Bananas: multi-edge graphs and their Feynman integrals

Dirk Kreimer ${ }^{1}$ (D)

Received: 20 January 2023 / Revised: 2 March 2023 / Accepted: 13 March 2023 /
Published online: 1 April 2023
© The Author(s) 2023

Abstract

We consider multi-edge or banana graphs b_{n} on n internal edges e_{i} with different masses m_{i}. We focus on the cut banana graphs $\mathfrak{J}\left(\Phi_{R}\left(b_{n}\right)\right)$ from which the full result $\Phi_{R}\left(b_{n}\right)$ can be derived through dispersion. We give a recursive definition of $\Im\left(\Phi_{R}\left(b_{n}\right)\right)$ through iterated integrals. We discuss the structure of this iterated integral in detail. A discussion of accompanying differential equations, of monodromy and of a basis of master integrals is included.

Keywords Feynman integrals • Analytic structure • Dispersion relations
Mathematics Subject Classification $81 \mathrm{~T} 15 \cdot 81 \mathrm{Q} 30 \cdot 57 \mathrm{~T} 05$

1 Introduction

We define a banana graph b_{n} by two vertices v_{1}, v_{2} connected by n edges forming a multi-edge. ${ }^{1}$ Furthermore, v_{1}, v_{2} are both $n+1$ valent vertices so that b_{n} has an external edge at each vertex.

1.1 General considerations

We study associated banana integrals $\Phi_{R}^{D}\left(b_{n}\right)$. The case $n=3$ has been intensively studied and initiated a detailed analysis of elliptic integrals in Feynman amplitudes, see, for example, [1-11]. Evaluation at masses $m_{i}^{2} \in\{0,1\} \ni k_{n}^{2}$ was recognized to provide a rich arena for an analysis of periods in Feynman diagrams [12] including the appearance of elliptic trilogarithms at sixth root of unity in the evaluation of b_{4} [8].

Let us pause and put the problem into context.

[^0]
1.1.1 Recursion and splitting in phase-space integrals

The imaginary part $\mathfrak{F}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$ of $\Phi_{R}^{D}\left(b_{n}\right)$ has been a subject of interest for almost seventy years at least [13-15]. This imaginary part has the interpretation of a phase space integral. Our attempt below to express it recursively by an iterated integral can be traced back to this early work. In fact, computing $\mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$ by identifying an imaginary part $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{n-1}\right)\right)$ as a subintegral amounts to a split in the phase-space integral and this recurses over n.

1.1.2 Banana integrals and monodromy

In the more recent literature, the graphs b_{n} were studied in an attempt to interpret the monodromies of the associated functions depending on momenta and masses $\Phi_{R}^{D}\left(b_{n}\right)\left(s, s_{0},\left\{m_{i}^{2}\right\}\right)$ as a generalization of the situation familiar from the study of polylogarithms. This role of elliptic functions was prominent already in the historical work cited in Sect. 1.1.1 and continued to give insights into the structure of phase space systematically [5, 9]. Recently, the aim shifted to explore it in the spirit of modern mathematics. This brought concepts developed in algebraic geometry-motives, Hodge theory, co-actions, symbols and such-to the forefront [7, 8, 11, 16-19]. For us, the focus is less on elliptic integrals and elliptic polylogarithms prominent in recent work. Rather, we focus on the recursive structure of $\mathfrak{I}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$ as it has a lot to offer still for mathematical analysis.

1.2 Iterated integral structure for $\boldsymbol{b}_{\boldsymbol{n}}$

Our task is to find iterated integral representations for $\mathfrak{\lessgtr}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$ which give insight into their structure for all n. We will use $\mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{2}\right)\right)$ as a seed for the iteration. $\mathfrak{I}\left(\Phi_{R}^{D}\left(b_{3}\right)\right)$ which has $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{2}\right)\right)$ as a subintegral then gives a complete elliptic integral as expected, see Sect.2.3. Already, the computation of b_{4} indicates more subtle functions to appear as Sect. 2.5 and Eq. (2.11) demonstrate. Nevertheless, it turns out that such functions are very nicely structured as we explore in Sect.2.6.

We want to understand the function $\Phi_{R}^{D}\left(b_{n}\right)$ obtained from applying renormalized Feynman rules Φ_{R}^{D} in D dimensions

$$
\Phi_{R}^{D}\left(b_{n}\right)=S_{R}^{\Phi} \star \Phi^{D}\left(b_{n}\right)\left(s, s_{0}\right),
$$

to the graph b_{n}.
We will study in particular the imaginary part $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$ having in mind that $\Phi_{R}^{D}\left(b_{n}\right)$ can be obtained from $\mathfrak{\lessgtr}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$ by a dispersion integral.

We will mostly work with a kinematic renormalization scheme in which tadpole integrals evaluate to zero. This is particularly well suited for the use of dispersion. Indeed, $\mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$ is free of short-distance singularities as the n constraints putting n internal propagators on-shell fix all non-compact integrations.

This reduces renormalization of b_{n} to a mere use of sufficiently subtracted dispersion integrals. Correspondingly, in kinematic renormalization we can work in a Hopf
algebra $H_{R}=H / I_{\text {tad }}$ of renormalization which divides by the ideal $I_{\text {tad }}$ spanned by tadpole integrals rendering the graphs b_{n} primitive:

$$
\Delta_{H_{R}}\left(b_{n}\right)=b_{n} \otimes \mathbb{I}+\mathbb{I} \otimes b_{n}
$$

Therefore,

$$
S_{R}^{\Phi^{D}} \star \Phi^{D}\left(b_{n}\right)=\Phi^{D}\left(b_{n}\right)(s)-T^{(j)} \Phi^{D}\left(b_{n}\right)\left(s, s_{0}\right)
$$

Φ^{D} are the unrenormalized Feynman rules in dimensional regularization and $T^{(j)}$ is a suitable Taylor operator.

Nevertheless, there is no necessity to regulate Feynman integrals in our approach as we can subtract on the level of integrands. Indeed, $T^{(j)}$ can be chosen to subtract in the integrand. We implement it in Eq. (1.1) using the dispersion integral. Our conventions for Feynman rules are in "App. A".

Our interest lies in a compact formula for

$$
\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)\left(s,\left\{m_{i}^{2}\right\}\right)=\int_{\mathbb{M}_{n}} I_{\mathrm{cut}}\left(b_{n}\right),
$$

with $I_{\mathrm{cut}}\left(b_{n}\right)$ given in Eq. (A.1). We will succeed by giving it as an iterated integral in Eq. (2.14) which is part of Thm. (2.2).

Results for $\Phi_{R}^{D}\left(b_{n}\right)\left(s, s_{0},\left\{m_{i}^{2}\right\}\right)$ then follow by (subtracted at s_{0}) dispersion which implements $T^{\left(\frac{D}{2}-1\right)(n-1)}$:

$$
\begin{equation*}
\Phi_{R}^{D}\left(b_{n}\right)\left(s, s_{0},\left\{m_{i}^{2}\right\}\right)=\frac{\left(s-s_{0}\right)^{\left(\frac{D}{2}-1\right)(n-1)}}{\pi} \int_{\left(\sum_{j=1}^{n} m_{j}\right)^{2}}^{\infty} \frac{\int_{\mathbb{M}_{n}} I_{\operatorname{cut}}\left(b_{n}\right)(x)}{(x-s)\left(x-s_{0}\right)^{\left(\frac{D}{2}-1\right)(n-1)}} \mathrm{d} x . \tag{1.1}
\end{equation*}
$$

Note that in the Taylor expansion of $\Phi_{R}^{D}\left(b_{n}\right)\left(s, s_{0},\left\{m_{i}^{2}\right\}\right)$ around $s=s_{0}$, the first $\left(\frac{D}{2}-1\right)(n-1)$ coefficients vanish. These are our kinematic renormalization conditions.

For example, $\Phi_{R}^{4}\left(b_{2}\right)\left(s_{0}, s_{0}\right)=0$. On the other hand, $\Phi_{R}^{2}\left(b_{2}\right)\left(s, s_{0}\right)=\Phi_{R}^{2}\left(b_{2}\right)(s)$ as it does not need subtraction at s_{0} as it is ultraviolet convergent. So, s_{0} disappears from its definition and the dispersion integral is unsubtracted as $\left(\frac{D}{2}-1\right)(n-1)=0$ and for $D=6, \Phi_{R}^{6}\left(b_{2}\right)\left(s_{0}, s_{0}\right)=0=\partial_{s} \Phi_{R}^{6}\left(b_{2}\right)\left(s, s_{0}\right)_{\mid s=s_{0}}$.

1.3 Normal and pseudo-thresholds for $\boldsymbol{b}_{\boldsymbol{n}}$

To understand possible choices for s_{0}, define a set thresh of 2^{n-1} real numbers by

$$
\text { thresh }=\left\{\left(\pm m_{1} \pm \cdots \pm m_{n}\right)^{2}\right\}
$$

and set

$$
s_{\min }:=\min \{x \in \text { thresh }\} .
$$

Note that the maximum is achieved by $s_{\text {normal }}:=\left(\sum_{j=1}^{n} m_{j}\right)^{2}$. Our requirement for s_{0} is

$$
\begin{equation*}
s_{0} \lesseqgtr s_{\text {min }} . \tag{1.2}
\end{equation*}
$$

This ensures that the renormalization at s_{0} does not produce contributions to the imaginary part of the renormalized $\Phi_{R}^{D}\left(b_{n}\right)\left(s, s_{0}\right)$ as $\Im\left(\Phi^{D}\left(b_{n}\right)\left(s_{0}\right)\right)=0$.

We call $s_{\text {normal }}$ normal threshold and the $2^{-1}-1$ other elements of thresh pseudothresholds.

Also we call $m_{\text {normal }}^{n}:=\sum_{j=1}^{n} m_{j}$ the normal mass of b_{n} and any of the other $2^{n-1}-1$ numbers $\left| \pm m_{1} \cdots \pm m_{n}\right|$ a pseudo-mass of b_{n}. For any ordering o of the edges of b_{n}, we get a flag $b_{2} \subset \cdots b_{n-1} \subset b_{n}$ such that

$$
m_{\text {normal }}^{j+1}=m_{\text {normal }}^{j}+m_{j+1}, j \leq n-1
$$

On the other hand, for any chosen fixed pseudo-mass there exists at least one ordering o of edges of b_{n} for which the pseudo-mass is $m_{1}-m_{2} \pm \cdots$.

Remark 1.1 By the Coleman-Norton theorem [20] (or by an analysis of the second Symanzik polynomial $\varphi\left(b_{n}\right)$, see Eq. (D.1) in "App. D"), the physical threshold of b_{n} is when the energy \sqrt{s} of the incoming momenta $k_{n}=\left(k_{n ; 0}, \overrightarrow{0}\right)^{T}$ equals the normal mass

$$
\sqrt{s}=m_{\text {normal }}^{n} .
$$

The imaginary part $\mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$ is then given by the monodromy associated with that threshold and is supported at $s \geq m_{\text {normal }}^{n}$.

In this paper, we are mainly interested in the principal sheet monodromy of b_{n} and hence in the monodromy at $\sqrt{s}=m_{\text {normal }}^{n}$ which gives $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$. Pseudo-masses are needed to understand monodromy from pseudo-thresholds off the principal sheet.

They can always be expressed as iterated integrals starting possibly from a pseudothreshold of $\Phi_{R}^{D}\left(b_{2}\right)$. Such non-principal sheet monodromies need to be studied to understand the mixed Hodge theory of $\Phi_{R}^{D}\left(b_{n}\right)$ as a multi-valued function in future work. See [21] for some preliminary considerations.

In preparation to such future work, we note that iterated integral representations can also be obtained for pseudo-thresholds in quite the same manner as in Eq. (2.14) by changing signs of masses (not mass squares) in Eq. (2.13) as given in Eq. (D.2) and correspondingly in the boundaries of the dispersion integral. This dispersion will then reconstruct variations on non-principal sheets. We collect these integral representations in "App. D" (Fig. 1).

Fig. 1 Banana graphs b_{n} on $\left|b_{n}\right|=(n-1)$ loops. We indicate momenta at internal edges $e_{1}, \ldots e_{n}$ labelling from top to bottom. We assign mass square m_{i}^{2} to edge e_{i}. A positive infinitesimal imaginary part is understood in each propagator. Both vertices have an external edge with incoming momenta k_{n} and $-k_{n}$. Note that edges $e_{1}, \ldots, e_{j}, n>j \geq 2$ constitute a banana graph b_{j} with external momentum k_{j} flowing through. It is a $(j-1)$-loop subgraph of b_{n}. In particular, we have a sequence $b_{2} \subset b_{3} \subset \cdots \subset b_{n}$ of graphs which gives rise to an iterated integral

Fig. 2 The bubble b_{2}. It gives rise to a function $\Phi_{R}^{D}\left(b_{2}\right)\left(k_{2}^{2}, m_{1}^{2}, m_{2}^{2}\right)$. We compute its imaginary part $\mathfrak{F}\left(\Phi_{R}^{D}\left(b_{2}\right)\left(k_{2}^{2}, m_{1}^{2}, m_{2}^{2}\right)\right)$ below. It starts an induction leading to the desired iterated integral for $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$. The edges e_{1}, e_{2} are given in red or blue. Shrinking one of them gives a tadpole integral $\Phi_{R}^{D}\left(t_{1}\right)\left(m_{1}^{2}\right)(\mathrm{red})$ or $\Phi_{R}^{D}\left(t_{2}\right)\left(m_{2}^{2}\right)$ (blue) (colour figure online)

2 Banana integrals $\mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$

2.1 Computing b_{2}

We start with the two-edge banana b_{2}, a bubble on two edges with two different internal masses m_{1}, m_{2}, indicated by two different colours in Fig. 2.

The incoming external momenta at the two vertices of b_{2} are $k_{2},-k_{2}$ which can be regarded as momenta assigned to leaves at the two three-valent vertices.

We discuss the computation of b_{2} in detail as it gives a start of an induction which leads to the computation of b_{n}. The underlying recursion goes long way back as discussed in Se. (1.1.1) above, see [15] in particular. More precisely, it allows to express $\mathfrak{J}\left(\Phi_{R}^{D}\right)\left(b_{n}\right)$ as an iterated integral with the integral $\mathfrak{F}\left(\Phi_{R}^{D}\right)\left(b_{2}\right)$ as the start so that b_{n} is obtained as a $(n-2)$-fold iterated one-dimensional integral.

For the Feynman integral $\Phi_{R}^{D}\left(b_{2}\right)$, we implement a kinematic renormalization scheme by subtraction at $s_{0} \equiv \mu^{2} \leq\left(m_{1}-m_{2}\right)^{2}$ in accordance with Eq. (1.2). This implies that the subtracted terms do not have an imginary part, as μ^{2} is below the pseudo-threshold $\left(m_{1}-m_{2}\right)^{2}$. For example, for $D=4$

$$
\Phi_{R}^{4}\left(b_{2}\right)\left(s, s_{0}, m_{1}^{2}, m_{2}^{2}\right)=\int d^{D} k_{1}(\underbrace{\frac{1}{k_{1}^{2}-m_{1}^{2}}}_{Q_{1}} \underbrace{\frac{1}{\left(k_{2}-k_{1}\right)^{2}-m_{2}^{2}}}_{Q_{2}}-\left\{k_{2}^{2} \rightarrow \mu^{2}\right\}) .
$$

We have $s:=k_{2}^{2}$. For $D=6,8, \ldots$, subtractions of further Taylor coefficients at $s=\mu^{2}$ are needed.

