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ABSTRACT 

We develop a dual i ty  theory  be tween the  cont inuous  representa t ions  of a 

compac t  p-adic Lie group G in Banach  spaces over a given p-adic field K 

and  certain compac t  modules  over the  comple ted  group ring oK[[G]]. We 

t h e n  in t roduce  a "finiteness" condit ion for Banach  space representa t ions  

called admissibility.  It will be shown tha t  under  this  dual i ty  admissibil-  

i ty corresponds  to finite genera t ion over the  r ing K[[G]] :-- g ® OK[[G]]. 
Since this  la t ter  r ing is noe ther ian  it follows tha t  the  admiss ible  repre- 

sen ta t ions  of G form an  abel ian category. We conclude by analyzing the  

irreducibili ty proper t ies  of the  cont inuous  principal  series of  the  group 

G :-- GL2(Zp).  
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Introduct ion  

The lack of a p-adic Haar measure causes many methods of traditional repre- 

sentation theory to break down when applied to continuous representations of a 

compact p-adic Lie group G in Banach spaces over a given p-adic field K. For 

example, the abelian group G = Zp has an enormous wealth of infinite dimen- 

sional, topologically irreducible Banach space representations, as may be seen 

in the paper by Diarra [Dia]. We therefore address the problem of finding an 

additional "finiteness" condition on such representations that will lead to a rea- 

sonable theory. We introduce such a condition that we call "admissibility". We 

show that the category of all admissible G-representations is reasonable - -  in 

fact, it is abelian and of a purely algebraic nature - -  by showing that it is anti- 

equivalent to the category of all finitely generated modules over a certain kind of 

completed group ring K[[G]]. 

In the first part of our paper we deal with the general functional-analytic 

aspects of the problem. We first consider the relationship between K-Banach 

spaces and compact, linearly topologized o-modules where o is the ring of integers 

in K.  As a special case of ideas of Schikhof [Sch], we recall that there is an 

anti-equivalence between the category of K-Banach spaces and the category of 

torsionfree, linearly compact o-modules, provided one tensors the Hom-spaces in 

the latter category with Q. In addition we have to investigate how this functor 

relates certain locally convex topologies on the Hom-spaces in the two categories. 

This will enable us then to derive a version of this anti-equivalence with an action 

of a profinite group G on both sides relating K-Banach space representations of 

G and certain topological modules for the ring K[[G]] := g ®o o[[G]]. 

Having established these topological results we assume that G is a compact 

p-adic Lie group and focus our attention on the Banach representations of G that 

correspond under the anti-equivalence to finitely generated modules over the ring 

K[[G]]. We characterize such Banach space representations intrinsically. We then 

show that the theory of such "admissible" representations is purely algebraic - -  

one may "forget" about topology and instead study finitely generated modules 

over the noetherian ring K[[G]]. 

As an application of our methods we determine the topological irreducibility as 

well as the intertwining maps for representations of GL2 (Zp) obtained by induc- 

tion of a continuous character from the subgroup of lower triangular matrices. Let 

us stress the fact that topological irreducibility for an admissible Banach space 

representation corresponds to the algebraic simplicity of the dual K[[G]]-module. 

It is indeed the latter which we will analyze. These results are a complement to 
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the treatment of the locally analytic principal series representations studied in 

[ST1]. 

Throughout this paper K is a finite extension of Qp with ring of integers o c_ K 

and absolute value I I. A topological o-module is called linear-topological if the 

zero element has a fundamental system of open neighbourhoods consisting of 

o-submodules. We let 

Modtop(O) := category of all Hausdorff linear-topological o-modules 
with morphisms being all continuous o-linear maps. 

1. A dual i ty  for Banach  spaces  

In this section we will recall a certain duality theory for K-Banach spaces due 

to Schikhof ([Sch]). Because of the fundamental role it will play in our later 

considerations and since it is quite easy over locally compact fields we include 

the proofs. We set 

Mod~omp (o) := 

REMARK 1.1: 

the full subcategory in Modtop(O) of all 
torsionfree and compact linear-topological 
o-modules. 

(i) An o-module is torsionfree i f  and only i f  it is fiat; 

(ii) a compact linear-topological o-module M is fiat if  and only if  M ~- rI~ei o 

for some set I.  

Proo~ (i) [B-CA] Chap. I §2.4 Prop. 3(ii). (ii) [SGA3] Exp. VII B (0.3.8). 

For later purposes let us note that any o-module M in Modtop(O) has a unique 

largest quotient module Mcot which is Hausdorff and torsionfree: If (Mj) je  J is 
the family of all torsionfree Hausdorff quotient modules of M then Moot is the 

coimage of the natural map M ~ I-[jEJ Mj.  

For any o-module M in Mod~o~.p(O ) we can construct the K-Banach space 

M d :=  nomC°nt(M, K) with norm Hill := max It(m)[. 
m E M  

This defines a contravariant additive functor 

Modflomp(O) 

M i ) 

Ban(K) 

M d 

into the category Ban(K) of all K-Banach spaces with morphisms being all con- 

tinuous K-linear maps. Actually all maps in the image of this functor are norm 
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decreasing. The groups of homomorphisms in Modc~omp(O) are o-modules whereas 
in Ban(K) they are K-vector spaces. The above functor therefore extends natu- 

rally to a contravariant additive functor 

Modcflomp (O)Q ~ Ban(K). 

Here 92Q, for any additive category 92, denotes the additive category with the 
same objects as P.l and such that 

Hom~Q (A, B) := Hom~ (A, B) ® Q 

for any two objects A, B in 92 with the composition of morphisms in 92Q being 
the Q-linear extension of the composition in 92. 

