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Abstract—Fundamental frequency (F0) is one of the essential
features in many acoustic related applications. Although numer-
ous F0 detection algorithms have been developed, the detection
accuracy in noisy environments still needs improvement. We
present a hybrid noise resilient F0 detection algorithm named
BaNa that combines the approaches of harmonic ratios and
Cepstrum analysis. A Viterbi algorithm with a cost function is
used to identify the F0 value among several F0 candidates. Speech
and music databases with eight different types of additive noise
are used to evaluate the performance of the BaNa algorithm
and several classic and state-of-the-art F0 detection algorithms.
Results show that for almost all types of noise and signal-to-noise
ratio (SNR) values investigated, BaNa achieves the lowest Gross
Pitch Error (GPE) rate among all the algorithms. Moreover, for
the 0 dB SNR scenarios, the BaNa algorithm is shown to achieve
20% to 35% GPE rate for speech and 12% to 39% GPE rate
for music. We also describe implementation issues that must be
addressed to run the BaNa algorithm as a real-time application
on a smartphone platform.

Index Terms—Fundamental frequency detection, noise re-
silience, harmonics, Cepstrum, Viterbi algorithm.

EDICS Categories: SPE-ANLS and AUD-MSP

I. INTRODUCTION

FOR human speech, pitch is defined by the relative high-

ness or lowness of a tone as perceived by the human ear,

and is caused by vibrations of the vocal cords. Since pitch

is a subjective term, in this paper we use the objective term

fundamental frequency (F0), which is an estimate of pitch.

If there were perfectly periodic speech signals, F0 would

be the inverse of the period of voiced speech. However, the

interference of formant structure for speech signals, or the

interference of spectral envelope structure for music signals,

makes the accurate detection of F0 difficult. Also, due to the

aperiodicity of the glottal vibration itself and the movement of

the vocal tract that filters the source signal, human speech is

not perfectly periodic [1]. Additionally, accurate F0 detection

is difficult when the speech signal is corrupted with noise.
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Therefore, F0 detection has always been a challenge in speech

signal analysis.

A variety of speech-based applications can benefit from a

more precise and robust F0 detection algorithm. For example,

F0 detection is essential in automatic speech recognition,

where pitch-accent patterns can be used to improve recognition

performance [2], or homophones can be differentiated by

recognizing tones [3]. For synthesized speech to be natural

and intelligible, it is crucial to have a proper F0 contour

that is compatible with linguistic information such as lexical

accent (or stress) and phrasing in the input text. Therefore,

F0 modeling can be used for speech synthesis [4][5]. F0

and azimuth cues can be jointly used for speech localization

and segregation in reverberant environments [6]. Moreover,

in emotion detection or other affective measurement, it has

been found that prosodic variations in speech are closely

related to one’s emotional state, and the F0 information is

important for the identification of this state [7]. A warning

system has been developed in [8] to detect if a driver exhibits

anger or aggressive emotions while driving, using statistics of

the F0 value and other metrics. Some health care providers

and researchers implemented F0 detectors and other behavior

sensing technologies on mobile devices, such as smartphones,

for behavioral studies [9] [10] or patient monitoring, such as

the clinical trials conducted by the University of Pittsburgh for

detecting depression in patients [11]. However, for these types

of applications, the vehicle noise captured by the detector or

the ambient noise captured by mobile devices may strongly

influence the F0 detection performance.

F0 detection also plays a very important role in music signal

analysis and music information retrieval, and has a broad range

of applications. Music notation programs use F0 detection to

automatically transcribe real performances into scores [12].

Reliable F0 extraction from humming is critical for query-by-

humming music retrieval systems to work well [13]. Music

fingerprinting technology also uses F0 information for mu-

sic identification among millions of music tracks [14]. F0

detection in noisy music is also challenging. Music may be

recorded in noisy environments such as in a bar or on the

street. Noise may also be introduced by the recording device

itself. One challenge is that the F0 generated from tonal

musical instruments spans a large range, normally from 50 Hz

to 4,000 Hz [15]. For musical signals with high F0, the wide

range of possible F0 candidates increases the likelihood of

finding a wrong F0 value. The other challenge is that, unlike

for human speech, the sound for musical signals can last for

several seconds, thus the overlapped musical tones can also be
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Fig. 1: Spectrum of one frame of clean speech and speech

with babble noise at 0 dB SNR.

considered as noise. Due to these reasons, when performing

F0 detection in real scenarios, the quality of the input signal

may be greatly degraded. Therefore, F0 detection of musical

signals in noisy environments is necessary.

Adding noise may introduce spectral peaks in the spectrum

of the speech signal or distort the shape of the speech peaks,

depending on the type and level of the noise. The key to

detecting F0 from noisy speech or music is to differentiate

speech or music spectral peaks from noise peaks. In Fig. 1, we

plot the spectrum of one frame from a clean speech file and the

same frame with babble noise at 0 dB SNR. By examining this

frame, we can see that F0 is located at 192 Hz. By comparing

the spectrum of the clean speech and the noisy speech, we can

see that the added noise peaks distort the shape of the speech

peaks, causing the highest point of the peak to be shifted. For

the noise at 0 dB SNR, the amplitudes of the noise peaks

can even be comparable with the amplitudes of the speech

peaks. However, their locations in the frequency domain are

not periodic, and the distribution of the noise peaks in the

frequency range varies for different types of noise. Thus, the

locations of the spectral peaks are affected less by the additive

noise than the amplitudes of the peaks. Therefore, the ratios

of harmonic frequencies are essential to find F0 from a noisy

signal.

Also, as seen in the spectrum of the noisy speech shown

in Fig. 1, the first four harmonics are located at 391 Hz, 581

Hz, 760 Hz, and 958 Hz. The spectral peak located at 485

Hz is from the noise signal. We can see that the harmonics

are not exactly spaced at integer multiples of the fundamental

frequency F0 in the frequency domain, and the higher order

harmonics have larger drift than the lower order harmonics.

Therefore, we need to set a tolerance range to account for the

drifts when calculating the ratios of harmonic frequencies.

As existing F0 detectors, such as Cepstrum [16], HPS [17],

and Praat [18], do not perform well when the input data

is noisy, we are motivated to design a noise resilient F0

detection algorithm that is better suited for practical uses. This

paper is based on our previous work [19], which proposed the

BaNa algorithm for F0 detection in speech signals. The BaNa

algorithm is a hybrid F0 detection algorithm that combines the

idea of using the ratios of harmonic frequencies with tolerance

ranges and the Cepstrum approach to find F0 from a noisy

signal. In this paper, we discuss F0 detection for both speech

and music signals, and we describe the simple modifications

of BaNa required for music F0 detection. We show that using

the ratios of harmonic frequencies with pre-tuned tolerance

ranges for F0 detection enables the algorithm to be resilient

to additive noise. We also show that incorporating Cepstrum

and post-processing techniques can improve the F0 detection

performance.

In addition, we extend the work in [19] by evaluating

the BaNa algorithm on a range of speech databases and

by comparing it with seven classic and state-of-the-art F0

detection algorithms. We test the proposed BaNa algorithm

on real human speech and music samples corrupted by various

types and levels of realistic noise. Evaluations show the high

noise resilience of BaNa compared to the classic and state-of-

the-art F0 detection algorithms. For noisy speech at 0 dB SNR,

BaNa achieve 20% to 35% Gross Pitch Error (GPE) rate for

speech and 12% to 39% GPE rate for music. Also, we discuss

issues with implementing BaNa on a smartphone platform.