As the D-vector k_{2} is assumed timelike (as $s>0$), we can work in a coordinate system where $k_{2}=\left(k_{2 ; 0}, \overrightarrow{0}\right)^{T}$ and get

$$
\begin{aligned}
\Phi_{R}^{D}\left(b_{2}\right)= & \omega_{\frac{D}{2}} \int_{-\infty}^{\infty} d k_{1 ; 0} \int_{0}^{\infty}{\sqrt{t_{1}}}^{D-3} d t_{1} \\
& \times\left(\frac{1}{k_{1 ; 0}^{2}-t_{1}-m_{1}^{2}} \frac{1}{\left(k_{2 ; 0}-k_{1 ; 0}\right)^{2}-t-m_{2}^{2}}-\left\{s \rightarrow s_{0}\right\}\right) .
\end{aligned}
$$

We define the Källen function, actually a homogeneous polynomial,

$$
\lambda(a, b, c):=a^{2}+b^{2}+c^{2}-2(a b+b c+c a)
$$

and find by explicit integration, for example, for $D=4$,

$$
\begin{aligned}
& \Phi_{R}^{4}\left(b_{2}\right)\left(s, s_{0} ; m_{1}^{2}, m_{2}^{2}\right) \\
& =(\underbrace{\frac{\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}}{2 s} \ln \frac{m_{1}^{2}+m_{2}^{2}-s-\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}}{m_{1}^{2}+m_{2}^{2}-s+\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}}-\frac{m_{1}^{2}-m_{2}^{2}}{2 s} \ln \frac{m_{1}^{2}}{m_{2}^{2}}}_{W_{2}^{4}(s)}-\underbrace{\left\{s \rightarrow s_{0}\right\}}_{W_{2}^{4}\left(s_{0}\right)}) .
\end{aligned}
$$

The principal sheet of the above logarithm is real for $s \leq\left(m_{1}+m_{2}\right)^{2}$ and free of singularities at $s=0$ and $s=\left(m_{1}-m_{2}\right)^{2}$. It has a branch cut for $s \geq\left(m_{1}+m_{2}\right)^{2}$.

See, for example, [5,21] for a discussion of its analytic structure and behaviour off the principal sheet.

The threshold divisor defined by the intersection $L_{1} \cap L_{2}$ where the zero loci

$$
L_{i}: Q_{i}=0
$$

of the two quadrics meet is at $s=\left(m_{1}+m_{2}\right)^{2}$. This is an elementary example of the application of Picard-Lefschetz theory [22].

Off the principal sheet, we have a pole at $s=0$ and a further branch cut for $s \leq\left(m_{1}-m_{2}\right)^{2}$.

It is particularly interesting to compute the variation-the imaginary part-of $\Phi_{R}\left(b_{2}\right)$ using Cutkosky's theorem [22]. For all D,

$$
\begin{aligned}
\Im\left(\Phi_{R}^{D}\left(b_{2}\right)\right)= & \omega_{\frac{D}{2}} \int_{0}^{\infty} \sqrt{t_{1}}{ }^{D-3} d t \int_{-\infty}^{\infty} d k_{1 ; 0} \delta_{+}\left(k_{1 ; 0}^{2}-t_{1}-m_{1}^{2}\right) \\
& \delta_{+}\left(\left(k_{2 ; 0}-k_{1 ; 0}\right)^{2}-t_{1}-m_{2}^{2}\right) .
\end{aligned}
$$

We have

$$
\delta_{+}\left(\left(k_{2 ; 0}-k_{1 ; 0}\right)^{2}-t_{1}-m_{2}^{2}\right)=\Theta\left(k_{2 ; 0}-k_{1 ; 0}\right) \delta\left(\left(k_{2 ; 0}-k_{1 ; 0}\right)^{2}-t_{1}-m_{2}^{2}\right),
$$

and

$$
\begin{aligned}
& \delta(\left.\left(k_{2 ; 0}-k_{1 ; 0}\right)^{2}-t_{1}-m_{2}^{2}\right) \\
& \quad= \frac{1}{2\left|k_{2 ; 0}-k_{1 ; 0}\right|_{\mid k_{1 ; 0}=k_{2 ; 0}+\sqrt{t_{1}+m_{2}^{2}}} \times \delta\left(k_{1 ; 0}-k_{2 ; 0}-\sqrt{t_{1}+m_{2}^{2}}\right)} \\
& \quad+\frac{1}{2\left|k_{2 ; 0}-k_{1 ; 0}\right|_{\mid k_{1 ; 0}=k_{2 ; 0}-\sqrt{t_{1}+m_{2}^{2}}} \times \delta\left(k_{1 ; 0}-k_{2 ; 0}+\sqrt{t_{1}+m_{2}^{2}}\right) .} .
\end{aligned}
$$

In summary,

$$
\begin{aligned}
\delta_{+} & \left(\left(k_{2 ; 0}-k_{1 ; 0}\right)^{2}-t_{1}-m_{2}^{2}\right) \\
& =\Theta\left(k_{2 ; 0}-k_{1 ; 0}\right) \delta\left(\left(k_{2 ; 0}-k_{1 ; 0}\right)^{2}-t_{1}-m_{2}^{2}\right) \\
& =\frac{1}{2\left|k_{2 ; 0}-k_{1 ; 0}\right|_{\mid k_{1 ; 0}=k_{2 ; 0}-\sqrt{t_{1}+m_{2}^{2}}} \delta\left(k_{1 ; 0}-k_{2 ; 0}+\sqrt{t_{1}+m_{2}^{2}}\right),}
\end{aligned}
$$

and therefore,
$\Im\left(\Phi_{R}\left(b_{2}\right)\right)=\omega_{\frac{D}{2}} \int_{0}^{\infty}{\sqrt{t_{1}}}^{D-3} d t_{1} \delta\left(s-2 \sqrt{s} \sqrt{t_{1}+m_{2}^{2}}+m_{2}^{2}-m_{1}^{2}\right) \frac{1}{\sqrt{t_{1}+m_{2}^{2}}}$.

We have from the remaining δ-function,

$$
\delta\left(s-2 \sqrt{s} \sqrt{t_{1}+m_{2}^{2}}+m_{2}^{2}-m_{1}^{2}\right)=\frac{\sqrt{t_{1}+m_{2}^{2}}}{\sqrt{s}} \delta\left(t_{1}-\frac{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}{4 s}\right),
$$

and hence,

$$
0 \leq t_{1}=\frac{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}{4 s}
$$

whenever the Källen function $\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)$ is positive, so for $s>\left(m_{1}+m_{2}\right)^{2}$ (normal threshold, on the principal sheet) or for $0<s<\left(m_{1}-m_{2}\right)^{2}$ (pseudo-threshold, off the principal sheet).

The integral then gives

$$
\Im\left(\Phi_{R}^{D}\left(b_{2}\right)\right)\left(s, m_{1}^{2}, m_{2}^{2}\right)=\overbrace{\omega_{\frac{D}{2}}\left(\frac{\left(\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}\right)^{D-3}}{(2 s)^{\frac{D}{2}-1}}\right)}^{=: V_{2}^{D}\left(s ; m_{1}^{2}, m_{2}^{2}\right)} \times \Theta\left(s-\left(m_{1}+m_{2}\right)^{2}\right),
$$

with $\omega_{\frac{D}{2}}$ given in Eq. (A.2). We emphasize that V_{2}^{D} has a pole at $s=0$ with residue $\left|m_{1}^{2}-m_{2}^{2}\right| / 2$ and note $\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)=\left(s-\left(m_{1}+m_{2}\right)^{2}\right)\left(s-\left(m_{1}-m_{2}\right)^{2}\right)$.

We regain $\Phi_{R}^{D}\left(b_{2}\right)$ from $\Im\left(\Phi_{R}^{D}\left(b_{2}\right)\right)$ by a subtracted dispersion integral, for example, for $D=4$:

$$
\Phi_{R}^{4}\left(b_{2}\right)\left(s, s_{0}\right)=\frac{s-s_{0}}{\pi} \int_{0}^{\infty} \frac{\Im\left(\Phi_{R}^{4}\left(b_{2}\right)\right)(x)}{(x-s)\left(x-s_{0}\right)} \mathrm{d} x
$$

Here, the renormalization condition implemented in the once-subtracted dispersion imposes $\Phi_{R}^{D}\left(b_{2}\right)\left(s_{0}, s_{0}\right)=0$ for $D=4$.

Finally, we note that for on-shell edges $\left(k_{2}-k_{1}\right)^{2}=m_{2}^{2}$ so

$$
\begin{aligned}
k_{2} \cdot k_{1} & =\frac{k_{2}^{2}-m_{2}^{2}+m_{1}^{2}}{2}, \\
k_{1}^{2} & =m_{1}^{2} .
\end{aligned}
$$

2.2 Computing b_{3}

We now consider the three-edge banana b_{3} on three different masses.

We start by using the fact that we can disassemble b_{3} in three different ways into a b_{2} subgraph, with a remaining edge providing the co-graph. Using Fubini, the three equivalent ways to write it in accordance with the flag structure $b_{2} \subset b_{3}$ are:

$$
\begin{align*}
& \Im\left(\Phi_{R}^{D}\left(b_{3}\right)\right)=\int d^{D} k_{2} \Im\left(\Phi_{R}^{D}\left(b_{2}\right)\right)\left(k_{2}^{2}, m_{1}^{2}, m_{2}^{2}\right) \delta_{+}\left(\left(k_{3}-k_{2}\right)^{2}-m_{3}^{2}\right), \tag{2.1}\\
& \Im\left(\Phi_{R}^{D}\left(b_{3}\right)\right)=\int d^{D} k_{2} \Im\left(\Phi_{R}^{D}\left(b_{2}\right)\right)\left(k_{2}^{2}, m_{2}^{2}, m_{3}^{2}\right) \delta_{+}\left(\left(k_{3}-k_{2}\right)^{2}-m_{1}^{2}\right), \tag{2.2}\\
& \Im\left(\Phi_{R}^{D}\left(b_{3}\right)\right)=\int d^{D} k_{2} \Im\left(\Phi_{R}^{D}\left(b_{2}\right)\right)\left(k_{2}^{2}, m_{3}^{2}, m_{1}^{2}\right) \delta_{+}\left(\left(k_{3}-k_{2}\right)^{2}-m_{2}^{2}\right) . \tag{2.3}
\end{align*}
$$

In any of these cases for $\Im\left(\Phi_{R}^{D}\left(b_{3}\right)\right)$, we integrate over the common support of the distributions

$$
\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{2}\right)\right)\left(k_{2}^{2}, m_{i}^{2}, m_{j}^{2}\right) \sim \Theta\left(k_{2}^{2}-\left(m_{i}+m_{j}\right)^{2}\right) \text { and } \delta_{+}\left(\left(k_{3}-k_{2}\right)^{2}-m_{k}^{2}\right),
$$

generalizing the situation for $\Im\left(\Phi_{R}^{D}\left(b_{2}\right)\right)$ where we integrated over the common support of

$$
\delta_{+}\left(k_{1}^{2}-m_{1}^{2}\right) \text { and } \delta_{+}\left(\left(k_{2}-k_{1}\right)^{2}-m_{2}^{2}\right)
$$

The integral Eqs. $(2.1,2.2,2.3)$ are well defined and on the principal sheet they are equal and give the variation (and hence imaginary part) $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{3}\right)\right)$ of $\Phi_{R}^{D}\left(b_{3}\right)$.
$\Phi_{R}^{D}\left(b_{3}\right)$ itself can be obtained from it by a sufficiently subtracted dispersion integral which reads for $D=4$

$$
\Phi_{R}^{4}\left(b_{3}\right)\left(s, s_{0}\right)=\frac{\left(s-s_{0}\right)^{2}}{\pi} \int_{0}^{\infty} \frac{\mathfrak{J}\left(\Phi_{R}^{4}\left(b_{3}\right)(x)\right)}{(x-s)\left(x-s_{0}\right)^{2}} \mathrm{~d} x .
$$

For general $D, \Phi_{R}^{D}\left(b_{3}\right)$ is well-defined no matter which of the two edges we choose as the subgraph, and Cutkosky's theorem defines a unique function $V_{3}^{D}(s)$,

$$
\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{3}\right)(s)\right)=: V_{3}^{D}(s) \Theta\left(s-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right)
$$

Remark 2.1 Below when we discuss master integrals for b_{n}, we find that by breaking symmetry through a derivative $\partial_{m_{i}^{2}}$, we obtain four master integrals for b_{3}. $\Phi_{R}^{D}\left(b_{3}\right)$ itself, and by applying $\partial_{m_{i}^{2}}$ to any of Eqs. (2.1, 2.2, 2.3).

Let us compute V_{3}^{D} first. We consider edges e_{1}, e_{2} as a b_{2} subgraph with an external momentum k_{2} flowing through.

We let k_{3} be the external momentum of $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{3}\right)\right), 0<k_{3}^{2}=: s$. For the $k_{2}-$ integration, we put ourselves in the restframe $k_{3}=\left(k_{3 ; 0}, \overrightarrow{0}\right)^{T}$.

Consider then

$$
\begin{aligned}
\Im\left(\Phi_{R}^{D}\left(b_{3}\right)\right)(s)= & \left.\int d^{D} k_{2} \Theta\left(k_{2}^{2}-\left(m_{1}+m_{2}\right)^{2}\right) \delta_{+}\left(\left(k_{3}-k_{2}\right)^{2}\right)-m_{3}^{2}\right) \\
& V_{2}^{D}\left(k_{2}^{2}, m_{1}^{2}, m_{2}^{2}\right) .
\end{aligned}
$$

The δ_{+}-distribution demands that $k_{3 ; 0}-k_{2 ; 0}>0$, and therefore, we get

$$
\begin{aligned}
\Im\left(\Phi_{R}^{D}\left(b_{3}\right)\right)(s)=\omega_{\frac{D}{2}} & \int_{-\infty}^{k_{3 ; 0}} d k_{2 ; 0} \int_{0}^{\infty} d t_{2}{\sqrt{t_{2}}}^{D-3} \Theta\left(k_{2 ; 0}^{2}-t_{2}-\left(m_{1}+m_{2}\right)^{2}\right) \\
& \times V_{2}^{D}\left(k_{2 ; 0}^{2}-t, m_{1}^{2}, m_{2}^{2}\right) \delta\left(\left(k_{3 ; 0}-k_{2 ; 0}\right)^{2}-t_{2}-m_{3}^{2}\right) .
\end{aligned}
$$

As a function of $k_{2 ; 0}$, the argument of the δ-distribution has two zeros:

$$
k_{2 ; 0}=k_{3 ; 0} \pm \sqrt{t_{2}+m_{3}^{2}}
$$

As $k_{3 ; 0}-k_{2 ; 0}>0$, it follows $k_{2 ; 0}=k_{3 ; 0}-\sqrt{t_{2}+m_{3}^{2}}$. Therefore, $k_{2 ; 0}^{2}-t_{2}=$ $k_{3 ; 0}^{2}+m_{3}^{2}-2 k_{3 ; 0} \sqrt{t_{2}+m_{3}^{2}}$.