THEOREM 1.2: Th e  [unctor  

Modcflomp(O)Q ~~ Ban(K) 

M ~ ~ M d 

is an ant i -equivalence o f  categories. 

Proo~  Let Ban(K) <1 denote the category of all K-Banach spaces (E, N Jl) 

such that ]IEI] C_ IKI with morphisms being all norm decreasing K-linear maps. 

Clearly our functor factorizes into 

Modcflomp(O) ( ~  S a n ( g ) < l  forg~t Ban(K).  

For any K-Banach space (E, [[ [I) we may define by I[vl[' := inf{r E IKI: r >_ [Ivlt} 

another norm II I[' on E satisfying IIEI]' C ]K I. Because of ]TrJ < [Iv]l/Jlv]l' < 1 

for v # 0, where ~r is a prime element of K,  the two norms I[ 1] and [1 [1' are 
equivalent. It follows that the right hand functor above induces an equivalence 
of categories 

(Ban(K)-<I)Q ~7 Ban(K). 

We therefore are reduced to show that 

Modcflomp (o) ~ Ban(K) <1 

M t ~ M d 

is an anti-equivMence of categories. Let (E, I1 ]}) be a K-Banach space and denote 
by E ° :-- {v • E :  Nvl] _< 1} its unit ball. Then 

E d := Homo(E °, o) with the topology of pointwise convergence 
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is a linear-topological o-module which is torsionfree and complete. In fact, E d is 

the unit ball of the dual Banach space E '  but equipped with the weak topology. 

Since 
E d ~-+ 1--[v~E oo 

) ( A ( v ) ) v  

is a topological embedding we see that  E d is compact. This defines a functor 

fl Ban(K)  -<1 ~ Mod~omp(O) 

( E , [ ]  II) , > E d. 

It  is an immediate consequence of Remark 1.1 that,  for an o-module M in 

Mod~omp(O), the o-linear map 

~M: M --'-+ (Md)'s 

into the weak dual (Md)ls of the Banach space M d is injective. Since it is easily 

seen to be continuous the compactness of M implies that  tM is a closed embed- 

ding. By definition the image of ~M is contained in M rid. Assume now that  there 

is a A E M dd ". im(tM). Since im(~M) is closed in (Md)'8 there is, by Hahn-Banach 
d l  ([Mon] V.1.2 Thm. 5(ii) or [NFA] 13.3), a continuous linear form on ( M ) s  which 

in absolute value is > 1 on A and is < 1 on im(~M). But, as another consequence 
d l  of Hahn-Banach ([NFA] 9.7), any continuous linear form on ( M ) 8  is given by 

evaluation in a vector in M d. Hence we find an / C M d such that  IA(/)l > 1 and 

I~(M)I < 1. The latter implies I1~1[ < 1 so that  I1~(~)11 < IIAH. I1~[I] < 1, which 

is a contradiction. We obtain that  ~M: M ~> M dd, in fact, is a topological 

isomorphism. This means that  the ~M constitute a natural  isomorphism between 

the identity functor and the functor (.)dd on Mod~omp(O ). On the other hand, 

any (E, II ll) in Ban(K)  <1 is isometric to a Banach space co(I) for some set I 

([Mon] IV.3 Cor. 1 or [NFA] 10.1). A straightforward explicit computat ion shows 

that  Co(I) dd = co(1). The functor M ----+ M d therefore is fully faithful as well as 

essentially surjective and consequently an equivalence. | 

The exactness properties of this functor are as follows. 

PROPOSITION 1.3: For any map f : M - -+  N in Mod~omp(O ) we have: 

(i) ker(f)  d = i d / f d ( N d ) ;  

(ii) [coker(f)¢ot] d = ker(fd); 
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(iii) f is surjective if and only if f d is an isometry. 

Proo~ (i) The submodules ker(f)  and im(f )  lie again in Modcttomp(O ). It  follows 

from [SGA3] Exp. VII  B (0.3.7) that  the surjection M ---4 im(f )  splits, i.e., we 

have M ~ ker(f )  G ira(f)  in Modcflomp(O). It  suffices therefore to consider the 

case where f is injective and to show that  then the image of fd is dense in M d. 
If  not, we find by Hahn-Banach a nonzero continuous linear form A on M d which 

vanishes on the image of fd. Up to scaling we may assume that  A E M dd, i.e., 

that  there is a nonzero m E M such that  ~(~) = ~(m). The vanishing property 

of A means of course that  f (m)  = 0, which is a contradiction. 

(iii) If  f is surjective then ]d is an isometry by construction. Suppose now 

that  fd is an isometry. Let n E N; we view n as a linear form in the unit ball 

of the dual Banach space (Nd) '. By Hahn-Banach n extends (via fd) to a linear 

form in the unit ball of (Md)t; this means of course that  we find an m E M such 

that  f (m)  = n. 
(ii) Let E denote the kernel of fd. Then E d is, by (iii), a torsionfree Hausdorff 

quotient of coker(f) .  On the other hand [coker(f)cot] d clearly is a subspace of 

ker(fd).  I 

Let M be a module in Mod~omp(O ). Since M is torsionfree it is an o-submodule 

of the K-vector  space M ~  := M®oK. Theorem 1.2 tells us that  there is a natural  

identification 

MK = HomCo°nt (o, M) ® Q = Hom~nt (M d, K) -~ (Md) ' 

between MK and the continuous dual (Md) t of the Banach space M d. We always 

equip MK with the finest locally convex topology such that  the inclusion M C_ 

MK is continuous. An o-submodule L C_ MK is open if and only if a L  M M is 

open in M for any 0 # a E o. By construction this topology has the property 

that  
nomC°nt(M, V) = £-.(MK, V) 

for any locally convex K-vector  space V where, following a common convention, 

we let /:(., .) denote the vector space of continuous linear maps between two 

locally convex K-vector  spaces. In particular M d at least as a vector space is the 

continuous dual (MK)'. Since under the identification MK = (Md) ' the topology 

of M is induced by the weak topology on (Md) r we also see that  the identification 

map M r - ~ ( M d f 8  is continuous. This shows that  MK is Hausdorff and that  MK 
also induces the given topology on M. 
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The locally convex K-vector space MK, for any M in Modcflomp(o), 

Proof: Fix a prime element 7r of K.  Let 9 r be a minimal Cauchy filter on MK. 

