Electronic Supplementary Information for:

Banana-shaped biphotonic quadrupolar chromophores: from fluorophores to biphotonic photosensitizers

Cédric Rouxel,^{*a,b*} Marina Charlot,^{*a,b*} Youssef Mir,^{*a,b*} Céline Frochot,^{*c*} Olivier Mongin,^{*a,b*} Mireille Blanchard-Desce^{*a,b*}

^a CNRS, Chimie et Photonique Moléculaires (UMR 6510), 263 avenue du Général Leclerc, 35042 Rennes, France,

^b Université de Rennes 1, UMR 6510, Campus de Beaulieu, Bâtiment 10A, Case 1003, 35042 Rennes, France,

^c LRGP UPR 3349, Nancy-Université, CNRS, 1 rue Grandville, BP 20451, F-54001 Nancy, France

Table 1S. Photophysical properties of compound Q1 in different solvents.

Solvent	λ_{abs} (nm)	$\lambda_{\rm em} ({\rm nm})$	Stokes shift (cm ⁻¹)	${I\!\!\!/}_{ m f}{}^a$	τ (ns)	k_r^{b} (10 ⁹ s ⁻¹)	k_{nr}^{b} (10 ⁹ s ⁻¹)	τ_0^c (ns)	r ^d
Toluene	386.5	431	2670	0.82	0.75	1.09	0.24	0.91	0.24
$\mathrm{Bu}_{2}\mathrm{O}$	383	427	2690	0.86	0.75	1.16	0.19	0.86	0.25
CHCl ₃	389.5	465	4170	0.84	1.11	0.76	0.14	1.31	0.21
AcOEt	388	488	5280	0.85	1.5	0.57	0.10	1.77	0.16
THF	387	496.5	5700	0.75	1.77	0.42	0.14	2.36	0.15
DCM	391	495.5	5395	0.87	1.72	0.50	0.08	1.99	0.14
Acetone	390	549.5	7445	0.44	1.82	0.24	0.31	4.15	0.12

^{*a*} Fluorescence quantum yield determined relative to quinine in 0.5 M H₂SO₄. ^{*b*} Radiative (k_r) and non-radiative (k_{nr}) decay rates. ^{*c*} Radiative lifetime. ^{*d*} Fluorescence anisotropy.

Table 2S. Photophysical properties of compound Q2 in different solvents.

Solvent	λ_{abs} (nm)	$\lambda_{\mathrm{em}}\left(\mathrm{nm} ight)$	Stokes shift (cm ⁻¹)	${{ { { { \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	τ (ns)	$\frac{k_r}{(10^9 \text{ s}^{-1})}$	$k_{nr}^{\ b}$ (10 ⁹ s ⁻¹)	$\tau_0^{\ c}$ (ns)	r ^d
Toluene	410.5	461.5	2690	0.61	0.97	0.63	0.40	1.59	0.23
$\mathrm{Bu}_{2}\mathrm{O}$	408.5	457.5	2620	0.58	0.78	0.75	0.55	1.34	0.25
CHCl ₃	414	496.5	4015	0.51	0.74	0.69	0.66	1.44	0.22
AcOEt	407.5	512	5010	0.65	1.12	0.58	0.31	1.72	0.18
THF	412	522.5	5135	0.58	1.26	0.46	0.33	2.16	0.18
DCM	420	525.5	4780	0.61	1.26	0.48	0.31	2.08	0.17
Acetone	414	565.5	6470	0.37	1.13	0.33	0.56	3.04	0.16

^{*a*} Fluorescence quantum yield determined relative to quinine in 0.5 M H₂SO₄. ^{*b*} Radiative (k_r) and non-radiative (k_{nr}) decay rates. ^{*c*} Radiative lifetime. ^{*d*} Fluorescence anisotropy.

Solvent	λ_{abs} (nm)	$\lambda_{\mathrm{em}} \left(\mathrm{nm} \right)$	Stokes shift (cm ⁻¹)	${{I\!\!\!/}_{ m f}}^a$	τ (ns)	$\frac{k_r}{(10^9 s^{-1})}$	$\frac{k_{nr}}{(10^9 s^{-1})}$	τ_o^c (ns)	r ^d
Toluene	407	461.5	2900	0.74	0.73	1.01	0.36	0.99	0.19
Bu ₂ O	403	461.5	3145	0.53	0.87	0.61	0.54	1.64	0.21
CHCl ₃	406	489.5	4200	0.63	0.97	0.65	0.38	1.54	0.18
AcOEt	405.5	513	5170	0.73	1.24	0.59	0.22	1.70	0.14
THF	411	518.5	5045	0.61	1.55	0.39	0.25	2.54	0.14
DCM	407	515.5	5170	0.68	1.31	0.52	0.24	1.93	0.13
Acetone	409	567.5	6830	0.29	1.03	0.28	0.69	3.55	0.14
CH ₃ CN	411.5	572	6820	0.052	0.56	0.09	1.69	10.71	0.23
DMSO	416	583.5	6900	0.045	0.44	0.10	2.17	9.78	0.32

^{*a*} Fluorescence quantum yield determined relative to quinine in 0.5 M H₂SO₄. ^{*b*} Radiative (k_r) and non-radiative (k_{nr}) decay rates. ^{*c*} Radiative lifetime. ^{*d*} Fluorescence anisotropy.

Figure 1S. Normalized emission spectra of fluorophore Q1 in solvents of increasing polarity.

Figure 2S. Perrin plot from the variation of the fluorescence anisotropy of Q1 in a series of solvents of different viscosity

Figure 3S. Normalized emission spectra of fluorophore Q2 in solvents of increasing polarity.

Figure 4S. Perrin plot from the variation of the fluorescence anisotropy of Q2 in a series of solvents of different viscosity

Figure 5S. Normalized emission spectra of fluorophore Q'2 solvents of increasing polarity.

Figure 6S. Perrin plot from the variation of the fluorescence anisotropy of Q2 in a series of solvents of different viscosity