For our desired integral, we get

$$
\begin{gathered}
\Im\left(\Phi_{R}^{D}\left(b_{3}\right)\right)(s)=\omega_{\frac{D}{2}} \int_{0}^{\infty} d t_{2}{\sqrt{t_{2}}}^{D-3} \Theta\left(k_{3 ; 0}^{2}+m_{3}^{2}-2 k_{3 ; 0} \sqrt{t_{2}+m_{3}^{2}}-\left(m_{1}+m_{2}\right)^{2}\right) \\
\\
\times \frac{V_{2}^{D}\left(k_{3 ; 0}^{2}+m_{3}^{2}-2 k_{3 ; 0} \sqrt{t_{2}+m_{3}^{2}}, m_{1}^{2}, m_{2}^{2}\right)}{\sqrt{t_{2}+m_{3}^{2}}} .
\end{gathered}
$$

The Θ-distribution requires

$$
k_{3 ; 0}^{2}+m_{3}^{2}-\left(m_{1}+m_{2}\right)^{2} \geq 2 k_{3 ; 0} \sqrt{t_{2}+m_{3}^{2}} .
$$

Solving for t_{2}, we get

$$
0 \leq t_{2} \leq \frac{\lambda\left(s, m_{3}^{2},\left(m_{1}+m_{2}\right)^{2}\right)}{4 s}
$$

As $t_{2} \geq 0$, we must have for the physical threshold $s>\left(m_{3}+m_{1}+m_{2}\right)^{2}$ which is indeed completely symmetric under permutations of $1,2,3$, in accordance with our expectations for $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{3}\right)(s)\right)$. We then have

$$
\begin{aligned}
\Im\left(\Phi_{R}^{D}\left(b_{3}\right)(s)\right)= & \Theta\left(s-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right) \omega_{\frac{D}{2}} \int_{0}^{\frac{\lambda\left(s, m_{3}^{2},\left(m_{1}+m_{2}\right)^{2}\right)}{4 s}} \\
& \times \frac{V_{2}^{D}\left(s+m_{3}^{2}-2 \sqrt{s} \sqrt{t_{2}+m_{3}^{2}}, m_{1}^{2}, m_{2}^{2}\right)}{\sqrt{t_{2}+m_{3}^{2}}}{\sqrt{t_{2}}}^{D-3} \mathrm{~d} t_{2} .
\end{aligned}
$$

There is also a pseudo-threshold off the principal sheet at $s<\left(m_{3}-m_{1}-m_{2}\right)^{2}$, see Sect. 2.

Note that the integrand vanishes at the upper boundary $\frac{\lambda\left(s, m_{k}^{2},\left(m_{i}+m_{j}\right)^{2}\right)}{4 s}$ as

$$
\begin{aligned}
& \lambda\left(s+m_{3}^{2}-2 \sqrt{s} \sqrt{t_{2}+m_{3}^{2}}, m_{1}^{2}, m_{2}^{2}\right)_{\left\lvert\, t_{2}=\frac{\lambda\left(s, m_{3}^{2},\left(m_{1}+m_{2}\right)^{2}\right)}{4 s}\right.} \\
& \quad=\lambda\left(\left(m_{1}+m_{2}\right)^{2}, m_{1}^{2}, m_{2}^{2}\right)=0
\end{aligned}
$$

Let us now transform variables.

$$
\begin{aligned}
y_{2} & :=\sqrt{t_{2}+m_{3}^{2}} \\
t_{2} & =y_{2}^{2}-m_{3}^{2} \\
d t_{2} & =2 y_{2} d y_{2} \\
\int_{0}^{\frac{\lambda}{4 s}} & \rightarrow \int_{m_{3}}^{\frac{s+m_{3}^{2}-\left(m_{1}+m_{2}\right)^{2}}{2 \sqrt{s}}}
\end{aligned}
$$

We get

$$
\begin{align*}
\Im\left(\Phi_{R}^{D}\left(b_{3}\right)(s)\right)= & \Theta\left(s-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right) \\
& \times \underbrace{\omega_{\frac{D}{2}}^{\int_{m_{3}}^{\frac{s+m_{3}^{2}-\left(m_{1}+m_{2}\right)^{2}}{2 \sqrt{s}}} V_{2}^{D}(\overbrace{s+m_{3}^{2}-2 \sqrt{s} y_{2}}^{s_{3}^{1}\left(y_{2}, m_{3}^{2}\right)}, m_{1}^{2}, m_{2}^{2}) \sqrt{y_{2}-m_{3}^{2}}{ }^{D-3} d y_{2}} .}_{V_{3}^{D}\left(s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)} \tag{2.4}
\end{align*}
$$

Had we chosen e_{2}, e_{3} or e_{3}, e_{1} instead of e_{1}, e_{2} for b_{2}, we would find in accordance with Eqs. (2.1, 2.2, 2.3)

$$
\begin{align*}
\Im\left(\Phi_{R}^{D}\left(b_{3}\right)(s)\right)= & \Theta\left(s-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right) \\
& \times \underbrace{\omega_{\frac{D}{2}} \int_{m_{1}}^{\frac{s+m_{1}^{2}-\left(m_{2}+m_{3}\right)^{2}}{2 \sqrt{s}}} V_{2}^{D}(\overbrace{s+m_{1}^{2}-2 \sqrt{s} y_{2}}^{s}, m_{2}^{2}}_{V_{3}^{D}\left(s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}, m_{3}^{2}) \sqrt[y_{y_{2}-m_{1}^{2}}{ }^{s-3}\left(y_{2}, m_{1}^{2}\right)]{ } d y_{2}, \tag{2.5}
\end{align*}
$$

or

$$
\begin{align*}
\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{3}\right)(s)\right)= & \Theta\left(s-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right) \\
& \times \underbrace{}_{V_{\frac{D}{2}\left(s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}^{\omega_{m_{2}}^{\frac{s+m_{2}^{2}-\left(m_{3}+m_{1}\right)^{2}}{2 \sqrt{s}}} V_{2}^{D}(\overbrace{s+m_{2}^{2}-2 \sqrt{s} y_{2}}^{s_{3}^{1}\left(y_{2}, m_{2}^{2}\right)}, m_{3}^{2}}, m_{1}^{2}) \sqrt[{{\sqrt{y_{2}-m_{2}^{2}}}^{D-3} d y_{2}}]{ }} . \tag{2.6}
\end{align*}
$$

with three different $s_{3}^{1}\left(y_{2}\right)=s_{3}^{1}\left(y_{2}, m_{i}^{2}\right)$.
We omit this distinction in the future as we will always choose a fixed order of edges and call the edges in the innermost bubble b_{2} edges e_{1}, e_{2}.

Finally, we note

$$
\begin{aligned}
k_{2,0} & =k_{3,0}-y_{2}, \\
k_{2}^{2} & =k_{3,0}^{2}-2 k_{3,0} y_{2}+m_{3}^{2}, \\
\left|\vec{k}_{2}\right| & =\sqrt{y_{2}^{2}-m_{3}^{2}} .
\end{aligned}
$$

Written in invariants this is

$$
\begin{aligned}
k_{3} \cdot k_{2} & =\sqrt{s}\left(\sqrt{s}-y_{2}\right), \\
k_{2}^{2} & =s-2 \sqrt{s} y_{2}+m_{3}^{2}, \\
\left|\overrightarrow{k_{2}}\right| & =\sqrt{y_{2}^{2}-m_{3}^{2}} .
\end{aligned}
$$

$2.3 b_{3}$ and elliptic integrals

Note that for $D=2$ (the case $D=4$ can be treated similarly as in [5]) and using Eq. (2.4),

$$
V_{3}^{2}(s)=\omega_{1} \int_{m_{3}}^{\frac{s+m_{3}^{2}-\left(m_{2}+m_{1}\right)^{2}}{2 \sqrt{s}}} \frac{1}{\sqrt{U\left(y_{2}\right)}} \mathrm{d} y_{2},
$$

with

$$
\begin{aligned}
U\left(y_{2}\right) & =\lambda\left(s+m_{3}^{2}-2 \sqrt{s} y_{2}, m_{2}^{2}, m_{1}^{2}\right)\left(y_{2}^{2}-m_{3}^{2}\right) \\
& =s\left(y_{2}-m_{3}\right)\left(y_{2}+m_{3}\right)\left(y_{2}-y_{+}\right)\left(y_{2}-y_{-}\right)
\end{aligned}
$$

a quartic polynomial so that V_{3}^{2} defines an elliptic integral following, for example, [5]. Here,

$$
y_{ \pm}=\frac{\left(s+m_{3}^{2}-m_{1}^{2}-m_{2}^{2}\right) \pm 2 \sqrt{m_{1}^{2} m_{2}^{2}}}{2 \sqrt{s}}
$$

So, indeed

$$
\begin{equation*}
V_{3}^{2}(s)=\frac{2 \omega_{1}}{\left(y_{+}+m_{3}\right)\left(y_{-}-m_{3}\right)} K\left(\frac{\left(y_{-}+m_{3}\right)\left(y_{+}-m_{3}\right)}{\left(y_{-}-m_{3}\right)\left(y_{+}+m_{3}\right)}\right), \tag{2.7}
\end{equation*}
$$

with K the complete elliptic integral of the first kind. Finally,

$$
\begin{equation*}
\Phi_{R}^{2}\left(b_{3}\right)(s)=\frac{1}{\pi} \int_{\left(m_{1}+m_{2}+m_{3}\right)^{2}}^{\infty} \frac{V_{3}^{2}(x)}{(x-s)} \mathrm{d} x \tag{2.8}
\end{equation*}
$$

gives the full result for b_{3} in terms of elliptic dilogarithms in all its glory $[6,7,16]$ for $D=2$. For arbitrary D, we get

$$
\begin{equation*}
\Phi_{R}^{D}\left(b_{3}\right)\left(s, s_{0}\right)=\frac{\left(s-s_{0}\right)^{D-2}}{\pi} \int_{\left(m_{1}+m_{2}+m_{3}\right)^{2}}^{\infty} \frac{V_{3}^{D}(x)}{(x-s)\left(x-s_{0}\right)^{D-2}} \mathrm{~d} x . \tag{2.9}
\end{equation*}
$$

To compare our result Eq. (2.7) with the result in [5] say, note that we can write

$$
U\left(y_{2}\right)=\frac{1}{4} \lambda\left(s, s_{3}^{1}, m_{3}^{2}\right) \lambda\left(s_{3}^{1}, m_{1}^{2}, m_{2}^{2}\right),
$$

as

$$
\lambda\left(s, s_{3}^{1}, m_{3}^{2}\right)=\left(s_{3}^{1}-\left(\sqrt{s}-m_{3}\right)^{2}\right)\left(s_{3}^{1}-\left(\sqrt{s}+m_{3}\right)^{2}\right)=4 s\left(y_{2}^{2}-m_{3}^{2}\right),
$$

with $s_{3}^{1}=s-2 \sqrt{s} y_{2}+m_{3}^{2}$, and use $b=s_{3}^{1}, d b=-2 \sqrt{s} d y_{2}$ to compare.

2.4 Computing $\boldsymbol{b}_{\mathbf{4}}$

Above we have expressed V_{3}^{D} as an integral involving V_{2}^{D}. We can iterate this procedure.

Let us compute V_{4}^{D} next repeating the computation which led to Eq. (2.4). We consider edges e_{1}, e_{2}, e_{3} as a b_{3} subgraph with an external momentum k_{3} flowing through.

We let k_{4} be the external momentum of $\Im\left(\Phi_{R}^{D}\left(b_{4}\right)\right), 0<k_{4}^{2}=s$. We put ourselves in the restframe $k_{4}=\left(k_{4 ; 0}, \overrightarrow{0}\right)^{T}$ for the k_{3}-integration.

Consider then

$$
\begin{aligned}
& \mathfrak{J}\left(\Phi_{R}^{D}\left(b_{4}\right)\right)(s)=\int d^{D} k_{3} \Theta\left(k_{3}^{2}-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right) \\
& \left.\delta_{+}\left(\left(k_{4}-k_{3}\right)^{2}\right)-m_{4}^{2}\right) V_{3}^{D}\left(k_{3}^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right) .
\end{aligned}
$$

The δ_{+}distribution demands that $k_{4 ; 0}-k_{3 ; 0}>0$, and therefore, we get

$$
\begin{gathered}
\mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{4}\right)\right)(s)=\omega_{\frac{D}{2}} \int_{-\infty}^{k_{4 ; 0}} \mathrm{~d} k_{3 ; 0} \int_{0}^{\infty} \mathrm{d} t_{3} \sqrt[{ }_{t_{3}}^{D-3}]{ }{ }^{D-\left(k_{3 ; 0}^{2}-t_{3}-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right)} \\
V_{3}^{D}\left(k_{3 ; 0}^{2}-t_{3}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right) \delta\left(\left(k_{4 ; 0}-k_{3 ; 0}\right)^{2}-t_{3}-m_{4}^{2}\right) .
\end{gathered}
$$

As a function of $k_{3 ; 0}$, the argument of the δ-distribution has two zeros: $k_{3 ; 0}=k_{4 ; 0} \pm$ $\sqrt{t_{3}+m_{4}^{2}}$.

As $k_{4 ; 0}-k_{3 ; 0}>0$, it follows $k_{3 ; 0}=k_{4 ; 0}-\sqrt{t_{3}+m_{4}^{2}}$. Therefore, $k_{3 ; 0}^{2}-t_{3}=$ $k_{4 ; 0}^{2}+m_{4}^{2}-2 k_{4 ; 0} \sqrt{t_{3}+m_{4}^{2}}$.