Test results on a real device show that our implementation

of BaNa can process recorded speech files with a reasonable

speed, opening the door for real-time F0 detection on mobile

platforms.

The rest of the paper is organized as follows. Section II

provides a brief survey of well-known F0 detection algorithms

and also some of the most recent F0 detection algorithms.

Section III describes the BaNa algorithm for F0 detection in

noisy speech. Experimental settings and extensive experimen-

tal results comparing the BaNa algorithm with several classic

and state-of-the-art F0 detection algorithms using different

speech databases are presented in Section IV and Section V,

respectively. Section VI presents the slight modifications of the

BaNa algorithm to improve its performance for F0 detection

in noisy music. We describe an implementation of the BaNa

F0 detection algorithm in Section VII. Finally, Section VIII

concludes the paper.

II. RELATED WORK

Among the well-known classic F0 detection algorithms, au-

tocorrelation function (ACF) and cross correlation are among

the most widely used time domain methods. A number of algo-

rithms have been developed based on these two approaches.

Average Magnitude Difference Function (AMDF) [20] is a

variation of ACF, which calculates a formed difference signal

between the delayed signal and the original one. Since the

AMDF algorithm does not require any multiplications, it is

desirable for real-time applications. Praat [18] considers the

maxima of the autocorrelation of a short segment of the

sound as F0 candidates, and chooses the best F0 candidate

for each segment by finding the least cost path through all

the segments using the Viterbi algorithm. YIN [21] uses a

novel difference function similar to autocorrelation to search
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for the F0 period. It further refines the F0 detection result

using some post-processing methods. Two types of modified

difference function used in YIN are proposed in [22]. The

RAPT F0 tracker [23], on the other hand, is a variation of

cross correlation, which computes the F0 by extracting the

local maxima of the normalized cross correlation function.

In the frequency domain, F0 is found by searching

for harmonic peaks in the power spectrum. The Cepstrum

method [24] [16] is among the most popular algorithms.

Cepstrum is found by computing the inverse Fourier transform

of the log-magnitude Fourier spectrum, which captures the

period in the speech harmonics, and thus shows a peak

corresponding to the period in frequency.

Schroeder’s frequency histogram [17] enters all integer

submultiples of all the peaks in the spectrum in a histogram.

Since F0 is the integer submultiple of all the harmonics, in

an ideal case, the entry with the highest weight in Schroeder’s

frequency histogram is the correct F0. As pointed out in [25],

Schroeder’s frequency histogram is susceptible to octave er-

rors, as F0 and F0/2 will have the same weight in Schroeder’s

frequency histogram. In cases where noise peaks are selected,

Schroeder’s histogram will make mistakes by selecting the

greatest common divisor of both the harmonics and the noise

peaks.

The Harmonic Product Spectrum algorithm (HPS) [17]

multiplies the original signal with downsampled signals, thus

in the frequency domain, the spectra of all the downsampled

signals line up the peaks at the F0 value for isolation.

Another harmonic summation method is proposed in [26],

which modifies the HPS method for multiple F0 estima-

tion in polyphonic music. The harmonic components’ energy

distribution is used, and F0 candidates are selected using

a competition mechanism. The algorithm is tested on three

different instruments. However, for these harmonic summation

methods, noise peaks with high amplitudes can be easily

mistaken for harmonic peaks at low SNR scenarios. Since

our proposed BaNa algorithm only relies on the locations of

the harmonic peaks to calculate the frequency ratios of those

spectral peaks, with the peak’s amplitude information only

being considered for peak selection, we show in Section IV-C

and Section VI-E that the BaNa algorithm is more robust than

the HPS algorithm for noisy speech and noisy music.

The PEFAC (Pitch Estimation Filter with Amplitude Com-

pression) algorithm proposed in [27] is another frequency-

domain F0 detection algorithm for noisy speech. This ap-

proach estimates F0 by convolving its power spectral density

in the log-frequency domain with a filter that sums the

energy of the F0 harmonics while rejecting additive noise

that has a smoothly varying power spectrum. Also, amplitude

compression is applied before filtering to attenuate narrow-

band noise components.

Some F0 estimators operate in the time-frequency domain

by applying time-domain analysis on the output of a filter

bank. In the algorithm proposed by Jin and Wang [28], a new

frequency channel selection method is proposed to select less

corrupted channels for periodicity feature extraction. F0 scores

for each F0 state are derived given the periodicity features and

are given to a hidden Markov model for F0 state tracking.

Recently, an increasing number of F0 detection algorithms

have been designed using a data-driven statistical approach to

combat noise, such as the algorithms described in TAPS [29],

Wu [30], and SAFE [31]. In [29], Huang et al. propose an F0

estimation method that uses Temporally Accumulated Peaks

Spectrum (TAPS). Since the harmonic structure of voiced

speech changes more slowly than the noise spectrum over

time, spectral peaks related to F0 harmonics would stand out

after temporal accumulations. Clean and noisy speech data

is required to train the peak spectrum exemplar set and the

Gaussian mixture model.

The Wu algorithm [30] is also a statistical approach, which

integrates a new method for extracting periodicity information

across different channels, and a Hidden Markov Model for

forming continuous F0 tracks. The modeling process incorpo-

rates the statistics extracted from a corpus of natural sound

sources. The SAFE algorithm [31] also uses a data-driven

approach to model the noise effects on the amplitudes and

locations of the peaks in the spectra of clean voiced speech.

However, these data-driven approaches may not always be

practical. Since these algorithms are trained with known noise

types and specific noise levels, the noise information of the test

sample is also required as input to the model. However, this

information is not always available, since the user often does

not know the type of noise, and it is even harder to measure

the noise level. The proposed BaNa algorithm, on the other

hand, does not require any prior information about the noise.

Though most F0 detection algorithms were developed for

F0 detection in speech, a number of the aforementioned

algorithms have also been used in music. The YIN and

Praat algorithms are evaluated in [32] for synthetic signal

and real-time guitar signal F0 tracking. In [33], F0 detection

performance of the HPS algorithm and its variation called

Cepstrum-Biased HPS are compared for interactive music.

Clean cello and flute pieces are used in the experiments.

However, robust F0 detection in noisy music is still a topic

that needs to be explored.

In this paper, we perform an extensive quantitative compari-

son analysis to show the performance, in terms of Gross Pitch

Error (GPE) rate, for our proposed F0 detection algorithm,

BaNa, and several of the aforementioned algorithms (YIN,

HPS, Praat, Cepstrum, PEFAC, SAFE, and Wu) for noisy

speech and music signals.

III. BANA F0 DETECTION ALGORITHM FOR SPEECH

In this section, we describe the BaNa hybrid F0 detection

algorithm for speech.

A. Preprocessing

Given a digital speech signal, preprocessing is performed

before the extraction of the F0 values. In the BaNa algorithm,

we filter the speech signal with a bandpass filter. Let Fmin
0 and

Fmax
0 denote the lower limit and upper limit for F0 values of

human speech, respectively. The lower bound of the bandpass

filter is set to Fmin
0 . The upper bound is set to p·Fmax

0 , where

p is the number of spectral peaks captured that will later be

used for F0 detection.
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B. Determination of the F0 candidates

Since harmonics are regularly spaced at approximately

integer multiples of F0 in the frequency domain, we use

this characteristic of speech in the proposed BaNa algorithm

to achieve noise resilience. If we know the frequency of a

harmonic and its ratio to F0, then F0 can be easily obtained.

