are selected or the maximum

����

�

��

���

���

���

����

����

����

����

����

����

����

����

��������

���� ����

�� �� �	 �
 ��

�� � �� �� ��

�� �� �	 �
 ��

�� � �� �� ��

�� �� �	 �
 ��

�

�

����

����

����

����

����

����

��������

����

Fig. 3. In the given 5× 5 mesh architecture, vnext = Z in Read Sequence

(RS) and CCZ = {c7, c14}. The process of finding potential candidates is

as follows: NSlevel1
c7 = {c6, c2, c8, c12},

NSlevel1
c14 = {c9, c15, c19, c13}, PCClevel1

Z = {}.

NSlevel2
c7 = {c6, c2, c8, c12, c1, c3, c9, c11, c13, c17},

NSlevel2
c14 = {c9, c15, c19, c13, c4, c8, c10, c12, c18, c20, c24},

PCClevel2
Z = {c8, c9, c12, c13}.

number of levels is reached. This desired number which is in
fact an input to the algorithm is called MPC or “Minimum
number of Potential candidate Cores”. In Figure 3 MPC =
1, 2, 3, 4 all result in the same number of candidates which is
four, but MPC = 5 will result in ten potential candidates.

Since the “Core Selection” process can not favor any of the
candidates over the others in each level on its own, in this stage
of the algorithm all potential candidates are accepted in each
level. Assume i is the level in which PCCleveli

vnext
meets MPC

requirement, thus we have:

|PCC|leveli−1
vnext

< MPC ≤ |PCC|levelivnext
(13)

It is left to the “Mapping Selection” part of the algorithm to
differentiate between these candidates based on the cost of as-
signing them to vnext.

C. Mapping Selection

Since vnext can be potentially mapped on each of the cores
in PCCvnext , therefore, the number of Partial Mappings in
the iteration k + 1 which are created from only of the Partial
Mappings in iteration k is |PCCvnext | ≥ MPC (according to
equation 13). These Partial Mappings (created from all pervi-
ous Partial Mappings) are kept in a list called “Mapping List”.
To avoid state explosion, the Mapping List is kept as a sorted
list based on the mapping cost of each Partial Mapping, in as-
cending order. The size of the list is also limited and called
“Window Size” (WS). In a case that the current size of the
Mapping List is equal to WS, each new Partial Mapping with
a cost greater than the last Partial Mapping in the list is removed
from the considered mappings; otherwise this new Partial Map-
ping is placed in the list based on its mapping cost, and the last
mapping is removed from the list.

To further reduce the search space in this step of the algo-
rithm and consequently elevate the quality of the solution, two
other heuristics are proposed to better organize the mapping
list:

C.1 Look Ahead Technique (LAT)

A moderately large WS is required to make sure that most of
the good Partial Mappings which eventually lead to the desired
solution at the end are kept in the list throughout the run time

5D-4

481

�� �� 	

� �	 �

�� �� 	

� �	 �

�

�

� 	 ���

Fig. 4. Both Partial Mappings in the figure suggest the same outcome in

continuum of the algorithm.

of the algorithm. Having a big WS also requires having more
memory in the system. The memory constraint becomes prob-
lematic particularly when dealing with complex graphs.

One way to overcome this problem is to look ahead and pre-
dict the future quality of the present Partial Mappings at each
step of the algorithm. To this end, in the “Look Ahead Tech-
nique” (LAT) a few more nodes are mapped for each Partial
Mapping at each step, and the new mapping costs (called “sec-
ondary costs”) are used to sort the current Partial Mappings.

Since the secondary costs are only used as an estimation for
sorting and trimming the Mapping List and do not contribute to
the actual costs, a fast and aggressive technique is suggested to
map the extra nodes. In another words, the BAMSE algorithm
is run for a few more steps with WS = 1 and MPC = 1 for
each Partial Mapping in the list. The resulting mapping costs
are then used to sort the Mapping List.

The number of extra nodes mapped at each step is called
“Forward Number” (FN). The intuition we use to find a good
FN is that all children of vnext need to be mapped in the LAT
phase in order to have a sufficient estimation of the future map-
ping costs. The maximum distance between each node of the
task graph and its children in the Task Sequence can be easily
obtained by simply traversing the Task Sequence once and is
called MDC (as explained in section A).