For our desired integral, we get

$$
\begin{gathered}
\mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{4}\right)\right)(s)=\omega_{\frac{D}{2}} \int_{0}^{\infty} d t_{3}{\sqrt{t_{3}}}^{D-3} \Theta\left(k_{4 ; 0}^{2}+m_{4}^{2}-2 k_{4 ; 0} \sqrt{t_{3}+m_{4}^{2}}-\left(m_{1}+m_{2}+m_{3}\right)^{2}\right) \\
\\
\times \frac{V_{3}^{D}\left(k_{4 ; 0}^{2}+m_{4}^{2}-2 k_{4 ; 0} \sqrt{t_{3}+m_{4}^{2}}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{\sqrt{t_{3}+m_{4}^{2}}} .
\end{gathered}
$$

The Θ-distribution requires

$$
k_{4 ; 0}^{2}+m_{4}^{2}-\left(m_{1}+m_{2}+m_{3}\right)^{2} \geq 2 k_{4 ; 0} \sqrt{t_{3}+m_{4}^{2}} .
$$

Solving for t_{3}, we get

$$
0 \leq t_{3} \leq \frac{\lambda\left(s, m_{4}^{2},\left(m_{1}+m_{2}+m_{3}\right)^{2}\right)}{4 s}
$$

As $t_{3} \geq 0$, we must have for the physical threshold $s>\left(m_{4}+m_{3}+m_{1}+m_{2}\right)^{2}$. We then have

$$
\begin{aligned}
\Im\left(\Phi_{R}^{D}\left(b_{4}\right)(s)\right)= & \Theta\left(s-\left(m_{1}+m_{2}+m_{3}+m_{4}\right)^{2}\right) \omega_{\frac{D}{2}} \int_{0}^{\frac{\lambda\left(s, m_{4}^{2},\left(m_{1}+m_{2}+m_{3}\right)^{2}\right)}{4 s}} \\
& \times \frac{V_{3}^{D}\left(s+m_{4}^{2}-2 \sqrt{s} \sqrt{t_{3}+m_{4}^{2}}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{\sqrt{t_{3}+m_{4}^{2}}}{\sqrt{t_{3}}}^{D-3} d t_{3}
\end{aligned}
$$

Let us now transform variables again.

$$
\begin{aligned}
y_{3} & :=\sqrt{t_{3}+m_{4}^{2}} \\
t_{3} & =y_{3}^{2}-m_{4}^{2} \\
\mathrm{~d} t_{3} & =2 y_{3} d y_{3} \\
\int_{0}^{\frac{\lambda}{4 s}} & \rightarrow \int_{m_{4}}^{\frac{s+m_{4}^{2}-\left(m_{1}+m_{2}+m_{3}\right)^{2}}{2 \sqrt{s}}}
\end{aligned}
$$

We get

$$
\begin{aligned}
\Im\left(\Phi_{R}^{D}\left(b_{4}\right)(s)\right)= & \Theta\left(s-\left(m_{1}+m_{2}+m_{3}+m_{4}\right)^{2}\right) \\
& \times \underbrace{\omega_{\frac{D}{2}} \int_{m_{4}}^{\frac{s+m_{4}^{2}-\left(m_{1}+m_{2}+m_{3}\right)^{2}}{2 \sqrt{s}}} V_{3}^{D} \overbrace{\left(s+m_{4}^{2}-2 \sqrt{s} y_{3}\right.}^{s_{4}^{1}\left(y_{3}\right)}, m_{1}^{2}}_{V_{4}^{D}\left(s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, m_{4}^{2}\right)}, m_{2}^{2}, m_{3}^{2}){\sqrt{y_{3}-m_{4}^{2}}}^{D-3} d y_{3}
\end{aligned} .
$$

We have thus expressed V_{4}^{D} as an integral involving V_{3}^{D}. As we can express V_{3}^{D} by V_{2}^{D}, we get the iterated integral,

$$
\begin{align*}
V_{4}^{D}\left(s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, m_{4}^{2}\right)= & \omega_{\frac{D}{2}}^{2} \int_{m_{4}}^{\frac{s+m_{4}^{2}-\left(m_{1}+m_{2}+m_{3}\right)^{2}}{2 \sqrt{s}}}\left(\int_{m_{3}}^{\frac{s_{4}^{1}\left(y_{3}\right)+m_{3}^{2}-\left(m_{1}+m_{2}\right)^{2}}{2{\sqrt{s_{4}^{1}\left(y_{3}\right)}}^{2}}} \begin{array}{rl}
& \left.\times V_{2}^{D}\left(s_{4}^{2}\left(y_{2}, y_{3}\right), m_{1}^{2}, m_{2}^{2}\right){\sqrt{y_{2}-m_{3}^{2}}}^{D-3} d y_{2}\right) \\
& \times{\sqrt{y_{3}-m_{4}^{2}}}^{D-3} d y_{3} .
\end{array} .\right.
\end{align*}
$$

We abbreviated

$$
\begin{aligned}
& s_{4}^{2}\left(y_{2}, y_{3}\right):=s_{4}^{1}\left(y_{3}\right)-2 \sqrt{s_{4}^{1}\left(y_{3}\right)} y_{2}+m_{3}^{2} \\
& \quad=s_{4}^{0}-2 \sqrt{s_{4}^{0}} y_{3}+m_{4}^{2}-2 \sqrt{s_{4}^{0}-2 \sqrt{s_{4}^{0}} y_{3}+m_{4}^{2} y_{2}+m_{3}^{2}}
\end{aligned}
$$

$s_{4}^{0}:=s$.

2.5 Beyond elliptic integrals for $\boldsymbol{b}_{\mathbf{4}}$

Note that V_{4}^{2} cannot be read as a complete elliptic integral of any kind. It is a double integral over the inverse square root of an algebraic function. V_{3}^{2} was in contrast a single integral over the inverse square root of a mere quartic polynomial. Concretely, the relevant integrand is

$$
\frac{1}{\sqrt{\left(y_{3}^{2}-m_{4}^{2}\right)^{2}\left(y_{2}^{2}-m_{3}^{2}\right) v_{4}\left(y_{2}, y_{3}\right)}}
$$

In fact, the innermost y_{2} integral can still be expressed as a complete elliptic integral of the first kind as in Eq. (2.7), as v_{4} is a quadratic polynomial in y_{2} so that

$$
\left(y_{2}^{2}-m_{3}^{2}\right) v_{4}=\left(y_{2}-m_{3}\right)\left(y_{2}+m_{3}\right)\left(y_{2}-y_{2,+}\right)\left(y_{2}-y_{2,-}\right)
$$

is a quartic in y_{2} albeit with coefficients $y_{2, \pm}$ which are algebraic in y_{3}. We have

$$
y_{2, \pm}\left(y_{3}\right)=\frac{\left(m_{1}^{2}+m_{2}^{2}-m_{3}^{2}-s_{4}^{1}\left(y_{3}\right)\right) \pm 2 \sqrt{m_{1}^{2} m_{2}^{2}}}{2 \sqrt{s_{4}^{1}\left(y_{3}\right)}} .
$$

We get the more than elliptic integral over an elliptic integral of the first kind,

$$
\begin{align*}
& V_{4}^{2}(s)=\omega_{1} \int_{m_{4}}^{\frac{s+m_{4}^{2}-\left(m_{1}+m_{2}+m_{3}\right)^{2}}{2 \sqrt{s}}} \frac{2 \omega_{1}}{\left(y_{2,+}\left(y_{3}\right)+m_{4}\right)\left(y_{2,-}\left(y_{3}\right)-m_{4}\right)} \\
& \times K\left(\frac{\left(y_{2,-}\left(y_{3}\right)+m_{4}\right)\left(y_{2,+}\left(y_{3}\right)-m_{4}\right)}{\left(y_{2,-}\left(y_{3}\right)-m_{4}\right)\left(y_{2,+}\left(y_{3}\right)+m_{4}\right)}\right) \frac{1}{\sqrt{y_{3}^{2}-m_{4}^{2}}} d y_{3} . \tag{2.11}
\end{align*}
$$

2.6 Computing $\boldsymbol{b}_{\boldsymbol{n}}$ by iteration

Iterating the computation which led to Eq. (2.10), we get
Theorem 2.2 Let b_{n} be the banana graph on n edges and two leaves (at two distinct vertices) with masses m_{i} and momenta $k_{n},-k_{n}$ incoming at the two vertices in D dimensions.
(i) it has an imaginary part determined by a normal threshold as

$$
\Im\left(\Phi_{R}^{D}\left(b_{n}\right)\right)(s)=\Theta\left(s-\left(\sum_{j=1}^{n} m_{j}\right)^{2}\right) V_{n}^{D}\left(s,\left\{m_{i}^{2}\right\}\right),
$$

and with a recursion ($n \geq 3$)

$$
\begin{aligned}
V_{n}^{D}\left(s ;\left\{m_{i}^{2}\right\}\right)= & \omega_{\frac{D}{2}} \int_{m_{n}}^{\frac{s+m_{n}^{2}-\left(\sum_{j=1}^{n-1} m_{j}\right)^{2}}{2 \sqrt{s_{n}^{0}}}} V_{n-1}^{D}\left(s_{n}^{0}-2 \sqrt{s_{n}^{0}} y_{n-1}+m_{n}^{2}, m_{1}^{2}, \ldots, m_{n-1}^{2}\right) \\
& \times{\sqrt{y_{n-1}^{2}-m_{n}^{2}}}^{D-3} d y_{n-1} .
\end{aligned}
$$

Remark (i) This imaginary part is the variation in s of $\Phi_{R}^{D}\left(b_{n}\right)(s)$ in the principal sheet. Variations on other sheets are collected in "App. D". See [21] for an introduction to a discussion of the role of such pseudo-thresholds.

Theorem (ii) Define for all $n \geq 2,0 \leq j \leq n-2$,

$$
s_{n}^{0}:=s
$$

and for $n-2 \geq j \geq 1, s_{n}^{j}=s_{n}^{j}\left(y_{n-j}, \ldots, y_{n-1} ; m_{n}, \ldots, m_{n-j+1}\right)$,

$$
\begin{equation*}
s_{n}^{j}=s_{n}^{j-1}-2 \sqrt{s_{n}^{j-1}} y_{n-j}+m_{n-j+1}^{2} \tag{2.12}
\end{equation*}
$$

Define

$$
\begin{equation*}
\operatorname{up}_{n}^{j}:=\frac{s_{n}^{j}+m_{n-j}^{2}-\left(\sum_{i=1}^{n-j-1} m_{i}\right)^{2}}{2 \sqrt{s_{n}^{j}}} \tag{2.13}
\end{equation*}
$$

then V_{n}^{D} is given by the following iterated integral:

$$
\begin{align*}
& V_{n}^{D}\left(s, m_{1}^{2}, \ldots, m_{n}^{2}\right):= \omega_{\frac{D}{2}}^{n-2} \int_{m_{n}}^{\mathrm{up}_{n}^{0}}\left(\int _ { m _ { n - 1 } } ^ { \mathrm { up } _ { n } ^ { 1 } (y _ { n - 1 }) } \left(\int_{m_{n-2}}^{\mathrm{up}_{n}^{2}\left(y_{n-1}, y_{n-2}\right)}\right.\right. \\
& \cdots\left(\int_{m_{3}}^{\mathrm{up}}{ }_{n}^{n-3}\left(y_{3}, \ldots, y_{n-1}\right)\right. \\
& V_{2}^{D}\left(s_{n}^{n-2}\left(y_{2}, \ldots, y_{n-1}\right), m_{1}^{2}, m_{2}^{2}\right) \\
&\left.\left.\times{\sqrt{y_{2}^{2}-m_{3}^{2}}}^{D-3} d y_{2}\right) \cdots{\sqrt{y_{n-2}^{2}-m_{n-1}^{2}}}^{D-3} d y_{n-2}\right) \tag{2.14}\\
& \times{\sqrt{y_{n-1}^{2}-m_{n}^{2}}}^{D-3} d y_{n-1} .
\end{align*}
$$

Here, $V_{2}^{D}(a, b, c)=\frac{\lambda(a, b, c)^{\frac{D-3}{2}}}{a^{\frac{D}{2}-1}}$, so that

$$
V_{2}^{D}\left(s_{n}^{n-2}\left(y_{2}, \ldots, y_{n-1}\right), m_{1}^{2}, m_{2}^{2}\right)=\omega_{\frac{D}{2}} \frac{\lambda\left(s_{n}^{n-2}\left(y_{2}, \ldots, y_{n-1}\right), m_{1}^{2}, m_{2}^{2}\right)^{\frac{D-3}{2}}}{\left(s_{n}^{n-2}\left(y_{2}, \ldots, y_{n-1}\right)\right)^{\frac{D}{2}-1}} .
$$

Remark (ii) We solve the recursion in terms of an iteration of one-dimensional integrals. $V_{2}^{D}\left(b_{2}\right)$ serves as the seed, $\left.V_{2}^{D}=\omega_{\frac{D}{2}} \lambda\left(s_{n}^{n-2}, m_{1}^{2}, m_{2}^{2}\right) / s^{\frac{D}{2}-1}\right)$ and $s_{n}^{n-2}=$ $s_{n}^{n-2}\left(y_{n-1}, \ldots, y_{2} ; m_{3}^{2}, \ldots, m_{n}^{2}\right)$ depends on integration variables y_{j} and on mass squares $m_{j+1}^{2}, j=2, \ldots, n-1$. For b_{3}, we need a single integration; for b_{n}, we need to iterate $(n-2)$ integrals. Note that we could always do the innermost y_{2}-integral in terms of a complete elliptic integral (replacing $s_{4}^{1} \rightarrow s_{n}^{n-3}$ in Eq. (2.11), etc.) and use that as the seed.

Theorem (iii) We have the following identities:

$$
\begin{align*}
V_{n}^{D}\left(\left(\sum_{j=1}^{n} m_{j}\right)^{2} ;\left\{m_{i}^{2}\right\}\right) & =0, \tag{2.15}\\
\operatorname{up}_{n}^{1}\left(y_{n-1}\right)_{\mid y_{n-1}=\operatorname{up}_{n}^{0}} & =m_{n-1}, \tag{2.16}\\
\operatorname{up}_{n}^{j}\left(y_{n-j}, \ldots, y_{n-1}\right)_{\mid y_{n-j}=\operatorname{up}_{n}^{j-1}} & =m_{n-j}, \tag{2.17}\\
\operatorname{up}_{n}^{n-3}\left(y_{3}, \ldots, y_{n-1}\right)_{\mid y_{3}=\text { upp }_{n}^{n-4}} & =m_{3}, \tag{2.18}\\
V_{2}^{D}\left(s_{n}^{n-2}, m_{1}^{2}, m_{2}^{2}\right)_{\mid y_{2}=\operatorname{up}_{n}^{n-3}} & =0 . \tag{2.19}
\end{align*}
$$

Remark (iii) Equation (2.15) ensures that the dispersion integrand vanishes at the lower boundary $x=\left(m_{1}+\cdots+m_{n}\right)^{2}$ (the normal threshold) as it should. Following Eqs. (2.16-2.18) for any y_{j}-integration but the innermost integration the integrand vanishes at the lower and upper boundaries. By Eq. (2.19) for the innermost y_{n-1} integral this holds for $D \not 22$.

At $D=2$, the result can be achieved by considering

$$
\lim _{\eta \rightarrow 0} \int_{m_{3}+\eta}^{\mathrm{up}_{n}^{n-3}-\eta} \cdots d y_{n-1} .
$$

In the limit $\sqrt{s} \rightarrow m_{\text {normal }}^{n}$ for which up $_{n}^{n-3} \rightarrow m_{3}$, one confirms the analysis in [5] that a finite value at threshold remains.

Summarizing for any D this amounts to compact integration as we have in any y_{j} integration a resurrection of Stokes formula

$$
\begin{equation*}
\int_{m_{j+1}}^{\mathrm{up}_{n}^{j+1}} \partial_{y_{j}} f\left(y_{j}\right) \cdots d y_{j}=0 \tag{2.20}
\end{equation*}
$$

for any rational function $f\left(y_{j}\right)$ inserted as a coefficient of V_{2}^{D}. The dots correspond to the other iterations of integrals in the y_{j} variables. These are integration-by-parts identities.