We first show tha t  there is a m E N such tha t  

F M T r - m M ¢ O  for all F E Y. 

Otherwise there exists for any n E N a F~ E $- with F~ A l r - '~M = 0. By the 

minimali ty of $- we may assume tha t  

F,~ = F~ + Ln for some open o-submodule Ln C MK 

([B-GT] Chap. II  §3.2 Prop.  5). We also may assume tha t  the L~ form a decreas- 

ing sequence L1 _D L2 _D . . . .  The o-submodule 

L :=  E ( L ~ n r - n M )  
nE[~ 

is open in MK since L M 7r-~M ~_ Ln N 7r-nM for all n E N. The Ln being 

decreasing and the ~ - ' ~ M  being increasing it is clear tha t  

L _ C L ~ + T r - ~ M  for a l l n E N .  

As a Cauchy filter jc must  contain a coset v + L for some v E MK. If  no E N is 

chosen in such a way tha t  v E ~ - ~ ° M  we have Lno + 7r-n°M E ~-. Both  sets Fno 

and Lno + l r - ~ ° M  belonging to the filter $- we obtain F~ o M (L~ o + l r -~°M)  ~t 0, 

i.e., F~ o N I r - n ° M  = (Fno + L,~o) A 7r-~°M # 0, which is a contradiction. We see 

tha t  

~,~ :=  {FN~r- '~M : F E jz} 

for an appropria te  m E N is a filter on 7r-raM. Since 7r-raM is compact  in MK 

the filter .~m being also a Cauchy filter has to be convergent. By [B-GT] Chap. 

II  §3.2 Cor. 3 then $" is convergent, too. This proves tha t  MK is complete. I 

LEMMA 1.5: For any two o-modules M and N in Modcflomp(O) we have: 

(i) For any compact subset C C_ NK the closed o-submodule in NK topologi- 

cally generated by C is compact as well; 

(ii) for any compact subset C C_ NK there is a 0 # a E o such that aC C N; 
(iii) cont Hom o ( M , N ) ® Q = £ ( M K ,  NK); 
(iv) passing to the transpose induces a K-linear isomorphism 

£(MK, NK) ~- ) ~,(N d, Md). 
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Proof: (i) Let < C > denote the o-submodule generated by C. Let L C_ N K 
be any open and therefore also closed o-submodule. Since C is compact we find 

finitely many c l , . . . ,  c,~ E C with C C (cl + L) U - . -  U (c~ + L). Then < C > is 

contained in ocl ÷ . - .  ÷ ocn + L. But ocl + .. • + oc,~ is compact, too, so that  we 

again find finitely many a l , . . . ,  am C ocl + " • + ocn with 

ocl + . . .  + oc,~ c_ (aa + L) U . . . U  (am + L). 

Together we obtain 

< C > C  U a i + L  
l<i<m 

and since the right hand side is closed the closure < C > of < C > also satisfies 

< C > c _  U a i + L .  
l<i<rn 

Since L was arbi trary this implies by [B-GT] Chap. I I  §4.2 Thin. 3 that  < C > 

is precompact.  On the other hand, as a consequence of Lemma 1.4, < C > is 

Hausdorff and complete. Hence < C > is compact. 

(ii) By (i) we may assume that  C is a compact o-submodule of Ng .  Fix a 

prime element r of K and put Cn := C A ~r-nN for any n E N. These C~ form 

an increasing sequence C1 c_ C2 c_ . . .  of compact o-submodules of C such that  

C = U~eNC-.  We have to show that  Cm -- C holds for s o m e m  E N. Being 

empty the subset N,~eN(C\C~) is not dense in C. As a compact space C in 

particular is a Baire space ([B-GT] Chap. IX §5.3 Thm. 1) so that  already some 

C\C,~ is not dense in C. This means that  C~ contains a non-empty open subset 

of C. It  is then itself an open o-submodule and therefore has to be of finite index 

in C. Our claim obviously follows from that.  

(iii) We have cont : = Hom o (M, NK) Hom o ( M ,  N )  Go g cont Hom o ( M , N ) ® Q  coat 

= L(MK,  NK) where the second identity is a consequence of the second assertion. 

(iv) This follows from (iii) and Theorem 1.2. | 

The assertion (iii) in Lemma 1.5 in particular means that  MK and NK are 

isomorphic in Modnomp(O)Q if and only if they are isomorphic as locally convex 

vector spaces. 

For any two o-modules M and N in Mod~omp(O ) we always view Hom~°nt (M, N)  

as a linear-topological o-module by equipping it with the topology of compact  

convergence. As a consequence of Lemma 1.5 this topology is induced by the 

topology of compact convergence on the vector space £(MK,  NK). We write 

£,cc(MK, NK) for £,(MK, Nt() equipped with the finest locally convex topology 
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such that the inclusion taom o ' "  c°nt(M,N) ~ £cc(MK, NK) is continuous. By a 

similar argument as before £cc(Mg, NK) is Hausdorff and the latter inclusion 

is a topological embedding. Moreover, by Lemma 1.5, £~(MK, NK) is, in both 

variables, a functor on Mod~omp(O)Q. 