This technique effectively reduces WS. Although the LAT
increases the run time of the algorithm in the asymptotic sense,
dealing with a smaller WS eventually pays off and balances
the additional time spent on the extra mappings.

C.2 Redundant Mapping Elimination Technique (RMET)

Although all Partial Mappings in the mapping list are different,
not all of them offer completely different mappings in terms of
the quality of the solution. For example, the two partial map-
pings shown in figure 4 are different but offer the same solution
quality for any mapping constructed from any of them. We call
these two partial mappings to be “Redundant”.

Finding redundant solutions can be a difficult task on its
own, however, there are easy ways to find a close enough su-
persets of them. One way is to compare the locations of the
nodes in “terminal set” and the “current cost” of each Partial
Mapping and eliminate the redundances. The terminal set is
the set of all nodes in a Partial Mapping which still have con-
nections to the nodes outside of this Partial Mapping (set {D}
in figure 4). If two Partial Mappings offer the same locations
for all nodes in terminal set and also have the same current cost,
they are considered redundant. Eliminating these Partial Map-
pings from the Mapping List allows us to keep track of a larger
variety of Partial Mappings, avoiding wasting space in the WS
on redundant ones.

D. Link Assignment

Due to limited network resources on many of the many-core
platforms, not all mappings can offer valid link assignment be-
tween connected cores. In fact, there are cases where the link

assignment becomes the most constrained criteria in the map-
ping. Therefore it is wise to keep track of used network re-
sources and identify invalid mappings from the beginning. To
this end, a simple XY link assignment algorithm is run on each
Partial Mapping when a new node is mapped. In XY link as-
signment only forward paths for each pair of connected cores
are considered. The distance between connected cores then ex-
actly matches the Manhattan Distance between the two cores
in mesh architectures.

A “Bookkeeping Table” keeps track of used link resources
for each Partial Mapping. In each step of the algorithm, each
new Partial Mapping inherits this table from its parent map-
ping and add the new assigned resources to the table. After
assigning a path to an edge from the graph, the weight of the
edge is subtracted from the capacity of all the links on the as-
signed path. The remaining capacity of each assigned link is
also kept in the Bookkeeping Table. A valid Partial Mapping
is a partial mapping in which all the remaining capacities in
its Bookkeeping Table are bigger than or equal zero. Invalid
Partial Mappings are eliminated from the Mapping List in each
step of the algorithm.

V. COMPLEXITY VS. QUALITY

We start with some level of abstraction in analyzing the run
time of the algorithm. Let us assume the run time of allocating
one core to a task of the graph is Tcore (including link assign-
ment). For each partial mapping from the mapping list, |PCC|
(Potential Candidate Cores) number of cores are selected for
mapping a new node from the graph. It is obvious that |PCC|
can not grow bigger than |C| (total number of cores in the ar-
chitecture). On the other hand we know from section IV that
MPC is the minimum of |PCC|. At each step of the algo-
rithm, there are maximum WS and minimum one Partial Map-
ping(s) in the mapping list (ML). Therefore we have:

MPC ≤ PCC ≤ |C| (14)

1 ≤ |ML| ≤ WS (15)

The number of nodes in the graph is |V | and the above process
is repeated for the mapping of each node. Therefore, using
asymptotic operations O and Ω, the total run time of the main
algorithm (Tmain) is as follows:

Tmain < O(WS × |V | × |C| × Tcore) (16)

Tmain > Ω(MPC × |V | × Tcore) (17)

By increasing WS and MPC the run time of the algorithm
increases, however not in the same way. Also more candidate
mappings are explored; thus, intuitively better solutions are ex-

pected. In fact, if MPC = |C| and WS = |C||V | the entire
search space is explored and the optimal solution is found.