This reflects the fact that the $n \delta$-functions in a cut banana b_{n} constrain the $(n-1)$ integrations of $k_{j ; 0}, j=1, \ldots, n-1$ and also the total integration over $r=\sum_{j=1}^{n-1}\left|\overrightarrow{k_{j}}\right|$. Here, we can set $\left|\overrightarrow{k_{j}}\right|=r u_{j}$, and the u_{j} parameterize a $(n-1)$-simplex and hence a
compactum. Angle integrals are over compact surfaces S^{D-2}. Only integrations over boundaries remain.
Theorem(iv) We have

$$
\begin{equation*}
\partial_{y_{k}} s_{n}^{j}=-2 \sqrt{s_{n}^{n-k-1}} \partial_{m_{k+1}^{2}} s_{n}^{j}, \forall(n-j) \leq k \leq(n-1), \tag{2.21}
\end{equation*}
$$

if all masses are different. The case of some equal masses is left to the reader. Also,

$$
\begin{equation*}
\left(\prod_{j=0}^{i-1} \sqrt{s_{n}^{j}}\right) \partial_{s} s_{n}^{i}=2 \prod_{j=0}^{i-1}\left(\sqrt{s_{n}^{j}}-y_{n-j-1}\right) \tag{2.22}
\end{equation*}
$$

For derivatives with respect to masses, we have for $0 \leq r \leq k-1$,

$$
\begin{equation*}
\partial_{m_{n-r}^{2}} s_{n}^{k}=\prod_{j=r+1}^{k-1} \frac{\sqrt{s_{n}^{j}}-y_{n-(j+1)}}{\sqrt{s_{n}^{j}}} \tag{2.23}
\end{equation*}
$$

while $\partial_{m_{n-k+1}^{2}} s_{n}^{k}=1$. Furthermore, for $1 \leq i \leq n-2-r, 0 \leq r \leq n-3$,

$$
\begin{equation*}
\partial_{y_{n-i}} s_{n}^{n-2-r}=-2 \sqrt{s_{n}^{i-1}} \prod_{j=2+r}^{n-1-i} \frac{s_{n}^{n-j-1}-y_{j}}{s_{n}^{n-j-1}} . \tag{2.24}
\end{equation*}
$$

Remark (iv) These formulae allow to trade $\partial_{y_{j}}$ derivatives with $\partial_{m_{j+1}^{2}}$ derivatives and to treat ∂_{s} derivatives. This is useful below when discussing differential equation, integration-by-parts and master integrals for $\Phi_{R}^{D}\left(b_{n}\right)$.
Theorem (v) Dispersion. Let $|[n, v]|-1$ (see Eq. (C.2)) be the degree of divergence of $\Phi_{R}^{D}\left(b_{n}\right)_{v}$. Then,

$$
\Phi_{R}^{D}\left(b_{n}\right)_{v}\left(s, s_{0}\right)=\frac{\left(s-s_{0}\right)^{|[n, v]|}}{\pi} \int_{\left(\sum_{j=1}^{n} m_{j}\right)^{2}}^{\infty} \frac{V_{[n, \nu]}^{D}\left(x,\left\{m_{i}^{2}\right\}\right)}{(x-s)\left(x-s_{0}\right)^{[[n, v] \mid} \mathrm{d} x,}
$$

is the renormalized banana graph with renormalization conditions

$$
\Phi_{R}^{D}\left(b_{n}\right)_{v}^{(j)}\left(s_{0}, s_{0}\right)=0, j \leq|[n, v]|-1,
$$

where $\Phi_{R}^{D}\left(b_{n}\right)_{v}^{(j)}\left(s_{0}, s_{0}\right)$ is the j th derivative of $\Phi_{R}^{D}\left(b_{n}\right)_{v}\left(s, s_{0}\right)$ at $s=s_{0}$.
Remark (v) This gives $\Phi_{R}^{D}\left(b_{n}\right)_{v}$ from $V_{[n, v]}^{D}$ in kinematic renormalization. See "App. C" for notation. For a result in dimensional integration with MS, use an unsubtracted dispersion

$$
\Phi_{M S}^{D}\left(b_{n}\right)_{v}(s)=\frac{1}{\pi} \int_{\left(\sum_{j=1}^{n} m_{j}\right)^{2}}^{\infty} \frac{V_{[n, v]}^{D}\left(x,\left\{m_{i}^{2}\right\}\right)}{(x-s)} \mathrm{d} x,
$$

and then renormalize by Eq. (B.1) as tadpoles do not vanish in MS.
Theorem(vi) Tensor integrals (see "App. C"). We have

$$
\begin{gather*}
k_{j+1} \cdot k_{j}=m_{j+1}^{2}-s_{n}^{n-j-1}-s_{n}^{n-j} \tag{2.25}\\
=-\sqrt{s_{n}^{n-j-1}}\left(\sqrt{s_{n}^{n-j-1}}-y_{n-j}\right), j \geq 2, \\
k_{2} \cdot k_{1}=\frac{k_{2}^{2}-m_{2}^{2}+m_{1}^{2}}{2}, \tag{2.26}\\
k_{j}^{2}=s_{n}^{n-j}, \text { in particular } k_{2}^{2}=s_{n}^{n-2}, \tag{2.27}\\
k_{j} \cdot k_{l}= \\
=\frac{k_{l} \cdot k_{l+1} k_{l+1} \cdot k_{l+2} \cdots k_{j-1} \cdot k_{j}}{k_{l+1}^{2} \cdots k_{j-1}^{2}} \tag{2.28}\\
k_{j} \cdot k_{1}= \\
\frac{\sqrt{s_{n}^{n-j-1}}}{\sqrt{s_{n}^{n-l-1}}} \prod_{i=l+1}^{j}\left(\sqrt{s_{l+1}^{n-i}}-y_{i+1}\right), j-l \not k_{l+1} \cdot k_{l+2} \cdots k_{j-1} \cdot k_{j} \tag{2.29}\\
k_{l+1}^{2} \cdots k_{j-1}^{2} \\
= \\
\frac{\sqrt{s_{n}^{n-j-1}}}{\sqrt{s_{n}^{n-2}}} \frac{s_{n}^{n-2}-m_{2}^{2}+m_{1}^{2}}{\sqrt{s_{n}^{n-2}}} \prod_{i=2}^{j}\left(\sqrt{s_{n}^{n-i}}-y_{i+1}\right), j-1 \neq 1 \neq 1,
\end{gather*}
$$

Furthermore, $V_{[n, \nu]}^{D}$ is obtained by using Eqs. (2.25-2.29) to insert tensor powers as indicated by v in the integrand of $V_{2}^{D}\left(s_{n}^{n-2}, m_{1}^{2}, m_{2}^{2}\right)$ and apply derivatives with respect to mass squares accordingly.

Remark (vi) We first give in Fig. 3 with $k_{j}^{2}=s_{n}^{n-j}$ also the irreducible squares of internal momenta (there is no propagator $k_{j}^{2}-m_{j}^{2}$ in the denominator of b_{n}).

Equation (2.26) is needed as Eq. (2.25) cannot cover the case $j=1$, due to the fact that for the b_{2} integration $d^{D} k_{1}$ both edges are constrained by a δ_{+}-function, while each other loop integral gains only one more constraint, giving us a y_{j} variable.

Equations (2.25-2.29) allow to treat tensor integrals involving scalar products of irreducible numerators. Irreducible as there is no propagator $1 /\left(k_{j}^{2}-m_{j+1}^{2}\right)$ in our momentum routing for b_{n}, see Fig. 3 .

Equations $(2.28,2.29)$ for irreducible scalar products follow by integrating tensors in the numerator in the order of iterated integration. For example, for the case of b_{3},

$$
\iint k_{1} \cdot k_{3} \frac{1}{\ldots} d^{D} k_{1} d^{D} k_{2}=\int A\left(k_{2}^{2}\right) k_{2} \cdot k_{3} \frac{1}{\ldots} d^{D} k_{2}=C\left(k_{3}^{2}\right),
$$

Fig. 3 We indicate momenta and masses at internal edges from top to bottom. We now also indicate momentum s_{n}^{j} for edges e_{2}, \ldots, e_{n}. The mass-shell conditions encountered in the computation of V_{n}^{D} enforce $k_{j}^{2}=s_{n}^{n-j}$ for $2 \leq j \leq n$. Equation (2.25) simply expresses the fact that $-2 k_{j} \cdot k_{j+1}=$ $\left(k_{j+1}-k_{j}\right)^{2}-k_{j+1}^{2}-k_{j}^{2}$ with $\left(k_{j+1}-k_{j}\right)^{2}=m_{j+1}^{2}$
and

$$
\iint \frac{k_{1} \cdot k_{2} k_{2} \cdot k_{3}}{k_{2}^{2}} \frac{1}{\cdots} d^{D} k_{1} d^{D} k_{2}=\int A\left(k_{2}^{2}\right) \frac{k_{2}^{2} k_{2} \cdot k_{3}}{k_{2}^{2}} \frac{1}{\cdots} d^{D} k_{2}=C\left(k_{3}^{2}\right),
$$

using

$$
\int \frac{k_{1 \mu}}{\ldots} d^{D} k_{1}=A\left(k_{2}^{2}\right) k_{2 \mu}
$$

and dots \cdots correspond to the obvious denominator terms.
Proof (i) and (ii) follow from the derivation of Eq. (2.10) upon setting $4 \rightarrow n, 3 \rightarrow$ $n-1$ in an obvious manner.
(iii) follows from inspection of Eq. (2.6): For example,

$$
\begin{array}{r}
\operatorname{up}_{n}^{0}=\frac{s+m_{n}^{2}-\left(m_{1}+\cdots+m_{n-1}\right)^{2}}{2 \sqrt{s}} \\
\operatorname{up}_{n}^{1}\left(y_{n-1}\right)=\frac{s_{n}^{1}+m_{n-1}^{2}-\left(m_{1}+\cdots+m_{n-2}\right)^{2}}{2 \sqrt{s_{n}^{1}}}
\end{array}
$$

with

$$
s_{n}^{1}\left(y_{n-1}\right)=s-2 \sqrt{s} y_{n-1}+m_{n}^{2} .
$$

Then,

$$
\operatorname{up}_{n}^{1}\left(\operatorname{up}_{n}^{0}\right)=\frac{\left(m_{1}+\cdots+m_{n-1}\right)^{2}+m_{n-1}^{2}-\left(m_{1}+\cdots+m_{n-2}\right)^{2}}{2\left(m_{1}+\cdots+m_{n-1}\right)}=m_{n-1}
$$

and so on.
(iv) straight from the definition Eq. (2.12) of s_{n}^{j}. For example,

$$
\partial_{m_{n}^{2}} s_{n}^{3}=\frac{\left(\sqrt{s_{n}^{1}}-y_{n-2}\right)\left(\sqrt{s_{n}^{2}}-y_{n-3}\right)}{\sqrt{s_{n}^{1}} \sqrt{s_{n}^{2}}}
$$

(v) This is the definition of dispersion in kinematic renormalization conditions.
(vi) For tensor integrals, we collect variables $k_{j ; 0}$ and t_{j} in any step of the computation in terms of $y_{j}=\sqrt{t_{j}+m_{j+1}^{2}}$.

2.6.1 s_{n}^{j} : iterating square roots

Choose an order o of the edges which fixes

$$
b_{2} \subset b_{3} \subset \cdots \subset b_{n-1} \subset b_{n} .
$$

Here, we label

$$
E_{b_{2}}=:\left\{e_{1}, e_{2}\right\}, E_{b_{3}}=\left\{e_{1}, e_{2}, e_{3}\right\}, \ldots, E_{b_{n}}=\left\{E_{b_{n-1}} \cup e_{n}\right\} .
$$

Then,

$$
\begin{aligned}
s_{n}^{1}\left(y_{n-1}\right)= & s-2 \sqrt{s} y_{n-1}+m_{n}^{2} \\
s_{n}^{2}\left(y_{n-1}, y_{n-2}\right)= & s-2 \sqrt{s} y_{n-1}+m_{n}^{2}-2 \sqrt{s-2 \sqrt{s} y_{n-1}+m_{n}^{2}} y_{n-2}+m_{n-1}^{2}, \\
s_{n}^{3}\left(y_{n-1}, y_{n-2}, y_{n-3}\right)= & s-2 \sqrt{s} y_{n-1}+m_{n}^{2}-2 \sqrt{s-2 \sqrt{s} y_{n-1}+m_{n}^{2}} y_{n-2}+m_{n-1}^{2} \\
& -2 \sqrt{s-2 \sqrt{s} y_{n-1}+m_{n}^{2}-2 \sqrt{s-2 \sqrt{s} y_{n-1}+m_{n}^{2}} y_{n-2}+m_{n-1}^{2}} \\
& \times y_{n-3}+m_{n-2}^{2}, \\
& \cdots, \\
s_{n}^{n-2}\left(y_{n-1}, \ldots, y_{3}, y_{2}\right)= & s_{n}^{n-3}\left(y_{n-1}, \ldots, y_{3}\right)-2 \sqrt{s_{n}^{n-3}\left(y_{n-1}, \ldots, y_{3}\right)} y_{2}+m_{3}^{2} .
\end{aligned}
$$

Remark 2.3 The iteration of square roots in particular for s_{n}^{n-2} which is the crucial argument in $V_{n}^{D}\left(s_{n}^{n-2}, m_{1}^{2}, m_{2}^{2}\right)$ is hopefully instructive for a future analysis of periods which emerge in the evaluation of that function [11]. This iteration of square roots points to the presence of a solvable Galois group with successive quotients $\mathbb{Z} / 2 \mathbb{Z}$
reflecting iterated double covers in momentum space. Thanks to Spencer Bloch for pointing this out.

3 Differential equations and related considerations

This section collects some comments with respect to the results above with regard to:

- Dispersion. We want to discuss in some detail why raising powers of propagators is well defined in dispersion integrals even if a higher power of a propagator constitutes a product of distributions with coinciding support.
- Integration by parts (ibp) [23]. We do not aim at constructing algorithms which can compete with the established algorithms in the standard approach [24]. But at least we want to point out how ibp works in our iterated integral set-up.
- Differential equations. Here, we focus on systems of linear first-order differential equations for master integrals [25]. We also add a few comments on higher-order differential equation for assorted master integrals which emerge as Picard-Fuchs equations [6, 7, 10, 19].
- Master integrals. Master integrals are assumed independent by definition with regard to relations between them with coefficients which are rational functions of mass squares and kinematic invariants [26,27]. We will remind ourselves that such a relation can still exist for their imaginary parts [5]. We trace this phenomenon back to the degree of subtraction needed in dispersion integrals to construct their real part from their imaginary parts. Furthermore, we will offer a geometric interpretation of the counting of master integrals for graphs b_{n}.

3.1 Dispersion and derivatives

As we want to obtain full results from imaginary parts by dispersion, we have to discuss the existence of dispersion integrals in some detail. There are subtleties when raising powers of propagators. It is sufficient to discuss the example of b_{2}.