Given two K-Banach spaces E1 and E2 we write, following traditional usage, 

£~ (El,  E2) for the vector space £(E1, E2) equipped with the locally convex topol- 

ogy of pointwise convergence. We write £b~(E1, E2) for £(E1, E2) equipped with 

the finest locally convex topology which coincides with the topology of pointwise 

convergence on any equicontinuous subset in £(E1, E2). Corresponding to any 

choice of defining norms II II{ on Ei for i = 1, 2 we have the operator norm II II on 

£(E1, E2). A subset in £(E1, E2) is equicontinuous if and only if it is bounded 

with respect to II II- Hence the topology of £b~(E1, E2) can equivalently be char- 

acterized as being the finest locally convex topology which induces the topology 

of pointwise convergence on the unit ball with respect to II II in £(E1, E2). 

PROPOSITION 1.6: Passing to the transpose induces, for any o-modules M and 
N in Modcflomp(O), an isomorphism of locally convex K-vector spaces 

NK) f-b (N d, Md). 

Proof- It is clear from our preliminary discussion that it suffices to show that 

the o-linear isomorphism 

cont Hom o (M,N) ~+{f • E.(N a,Md) : Ilfll-< 1} 

given by the transpose is topological provided the left, resp. right, hand side 

carries the topology of compact, resp. pointwise convergence. We recall from 

the proof of Theorem 1.2 that M is the unit ball in the dual Banach space 

(Md) r equipped with the weak topology; we also have seen there that the closed 

equicontinuous subsets of the weak dual (Md)ls are compact. By the Banach- 

Steinhaus theorem ([Tie] Thm. 4.3) a subset of (Md)r~ is equicontinuous if and 

only if it is bounded. Clearly any compact subset is bounded. It follows that 

for a closed subset of (Md)ls the following properties are equivalent: Bounded, 

equicontinuous, bounded for the dual Banach norm, compact. This shows that 

the topology of compact convergence on HomCo °nt (M, N) is induced by the strong 

£.((M d~t (Nd)~s). Our assertion therefore will be a consequence of topology on ~ Is, 

the quite general fact that for any two K-Banach spaces E1 and E2 the transpose 

induces a topological isomorphism 

£s(E1,E2) E ' ' Cb(( 2)s, (ELL) 
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where on the right hand side the subscript b indicates, as usual, the strong topol- 

ogy. This is straightforward from the definitions and the fact that 

set of all open ~ set of all closed equicontinuous 
o-submodules in E2 o-submodules in (E2)ls 

L ~ > LP:={~e (E2) ' : l~ ( v ) t< l fo ranyveL}  

is a bijection, which is a direct consequence of the Hahn-Banach theorem. | 

2. Iwasawa modules  and representations 

From now on we let G denote a fixed profinite group. The completed group ring 

of G (over o) is defined to be 

o[[G]] := lim o[G/H] 
+._._ 

HEAf 

where Af = Af(G) denotes the family of all open normal subgroups of G. In a 

natural way o[[G]] is a torsionfree and compact linear-topological o-module; the 

ring multiplication is continuous. The surjections o[G] ~ o[G/H] for H E A f  

induce in the limit a ring homomorphism 

o[C l > o[[a]] 

whose image is dense and which is injective ([Laz] II.2.2.3.1). Being the projective 

limit of the inclusions G/H c_ o[G/H] the composed map 

c ~-~o[C] ~o[[C]] 

is continuous and hence, by compactness, a homeomorphism onto its image. 

Consider now a module M in Modtop(O) and let C(G, M) denote the o-module 

of all continuous maps from G into M. It follows from the above discussion that  

the o-linear map 
Hom~o°nt(o[[G]],M) > C(G,M) 

f , ~  fiG 
is well defined and injective. 

LEMMA 2.1: For any complete o-module M in Modtop (o) the map 

Hom~o°nt(o[[a]l,M) ~'> C(G,M) 

f ' ~ f I G  
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is a bijection. 

Proof: We extend a given ~ • C(G, M) o-linearly to o[G]. By the completeness 

assumption and the density of o[G] in o[[G]] it suffices to show that  this extension, 

which we again denote by ~, is continuous with respect to the topology induced 

by o[[G]]. Fix an open o-submodule L C M. By the uniform continuity of ~ on 

G we find an H • A/such  that  

~(giH) C 9~(gi) + L 

for all gi in a system of representatives for the left cosets of H in G (compare 

[Laz] II.2.2.5). Let a E o be some element such that  a .  ~o(gi) C_ L for all i. The 

o-submodule 

L'  := ( ~ {  E rgg : E rg E ao} 
i gEg~H g 

then is open in o[G] and we have 

~(L') C_ E ( a o .  ~(gi) + L) C_ L. | 
i 

We set K[[G]] := o[[G]]K. This is a locally convex vector space as well as a 

K-algebra  such that  the multiplication is separately continuous. 

COROLLARY 2.2: For any quasi-complete Hausdorff locally convex K-vector 
space V we have the K-linear isomorphism 

£(K[[G]] ,V) ~ C(G, V) 

/ ,  fla. 
Proof: The map is clearly well defined and injective. For the surjectivity let ~ E 

C(G, V). Define M to be the closed o-submodule of V topologically generated 

by ~(G).  This M lies in Modtop(O). Since G is compact M is bounded in V. 