As discussed in section C.1, LAT is an improvement tech-
nique over the main approach and is basically another run of
BAMSE only for FN number of nodes with WS = 1 and
MPC = 1. Therefore, following the same principles in calcu-
lating Tmain, the run time of LAT (TLAT)is as follows:

TLAT < O(FN × |C| × Tcore) (18)

TLAT > Ω(FN × Tcore) (19)

Putting it all together, the total run time of the algorithm
(Ttotal) would be the following. Note that RMET (sectionC.2)
does not asymptotically affect the time if proper hashing tech-

5D-4

482

TABLE I

BENCHMARK APPLICATION SET SPECIFICATIONS: D IS THE DEGREE OF

THE GRAPH AND MDC IS THE MAXIMUM DISTANCE BETWEEN A PARENT

AND ITS CHILDREN WHEN THE TASK GRAPH IS TRAVERSED USING BFS.

Application Name # Nodes # Edges D MDC

Viterbi Decoder 30 35 3 4

802.11a B.B. Rx. 25 40 6 9

Small AES 59 79 3 4

Large AES 137 176 6 8

H.264/AVC Encoder 115 165 7 24

niques are used.

Ttotal < O(FN ×WS × |V | × |C|2 × T 2
core) (20)

Ttotal > Ω(FN ×MPC × |V | × T 2
core) (21)

Although increasing these parameters intuitively elevates the
quality of the final solution, the quality of the solution is not
entirely dependant on the size of these parameters. Refer to
section VI for more discussion.

VI. EXPERIMENTAL EVALUATION

A. Setup

As it is discussed in section II AsAP2 is used as the target
platform in this paper. More information about the benchmark
applications and system setup is given in the following subsec-
tions:

A.1 Benchmark Applications

To evaluate the proposed technique we selected five different
streaming kernels as our benchmarks. These benchmark appli-
cations have been proposed and manually mapped for AsAP2
in different academic papers. They include Viterbi Decoder
[16], Wireless LAN 802.11a Baseband Receiver [17], two im-
plementations of Advanced Encryption Standard (AES) en-
crypter [18], and H.264/AVC Encoder [19] kernels. These ker-
nels frequently appear in many higher-level applications that
are used in portable embedded systems.

Table I specifies the complexity of each application by show-
ing the number of nodes, number of edges, D which is the
degree of the graph (maximum fan-in/fan-out of nodes), and
MDC (maximum distance between a parent and its children
when the graph is traversed) in the task graph of each applica-
tion.

A.2 System and Algorithm Configuration

BAMSE algorithm uses two configurable parameters: WS and
MPC. In our experiments, we run the algorithm with 2400
different combinations of these parameters for WS = 1, 2, 3,
..., 300 and MPC = 1, 2, ..., 8. Each of these configuration
points (WS, MPC) represents a level of greediness/awareness
characteristics of the algorithm. The goal is to find a balance
between these greediness and awareness characteristics such
that a fast high quality mapping solution is obtained.

The objective of the mapping is set to minimizing the same
multi-objective cost function which was presented in section III
with the priority order of Longest Connection (LC), Total Con-
nection (TC), and Area. This decision is made in accordance
with the characteristics and requirements of GALS-based CMP

TABLE II

MANUAL MAPPING VS. BAMSE MAPPING: BOTH LONGEST

CONNECTION AND TOTAL NUMBER OF CONNECTIONS ARE SHOWN IN

THE TABLE. THE ILP∗ NUMBERS HERE ARE NOT THE OPTIMAL

SOLUTIONS FOUND USING ILP. THESE RESULTS ARE FROM TERMINATING

THE SOLVER AFTER 10 DAYS. THE ILP∗∗ ARE OPTIMAL, BUT A SMALLER

INSTANCE OF THE HARDWARE IS GIVEN TO THE SOLVER TO HELP IT

FINISH THE JOB (A MESH OF 6X6 CORES).