With $\Phi_{R}^{D}\left(b_{2}\right)$ given, consider a derivative with respect to a mass square such that a propagator is raised to second power,

$$
\Phi_{R}^{D}\left(b_{2}\right)_{2,1}:=\partial_{m_{1}^{2}} \Phi_{R}^{D}\left(b_{2}\right)\left(s, m_{1}^{2}, m_{2}^{2}\right)
$$

Similar to the imaginary part,

$$
\mathfrak{s}\left(\Phi_{R}^{D}\left(b_{2}\right)_{2,1}\right):=\partial_{m_{1}^{2}} \mathfrak{s}\left(\Phi_{R}^{D}\left(b_{2}\right)\right)\left(s, m_{1}^{2}, m_{2}^{2}\right) .
$$

We have (for $D=4$ say)

$$
\Im\left(\Phi_{R}^{4}\left(b_{2}\right)_{2,1}\right)=\frac{s-s_{0}}{\pi} \int_{0}^{\infty} \frac{\partial_{m_{1}^{2}}\left(\Theta\left(x-\left(m_{1}+m_{2}\right)^{2}\right) V_{2}^{4}\left(x, m_{1}^{2}, m_{2}^{2}\right)\right)}{(x-s)\left(x-s_{0}\right)} \mathrm{d} x .
$$

$\delta_{+}\left(Q_{1}\right) \delta_{+}\left(Q_{2}\right)$

$$
\frac{\delta_{+}\left(Q_{1}\right) \delta_{+}\left(Q_{2}\right)}{Q_{1}}
$$

Fig. 4 The doubling of propagators indicated by a dot on the edge creates a problem

There is an issue here. It concerns the fact that to a propagator, itself a distribution,

$$
Q(r, m)=\frac{1}{r^{2}-m^{2}}=\text { P.V. } \frac{1}{r^{2}-m^{2}}+i \pi \delta\left(r^{2}-m^{2}\right),
$$

(using Cauchy's principal value and the δ-distribution) we can associate a well-defined distribution by 'cutting' the propagator:

$$
\frac{1}{Q(r, m)} \rightarrow \delta_{+}(Q(r, m))=\Theta\left(r_{0}\right) \delta\left(r^{2}-m^{2}\right)
$$

The expression

$$
2 \frac{\delta_{+}(Q(r, m))}{Q}
$$

obtained from cutting any one of the two factors in the squared propagator,

$$
-\partial_{m^{2}} \frac{1}{Q(r, m)}=\frac{1}{Q^{2}(r, m)} \rightarrow 2 \frac{\delta_{+}(Q(r, m))}{Q},
$$

is ill defined as the numerator forces the denominator to vanish. Hence, higher powers of propagators are subtle when it comes to cuts on any one of their factors (Fig.4).

Remarkably, dispersion still works despite the fact that derivatives like $\partial_{m_{1}^{2}}$ do just that: generating such higher powers.

We have

$$
\begin{aligned}
\partial_{m_{1}^{2}} \Im\left(\Phi_{R}^{D}\left(b_{2}\right)\right)=\delta\left(s-\left(m_{1}+m_{2}\right)^{2}\right) V_{2}^{D}\left(s, m_{1}^{2}, m_{2}^{2}\right)\left(1+\frac{m_{2}}{m_{1}}\right) \\
+\Theta\left(s-\left(m_{1}+m_{2}\right)^{2}\right) \partial_{m_{1}^{2}} V_{2}^{D}\left(s, m_{1}^{2}, m_{2}^{2}\right),
\end{aligned}
$$

where

$$
\left(1+\frac{m_{2}}{m_{1}}\right)=\partial_{m_{1}^{2}}\left(m_{1}+m_{2}\right)^{2}
$$

Using

$$
V_{2}^{D}\left(s, m_{1}^{2}, m_{2}^{2}\right)=\frac{{\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}}^{D-3}}{s^{\frac{D}{2}-1}}
$$

the above is singular at $s=\left(m_{1}+m_{2}\right)^{2}$. Indeed, both terms on the rhs are ill defined, but their sum can be integrated in the dispersion integral

$$
\begin{aligned}
\partial_{m_{1}^{2}} \phi_{R}^{D}\left(b_{2}\right)= & \frac{\left(s-s_{0}\right)}{\pi} \int_{0}^{\infty}\left(\delta\left(x-\left(m_{1}+m_{2}\right)^{2}\right) V_{2}^{D}\left(x, m_{1}^{2}, m_{2}^{2}\right)\left(1+\frac{m_{2}}{m_{1}}\right)\right. \\
& \left.+\Theta\left(x-\left(m_{1}+m_{2}\right)^{2}\right) \partial_{m_{1}^{2}} V_{2}^{D}\left(x, m_{1}^{2}, m_{2}^{2}\right)\right) \frac{1}{(x-s)\left(x-s_{0}\right)} \mathrm{d} x,
\end{aligned}
$$

so that the singularity drops out for all D by Taylor expansion of

$$
\partial_{m_{1}^{2}} \lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)=\partial_{m_{1}^{2}}\left(\left(x-\left(m_{1}+m_{2}\right)^{2}\right)\left(x-\left(m_{1}-m_{2}\right)^{2}\right)\right),
$$

near the point $x=\left(m_{1}+m_{2}\right)^{2}$.
We are not saying that it is meaningful to replace

$$
\frac{1}{Q^{2}} \rightarrow \frac{\delta_{+}(Q)}{Q},
$$

to come to dispersion relations.
Instead, we can exchange either:
(i) Taking derivatives wrt masses on an imaginary part $\Im\left(\Phi_{R}^{D}\left(b_{n}\right)_{v}\right)$ first and then doing the dispersion integral, or,
(ii) Doing the dispersion integral first and then taking derivatives.

3.2 Integration-by-parts

Integration-by-parts (ibp) is a standard method employed in high energy physics computations.

It starts from an incarnation of Stoke's theorem in dimensional regularization

$$
0=\int d^{D} k \frac{\partial}{\partial k_{\mu}} v_{\mu} F(\{k \cdot r\}),
$$

where F is a scalar function of loop momentum k and other momenta and v_{μ} is a linear combination of such momenta employing a suitable definition of D-dimensional integration for $D \in \mathbb{C}$.

We want to discuss ibp and Stokes theorem from the viewpoint of the y_{i}-integrations in our iterated integral.

We let $\operatorname{Int}_{b_{n}}$ be the integrand in Eq. (2.14). It is made from three factors:

$$
\mathbf{I n t}_{b_{n}}=\mathbf{Y}_{n}^{D-3} \times \mathbf{3}_{n}^{D-3} \times{\sigma_{n}^{1-\frac{D}{2}}}^{1}
$$

with $\mathbf{Y}_{n}, \mathbf{3}_{n}, \sigma_{n}$ defined by,

$$
\begin{aligned}
\mathbf{Y}_{n}^{D-3} & =\prod_{j=2}^{n-1}{\sqrt{y_{j}^{2}-m_{j+1}^{2}}}^{D-3} \\
\mathbf{3}_{n}^{D-3} & ={\sqrt{\lambda\left(s_{n}^{n-2}\left(y_{2}, \ldots, y_{n-1}\right), m_{1}^{2}, m_{2}^{2}\right)}}^{D-3} \\
\sigma_{n}^{1-\frac{D}{2}} & =\frac{1}{\left(s_{n}^{n-2}\left(y_{2}, \ldots, y_{n-1}\right)\right)^{\frac{D}{2}-1}}
\end{aligned}
$$

We have the following identities which allow to trade derivatives with respect to y_{j} with derivatives with respect to m_{j+1}^{2} or s,

$$
\begin{align*}
\partial_{y_{j}} \mathbf{Y}_{n} & =y_{j} \frac{1}{y_{j}^{2}-m_{j+1}^{2}} \mathbf{Y}_{n}=-2 y_{j} \partial_{m_{j+1}^{2}} \mathbf{Y}_{n}, \tag{3.1}\\
\partial_{y_{j}} \mathbf{3}_{n} & =\frac{s_{n}^{n-2}-m_{1}^{2}-m_{2}^{2}}{\lambda\left(s_{n}^{n-2}\left(y_{2}, \ldots, y_{n-1}\right), m_{1}^{2}, m_{2}^{2}\right)}\left(\partial_{y_{j}} s_{n}^{n-2}\right) \mathbf{3}_{n} \\
& =\left(\partial_{s} \mathbf{3}_{n}\right)\left(\frac{-2 \sqrt{s}}{\sqrt{s-y_{n-1}}} \prod_{k=1}^{n-j-1} \frac{s_{n}^{k}}{s_{n}^{k}-y_{n-k-1}}\right) \tag{3.2}\\
& =-2 \sqrt{s_{n}^{n-j-1}} \partial_{m_{j+1}^{2}} \mathbf{3}_{n}, \\
\partial_{y_{j}} \sigma_{n} & =\partial_{y_{j}} s_{n}^{n-2}=-2 \sqrt{s_{n}^{n-j-1}} \prod_{l=2}^{j-1} \frac{s_{n}^{n-l-1}-y_{l}}{s_{n}^{n-l-1}} \\
& =-2 \sqrt{s_{n}^{n-j-1}} \partial_{m_{j+1}^{2}} \sigma_{n} \\
& =\partial_{s} \sigma_{n}\left(\frac{-2 \sqrt{s}}{\sqrt{s-y_{n-1}}} \prod_{k=1}^{n-j-1} \frac{s_{n}^{k}}{s_{n}^{k}-y_{n-k-1}}\right) \tag{3.3}
\end{align*}
$$

We also note that

$$
\begin{equation*}
\partial_{m_{j+1}^{2}} \mathbf{3}_{n}=\left(\partial_{m_{j+1}^{2}} s_{n}^{n-2}\right) \frac{1}{m_{1}^{2}-m_{2}^{2}}\left(m_{1}^{2} \partial_{m_{1}^{2}}-m_{2}^{2} \partial_{m_{2}^{2}}\right) \boldsymbol{3}_{n}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{s} \mathbf{3}_{n}=\left(\partial_{s} s_{n}^{n-2}\right) \frac{1}{m_{1}^{2}-m_{2}^{2}}\left(m_{1}^{2} \partial_{m_{1}^{2}}-m_{2}^{2} \partial_{m_{2}^{2}}\right) \mathbf{3}_{n} . \tag{3.5}
\end{equation*}
$$

Furthermore, insertion of tensor structure given by v following Sect. 1 and Eqs. (2.25-2.29) define an integrand Int $_{b_{n}, v}$.

Now, using Eq. (2.20) we have for any such integrand,

$$
\int_{m_{j+1}}^{\mathrm{up}_{n}^{j+1}} \partial_{y_{j}}\left(\boldsymbol{I n t}_{b_{n}, v}\right) d y_{j}=0, \forall j, 2 \leq j \leq(n-1)
$$

Proposition 3.1 The above evaluates to an identity of the form,

$$
\sum_{j} \mathbf{I n t}_{b_{n}, v_{j}}=0
$$

between tensor integrals Int $_{b_{n}, v_{j}}$ for some tensor structures v_{j}.
Proof Derivatives with respect to y_{j} can be traded for derivatives with respect to masses and with respect to the scale s using Eqs. (3.1, 3.3, 3.1). Starting with v, this creates suitable new tensor structures v_{j}. Homogeneity of λ allows to replace the ∂_{s} derivatives by $\mathbf{I n t}_{b_{n}, \tilde{v}_{j}}$ with once-more modified tensor structures \tilde{v}_{j}.

3.3 Differential equations

Functions $\Phi_{R}^{D}(G)\left(\left\{k_{i} \cdot k_{j}\right\},\left\{m_{e}^{2}\right\}\right)$ for a chosen Feynman graph G fulfil differential equations with respect to suitable kinematical variables [25]. Those variables are given by scalar products $k_{i} \cdot k_{j}$ of external momenta. For $G=b_{n}$, these are differential equations in the sole scalar product $s=k_{n} \cdot k_{n}$ of external momenta.
$\Phi_{R}^{D}\left(b_{n}\right)\left(s,\left\{m_{e}^{2}\right\}\right)$ is a solution to an inhomogeneous differential equation, and the imaginary part $\mathfrak{F}\left(\Phi_{R}^{D}\left(b_{n}\right)\right)\left(s,\left\{m_{e}^{2}\right\}\right)$ solves the corresponding homogeneous one.

More precisely, there is a set of master integrals $\left\{b_{n}\right\}_{M}$ defined as a class of Feynman graphs such that any given graph b_{n}, giving rise to integrals $\Phi_{R}^{D}\left(b_{n}\right)_{v}\left(s, s_{0},\left\{m_{e}^{2}\right\}\right)$ so with all its corresponding tensor integrals and arbitrary integer powers of propagators-can be expressed as linear combinations of elements of $\left\{b_{n}\right\}_{M}$.

Let us consider the column vector $S_{b_{n}}$ formed by the elements of $\left\{b_{n}\right\}_{M}$. One searches for a first-order system

$$
\partial_{s} S_{b_{n}}(s)=A S_{b_{n}}(s)+T
$$

with $A=A\left(s,\left\{m_{e}^{2}\right\}\right)$ a matrix of rational functions and $T=T\left(\left\{m_{e}^{2}\right\}\right)$ the inhomogeneity provided by the minors of b_{n}. Those are $(n-1)$-loop tadpoles t_{e} obtained from shrinking an edge $e, t_{e}=b_{n} / e$.

One then has

$$
\partial_{s} \Im\left(S_{b_{n}}\right)(s)=A \Im\left(S_{b_{n}}\right)(s),
$$

where $\mathfrak{J}\left(S_{b_{n}}\right)$ is formed by the imaginary parts of entries of $S_{b_{n}}$ and $\mathfrak{J}\left(\Phi_{R}^{D}\left(t_{e}\right)\right)=0$.

For b_{3}, for example, one has $S_{b_{3}}=\left(F_{0}, F_{1}, F_{2}, F_{3}\right)^{T}$, with $F_{0}=\Phi_{R}^{D}\left(b_{3}\right), F_{i}=$ $\partial_{m_{i}^{2}} \Phi_{R}^{D}\left(b_{3}\right), i \in\{1,2,3\}$.

The 4×4 matrix A and the four-vector T for that example are well-known, see [10].

From such a first-order system for the full set of master integrals, one often derives a higer-order differential equation for a chosen master integral. For b_{3} or b_{4}, it is a Picard-Fuchs equation [10].

For banana graphs b_{n}, it is a differential equation of order $(n-1)$:

$$
\begin{equation*}
\sum_{j=0}^{n-1}\left(Q_{b_{n}}^{(j)} \partial_{s}^{j}\right) \Phi_{R}^{D}\left(b_{n}\right)(s)=T_{n}(s) \tag{3.6}
\end{equation*}
$$

where $Q_{b_{n}}^{(j)}$ are rational functions in $s,\left\{m_{e}^{2}\right\}$ and one can always set $Q_{b_{n}}^{(n-1)}=1$. It has been studied extensively $[6,7,10,11,19]$.

We want to outline how our iterated integral approach relates to such differential equations, to master integrals and to the integration-by-parts (ibp) identities which underlay such structures.

Our first task is to remind ourselves how to connect the homogeneous and inhomogeneous differential equations, and we turn to b_{2} for some basic considerations.

3.3.1 Differential equation for b_{2}

We set $D=2$ for the moment. Consider the imaginary part of the bubble

$$
\Im\left(\Phi_{R}^{2}\left(b_{2}\right)\right)(s)=\frac{1}{\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}} \Theta\left(s-\left(m_{1}+m_{2}\right)^{2}\right) .
$$

We can recover $\Phi_{R}^{2}\left(b_{2}\right)$ by dispersion which reads for $D=2$,

$$
\Phi_{R}^{2}\left(b_{2}\right)(s)=\frac{1}{\pi} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \frac{\Im\left(\Phi_{R}^{2}\left(b_{2}\right)\right)(x)}{(x-s)} \mathrm{d} x .
$$

We now use this representation to analyse the well-known differential equation [6] for b_{2} given in

Proposition 3.2

$$
\begin{equation*}
\left(\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right) \frac{\partial}{\partial s}+\left(s-m_{1}^{2}-m_{2}^{2}\right)\right) \Phi_{R}^{2}\left(b_{2}\right)(s)=\frac{1}{\pi}, \tag{3.7}
\end{equation*}
$$

and for the imaginary part

$$
\begin{equation*}
\left(\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right) \frac{\partial}{\partial s}+\left(s-m_{1}^{2}-m_{2}^{2}\right)\right) \Im\left(\Phi_{R}^{2}\left(b_{2}\right)(s)\right)=0 . \tag{3.8}
\end{equation*}
$$

Note that Eq. (3.8) is the homogeneous equation associated with Eq. (3.7) as it must be [25].