The quasi-completeness of V therefore ensures that  M is complete. Hence we 

have, by Lemma 2.1, a continuous o-linear map f :  o[[G]] ~ M _C V such that  

fiG = ~. The K-linear extension of ] then is the preimage of ~ we were looking 

for. | 

We will apply these results to obtain a G-equivariant version of the duality 

theorem of the previous section. 
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Definition: A K-Banach space representation E of G is a K-Banach space E 

together with a G-action by continuous linear automorphisms such that the map 

G x E ) E describing the action is continuous. 

We define 

BanG(K) := category of all K-Banach representations of G with 
morphisms being all G-equivariant continuous linear maps. 

As a consequence of the Banach-Steinhaus theorem ([Tie I Thm. 4.1.1°), to give a 

K-Banach representation of G on the K-Banach space E is the same as to give a 

continuous homomorphism G ) £:, (E, E). But £:8 (E, E) is quasi-complete and 

Hausdorff ([B-TVS] III.27 Cor. 4 or [NFA] 7.14). Hence such a homomorphism 

extends, by Corollary 2.2, uniquely to a continuous K-linear map K[[G]] 

£8(E, E). By a density argument the latter map is a K-algebra homomorphism. 

This shows that a K-Banach space representation of G on E is the same as a 

separately continuous action K[[G]] x E ~ E of the algebra K[[G]] on E. 

Since the image of o[[G]] in £:8(E, E) under the above homomorphism is com- 

pact and hence (by Banach-Steinhaus) equicontinuous we also have that a K- 

Banach space representation of G on E is the same as a continuous (unital) 

homomorphism of K-algebras K[[G]] ----+ £:bs (E, E). 

Det~nition: An Iwasawa G-module over o is an o-module M in Modcflomp(O) to- 

gether with a continuous (left) action o[[G]] x M ~ M of the compact o-algebra 

o[[G]] on M such that the induced o-action on M is the given o-module structure. 

Let 

ModLmp(o[[G]] ) := category of all Iwasawa G-modules over o 
with morphisms being all continuous o[[G]]- 
module homomorphisms. 

A continuous (unital) homomorphism of K-algebras 

(*) K[[G]] ~ £~c(MK, MK) 

for some MK in Mod~o~p(O)Q induces a continuous map o[[G]] 

Hom~ TM (M, MK) where the right hand side carries the topology of compact con- 

vergence. By [B-GT] Chap. X §3.4 Thin. 3 this is the same as a continuous map 

o[[G]] × M > MK. According to Lemma 1.5(ii) the image of this latter map 
is contained in a - i M  for some 0 # a E o. If N denotes the closed o-submodule 

of MK topologically generated by this image we therefore have NK = MK, and 
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the above homomorphism of K-algebras (,) is the tensor product with K of a 

continuous (unital) homomorphism of o-algebras 

o[[G]] - -+ HomCo°nt (N, N). 

Again by [B-GT] loc. cit. this is the same as a continuous action o[[G]] × N ~ N 

of the compact o-algebra o[[G]] on the o-module N in Mod~omp(O ) which extends 

the o-module structure. 

Hence we see that to give a continuous (unital) homomorphism of K-algebras 

(*) is the same as to give an object in the category Modcflomp(o[[G]])Q. By com- 

bining this discussion with Proposition 1.6 we arrive at the following equivariant 

version of Theorem 1.2. 

THEOREM 2.3: The £unctor 

Mod~omp (o[[G]])Q "> BanG(K) 

M ~ ) M d 

is an anti-equivalence of  categories. 

3. Admiss ible  representat ions 

In order to obtain a reasonable theory of Banach space representations it seems 

necessary to impose certain additional finiteness conditions. The first idea is 

to consider only those K-Banach space representations of G which correspond, 

under the duality of the previous section, to finitely generated K[[G]]-modules. 

As a consequence of the compactness of the ring o[[G]] it will turn out that the 

theory of these representations in fact is completely algebraic in nature. In order 

to obtain an intrinsic characterization we will assume in this section that G is a 

compact p-adic Lie group. We then have: 

- The subfamily of all topologically finitely generated pro-p-groups in Af : 

Af(G) is cofinal ([B-GALl Chap. III §1.1 Prop. 2(iii) and §7.3 and 4 and [Laz] 

III.2.2.6 and III.3.1.3). 

- The ring o[[G]] is left and right noetherian ([Laz] V.2.2.4). 

The ring K[[G]] then is left and right noetherian as well. 

Definition: A K-Banach space representation E of G is called admissible if there 

is a G-invariant bounded open o-submodule L C_ E such that,  for any H C A/', the 

o-submodule ( E / L )  u of H-invariant elements in the quotient E / L  is of cofinite 

type. 
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We recall that  an o-module N is called of cofinite type if its Pontrjagin dual 

Homo(N, K/o)  is a finitely generated o-module. We also point out that an ar- 

bitrary open o-submodule L C E contains the G-invariant open o-submodule 

Ngec gL. 

Let 
Ban~dm(K) := the full subcategory in BanG(K) 

of all admissible representations. 

On the other hand we let MOd~g(o[[G]]), resp. Modfg(K[[G]]), denote the category 

of all finitely generated and o-torsionfree (left unital) o[[G]])-modules, resp. of all 

finitely generated (left unital) K[[G]])-modules. It is clear that 

Mod~g(o[[G]])Q = Modfg(g[[G]]). 

Since K[[G]] is noetherian the category Modfg(g[[G]]) is abelian. 

PROPOSITION 3.1: (i) A finitely generated o[[G]]-module M carries a 

unique Hausdorff topology - -  its canonical topology - -  such that the action 

o[[G]] x M ---4 M is continuous; 

(ii) any submodule of a finitely generated o[[G]]-module is closed in the 

canonical topology; 

(iii) any o[[G]]-linear map between two finitely generated o[[G]]-modules is 

continuous for the canonical topologies. 