However, even if a harmonic is discovered, its ratio to F0 is

unknown. Therefore, we propose an F0 detection algorithm

that looks for the ratios of potential harmonics and finds the

F0 based on them by applying the following steps.

Step 1: Search for harmonic peaks

Spectral peaks with high amplitudes and low frequencies

are preferred to be considered for F0 candidates, since peaks

with high amplitudes are less likely to be caused by noise,

and peaks with low frequencies are easier to be identified

to be harmonics by calculating the ratios. Peaks with high

frequencies may be high order harmonics, which cannot be

used to calculate harmonic ratios, since we only consider

the ratios of the first p harmonics. Therefore, we consider

the p peaks with amplitudes higher than a certain threshold

and with the lowest frequencies to derive F0 candidates. We

use the peak detection algorithm provided in [34] to search

for the peaks in the spectrum. In [34], spectral peaks with

small amplitudes are filtered out by setting a peak amplitude

threshold, and peaks located very close to dominant peaks

are smoothed by setting a threshold of the window width for

smoothing. Settings that we use for the number of selected

peaks p, the peak amplitude threshold parameter, and the

window width parameter for the smoothing function in the

peak detection function are presented in Table II.

Let F̂i and

∣

∣

∣
Ĥi

∣

∣

∣
represent the frequencies and the mag-

nitudes of the p spectral peaks with the lowest frequen-

cies whose magnitudes are above a certain threshold, where

i = 0, · · · , p− 1. We place the p peaks in ascending order

of frequency to obtain the set of F̂i, denoted as F̂ . For

most human speech, energy concentrates in the low frequency

part, thus some or all of the p peaks are likely to be at the

first p harmonics, which are at m × F0, m = 1, · · · , p. For

each frame, F0 candidates are derived from the ratios of the

frequencies of F̂ using the following algorithm.

Step 2: Calculate F0 candidates

We calculate the ratios Rij = F̂j/F̂i for all F̂i, F̂j , where

i < j, and i, j = 0, · · · , p − 1. Take the number of selected

spectral peaks p = 5 for example. If a calculated ratio Rij

falls into any tolerance range of the harmonic ratios shown

in the left table in Fig. 2, we are able to find to which

harmonics F̂i and F̂j correspond. For harmonic ratios with

small numbers, we set adjacent tolerance ranges to be bounded

with each other, i.e., the upper bound of the tolerance range

of the ratio of F̂4 and F̂3 is the same as the lower bound

of the tolerance range of the ratio of F̂3 and F̂2, which is

(5/4 + 4/3)/2 = 1.29, as shown in Fig. 2. For harmonic

ratios with large numbers, the width of the tolerance range is

set to 0.2 or 0.4, depending on the ratio number. We show in

Section IV-C that these tolerance range numbers are tuned to

achieve the best F0 detection performance.

A potential F0 candidate can be obtained by dividing the

harmonic by its ratio to F0: F̃ = F̂i/m, where m = 1, · · · , p.

Note that due to the imperfect periodicity of human speech,

the harmonics may not be exactly on integer multiples of F0,

and we observed that higher order harmonics have even larger

drift than lower order harmonics in practice. Therefore, we

set a smaller ratio tolerance range for lower order harmonics,

and we set a larger ratio tolerance range for higher order

harmonics. In total, Cp
2 ratio values are calculated between

every pair of F̂ . Since both ratios of F1/F0 and F3/F1 are

equal to 2, it is not trivial to differentiate to which harmonics

this ratio belongs. In our algorithm, we assume it belongs to

F1/F0 and calculate the F0 candidate based on that.

In order to combat these octave errors, the proposed BaNa

algorithm adds two other F0 candidates. One added candidate

is the spectral peak with the smallest frequency value, since

we have found that in some cases only the F0 peak is high

enough to be detected. The other added F0 candidate is the F0

value found by the Cepstrum method. The reason is that the

p spectral peaks we choose mainly belong to low frequency

values. For some rare cases, the higher order harmonics (e.g.,

5th to 10th harmonics) are found to yield higher spectral peak

values compared to the low order harmonics. In that case,

the spectral peaks at low frequencies are more vulnerable to

noise. However, since the Cepstrum method depicts the global

periodicity of the spectrum, and considers all spectral peaks, it

can help to detect the F0 in those rare cases. In Section V-B,

we show the benefit of including the spectral peak with the

smallest frequency value and the Cepstrum F0 as additional

candidates.

The number of F0 candidates derived from the ratio analysis

and the two added candidates, K, is then less than or equal

to Cp
2 + 2. Among these K F0 candidates, the ones that are

out of the Fmin
0 to Fmax

0 human speech range are discarded,

and the number of candidates is reduced from K to K ′. If no

candidate is derived from the ratios, we set the F0 value to

0 Hz. We then order the K ′ candidates in ascending order

of frequency. F0 candidates that are within ξ Hz of each

other are considered to be “close” candidates. For each of

these K ′ candidates F̃k, where k = 1, ...,K ′, we count the

number of “close” candidates Uk, and select the one with

the largest number of “close” candidates to be a “distinctive”

candidate F̌d, where d = 1, ..., D, and D is the number of

“distinctive” candidates. The “distinctive” candidate and its

“close” candidates are deleted from the candidate list. If there

is more than one candidate that has the same largest number

of “close” candidates, we select the one with the smallest

frequency to be the “distinctive” candidate. We continue the

same procedure for the remainder of the list until the list is

empty. We set the number of “close” candidates, including

the chosen candidate itself, to be the confidence score Vd for

the corresponding “distinctive” candidate F̌d. Among the D
“distinctive” candidates, where D ≤ K ′, the ones with higher

confidence scores are more likely to be F0.

In Fig. 2, we use the frame shown in Fig. 1 to illustrate

the process of calculating F0 candidates. In Fig. 1, the dotted

line represents the spectrum of one frame of speech with

0 dB babble noise. The five selected spectral peaks that

have the lowest frequencies are located at 192 Hz, 391 Hz,
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Fig. 2: Tolerance ranges for harmonic ratios when the number p of selected spectral peaks is set to 5, and an example to

illustrate the procedure for determining the F0 candidates.

485 Hz, 581 Hz, and 760 Hz. The 485 Hz peak is caused

by the noise signal, and the remaining four peaks are from

the speech signal. We map each calculated frequency ratio

in the right table in Fig. 2 to one expected harmonic ratio

in the left table in Fig. 2. For example, the ratio of the 5th

and 4th spectral peaks is F̂5/F̂4 = 760/581 = 1.31, which

maps to the [1.29 1.42] frequency ratio tolerance range for

the expected frequency ratio of the 3rd and 2nd harmonics.

Therefore, the F0 candidate is derived as 581/3=194 Hz. In

this example, all calculated frequency ratios are mapped to one

expected harmonic ratio in the left table, which results in 10

F0 candidates. The Cepstrum candidate and the peak with the

lowest frequency are added as two additional F0 candidates,

which are 190 Hz and 192 Hz, respectively.

If we use the parameters shown in IV-C, all the 12 candi-

dates are within the Fmin
0 = 50 Hz to Fmax

0 = 600 Hz range

for F0. Candidates that are within ξ = 10 Hz of each other are

considered to be “close” candidates. In Fig. 2, the bottom table

shows the “distinctive” candidates and their confidence scores.

The 190 Hz candidate has the highest confidence score, which

is very close to the ground truth F0, i.e., 191 Hz calculated

from the corresponding clean speech signal. In Fig. 2, correct

F0 candidates are listed on the bottom and are marked by

solid red lines. Incorrect F0 candidates are listed on the top

and are marked by dotted black lines. We can see that the

candidates calculated from the 485 Hz noise peak are all

incorrect candidates.