The following proof aims at deriving Eq. (3.7) from the dispersion integral.
Proof Let us first prove Eq. (3.8).

$$
\begin{aligned}
\lambda & \left(s, m_{1}^{2}, m_{2}^{2}\right) \frac{\partial}{\partial s} \frac{1}{\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}} \Theta\left(s-\left(m_{1}+m_{2}\right)^{2}\right) \\
& =\frac{-\left(s+m_{1}^{2}+m_{2}^{2}\right)}{\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}} \Theta\left(s-\left(m_{1}+m_{2}\right)^{2}\right) \\
& +\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)} \delta\left(s-\left(m_{1}+m_{2}\right)^{2}\right) \\
& =\frac{-\left(s+m_{1}^{2}+m_{2}^{2}\right)}{\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}} \Theta\left(s-\left(m_{1}+m_{2}\right)^{2}\right) \\
& =-\left(s+m_{1}^{2}+m_{2}^{2}\right) \Im\left(\Phi_{R}^{2}\left(b_{2}\right)\right)(s),
\end{aligned}
$$

as desired. We use $\lambda\left(\left(m_{1}+m_{2}\right)^{2}, m_{1}^{2}, m_{2}^{2}\right)=0$.
Now, for Eq. (3.7). Evaluating the lhs gives

$$
\begin{align*}
& \text { LHS }=\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right) \frac{1}{\pi} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \frac{1}{\sqrt{\lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)}(x-s)^{2}} \mathrm{~d} x \tag{3.9}\\
&+\frac{1}{\pi} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \frac{\left(s-m_{1}^{2}-m_{2}^{2}\right)}{\sqrt{\lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)}(x-s)} \mathrm{d} x . \tag{3.10}
\end{align*}
$$

A partial integration in the first term (3.9) delivers

$$
\begin{aligned}
\text { LHS }= & -\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right) \frac{1}{2 \pi} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \frac{\partial_{x} \lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)}{\sqrt{\lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)^{3}}(x-s)} \mathrm{d} x \\
& +\frac{1}{\pi} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \frac{\left(s-m_{1}^{2}-m_{2}^{2}\right)}{\sqrt{\lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)}(x-s)} \mathrm{d} x \\
& -\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)\left[\frac{1}{\pi} \frac{1}{\sqrt{\lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)}(x-s)}\right]_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} .
\end{aligned}
$$

We have

$$
\begin{equation*}
\partial_{x} \lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)=2\left(x-m_{1}^{2}-m_{2}^{2}\right)=: v_{1}(x), v_{1}(x)-v_{1}(s)=2(x-s) \tag{3.11}
\end{equation*}
$$

and
$\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)-\lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)=(s-x)\left((s+x)-2\left(m_{1}^{2}+m_{2}^{2}\right)\right)=: w(x, s)(s-x)$.
Using this the lhs of Eq. (3.7) reduces to a couple of boundary terms. We collect

$$
\begin{aligned}
& +\frac{1}{\pi}\left[\frac{x}{\sqrt{\lambda_{x}}}\right]_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \\
& +\frac{s-2\left(m_{1}^{2}+m_{2}^{2}\right)}{\pi}\left[\frac{1}{\sqrt{\lambda_{x}}}\right]_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \\
& +\left[\frac{1}{\pi} \frac{(s-x) w(s, x)+\lambda_{x}}{\sqrt{\lambda_{x}}(x-s)}\right]_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \\
& =\frac{1}{\pi}
\end{aligned}
$$

as desired.
Indeed, using that $w(s, x)=s+x-2\left(m_{1}^{2}+m_{2}^{2}\right)$ we see that the term $\sim w$ in the third line cancels the first and second lines. The remaining term is

$$
\left[\frac{1}{\pi} \frac{\lambda_{x}}{\sqrt{\lambda_{x}}(x-s)}\right]_{\left(m_{1}+m_{2}\right)^{2}}^{\infty}=\frac{1}{\pi},
$$

as $\sqrt{\lambda\left(\left(m_{1}+m_{2}\right)^{2}, m_{1}^{2}, m_{2}^{2}\right)}=0$ and $\lim _{x \rightarrow \infty} \sqrt{\lambda\left(x, m_{1}^{2}, m_{2}^{2}\right)}=x$.
Remark 3.3 So, for b_{2} we have by Eqs. $(3.12,3.11)$

$$
Q_{0}(x)=\frac{2\left(s-m_{1}^{2}-m_{2}^{2}\right)}{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)} \text { and } Q_{1}(x)=1 .
$$

This is a trivial incarnation of Eq. (3.6). As $\left(Q_{0}(x)-Q_{0}(s)\right) \sim(x-s)$, we cancel the denominator $1 /(x-s)$ in the dispersion integral and we are left with boundary terms which constitute the inhomogeneous terms.
Remark 3.4 The non-rational part $\Phi_{R}^{D}\left(b_{2}\right)$ Transc of $\Phi_{R}^{D}\left(b_{2}\right)$ is divisible by V_{2}^{D} and gives a pure function in the parlance of [2]. Indeed, one wishes to identify such pure functions in the non-rational parts of $\Phi_{R}^{D}\left(b_{n}\right)\left(s, s_{0}\right)$.

For example, for $D=4$ (ignoring terms in $\Phi_{R}^{4}\left(b_{2}\right)(s)$ which are rational in s)

$$
\Phi_{R}^{4}\left(b_{2}\right)(s)_{\text {Transc }} / V_{2}^{4}(s)=\ln \frac{m_{1}^{2}+m_{2}^{2}-s-\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}}{m_{1}^{2}+m_{2}^{2}-s+\sqrt{\lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)}} .
$$

This follows also for all $b_{n}, n>2$, as long as the inhomogenuity $T_{n}(s)$ fulfils

$$
\mathfrak{\Im}\left(T_{n}(s)\right)=0,
$$

which is certainly true for the case b_{2} with $T_{2}(s)=1 / \pi$. Indeed, for $f(s)$ a solution of the homogeneous

$$
\left(\sum_{j=0}^{n-1} Q_{j}(s) \partial_{s}^{j}\right) f(s)=0
$$

the inhomogeneous Picard-Fuchs equation

$$
\left(\sum_{j=0}^{n-1} Q_{j}(s) \partial_{s}^{j}\right) g(s)=T_{n}(s)
$$

can be solved by setting $g(s)=f(s) h(s)$. Using Leibniz' rule, this determines $h(s)$ as a solution of an equation

$$
\sum_{k=1}^{n-1} h^{(k)}(s)\left(\sum_{j=k}^{n-1}\binom{j}{k} a_{j}(s) f^{(j-k)}(s)\right)=u(s)
$$

with $f^{(j-k)}(s)=\partial_{s}^{j-k} f(s)$ and similarly for $h^{(k)}(s)$. Note $f^{(j-k)}(s)$ are given by solving the homogeneous equation. Hence, $g(s)$ indeed factorizes as desired. ${ }^{2}$

This relates to co-actions and cointeracting bialgebras [28,29] and will be discussed elsewhere.

3.3.2 Systems of linear differential equations for b_{n}

To find differential equations for the iterated y_{j}-integrations of Eq. (2.14), we first systematically shift all y_{j}-derivatives acting on $\sqrt{y_{j}^{2}-m_{j+1}^{2}}$ to act on $V_{2}^{D}\left(s_{n}^{2}, m_{1}^{2}, m_{2}^{2}\right)$ using partial integration. We can ignore boundary terms by Thm. (2.2(iii)). We use

$$
\left.\begin{array}{rl}
\left(\partial_{m_{j}^{2}} \frac{1}{\sqrt{y_{j-1}-m_{j}^{2}}}\right) F & =\frac{1}{2{\sqrt{y_{j-1}-m_{j}^{2}}}^{3}} F \\
& =\left(-\frac{y_{j-1}^{2}-m_{j}^{2}}{2 m_{j}^{2}{\sqrt{y_{j-1}-m_{j}^{2}}}^{3}}+\frac{y_{j-1}^{2}}{2 m_{j}^{2} \sqrt[y_{j-1}-m_{j}^{2}]{ }}\right. \text {. }
\end{array}\right) F=\left(-\frac{1}{2 m_{j}^{2} \sqrt{y_{j-1}-m_{j}^{2}}}-y\left(\partial_{y_{j-1}} \frac{1}{2 m_{j}^{2} \sqrt{y_{j-1}-m_{j}^{2}}}\right)\right) F \text {. }
$$

[^1]\[

$$
\begin{aligned}
& =-\frac{1}{2 m_{j}^{2} \sqrt{y_{j-1}-m_{j}^{2}}} F+\frac{1}{2 m_{j}^{2} \sqrt{y_{j-1}-m_{j}^{2}}}\left(\partial_{y_{j-1}} y_{j-1} F\right) \\
& =+\frac{1}{2 m_{j}^{2} \sqrt{y_{j-1}-m_{j}^{2}}} y_{j-1}\left(\partial_{y_{j-1}} F\right) \\
& =+\frac{1}{m_{j}^{2} \sqrt{y_{j-1}-m_{j}^{2}}} y_{j-1}\left(\sqrt{s_{n}^{j-1}} \partial_{m_{j}^{2}} F\right)
\end{aligned}
$$
\]

We could trade a derivative wrt y_{j-1} for a derivative wrt m_{j}^{2} thanks to Thm. (2.2(iv)). This holds under the proviso that all masses are different. Else, we use the penultimate line as our result:

$$
\left(\partial_{m_{j}^{2}} \frac{1}{\sqrt{y_{j-1}-m_{j}^{2}}}\right) F=+\frac{1}{2 m_{j}^{2} \sqrt{y_{j-1}-m_{j}^{2}}} y_{j-1}\left(\partial_{y_{j-1}} F\right) .
$$

We can iterate this and shift higher than first derivatives

$$
\left(\partial_{m_{j}^{2}}^{k} \frac{1}{\sqrt{y_{j-1}-m_{j}^{2}}}\right) F
$$

to derivatives on F.
We note that from the definition of $\lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right)$ we have

$$
\begin{aligned}
\lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right)= & s_{n}^{n-2}\left(s_{n}^{n-2}-2\left(m_{1}^{2}+m_{2}^{2}\right)\right) \\
& +\left(m_{1}^{2}-m_{2}^{2}\right)^{2}
\end{aligned}
$$

By Euler (λ is homogeneous of degree two),

$$
\begin{gathered}
2 \lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right)=\partial_{s_{n}^{n-2}} \lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right)+\partial_{m_{1}^{2}} \lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right) \\
+\partial_{m_{2}^{2}} \lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right) .
\end{gathered}
$$

Also,

$$
\begin{aligned}
\partial_{m_{1}^{2}} \lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right) & =2\left(m_{1}^{2}-m_{2}^{2}-s_{n}^{n-2}\right), \\
\partial_{m_{2}^{2}} \lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right) & =2\left(m_{2}^{2}-m_{1}^{2}-s_{n}^{n-2}\right), \\
\partial_{m_{j}^{2}} \lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right) & =2\left(s_{n}^{n-2}-m_{1}^{2}-m_{2}\right) \partial_{m_{j}^{2}} s_{n}^{n-2}, \forall 3 \leq j \leq n, \\
\partial_{s} \lambda\left(s_{n}^{n-2}, m_{2}^{2}, m_{1}^{2}\right) & =2\left(s_{n}^{n-2}-m_{1}^{2}-m_{2}\right) \partial_{s} s_{n}^{n-2} .
\end{aligned}
$$

With this, Thm. (2.2) allows to derive differential equations.
Let us rederive, for example, the differential equation for the three-edge banana. Let us define

$$
\begin{aligned}
& F_{0}=\Phi_{R}\left(b_{3}\right), \\
& F_{1}=\partial_{m_{1}^{2}} F_{0}, \\
& F_{2}=\partial_{m_{2}^{2}} F_{0}, \\
& F_{3}=\partial_{m_{3}^{2}} F_{0}, \\
& F_{s}=\partial_{s} F_{0} .
\end{aligned}
$$

Then, we have

$$
\begin{equation*}
(D-3) F_{0}+\sum_{j=1}^{3} m_{j}^{2} F_{j}=s \partial_{s} F_{0} \tag{3.13}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
\left((D-4)+\sum_{i=1}^{3} m_{i}^{2} \partial_{m_{i}^{2}}\right) F_{j}=s \partial_{s} F_{j}, j \in\{1,2,3\} . \tag{3.14}
\end{equation*}
$$

The integrands I_{i} for $(D-3) F_{0}, m_{1}^{2} F_{1}, m_{2}^{2} F_{2}, m_{3}^{2} F_{3}$, and $s F_{s}$ can be written as

$$
I_{i}=\frac{\operatorname{num}_{i}\left(y_{2}\right)}{s^{\frac{D}{2}}}{\sqrt{y_{2}^{2}-m_{3}^{2}}}^{D-5} \sqrt{\lambda}^{D-5}\left(s_{3}^{1}, m_{2}^{2}, m_{1}^{2}\right)
$$

with suitable polynomials num ${ }_{i}$ in y_{2}. Equation (3.13) follows immediately as the corresponding numerators num ${ }_{i}\left(y_{2}\right)$ add to zero.

Equation (3.14) for F_{1}, F_{2}, F_{3} can be proven in precisely the same manner, and many more differential equations follow from using the ibp identities Eqs. (3.1-3.3).

Furthermore, $F_{0}, F_{1}, F_{2}, F_{3}$ provide master integrals for the Feynman integrals $\Phi_{R}^{D}\left(b_{3}\right)_{\nu}[10]$.

Remark 3.5 Note that we can infer the independence of $F_{0}, F_{1}, F_{2}, F_{3}$ from the fact that the corresponding polynomials are different, in fact of different degree in y_{2}.

We could also use different integral representations for F_{1}, F_{2}, F_{3} by setting

$$
\begin{aligned}
& F_{3}=\partial_{m_{3}^{2}} \text { rhs of Eq. (2.1) }, \\
& F_{2}=\partial_{m_{2}^{2}} \text { rhs of Eq. (2.2) } \\
& F_{1}=\partial_{m_{1}^{2}} \text { rhs of Eq. (2.3). }
\end{aligned}
$$

and conclude from there.

3.4 Master integrals

We want to comment on two facts:
(i) A geometric interpretation of the known formula for the counting of master integrals for b_{n},
(ii) That the independence of elements x of a set $S_{b_{n}}$ of master integrals does not imply the independence of elements of $\mathfrak{J}(x), x \in\left(S_{b_{n}}\right)$.

3.4.1 A geometric interpretation: powercounting

Let us start with a geometric interpretation. We collect a well-known proposition [26, 27].

Proposition 3.6 The number of master integrals for the n-edge banana with different masses is $2^{n}-1$.

Let us pause. For b_{3}, we have four master integrals, F_{0}, and three possibilities to put a dot on an internal edge. Furthermore, we can shrink any of the three internal edges, giving us three two-petal roses as minors. This makes $7=2^{3}-1$ master integrals amounting to the fact that all tensor integrals $\Phi_{R}\left(b_{n}\right) v$ can be expressed as a linear combination of those seven, with coefficients which are rational functions in the mass squares and in s.