Proof: Since o[[G]] is compact and noetherian this is an easy exercise. But we 

point out that the assertions hold for any compact ring by [AU] Cor. 1.10. I 

It follows that equipping a module in Modf~g(o[[G]]) with its canonical topology 

induces a fully faithful embedding Modfflg(o[[G]]) ---+ Mod~omp(o[[G]] ). This then 

in turn induces a fully faithful embedding Modeg(g[[G]]) ~ Modc~omp(o[[G]])Q. 
In other words we can and will view Modfg(K[[G]]) as a full subcategory of 

Mod~omp (o[[G]])Q. 
For each H • 2( let Ig  denote the kernel of the projection map o[[G]] 

o[G/H]. This is a family of 2-sided ideals in o[[G]] which converges to zero. As 

a left (or right) ideal IH is generated by the elements h - 1 for h • H. For the 

sake of completeness we include a proof of the following well known fact. 

LEMMA 3.2: Let H • Af be a pro-p-group; then the ideal powers I~,  for n C N, 

converge to zero. 

Proof: We may assume that G is finite. Let 7r denote a prime element in o and 

k := o/Tro the residue field of o. By Clifford's theorem ([CR] (49.2)) and [Ser] 
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IX§I the ideal ker(k[G] ~ k[G/H]) is contained in the radical of the ring k[G]. 
Since this radical is nilpotent we have I'ff C_ 1to[G] for some m E N. | 

LEMMA 3.3: Let H e Y be a pro-p-group; a module M in Modcflomp(o[[G]]) is 

finitely generated over o[[G]] if and only if M / I H M  is finitely generated over o. 

Proo~ This is the well known Nakayama lemma; compare [BH] for a thorough 

discussion. | 

LEMMA 3.4: A K-Banach space representation E of G is admissible if and only 

if the dual space E' is finitely generated over K[[G]]. 

Proof'. Let us first assume that  E '  is finitely generated over K[[G]]. There 

is then a finitely generated o[[G]]-submodule M C_ E' such that  E '  = MK. 

After equipping M with its canonical topology we have E = M d. Moreover 
eont L := Hom o (M, o) is a G-invariant bounded open o-submodule in E. It  follows 

from Remark 1.1 that  E / L  cont = Hom o (M, g /o )  (where g / o  carries the discrete 

topology) and hence that  

(*) (E/L)  H = HomCo°nt(M, g /o )  H = H o m  c°nt (M/IHM, K/o) 

for any H CAf. Hence (ELL) H is of cofinite type. 

On the other hand, let now H C Af be a pro-p-group and L C_ E be a G- 

invariant bounded open o-submodule such that  (ELL) H is of cofinite type. In 

the proof of Proposition 1.6 we had recalled that  the G-invariant o-submodule 

M := L p in E~8 is compact.  Since L is bounded we have E ~ = MK. So the 
H cont identities (*) apply correspondingly and we obtain that  om o (M/IHM, K/o) 

is of cofinite type. But since IH is finitely generated as a right ideal the submodule 

IHM is the image of finitely many copies M × - .- x M under a continuous map 

and hence is closed in M. By Pontrjagin duality and the Nakayama lemma 

over o applied to the compact o-module M / I H M  the latter therefore is finitely 

generated over o. Lemma 3.3 then implies that  M is finitely generated over o[[G]] 

and hence that  E '  is finitely generated over K[[G]]. | 

The above proof shows that  the defining condition for admissibility only needs 

to be tested for a single pro-p-group H E Af. On the other hand, assume E to be 

an admissible representation of G and let L C_ E be as in the above definition. 

Consider an H EAf  and an arbitrary G-invariant open o-submodule Lo C_ E.  We 

claim that  (E/Lo) g is of cofinite type. Replacing L by a L  for some appropriate 

0 7~ a E o w e  may assume that  L C Lo. As we have seen in the above proof 
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M := L p is a finitely generated o[[G]]-module. Since o[[G]] is noetherian the 

o[[G]]-submodule Mo := LPo of M also is finitely generated. As we have seen this 

implies that  (E/Lo)  H is of cofinite type. 

THEOREM 3.5: The functor 

Modfg (K[[G]]) - -~  

M t .  

is an anti-equivalence of categories. 

Ban~dm(K) 

M d 

Proof: Since Modfg(K[[G]]) is a full subcategory of Modctomp(o[[G]])Q by 

Proposition 3.1 this follows from Theorem 2.3 and Lemma 3.4. | 

As an immediate consequence we obtain that the category Ban~dm(K) is 

abelian. 

COROLLARY 3.6: The functor E ~ ~, E t induces a bijection 

set of  isomorphism classes 
of topologically irreducible ~ > set of isomorphism classes 
admissible K-Banach space of simple K[[G]]-modules. 

representations of G 

Proof." For any proper closed G-invariant subspaee {0} ¢ Eo c E we have, by 
# 

Hahn-Banach, the exact sequence of dual vector spaces 0 -+ (E/Eo)  ~ -+ E ~ 

Ero -+ 0 in which all three terms are nonzero. If the K[[G]]-module E '  is simple the 

representation E therefore must be topologically irreducible. On the other hand, 

write E '  = MK for some module M in Modfflg(o[[G]]) and let {0} ~ V C MK be a 

proper K[[G]]-submodule. By Proposition 3.1(ii) the nonzero o[[G]]-submodule 

N := V N M  is closed in M and hence lies in Mod~flomp(o[[G]]). Since the quotient 

(M/N)cot = M / N  is nonzero as well it follows from Proposition 1.3 that the 

kernel of the dual map E = M d ~, N d is a nonzero proper closed G-invariant 

subspace of E.  | 

One of the typical pathologies of general Banach space representations of G is 

avoided by the admissibility requirement as the following result shows. 