C. Selection of F0 from the candidates

In Section III-B, the “distinctive” candidates of individual

frames are obtained independently. However, the F0 values of

neighboring frames may correlate, since the F0 values of hu-

man speech exhibit a slow time variation, and hence, large F0

jumps among subsequent frames are rare. Therefore, we use

the Viterbi algorithm [35] for post-processing to go through all

the candidates in order to correct F0 detection errors, similar

to the post-processing used in the Praat algorithm [18]. We aim

to find a path that minimizes the total cost, which consists of

two parts: the frequency jumps between the candidates of two

consecutive frames, and the inverse of the confidence scores

of each “distinctive” candidate.

Let F̌n
i denote the ith “distinctive” F0 candidate of frame n

and Nframe denote the number of frames in the given speech

segment. Moreover, let pn denote the index of the chosen

F0 candidate for the nth frame. Thus, {pn|1 ≤ n ≤ Nframe}
defines a path through the candidates. For each path, the path

cost is defined to be

PathCost ({pn}) =

Nframe−1
∑

n=1

Cost
(

F̌n
i , F̌

n+1

j

)

, (1)

where pn = i and pn+1 = j. The Cost is used to calculate

the cost of adjacent frames. We define the function Cost by

using the F0 differences between the adjacent frames and

the confidence score of the candidates. The F0 difference is

modeled similarly with the transition cost defined in the

Praat algorithm [18]. The larger the F0 difference, the higher

the Cost should be. We present the F0 difference in the Mel

scale, which is a perceptual scale of F0 judged by listeners.

The perceived F0 in the Mel scale has a logarithm relation

with the F0 in frequency, as shown in (2):

m = 2595 · log10

(

1 +
f

700

)

. (2)

Therefore, in the cost function, the F0 difference in frequency

is modeled as the logarithm of the F0 division in the Mel

scale. The other part of the cost function is modeled using

the confidence score. We assign a lower cost to those F0

candidates with higher confidence scores, thus we use the

inverse of the confidence score in the expression of the cost

function. A weight w is introduced to balance the two parts.

The setting for this value is shown in Table II. Then, Cost is
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defined mathematically as

Cost
(

F̌n
i , F̌

n+1

j

)

=

∣

∣

∣

∣

∣

log2
F̌n
i

F̌n+1

j

∣

∣

∣

∣

∣

+ w ×
1

V n
i

, (3)

where V n
i is the confidence score of the ith “distinctive” F0

candidate of the nth frame.

We use the Viterbi algorithm to find the minimum cost path,

i.e., the path that reduces the F0 jumps the most, while giving

priority to the F0 candidates with higher confidence scores.

The optimal path is found for each voiced part in the speech.

The Praat algorithm also uses the Viterbi algorithm to choose

F0 from several F0 candidates for each frame. However, the

F0 candidates of Praat are local maxima of the autocorrelation

of each frame, which have the same confidence score to

be selected as F0. On the other hand, the F0 candidates in

BaNa have different confidence scores, and thus F0 candidates

derived from noise spectral peaks are less likely to be selected

as F0. Therefore, the cost function of BaNa’s Viterbi algorithm

shown in (3) is different from that in the Praat algorithm. The

complete BaNa algorithm that describes the selection of the

peaks and the calculation and selection of the F0 candidates

is given in Algorithm 1.

For each frame, the time complexity to calculate K F0

candidates by calculating frequency ratios of p selected peaks

is O
(

p2
)

. The time complexity to calculate D ‘distinctive’

candidates from K ′ remaining candidates is O
(

K ′3
)

, which

is the most complex process. The time complexity to use the

Viterbi algorithm to choose the final F0 from ‘distinctive’

candidates is O
(

D2
)

.

IV. EXPERIMENTAL SETTINGS FOR BANA F0 DETECTION

FOR SPEECH

In this section, we present the speech and noise databases

we use for F0 detection performance evaluation, the error

measurement metric, and parameter tuning of the proposed

algorithm.

A. Speech and noise databases

Noisy speech samples can be generated by adding noise

recorded in noisy environments to clean speech samples. Using

this approach, the ground-truth F0 values can be obtained from

the clean speech. An alternative approach is to use speech

samples directly recorded in real noisy environments, such

as the SPEECON database [36], where additive noise, rever-

berations, and channel distortions are present. The ground-

truth F0 values in the SPEECON database are derived by

manually F0-marked recordings from a close speaking micro-

phone with relatively little noise (clean speech). Several F0

detection algorithms use the SPEECON database to evaluate

their performance [37] [38] [39].

In this work, we use noisy speech samples generated from

clean speech and different types of additive noise.

The clean speech samples we use are taken from four

English speech databases: LDC [40], Arctic [41], CSTR [42],

and KEELE [43]. Since female speakers normally have higher

F0 values than male speakers, approximately an equal number

Algorithm 1 The BaNa F0 Detection Algorithm

1: // For frame n:

2: // Select harmonic peaks

3: select F̂n: the p peaks with lowest frequencies

4: // Calculate F0 candidates

5: number of candidates K ← 0
6: for i =1 to p, j = i+ 1 to p do

7: ratio Rij = F̂n
j /F̂

n
i

8: for m =1 to p, m′ = m+ 1 to p do

9: if Rij falls in the left table of Fig. 2 and close to
m′

m
then

10: K ← K + 1, F̃n
K ← F̂n

i /m
11: end if

12: end for

13: end for

14: K ← K +1, add spectral peak with the lowest frequency

F̂n
1 : F̃n

K ← F̂n
1

15: K ← K + 1, add Cepstrum F0: F̃n
K ← Cepstrum F0

16: discard F̃n that are out of the Fmin
0 to Fmax

0 range

17: K ′ ← number of remaining candidates F̃n

18: number of “distinctive” candidates Dn ← 0
19: while ∃F̃n ̸= null do

20: for k =1 to K ′ do

21: if F̃n
k ̸= null then

22: num. of “close” candidates of F̃n
k : Uk ← 0

23: for l = 1 to K ′ do

24: if

∣

∣

∣
F̃n
l − F̃n

k

∣

∣

∣
≤ ξ Hz then

25: Uk ← Uk + 1
26: end if

27: end for

28: end if

29: end for

30: Dn ← Dn + 1, V n
D ← max Uk

31: “distinctive” candidate F̌n
Dn ← F̃n with max Uk

32: F̃n with max Uk ← null
33: all “close” candidates of F̃n with max Uk ← null
34: end while

35: // For all frames within a voiced segment:

36: // Choose F0 from “distinctive” candidates

37: for n =1 to number of frames Nframe do

38: for i, j =1 to Dn do

39: Cost
(

F̌n
i , F̌

n+1

j

)

=

∣

∣

∣

∣

log2
F̌n

i

F̌
n+1

j

∣

∣

∣

∣

+ w × 1

V n
i

40: end for

41: end for

42: return {pn} of min {PathCost} ← V iterbi (Cost),
where path {pn} denotes F0 for all frames
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TABLE I: Evaluated speech databases and their features.

Parameters are tuned using samples from the Arctic database.

Speech
databases

Emotion # of
speakers

# of
selected
samples

% of
voiced
frames

Has F0

ground
truth?

Arctic [41] neutral 4 10 54.2% No

LDC [40] various 7 20 50.4% No

CSTR [42] neutral 2 100 50.3% Yes

KEELE [43] neutral 10 10 50.4% Yes

of speech samples from male and female speakers are chosen

from these databases. Also, since the frequency characteristics

in speech differ from person to person, we select speech

samples from all the available speakers within these databases.