Application LC TC Time

Viterbi Decoder

Manual 1 35 -

BAMSE 1 35 1 (sec)

ILP∗∗ 1 35 46 (hours)

802.11a B.B. Rx.
Manual 6 58 -

BAMSE 3 51 13 (sec)

ILP∗∗ 3 51 58 (hours)

Small AES
Manual 3 106 -

BAMSE 2 86 2 (sec)

ILP∗ 3 105 10 (days)

Large AES
Manual 5 254 -

BAMSE 3 273 170 (sec)

ILP∗ 5 328 10 (days)

H.264/AVC Encoder

Manual 17 353 -

BAMSE 6 336 273 (sec)

ILP∗ 7 288 10 (days)

architectures. Area as the third objective did not make any sig-
nificant difference in any of the benchmarks and is not pre-
sented in the results. The best case and average case for each
individual application are calculated among these 2400 runs.

The experiments are performed on a Unix PC with Intel
Xeon CPU running at 3.07GHZ, 8192KB of cache, and 6GB
of main memory.

B. Results

Table II compares the outcome of the BAMSE algorithm
with the manual mapping for each application. The manual
mappings are obtained after days of manual trial and error and
are presented in the cited reference paper for each application.
The improvement over the manual mapping concerning the first
objective (LC) can be as high as 65% in the best case map-
pings. In most cases, there are improvements for the second
objective (TC) as well. Note that reducing LC and TC are not
necessarily the same criteria in terms of mapping cost. In fact,
sometimes reducing one increases the other as a compromise.
The reported time is the run time of the first occurrence of a
minimum cost solution.

For comparison, we also generate ILP formulations for each
application for only the mapping part of the problem (not for
the link assignment). These simpler formulations allow use
of an ILP solver in an attempt to find the lower bound on the
results in a reasonable time period. The ILP formulations are
not presented in this paper for brevity. The objectives assigned
to the solver (CPLEX) are to minimize the Longest Connection
(LC) and Total number of Connections (TC). The numbers in
the table are the results of 10 days running (or less if it is able to
finish the job) of such formulations on the same systems used
for BAMSE.

Let the relative cost (Rel Cost) in each case be defined as
follows:

Rel Costapp(ws,mpc) =
costapp(ws,mpc)

mincostapp
(22)

5D-4

483

Fig. 5. The effect of increasing WS on the quality of the solution for different

MPC values. Relative Cost numbers are calculated from equation 22.

The charts in figures 5 illustrate the relationship between the
quality of mapping solutions (Rel Cost) and the Window Size
(WS) for different MPC parameters. The two applications
in this figure (the small AES and H264) are chosen from the
benchmark set for brevity to represent small and large appli-
cation graphs. Although these charts show the non-monotonic
behavior of the algorithm in both WS and MPC dimensions
in general, they also suggest a non-monotonic decrease of the
cost toward larger window sizes. In fact in the case of small
AES, all configuration points of (WS, MPC) after a point in
the chart offer a minimum cost mapping. It appears that if the
WS is large enough (the break point of WS > 40 in small
AES), finding the best mapping solution is guaranteed. The
same pattern occurs in the 802.11a Baseband Rx application
and even more quickly in the Viterbi Decoder application.

In complex applications on the other hand, this break point
can be very large and unrealistic to reach in terms of compu-
tation time and memory requirements. However, by looking
at the charts in figure 5 one can find the possibility of obtain-
ing a minimum cost solution even before reaching this break
point due to the non-monotonic nature of the problem. In other
words, a substantial subset of the parameters space configura-
tions leads to favorable results, therefore, a random trial ap-
pears to be practical. We leave this discussion to future work.

VII. CONCLUSION

In this paper we study the unique characteristics of processor
mapping problem in GALS based CMP platforms. We show
that the limitations and requirements of GALS platforms can
affect the way mapping is performed. We also propose an al-
gorithm called BAMSE based on these characteristics to find
high quality mappings of application task graphs on such plat-
forms. Experiments show that the BAMSE mapping algorithm
outperforms the time consuming manual mappings of real life
existing applications up to 65% for the longest inter-processor
communication link, and up to 19% for total length of the links,
when the two criteria are used as primary and secondary opti-
mization objectives, respectively.

REFERENCES

[1] E. Lau, J. E. Miller, I. Choi, D. Yeung, S. Amarasinghe, and A. Agar-
wal, “Multicore performance optimization using partnervcores,” HotPar,
2011.