COROLLARY 3.7: Any nonzero G-equivariant continuous linear map between two 

topologically irreducible admissible K-Banach space representations of G is an 

isomorphism. 

Proof'. This is immediate from Theorem 3.5 and Cororollary 3.6. | 
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The simplest group to which the results of this section apply is the group 

G : 7]~p of p-adic integers. As is shown in [Dial already this group has an 

extreme wealth of topologically irreducible K-Banach space representations. On 

the other hand, for a commutative group all "reasonable" topologically irreducible 

K-Banach space representations should be finite dimensional. This is achieved by 

the admissibility requirement. The ring o[[Zp]] is the ring considered in classical 

Iwasawa theory; it is isomorphic to the power series ring o[[T]] in one variable 

over o ([Was] 7.1). It follows ([Was] §13.2) that K[[G]] is a principal ideal domain 

in which every maximal ideal is of finite codimension. 

Remark: In [ST2] we have introduced the notion of an analytic module over 

the algebra D(G, K) of K-valued distributions on G and we have advocated the 

conjecture that any D(G,K)-module of finite presentation is analytic. Since 

K[[G]] is naturally a subalgebra of D(G, K) base change would (assuming this 

conjecture) induce a functor from Modfg(K[[G]]) into the category of analytic 

D(G, K)-modules. Since the latter are dual to a certain class of locally analytic 

G-representations this functor should correspond to the passage from a K-Banach 

space representation to the subspace of locally analytic vectors. The next basic 

question in this context then would be whether the ring extension K[[G]] ) 

D(G, K) is faithfully flat. This is in the spirit of whether every admissible K- 

Banach space representation of G contains a locally analytic vector. 

4 .  T h e  g r o u p  G : GL2(Zp) 

In this section we will analyze a certain infinite series of Iwasawa modules for the 

group G :-- GL2(Zp). Let B C_ G denote the Iwahori subgroup of all matrices 

which are lower triangular modulo p. In B we consider the subgroups P, P - ,  

and T of lower triangular, upper triangular, and diagonal matrices, respectively. 

We also need the subgroups U and U -  of unipotent matrices in P and P - ,  

respectively. We fix a continuous character X: T - -~  o × . By Corollary 2.2 it 

extends uniquely to a continuous homomorphism of K-algebras X: K[[T]] > K. 

The inclusions P C_ B C G, resp. the projection P ) T, induce continuous 

algebra monomorphisms g[[P]]  C_ K[[B]] C_ K[[G]], resp. a continuous algebra 

epimorphism K[[P]] - -+  K[[T]]. We denote by g (x) tile one dimensional g[[P]]- 

module given by the composed homomorphism K[[P]] ~ K[[T]] X)g .  Our 

aim is to study the finitely generated K[[G]]- and K[[B]]-modules 

M x :=K[[G]] ® K (x) and N x :=K[[B]]  ® g (x), 
K[[P]] K[[P]] 
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respectively. In a similar way (and by a slight abuse of notation) we have the 

finitely generated K[[B]]-module 

N~- := K[[B]] 

Put 

® K (x). 
K[[P-]] 

(°o) w : =  1 C G and wx(t) := X(w-l tw) .  

As a consequence of the Bruhat decomposition G -- B O B w P  the module Mx, as 

a g[[B]]-module, decomposes into 

M x ~ N x + N~ x- 

For later use we note that this decomposition is not K[[G]]-equivariant since 

obviously w N  x C_ N~x. 
The module theoretic properties of the series of modules N X and M x are 

governed by one numerical invariant c(x) E K of the character X which is defined 

by the expansion 

x ( ( a 0 1  ~ ) ) =  exp(c(x) log(a)) 

for a sufficiently close to 1 (the existence follows from the topological cyclicity of 

the group 1 + pZp). 
In order to investigate the module N x we use the Iwahori decomposition, which 

says that  multiplication induces a homeomorphism U-  × P __7_+ B. It implies 

that o[[B]] = o[[U-]]@o[[P]] where ~ is the completed tensor product for linear- 

topological o-modules ([SGA3] Exp. VII B (0.3)). The inclusion K[[U-]] C_ K[[B]] 

therefore induces an isomorphism of K[[U-]]-modules 

(,) K[[U-]] ~-~ N x. 

In particular, any K[[B]]-submodule of N x corresponds to a certain ideal in the 

ring K[[U-]]. Since the matrix 

 (10 
is a topological generator of U- ,  the ring K[[U-]] is the ring of formal power 

series in 3' - 1 whose coefficients are bounded. As already recalled earlier this 

is a principal ideal domain and each ideal is generated by a polynomial in 3" - 1 

with all its zeros lying in the open unit disk ([Was] §7.1). 
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PROPOSITION 4.1: I f  c(x) ¢ No then N x is a simple K[[B]]-module. 

Proo~ Let N C_ N x be a nonzero K[[B]l-submodule, I _C K[[U-]]  be the ideal 

which corresponds to N under the above isomorphism (*), and F I ( ' y -  1) be a 

polynomial which generates I and has all its zeros in the open unit disk. The 

action of the element 

(0 0) ta := 1 E T 

on N x is given on the left hand side of ( ,)  by 

F ( 7 - 1 ) ,  ) x ( t ~ ) . F ( ~ / ~ - 1 )  

for any bounded power series F(x).  Using the bounded power series 

w a ( x ) : - - ( x + l ) a - l = E ( : ) x n  
nEN 

this can be rewritten as 

F ( ~ / -  1), ~ x(ta)" F(w~(~/-  1)). 