Table I presents the specifications of these speech databases.

The LDC database is the Emotional Prosody Speech and

Transcripts Database from Linguistic Data Consortium. It is

chosen because it includes speech samples with strong emo-

tions such as hot anger and elation, for which the F0 values

may change dramatically even within a short utterance. In the

BaNa algorithm, the difference of F0 values for neighboring

frames is taken into consideration by the Viterbi algorithm.

Therefore, the LDC database helps to investigate whether this

discontinuity in F0 values may influence the performance.

The Arctic, CSTR and KEELE databases all contain speech

samples with neutral emotion. All the speech samples used for

the evaluation are included in the BaNa toolkit [44].

To test the noise resilience of the investigated algorithms,

eight types of noises are added to the original signals with

different SNR levels. The noise database we use is the

NOISEX-92 noise database [45], in which we choose six

different types of real life background noise: speech babble

(labeled as babble in the figures for performance comparison),

destroyer engine room noise (engine), destroyer operations

room noise (operation), factory floor noise (factory), vehicle

interior noise (vehicle), high frequency radio channel noise

(highfreq), as well as two common types of noise: white

noise (white) and pink noise (pink). To generate noisy speech

with a certain SNR value, the signal energy is calculated only

on the voiced part, and the noise is amplified or attenuated to

a certain level to meet the target SNR value.

B. Error measurement metric

For the noisy speech data, if the detected F0 deviates more

than 10% from the ground truth value, it is counted as a gross

pitch error. Otherwise, it is counted as a fine pitch error. The

Praat algorithm also uses the 10% deviation range in their

error measurement in [18]. Gross Pitch Error (GPE) rate is

the percentage of incorrectly detected F0 values in voiced

speech segments. GPE rate has been widely used as the error

measurement metric for F0 detection [29] [31] [46]. Mean

and standard deviation of Fine Pitch Errors (FPE) are also

used in this study. FPE is calculated by the relative deviation

of the detected F0 from the ground truth F0, with the unit in

percent, for any pitch that does not represent a Gross Pitch

Error [47] [48].

The F0 ground truth values for the CSTR and KEELE

databases are provided, which are obtained from the simul-

taneously recorded laryngograph signals. We downloaded the

speech data and the ground truth values for the CSTR and

KEELE databases from the SAFE toolkit [49], and then shifted

the ground truth values in time as needed to line up with

the F0 detected by all the algorithms tested. For the LDC

and Arctic databases with no F0 ground truth provided, we

use auto-labeled F0 values of the original clean speech as the

ground truth F0 values and the voiced/unvoiced delineation,

since the original speech samples are clean and with very

little background noise. To best estimate the ground truth F0

values, we calculate the detected F0 values of three algorithms:

PEFAC, YIN and Praat, which all perform well in F0 detection

for clean speech. For one frame, if the detected F0 values from

all three algorithms are within 10%, we assume that this frame

is voiced, and the auto-labeled ground truth is determined by

averaging the three detected F0 values. Otherwise, we assume

that the frame is unvoiced and do not detect F0 for that frame.

Fig. 3(a) shows an example of a clean speech recording

of the utterance ‘three hundred (and) nine’ along with the

auto-labeled F0 values as the ground truth. The word ’and’

in the middle is skipped and is not spoken. We can see that

for most of this clean utterance, the detected F0 values from

the three algorithms are very close. We use black solid dots

to represent the ground truth F0 values, which are calculated

by averaging the detected F0 values from PEFAC, YIN and

Praat. We also note that the detected F0 values from these

three algorithms differ at frames corresponding to unvoiced

stop consonants, i.e., ‘th’ in ‘three’ and ‘h’ in ‘hundred’,

and discontinuities, i.e., the spaces between two words. Those

frames are regarded as unvoiced and are ignored. For some

frames, no F0 value is shown on the plot for Praat, since

Praat has its own voiced/unvoiced frame detection, and those

frames are considered as unvoiced by Praat. The corresponding

spectrogram is shown in Fig. 3(b), in which the lowest dark

red curve verifies the calculated F0 ground truth in Fig. 3a.

The frame length used to compute the spectrogram is 60 ms.

The MATLAB code for the BaNa algorithm is avail-

able on the University of Rochester Wireless Communica-

tions and Networking Group’s website [44]. Although the

voiced/unvoiced speech detection is not within the scope of

this paper, we provide one version of the MATLAB imple-

mentation of the BaNa algorithm with an automatic voice

marker [44]. The voiced/unvoiced speech detector used in this

version of the BaNa code is the one implemented in [24]

as the voiced/unvoiced speech detector for the Cepstrum F0

detection algorithm. Frames with a dominant cepstrum peak,

with an amplitude higher than the amplitude of the second

highest peak by a certain threshold, are considered as voiced

frames. However, we have not evaluated the performance of

this voiced/unvoiced speech detector on noisy speech. Other

voiced/unvoiced speech detectors are also available in the

literature [31][37].

C. Parameter tuning

The frame shift is set to 10 ms in order to obtain smooth F0

detection results. The absolute value of the Fourier transform

of the Hann windowed speech signal is calculated, with the

FFT size set to 216 = 65,536 to provide good frequency
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Fig. 3: For one clean speech utterance: a) speech waveform

and the auto-labeled ground truth F0 derived from three

algorithms: PEFAC, YIN, and Praat, and b) the spectrogram.

The frame length used to compute the spectrogram is 60 ms.

resolution. Candidates that are within ξ = 10 Hz of each other

are considered to be “close” candidates. Since the F0 of human

speech is normally higher than 50 Hz and can be as high as

600 Hz for children or female voices [50], we set the lower

limit and the upper limit for F0 of human speech to be Fmin
0

= 50 Hz and Fmax
0 = 600 Hz, respectively.

There are several parameters in the BaNa algorithm that can

be pre-tuned to achieve a more accurate estimate of F0. The

Arctic samples are used for the tuning of these parameters,

and the set of parameters that provides the lowest GPE rate

averaged over all levels of noise and all types of the NOISEX-

92 noise [45] is chosen as the parameter set used in this paper.

The parameter settings are shown in Table II. To obtain a

stable estimate of F0, the frame length is chosen to be at least

three times the F0 period. Since the minimum F0 we consider

for both speech and music is 50 Hz, the frame length is thus

1/50 × 3 = 0.06 s, i.e., 60 ms. We also list in Table II other

TABLE II: Optimal values of tuned parameters, and other

values of the parameters for which BaNa algorithm is tested.

Parameters Optimal value Other values tested

Frame length 60 ms 20 ms, 90 ms

Number of chosen spec-
tral peaks p

5 3, 4, 6, 7

Spectral peak amplitude
threshold in peak selection

1/15 of the high-
est peak

1/25, 1/20, 1/10 of the
highest peak

Window width for
smoothing in the
frequency domain in
peak selection

50 Hz 40 Hz, 60 Hz, 70 Hz,
80 Hz

Tolerance range for har-
monic ratios

Numbers shown
in Table I

Narrowed range, ex-
tended range

Weight w in the cost func-
tion in (3)

0.4 0.05, 0.1, 0.2, 0.3,
0.5, 0.6, 0.7, 0.8, 0.9

frame length values that we have tested. Using the 20 ms frame

length, which is one F0 period at 50 Hz, results in a higher

GPE rate. Although using the 90 ms frame length can slightly

reduce the GPE rate, the temporal resolution is sacrificed.