[2] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson, G. Landge,
M. Meeuwsen, C. Watnik, A. Tran, Z. Xiao, E. Work, J. Webb, P. Mejia,
and B. Baas, “A 167-processor computational platform in 65 nm cmos,”
Solid-State Circuits, IEEE Journal of, vol. 44, no. 4, pp. 1130 –1144,
april 2009.

[3] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. De Micheli, “Noc synthesis flow for customized domain specific
multiprocessor systems-on-chip,” vol. 16, no. 2, pp. 113 – 129, feb. 2005.

[4] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within the
nostrum network on chip,” in Design, Automation and Test in Europe
Conference and Exhibition, 2004. Proceedings, vol. 2, feb. 2004, pp. 890
– 895 Vol.2.

[5] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner,
“Globally-asynchronous locally-synchronous architectures to simplify
the design of on-chip systems,” in ASIC/SOC Conference, 1999. Pro-
ceedings. Twelfth Annual IEEE International, 1999, pp. 317 –321.

[6] U. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu, “Voltage-
frequency island partitioning for gals-based networks-on-chip,” in De-
sign Automation Conference, 2007. DAC ’07. 44th ACM/IEEE, june
2007, pp. 110 –115.

[7] K.-C. Chang, J.-S. Shen, and T.-F. Chen, “Evaluation and design trade-
offs between circuit-switched and packet-switched nocs for application-
specific socs,” in Proceedings of the 43rd annual Design Automation
Conference, ser. DAC ’06, 2006, pp. 143–148.

[8] M. Hashemi, M. H. Foroozannejad, S. Ghiasi, and C. Etzel, “Formless:
scalable utilization of embedded manycores in streaming applications,”
SIGPLAN LCTES, vol. 47, no. 5, pp. 71–78, Jun. 2012.

[9] M. H. Foroozannejad, T. Hodges, M. Hashemi, and S. Ghiasi,
“Postscheduling buffer management trade-offs in streaming software
synthesis,” ACM Trans. Des. Autom. Electron. Syst., vol. 17, no. 3, pp.
1 – 31, Jul. 2012.

[10] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for
regular noc architectures,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 24, no. 4, pp. 551 – 562, april
2005.

[11] G. Ascia, V. Catania, and M. Palesi, “Multi-objective mapping for mesh-
based noc architectures,” in Hardware/Software Codesign and System
Synthesis, 2004. CODES + ISSS 2004. International Conference on, sept.
2004, pp. 182 – 187.

[12] K. Srinivasan and K. S. Chatha, “A technique for low energy mapping
and routing in network-on-chip architectures,” in Proceedings of the
2005 international symposium on Low power electronics and design, ser.
ISLPED ’05, 2005, pp. 387–392.

[13] A. T. Tran, D. N. Truong, and B. Baas, “A reconfigurable source-
synchronous on-chip network for gals many-core platforms,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 29, no. 6, pp. 897 –910, june 2010.

[14] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubia-
towicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and
K. Yelick, “A view of the parallel computing landscape,” Commun. ACM,
vol. 52, pp. 56–67, October 2009.

[15] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th national conference, ser. ACM
’69, 1969, pp. 157–172.

[16] E. W. Work, “Algorithms and software tools for mapping arbitrarily con-
nected tasks onto an asychronous array of simple processors,” M.S. the-
sis, Office Graduate Studies, University of California, Davis, September
2007.

[17] A. Tran, D. Truong, and B. Baas, “A complete real-time 802.11a base-
band receiver implemented on an array of programmable processors,” in
Signals, Systems and Computers, 2008 42nd Asilomar Conference on,
oct. 2008, pp. 165 –170.

[18] B. Liu and B. Baas, “A high-performance area-efficient aes encipter on
a many-core platform,” to appear in the IEEE Asilomar Conference on
Signals, Systems and Computers (ACSSC), Pacific Grove, CA, November
2011.

[19] Z. Xiao, S. Le, and B. Baas, “A fine-grained parallel implementation
of a h.264/avc encoder on a 167-processor computational platform,” to
appear in the IEEE Asilomar Conference on Signals, Systems and Com-
puters (ACSSC), Pacific Grove, CA, November 2011.

5D-4

484