Since this action preserves the ideal I it follows that  with z every wa(z), for 

a C ZB ×, is a zero of the polynomial F1(x). This is only possible if z + 1 is 

a pm-th root of unity for some m E N. We therefore see that  there are natural  

numbers ko and l such that  Fi(x) divides Wpko (x) ~. In particular, for any natural 

number k _> ko, the polynomial O.)pk (X) £ lies in I .  We now look at the action of 

(101) the element u := 1 on N x. It  is straightforward to check that  on the left 

hand side of (*) we have 

/ (1 up) -1 + 0 \ 
u("Y n) = X ( i  i )  .,,/n/(l+np) for any n C No. 

0 1 + n p  \ I 

It  follows that,  for k > ko, with Wpk (x) l also 

e ( ~ )  ( ( 1 + j p k + l )  -1 
u((~/pk - 1) ~) = E ( - 1 )  j X( 0 

j=0 

0 )  1 + jpk+l ) " ~/jPk/(l'~-jpk-I-1) 

lies in the ideal I .  If  Wpk (x) t and its image under u, for some k >_ ko, have no 

zero in common, then I has to be the unit ideal which means that  N = N x. In 
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the opposite case we obtain 

l 0_z( 1,, (5) 0 )  
0 1 + jpk+l ) 

j=0 
l 

j = 0  

for any sufficiently big k >__ ko. This implies that  the function 

E ( - 1 ) J ( ~ ) e x p ( c ( x ) l o g ( l + j y ) )  
j=O 

of the variable y which is analytic in a sufficiently small open disk around zero 

has infinitely many zeros and hence vanishes identically. In order to prove our 

assertion we therefore have to show that this is only possible if c(x) E No. But 

if c(X) f~ No, then evaluating all higher derivatives of the above function in zero 

would lead to the identities 

g 

j = l  

This is clearly impossible. | 

The proof of the following companion result is completely analogous and is 

therefore omitted. 

PROPOSITION 4.2: I f  c(x) ~ -No then N x is a simple K[[B]]-module. 

L E M M A  4.3: HomK[[B]](Nx,,N~) = HomK[[B]I(N~,Nx,) = 0 for any two 
continuous characters X and X~: T ~ o x . 

Proof: We compute 

HomK[[B]](Nx', N x )  = Homg[[p1]( K (x') , Y 2)  

C_ HomK[[U]] (g ,  N~-) = HOmK[[V]] (K, K[[U]]) = 0. 

The other vanishing follows by a completely symmetric computation. 

THEOREM 4.4: I f  c(x ) • No then M x is a simple K[[G]]-module. 

Proof: By our above results the decomposition M x ~ N x G Nj,  x is a K[[B]]- 

invariant decomposition into two nonisomorphic simple K[[B]]-modules. But as 
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noted already at the beginning it is not K[[G]]-invariant. Hence M x must be a 

simple K[[G]]-module. I 

The simple K[[G]]-modules which we have exhibited above are all non- 

isomorphic as the following result implies. 

PROPOSITION 4.5: We have Homg[[a]](Mx,, Mx) = 0 for any two continuous 

characters X ~ X': T ~ o × . 

Proof: Because of Lemma 4.3 it is sufficient to show that  HomK[[B]I(Nx, , Nx) = 

HomK[[B]I(N~, N x )  = 0. Since the arguments are completely symmetric we only 

discuss the vanishing of the first space. Making, as usual, the identification (*) 

we have 

nomK[[s]]( Nx,, Nx) = HomK[[p]]( g (x'), Nx) 

= ( F  • g [ [Y- ] ]  : g(F) = x ' (g)"  F for any g 6 P}. 

Assume now that  there is a nonzero F in this latter space. Since any central 
/ 

( b  0 )  in T acts by multiplication with x ( g ) o n  N x it follows 
\ 

matrix g = 0 b 
\ / 

immediately that  X and X' have to coincide on those matrices. On the other 

hand, the action of an element t~ • T as described in the proof of Proposition 

4.1 gives rise to the equation 

x( t~) .  F((1 + x) ~ - 1) = x ' ( t~)" F(x)  

between bounded power series over K.  It  was shown in the proof of [ST1] Prop. 

5.5 that  this implies c(x') - c(x) • 2N0 and F(x)  = [log(1 + x)] (c(x')-c(x))/2. 

Since the power series log(1 + x) is not bounded we in fact obtain c(x' ) = c(x ) 

and F(x)  = 1. Going back to the above equation it follows that  x(t~) = x'(t~). 

Hence we have shown that  the existence of a nonzero F forces the characters X 

and X' to coincide. I 

To finish we briefly explain the dual picture. In the Banach space C(G, K)  of 

all K-valued continuous functions on G we have the closed subspace IndpG(X) := 

{ f  • C ( G , K )  : f (gp)  = X(p-1) f (g)  for any g • G,p  • P}.  
Via the left translation action this is a K-Banach space representation of G (a 

"principal series" representation). By the interpretation of K[[G]] as the space 

of bounded K-valued measures on G we have that  K[[G]] is the continuous dual 

of C(G, K) .  It  easily follows that  IndGp(x)' = Mx-1. 

In particular, by Lemma 3.4, Ind~ (X) is an admissible G-representation. As a 

consequence of Corollary 3.6 and Theorem 4.4 we see that  IndGp (X) is topologically 
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irreducible if c(x) ¢ -N0. This latter fact (for a slightly restricted class of X) 

was proved in a direct and completely different way in [Tru]. 
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