Parameters in the spectral peak selection process are also

tuned, including the number of spectral peaks p chosen to cal-

culate the F0 candidates, the spectral peak amplitude threshold

and the threshold of the window width for smoothing, which

is the width of the smoothing function applied before spectral

peak detection. With these parameters being properly set,

spectral peaks with low amplitudes and small widths are not

chosen. We tested the performance of BaNa by choosing more

or fewer spectral peaks, which means possibly more or fewer

harmonics, but we found that choosing 5 peaks provides good

F0 detection performance. Also, choosing more spectral peaks

increases the complexity in calculating the F0 candidates.

Other parameters that are tuned are the tolerance range for

the harmonic ratios used in the left table of Fig. 2, and the

weight parameter used in the cost function in (3). Note that

these parameters represent the optimal set across all noise

types and SNR values for the Arctic speech database; they

may not be optimal for a given noise type or SNR value

or samples from other databases. A user could, of course,

optimize the parameters for specific noise conditions, but we

will show in Section V that using these tuned parameters

provides good performance without the need for tuning for

specific noise environments. Note that for all the other F0

detection algorithms, we choose their default parameters in

the evaluation.

To evaluate the parameter sensitivity of the BaNa algorithm

on new types of noise, we use another widely-used noise

database [51] with eight types of common ambient noise,

including airport, babble, car, exhibition, restaurant, street,

subway, and train noise. This noise database was used to

construct the AURORA noisy speech database [52] for speech

recognition. Note that the AURORA noise database is only

used for this parameter sensitivity test. All the remaining

performance evaluations in this paper are performed on noisy

speech and noisy music generated using noise samples from

the NOISEX-92 noise database [45].

We compare the performance of BaNa on the LDC

database [37] by using 1) the set of parameters provided in the

paper, that are tuned on the Arctic database and the NOISEX-
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Fig. 4: GPE rates of BaNa for the LDC database [40] with

eight types of AURORA noise [51] averaged over all SNR

values, using individually optimized parameter sets that pro-

vide the lowest GPE rates for a specific type of AURORA

noise, and using the tuned parameter set selected in the paper.

Detected F0 deviating more than 10% from ground truth are

errors.
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Fig. 5: GPE rate of the different algorithms for the LDC

database [40], averaged over all eight types of noise. Detected

F0 deviating more than 10% from ground truth are errors.

92 noise database [45], and 2) the parameter sets that are

individually optimized on a specific type of noise from the

the AURORA noise database [51] that yields the lowest GPE

rates for the LDC database, averaged over 0 dB, 5 dB, 10 dB,

15 dB, and 20 dB SNR values.

As shown in Fig. 4, the difference in the performance when

using the individually optimized parameter sets and when

using the parameter set selected in the paper is relatively small

for most noise types. These results show that the performance

of BaNa is not very sensitive to the specific parameters chosen.

Thus, we can trade a slight drop in the GPE performance of

BaNa for the benefit of not needing to optimize the parameters

for a specific type of noise environment.
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Fig. 6: GPE rate of the different algorithms for the CSTR

database [42], averaged over all eight types of noise. Detected

F0 deviating more than 10% from ground truth are errors.
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Fig. 7: GPE rate of the different algorithms for the KEELE

database [43], averaged over all eight types of noise. Detected

F0 deviating more than 10% from ground truth are errors.

V. F0 DETECTION PERFORMANCE FOR SPEECH SIGNALS

In this section, we compare the F0 detection performance of

the proposed BaNa algorithm with that of several classic and

state-of-the-art algorithms on speech signals in various noisy

environments and for a wide range of SNR values. Seven

algorithms are considered due to their popularity or good

performance: YIN, HPS, Praat, Cepstrum, PEFAC, SAFE, and

Wu. These algorithms have been described in Section II. The

source code for YIN, Praat, Cepstrum, PEFAC, SAFE, and Wu

are from [53], [54], [24], [55], [49], and [56], respectively.

We implement the HPS algorithm based on the algorithm

described in [17]. F0 detection in eight different types of noise

environments are evaluated, where noisy speech samples are

generated by adding background noise to clean real speech

samples with different noise power levels to achieve different

SNR values.

Note that in our study, we only detect F0 when only

one speaker is speaking or only one instrument is played.
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Fig. 8: GPE rate of the different algorithms for the LDC

database [40] for speech with babble noise. Detected F0

deviating more than 10% from ground truth are errors.

If multiple people are speaking or multiple instruments are

played at the same time, multiple F0 values coexist. Multiple

F0 detection, as studied in work such as [57] [58] [59] [60],

is not within the research scope of this work.

A. F0 detection performance for speech

We test all the F0 detection algorithms on each one of the

speech databases mentioned in Section IV-A, except the Arctic

database, which was used for tuning the BaNa parameters. The

GPE rate is evaluated as a function of SNR value, where the

GPE rate is averaged over all types of noise for each SNR

value.

For the LDC database with emotional utterances, Fig. 5

depicts the results, which shows that the BaNa algorithm

achieves the best F0 detection accuracy, i.e., the lowest GPE

rate, among all of the algorithms for 0 dB SNR and above

0 dB SNR. PEFAC performs slightly better than BaNa at -

5 dB SNR and -10 dB SNR. BaNa achieves the lowest GPE

rate of 20.6%, which is obtained by averaging over -10 dB, -

5 dB, 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB SNR levels. Similar

to the BaNa algorithm, the HPS algorithm is also based on the

ratios of the potential harmonics. However, in real speech, the

harmonics are not integer multiples of F0, which may greatly

affect the F0 detection performance. We can also see that the

BaNa algorithm has a very high resilience to severe noise, as

it only wrongly detects 23.7% of F0 values with noise at 0 dB

SNR.

For a more stringent evaluation, we have also tested all

algorithms on the LDC database using the GPE rate with a 5%

deviation range. BaNa performs slightly better than PEFAC for

above 5 dB SNR, while PEFAC performs slightly better than

BaNa for below 5 dB SNR. The GPE rate for BaNa with a 5%

deviation range is 30% at 0 dB, averaged over all 8 types of

noise. The mean and standard deviation of Fine Pitch Errors

(FPE) are also evaluated, using a 10% deviation range. The

mean and standard deviation of FPE for BaNa are both 1.9%

at 0 dB, which are only about 0.5% higher than the mean and

standard deviation of FPE for PEFAC and HPS.
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Fig. 9: GPE rate of the different algorithms for the LDC

database [40] for speech with white noise. Detected F0 de-

viating more than 10% from ground truth are errors.

Since the SAFE algorithm is only trained to detect F0

for speech with babble noise and white noise, we show its

performance for these two types of noise at the end of this

section, where we also present Wu’s results, since it is unclear

how to run Wu’s code on long speech samples. Therefore, we

only test the Wu algorithm for the LDC database. Since the

-10 dB SNR and -5 dB SNR scenarios are very severe noisy

environments, we present the rest of the F0 detection results

for noise conditions with SNR greater than or equal to 0 dB.

The GPE rates for speech with neutral emotion are shown

in Figs. 6 and 7 for the CSTR and KEELE databases,

respectively. Similar results are obtained for the proposed

BaNa algorithm and the five other algorithms, with the main

difference being that PEFAC at 0 dB SNR performs slightly

better than BaNa for the CSTR database. With noise at 0 dB

SNR, the GPE rate of BaNa is 35.4% for the CSTR database,

and 20.3% for the KEELE database. However, since the

ground truth F0 values for the CSTR and KEELE databases

are based on the laryngograph signals, we checked the ground

truth values for a few speech samples and found that there

are many spikes and discontinuities in the ground truth F0

values found by using the laryngograph, especially on the

boundaries of voiced and unvoiced frames. We can see from

Figs. 6 and 7 that even at 20 dB SNR, the lowest GPE rate

for all algorithms is still greater than 5%. While the ground

truth for these databases may include several unvoiced frames

and less reliable data, we present these results for the CSTR

and KEELE databases in Figs. 6 and 7 in order to facilitate

comparison with other F0 detection algorithms that use these

databases.

Babble noise and white noise are the most common types

of noise in speech processing. Since the SAFE algorithm

is only trained on babble noise and white noise, we only

compare the results of SAFE for these two types of noisy

speech. The KEELE database is used for training of SAFE,

as in [31], and the LDC database is used for testing. We

also show the performance of the Wu algorithm proposed
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Fig. 10: GPE rate of BaNa, PEFAC and YIN for the LDC

database [40] with eight types of noise at 0 dB SNR. Detected

F0 deviating more than 10% from ground truth are errors.

in [30]. The detected F0 value is considered to be an error

if it deviates more than 10% from the ground truth value, and

again we use GPE rate as the error measurement metric. Figs. 8

and 9 present the GPE rate of the different algorithms for the

LDC database for speech with babble noise and white noise,

respectively. We can see that the F0 detection for speech with

babble noise is more difficult than F0 detection for speech

with white noise. Results show that BaNa, YIN, and PEFAC

provide the lowest GPE rate for F0 detection for speech with

babble and white noise.

Speech with noise at 0 dB SNR is a challenging scenario for

F0 detection. For a head to head comparison, we present the

performances of the BaNa algorithm and the closest competing

algorithms, PEFAC and YIN, using the LDC database for eight

different types of noise at 0 dB SNR in Fig. 10. We can see

that BaNa has the lowest GPE rate for four out of eight types

of noise. For the babble noise, which is a very common type

of noise in real life scenarios, the BaNa algorithm achieves a

41.5% GPE rate compared with PEFAC’s 42.9% and YIN’s

54.3%, even when the speech is only slightly audible by the

human ear. We can also see from Fig. 10 that the babble noise

and the destroyer operations noise cause the worst degradation

in the F0 detection performance. By investigating the spectrum

of several noisy speech samples, we found that the high

spectral peaks of these two types of noise concentrate in the

same frequency range as the spectral peaks of speech. On the

other hand, the high spectral peaks of high frequency noise,

vehicle noise and white noise are distributed in the frequency

range, which is quite different from the spectrum of human

speech, making it easier to differentiate speech spectral peaks

from noise spectral peaks. Therefore, the GPE rate for speech

with these types of noise remains at a relatively low level even

at 0 dB SNR.

B. Breakdown analysis of the BaNa algorithm

As we can see from the above F0 detection performance for

speech, the proposed BaNa algorithm has the most advantage
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Fig. 11: GPE rate of BaNa, BaNa without the Cepstrum

candidate, BaNa without the lowest frequency candidate,

BaNa without both added candidates, and BaNa without post-

processing for the LDC database, averaged over all eight types

of noise. Detected F0 deviating more than 10% from ground

truth are errors.

at 0 dB SNR across almost all speech databases. To provide

additional insights to understand the core design of this noise-

resilient algorithm, as well as the differences between BaNa

and other algorithms, we provide a breakdown analysis of

BaNa here:

• BaNa only considers the frequency ratios among the

lower-order harmonics, and also Cepstrum is included as

one of the F0 candidates, thus BaNa is less affected by

octave errors than Schroeder’s frequency histogram.

• Harmonic summation methods use the amplitudes of

spectral peaks to weight the frequency histogram, which

is not a noise-resilient approach, since noise peaks with

high amplitudes are likely to be chosen as F0 after the

harmonic summation. The BaNa algorithm, on the other

hand, only uses the peak amplitude information to choose

the spectral peaks, but the F0 candidates calculation is

solely based on the frequency ratios of the chosen peaks.

No peak amplitude information is used at this point, as

it may be severely corrupted by noise.

• By providing a tolerance range for these frequency ratios,

our algorithm is able to combat the frequency drift

of harmonics and shape distortions of harmonic peaks

caused by the noise.

• Post-processing using the Viterbi algorithm in BaNa

considers the F0 continuity, which helps to choose the

F0 candidates more accurately.

• Since the F0 candidates calculated from peak frequency

ratios are only based on lower-order harmonics, adding

the Cepstrum as an additional candidate helps to capture

the general period information for all spectral peaks.

To show the effectiveness of using the Cepstrum candidate

and the spectral peak with the lowest frequency as two addi-

tional F0 candidates, and using the Viterbi post-processing, in

Fig. 11 we plot the GPE rates for the BaNa algorithm, BaNa
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Fig. 12: GPE rate of BaNa and BaNa music for a piece of

violin music with eight types of noise at 0 dB SNR. Detected

F0 deviating more than 3% from ground truth are errors.

without the Cepstrum candidate, BaNa without the lowest

frequency candidate, BaNa without both added candidates,

and BaNa without post-processing for the LDC database.

BaNa without post-processing means that we choose the F0

candidate with the highest confidence score to be F0 for each

frame. We can see that using the two added candidates and

using post-processing are effective to reduce the GPE rate.

We can see that the GPE rate is as high as 20% when SNR is

20 dB without using both added candidates. This is because

for some frames, only the F0 peak’s amplitude is high enough

to be detected. Therefore, no F0 candidates are derived from

calculating frequency ratios.

By comparing the results for BaNa without post-processing

with the results in Fig. 11 for the two algorithms that have

no post-processing, HPS and Cepstrum, with the results in

Fig. 5, we can see that BaNa without post-processing still

achieves a lower GPE rate. Thus, from the breakdown analysis

we conclude that the post-processing is helpful, but it is not

the most critical step in determining the performance of BaNa.

VI. BANA F0 DETECTION ALGORITHM FOR MUSIC

In this section, we extend the BaNa algorithm to enable F0

detection of music signals in noisy environments.

A. Modifications on BaNa for F0 detection for music

Since speech and music have different frequency character-

istics, the BaNa algorithm needs to be slightly modified for

F0 detection in music. In Section III-B, when detecting F0 for

speech, the p peaks with the lowest frequencies are selected.

However, music signals can have high F0 values, thus the

low frequency region can be dominated by noise peaks. Thus,

if we still choose the p peaks with the lowest frequencies,

noise peaks are chosen incorrectly. Therefore, for music F0

detection, we select the p peaks with the highest amplitudes

in the frequency range considered. We show the benefit of this

change in Section VI-D.
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Fig. 13: GPE rate of the different algorithms for a piece of

violin music with eight types of noise. Detected F0 deviating

more than 3% from ground truth are errors.

B. Experimental settings for F0 detection for music

Due to the variety of spectrum characteristics for different

musical instruments, to show the performance of the F0

detection algorithms for musical instruments, samples from

four instruments are used: violin, trumpet, clarinet and piano.

These music pieces are selected and downloaded from [61],

which were all recorded in a quiet environment. These music

pieces include a piece of 3.7 s long violin with 9 notes, a piece

of 12.9 s long trumpet with 12 notes, a piece of 5.3 s long

clarinet with 4 notes, and a piece of 7.8 s long piano with

8 notes. All the music samples used are also included in the

BaNa toolkit [44]. The additive noise is from the same noise

database as in Section IV-A.

For F0 detection in music, we use hand-labeled ground truth

F0 values, which are determined by manually inspecting the

spectrum and locating the F0 peaks for each frame. Due to the

large F0 range in music, we use a more stringent F0 deviation

criteria for error measurement. The difference between two

neighboring key frequencies is 2
1
12 , which is approximately

6%. Thus, we use half of this number, i.e., 3%, as the F0

deviation criteria, which is also called the musical quarter

tone [62]. Thus, detected F0 values that deviate more than

3% from the ground truth values are counted as errors. This

error measurement metric is also used by other studies [62].

C. Parameter tuning

According to the music F0 range specified in [15], the lower

and the upper limit for F0 of music are set to Fmin
0 = 50 Hz

and Fmax
0 = 4,000 Hz, respectively. It is set to 50-4,000 Hz

for these competing algorithms as well for a fair comparison.

The other parameters are the same as those in Table II, and

are not further optimized using music signals.

D. BaNa vs. BaNa music

To show the effectiveness of the changes made to the BaNa

algorithm to be suitable for F0 detection in music, we plot the
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Fig. 14: GPE rate of the different algorithms for a piece of

trumpet music with eight types of noise. Detected F0 deviating

more than 3% from ground truth are errors.
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Fig. 15: GPE rate of the different algorithms for a piece of

clarinet music with eight types of noise. Detected F0 deviating

more than 3% from ground truth are errors.

GPE rate in Fig. 12 for a piece of violin music using both

the original BaNa algorithm and the customized BaNa music

algorithm with eight different types of noise at 0 dB SNR.

The F0 detection range is set to be the same for the original

BaNa algorithm and the customized BaNa music algorithm,

i.e., Fmin
0 = 50 Hz and Fmax

0 = 4,000 Hz. We can see that the

modifications in the BaNa algorithm for music F0 detection

are necessary, and can greatly reduce the GPE rate for almost

all types of noisy music. Note that throughout this section, we

just use ‘BaNa’ to represent the BaNa music algorithm.

E. F0 detection performance for music signals

In this set of experiments, we compare the BaNa algorithm

with other algorithms for music F0 detection. Within the

evaluations of the SAFE algorithm in [31], there are no

detection results for music. Therefore, we are not able to

run the SAFE algorithm here due to the lack of noisy music

training data. Also, according to the authors of PEFAC [27],
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Fig. 16: GPE rate of the different algorithms for a piece of

piano music with eight types of noise. Detected F0 deviating

more than 3% from ground truth are errors.
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Fig. 17: GPE rate of BaNa, YIN and HPS for a piece of violin

music with eight types of noise at 0 dB SNR. Detected F0

deviating more than 3% from ground truth are errors.

PEFAC is not suitable for F0 detection in music, hence we

do not include that here. Also, it is unclear how to use the

code for the Wu algorithm [30] to process long audio samples.

Therefore, we only compare the proposed BaNa algorithm

with YIN, HPS, Praat, and Cepstrum. Figs. 13-16 show the

GPE rates of the different algorithms for violin, trumpet,

clarinet, and piano, respectively, averaged over the eight types

of noise. Results on all these four instruments show that the

BaNa algorithm achieves the lowest GPE rate among all the

algorithms. At 0 dB SNR, BaNa achieves the lowest GPE

rates, which are 36.1%, 28.1%, 58.3%, and 35.3% lower than

the closest performing algorithm, HPS, for violin, trumpet,

clarinet, and piano, respectively.

From the above results, we can see that BaNa, HPS, and

YIN provide the overall best F0 detection performance in

noisy music. Praat and Cepstrum do not provide consistent

or satisfying results. Therefore, we choose BaNa, YIN, and

HPS for detailed comparison using the violin piece with eight
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TABLE III: Elapsed time (in seconds) for F0 detection using

the BaNa algorithm implemented on an Android platform with

a different number of threads and FFT sizes. The speech file

is 1.3 s long.

FFT size

Number of threads 2
16

2
15

2
14

2
13

1 11.05 5.16 2.52 1.42

2 6.85 3.15 1.49 0.85

3 5.93 2.67 1.28 0.92

4 5.89 2.67 1.25 0.80

different types of noise at 0 dB SNR. In Fig. 17 we can see

that BaNa has the lowest GPE rate for seven out of eight types

of noise, especially for the speech babble noise.

VII. IMPLEMENTATION ISSUES

With an increasing number of speech-related smartphone

apps emerging in the market, and due to the fact that speech

captured by smartphones are usually affected by different

types of noise, it is important to discuss the challenges in

implementing the BaNa F0 detection algorithm on a mobile

platform. To explore these issues, we implemented BaNa as

an app on an Android platform1. Since the F0 candidates and

their confidence scores can be calculated separately for each

frame, as explained in Section III-B, we can take advantage

of multithreading to speed up the implementation. Single-core

and multi-core devices can both benefit from multithreading

through an increased utilization of the processor(s). When all

threads finish the calculation of F0 candidates for their own

assigned frames, the Viterbi post-processing can go through

all the frames to determine F0 for each frame.

To test the speed of the BaNa F0 detection implementation,

we ran tests with different parameter settings and speech

sample lengths on a Google Nexus 7. The specs of the device

are: Nvidia Tegra 3 quad-core processor clocked at 1.2GHz,

1GB of RAM. Of course, the speed of the algorithm highly

depends on the capabilities of the mobile device. Table III

shows the elapsed time to process a 1.3 s long speech sample

with sampling rate of 22,050 Hz. All the parameters for the

BaNa algorithm are set to be the same as those in Table II.

For a more reliable measurement, the elapsed time for each

test is averaged over 10 trials. We can see that the BaNa F0

detection algorithm runs roughly 8 times faster by using the

213 FFT size than using the 216 FFT size, though using the

213 FFT size still provides a reasonable frequency resolution

of 22, 050/213 = 2.7 Hz per sample. Also, we can see that

multithreading helps to further reduce the elapsed time.

We show in Table IV the elapsed time for F0 detection for

speech samples with different lengths. For this test, we choose

the setting that provides the fastest speed, i.e., the number of

threads is set to 4, and the FFT size is set to 213. These results

show the possibility to turn the BaNa algorithm into a real-

time F0 detector even on mobile devices.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented BaNa, a noise resilient hybrid

F0 detection algorithm for speech and music. BaNa was

1Code for the Android implementation of BaNa is available at [44].

TABLE IV: Elapsed time (in seconds) for F0 detection using

the BaNa algorithm implemented on an Android platform for

speech samples with different lengths.

Length of speech sample (s)
Number of threads FFT size 2 4 6 8 10

4 2
13 0.91 1.61 2.39 3.05 3.82

designed to detect F0 in noisy environments, for example

on a smartphone. This would enable the wide deployment of

speech-based applications, such as the ones that use emotion

detection. Evaluations show that BaNa achieves the lowest

GPE rate for most cases among the algorithms investigated

from the literature including YIN, HPS, Praat, Cepstrum,

PEFAC, SAFE and Wu for different types of background

noise, and under different SNR levels from -10 dB to 20 dB.

Even for the very noisy scenario of 0 dB SNR, the GPE rate

of BaNa averaged over all types of noise is only about 20%

to 35% for speech for the different databases evaluated. The

GPE rate for music at 0 dB SNR is 12% to 39% for different

instrument pieces. Additionally, we implemented the BaNa

algorithm on an Android platform, and implementation issues

such as delay and multithreading are discussed. Tests on a real

device show that the implementation is fast enough to provide

for real-time F0 detection applications in the future.
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