Similarly, for b_{4} we have $\Phi_{R}^{D}\left(b_{4}\right)$ itself, four integrals $\partial_{m_{i}^{2}} \Phi_{R}^{D}\left(b_{4}\right)$ and six $\partial_{m_{j}^{2}} \partial_{m_{i}^{2}} \Phi_{R}^{D}\left(b_{4}\right), i \neq j$. There are four minors as well, so that we get the desired $15=2^{4}-1$ master integrals.

For arbitrary n, there are indeed $\binom{n}{j}$ possibilities to put one dot on j edges, and

$$
\sum_{j=0}^{n-2}\binom{n}{j}=2^{n}-n-1
$$

possibilities to put a single dot on up to $n-2$ edges. Furthermore, we have n minors from shrinking one of the n edges, so we get $2^{n}-1$ master integrals.

Furthermore, it is obvious from the structure of the iterated integral in Eq. (2.14) that the two edges forming the innermost b_{2} do not need a dot. Indeed, the corresponding loop integral in k_{1} is fixed by two δ_{+}functions. Integration by parts then ensures that we do not need more than one dot per edge at most.

Remark 3.7 One can analyse this from the viewpoint of powercounting. Let us choose $D=4$ so that b_{2} is log-divergent. Let us note that for $D=4$

$$
\begin{equation*}
4(n-1)-2 \overbrace{(2 n-2)}^{\# E}=0, \tag{3.15}
\end{equation*}
$$

where $\# E$ is the number of edges of a banana graph b_{n} which has $(n-2)$ edges with a single dot each. Equation (3.15) says that b_{n} furnished with the maximum of $n-2$ dots gives an overall logarithmic singular integral for any n.

Fig. 5 The graph b_{3} and its triangular cell C_{3}. The codimension-one boundaries (sides) are given by the condition $A_{i}=0$, indicated in the figure by $i=0, i \in\{1,2,3\}$. The graph b_{3} with two yellow leaves as external edges is put in the barycentre. All its edges are put on-shell. The cell decomposes into six sectors $m_{i} A_{i}>m_{j} A_{j}>m_{k} A_{k}$ as indicated by $i>j>k$. The lines $m_{i} A_{i}=m_{j} A_{j}$ (indicated by $i=j$) start at the midpoint $\operatorname{mid}_{i, j}: A_{k}=0, A_{i} m_{i}=A_{j} m_{j}$ of the codimension one boundary $A_{k}=0$ and pass through the barycentre bc : $m_{1} A_{1}=m_{2} A_{2}=m_{3} A_{3}$ towards the corner $c_{k}: A_{i}=A_{j}=0$, labelled k. Such corners are removed. For these three lines, the three intervals $\left[\operatorname{mid}_{i, j}, \mathrm{bc}\right]$ from the midpoints of the sides to the barycentre of the cell form the spine. It indicated in turquoise. The bold hashed line indicated by $2<3$ (so $m_{2} A_{2}<m_{3} A_{3}$) on the left and $2<1$ (so $m_{2} A_{2}<m_{1} A_{1}$) on the right is an example of a fibre over one (the vertical) part (on the $1=3$-line) of the spine (the turquoise line from $m_{1} A_{1}=m_{3} A_{3}, A_{2}=0$ to the barycentre). On the left, along the fibre the ratio $A_{2} / A_{3}<m_{3} / m_{2}$ is a constant, on the right similarly. Finally, to the two yellow leaves we assign incoming four-momenta $k_{3},-k_{3}$ with $k_{3}^{2}=s$. The spine partitions the cell C_{3} into three 2-cubes, boxes $\square(j)$ with four corners for any $\square(j): \operatorname{mid}_{i, j}$, bc, $\operatorname{mid}_{j, k}, c_{j}$. For each such box $\square(j)$ there is a diagonal d_{j}. It is a line from a corner to the barycentre: $\left.\mathrm{d}_{j}:\right] c_{j}$, bc] for which we have $m_{i} A_{i}=m_{k} A_{k}$. We assign to this diagonal d_{j} a graph for which edges e_{i}, e_{k} are on-shell and edge e_{j} carries a dot. Along the diagonal d_{j}, we have $A_{j} m_{j}>\left(A_{i} m_{i}=A_{k} m_{k}\right)$ (colour figure online)

A lesser number of dots give a higher degree of divergence and hence higher subtractions in the dispersion integrals. Conceptually, higher degrees of divergence are probing higher coefficients in the Taylor expansion in s which provide the needed master integrals. We see below how this interferes with counting master integrals but first our geometric interpretation as given in Fig. 5.

3.4.2 b_{3} and its cell

The parametric representation of b_{3} as given in "App. E" provides insight into the structure of its Feynman integral and the related master integrals.

Remark 3.8 Let us note that any graph b_{n} has a spanning tree which consists of just one of its internal edges. Hence, any associated spanning tree has length one. As b_{n} has n internal edges its associated cell $C\left(b_{n}\right)$ (in the sense of Outer Space [30]) is a ($n-1$)-dimensional simplex C_{n}

$$
C\left(b_{n}\right)=C_{n} .
$$

The graph b_{n} has internal edges e_{i}. To each such edge, we assign a length $A_{i}, 0 \leq$ $A_{i} \leq \infty$ which we regard as a coordinate in the projective space $\mathbb{P}_{b_{n}}:=\mathbb{P}^{n-1}\left(\mathbb{R}_{+}\right)$.

Shrinking one edge e_{i} to length $A_{i}=0$ gives the graph b_{n} / e_{i} which is associated with the codimension-one boundary determined by $A_{i}=0$. It is a ($n-2$)-dimensional simplex C_{n-1}.

Note b_{n} / e_{i} is a rose with $(n-1)$ petals. Each petal corresponds to a tadpole integral for a propagator with mass $m_{j}^{2}, j \neq i$.

Different points of $C\left(b_{n}\right)$ correspond to different points

$$
\mathbb{P}_{b_{n}} \ni p:\left(A_{1}: A_{2}: \cdots: A_{n}\right)
$$

We can identify $n!$ sectors $\sigma: A_{\sigma(1)}>A_{\sigma(2)}>\cdots>A_{\sigma(n)}$ for any permutation $\sigma \in S_{n}$ with associated sector σ.

$$
\begin{equation*}
\Phi_{R}^{D}\left(b_{n}\right)\left(s, s_{0}\right)=\int_{\mathbb{P}_{b_{n}}\left(\mathbb{R}_{+}\right)} \operatorname{Int}_{b_{n}}\left(s, s_{0} ; p\right)=\sum_{\sigma \in S_{n}} \int_{\sigma} T^{\left(\rho_{D}^{n}\right)}\left[\operatorname{Int}_{b_{n}}\left(s, s_{0} ; p\right)\right] \tag{3.16}
\end{equation*}
$$

with

$$
\operatorname{Int}_{b_{n}}\left(s, s_{0} ; p\right)=\frac{\ln \frac{\Phi\left(b_{n}\right)(s)(p)}{\Phi\left(b_{n}\right)\left(s_{0}\right)(p)}}{\psi_{b_{n}}^{\frac{D}{2}}(p)} \Omega_{b_{n}} .
$$

$T^{\left(\rho_{D}^{n}\right)}$ is a suitable Taylor operator with subtractions at $s=s_{0}$ ensuring overall convergence and ρ_{D}^{n} the UV degree of divergence. Here,

$$
\Phi\left(b_{n}\right)(s)(p)=\left(\prod_{j=1}^{n} A_{j}\right) \underbrace{\left(s-\left(\sum_{i=1}^{n} A_{i} m_{i}^{2}\right)\left(\sum_{k=1}^{n} \frac{1}{A_{k}}\right)\right)}_{T P\left(b_{n}\right)},
$$

and

$$
\left(\prod_{j=1}^{n} A_{j}\right)\left(\sum_{k=1}^{n} \frac{1}{A_{k}}\right) .
$$

Each sector allows for a rescaling according to the order of edge variables such that the singularity is an isolated pole.

Here, $T P\left(b_{n}\right)$ is the toric polynomial of b_{n} as discussed in $[11,31]$ and prominent in the GKZ approach used there.

Such approaches with their emphasis on hypergeometrics and the rôle of confluence have a precursor in the study of Dirichlet measures [32]. The latter have proven their relevance for Feynman diagram analysis early on [33].

The spine of $C\left(b_{n}\right)$ is a n-star, with the vertex in the barycentre and n rays from the barycentre $b c$ of $C\left(b_{n}\right)$ to the midpoints of the n codimension-one cells C_{n-1} which are ($n-2$)-simplices.

These rays provide n corresponding cubical chain complices $\operatorname{cc}(i)$ each provided by single intervals $[0,1]$.

For the two endpoints 0 and 1 of each $\operatorname{cc}(i)$, we assign:
(i) to 1 ,-the barycentre $b c$ common to all $\operatorname{cc}(i)$ we assign b_{n} with internal edges removed, hence evaluated on-shell. This corresponds to $\Im\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$.
(ii) To 0 , we assign the graph b_{n} / e_{i} (a rose with $n-1$ petals) with petals of equal size-hence a tadpole $\Phi_{R}^{D}\left(b_{n} / e_{i}\right)$ with $A_{j} m_{j}=A_{k} m_{k}, j, k \neq i$. See Fig. 5. |

Figure 5 gives the graph b_{3} and the associated cell, a 2 -simplex C_{3}. It is a triangle with corners c_{1}, c_{2}, c_{3}. Points of the cell are the interior points of C_{3} and furthermore the points in the three codimension-one boundaries $C_{2}(i)$, the sides of the triangle.

The corners c_{i} are removed and do not belong to the cell. Points of the cell parameterize the edge lengths A_{i} of the internal edges of b_{3} as parameters in the parametric integrand, see Eq. (E.1).

The boundaries are given by $C_{2}(i): A_{i}=0$ and correspond to tadpole integrals for tadpoles $t_{2}(i)=b_{3} / e_{i}$ for which edge e_{i} has length zero.

Corners $c_{k}: A_{i}=A_{j}=0, i \neq j$ correspond to $b_{3} / e_{i} / e_{j}$ which is degenerate as it shrinks a loop.

Colours green, red, and blue indicate three different masses. It is understood that a momentum k_{3} flows through any edge e_{i} which is chosen to serve as a spanning tree for b_{3}.

The three edges of the graph give rise to 3 ! orderings of the edge lengths as indicated in the figure. We will split the parametric integral accordingly. See "App. E" for computational details.

To a ($i=j$)-diagonal of a box $\square(k)$, we associate a b_{3} evaluated with edges e_{i}, e_{j} on-shell and edge e_{k} dotted, so it corresponds to $\partial_{m_{k}^{2}} \mathfrak{F}\left(\Phi_{R}^{D}\left(b_{3}\right)\right)$.

In the figure, there is also an arc given which is a fibre which has the diagonal d_{j} as the base. Integrating that fibre corresponds to integrating the b_{2} subgraph on edges e_{i}, e_{j}. Points ($A_{i}: A_{j}: A_{k}$) on a diagonal d_{k} fulfil

$$
A_{k} m_{k}>x, x:=A_{i} m_{i}=A_{j} m_{j}
$$

To the barycentre $A_{i} m_{i}=A_{j} m_{j}$, we associate b_{3} with all three edges on-shell, a Cutkosky cut providing $\mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{3}\right)\right)$. To the midpoints $A_{i}=A_{j}, A_{k}=0$ of the edges $A_{i}=0$ ($e_{i}=0$ in the figure), we assign tadpole integrals. All in all we identified all seven master integrals in the figure. Note that the cell decomposition in Fig. 5 reflects the structure of the Newton polyhedron associated with $T P\left(b_{3}\right)$ [31].

Note that the requirement $A_{i} m_{i}=A_{j} m_{j}$ is the locus for the Landau singularity of the associated $b_{2}\left(e_{i}, e_{j}\right)$ and similarly for $A_{1} m_{1}=A_{2} m_{2}=A_{3} m_{3}$ and b_{3}.

Remark 3.9 Note that the diagonals d_{j} can be obtained by reflecting a leg of the spine at the barycentre. The three legs and the three diagonals form the six boundaries between the sectors $A_{i}>A_{j}>A_{k}$.

Fig. 6 The cell $C\left(b_{4}\right)=C_{4}$ on the left. On the right, we see two diagonals d_{C}, d_{B} and their associated graphs which have one dotted edge. Points of the triangle $b c, B, C$ are the open convex hull of d_{C}, d_{B} which we denote as the span of the diagonals d_{C}, d_{B}. To them, a graph with two dotted edges is assigned. On the codimension-one triangles spanned by three corners we indicate the barycentre by a coloured dot. For example, to the triangle $B C D$ we have the yellow dot and the graph b_{4} / e_{y} assigned to it where the yellow edge shrinks to length zero (colour figure online)

A similar analysis holds for any b_{n}. For example, for b_{4} the cell is a tetrahedron with four corners $c_{i}, i \in\{1,2,3,4\}$. The spine is a four-star with four lines (rays) from the barycentre $b c: m_{1} A_{1}=m_{2} A_{2}=m_{3} A_{3}=m_{4} A_{4}$ to the midpoints of the four sides of the tetrahedraon (triangles). Reflecting these lines at the barycentre gives four diagonals $d_{j}:\left[b c, c_{j}\right]$ from $b c$ to one of the four corners c_{i}.

To $b c$, we associate $\mathfrak{J}\left(\Phi_{R}^{D}\left(b_{4}\right)\right)$. To the diagonals d_{j}, we assign $\partial_{m_{j}^{2}} \mathfrak{J}\left(\Phi_{R}^{D}\left(b_{4}\right)\right)$ with the edges $e_{i}, i \neq j$, on-shell. There are six triangles with sides $\left.d_{i}, d_{j},\right] c_{i}, c_{j}$ [. To those, we assign $\partial_{m_{i}}^{2} \partial_{m_{j}^{2}} \mathfrak{\Im}\left(\Phi_{R}^{D}\left(b_{4}\right)\right)$ with the edges $e_{k}, k \neq i, j$, on-shell. See Fig. 6.

Continuing we get the expected tally: for b_{n}, we have $\binom{n}{0}=1$ graph for the barycentre, $\binom{n}{1}=n$ graphs for the diagonals, $\binom{n}{m}, m \leq(n-2)$ graphs for the span of m diagonals, and $\binom{n}{n-1}=n$ tadpoles. It is rather charming to see how mathematics inspired by the works of Karen Vogtmann and collaborators [30] illuminates results discussed recently in terms of intersection theory [34].

3.4.3 Real and imaginary independence and powercounting

Next, we want to compare real and imaginary parts to check that the independence of elements of $S_{b_{n}}$ does not necessarily imply the independence of elements of $\mathfrak{J}\left(S_{b_{n}}\right)$. We demonstrate this well-known fact [5] for b_{3}. Independence is indeed a question of the values of D.

For b_{3} and $D=2$, we need no subtraction in the dispersion integral for $F_{0}=$ $\Phi_{R}^{2}\left(b_{3}\right)$,

$$
\Phi_{R}^{2}\left(b_{3}\right)(s)=\frac{1}{\pi} \int_{\left(m_{1}+m_{2}+m_{3}\right)^{2}}^{\infty} \frac{V_{3}^{D}\left(x, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{(x-s)} \mathrm{d} x
$$

and for $F_{i}=\partial_{m_{i}^{2}} F_{0}$ again an unsubtracted dispersion integral suffices

$$
F_{i}(s)=\frac{1}{\pi} \int_{\left(m_{1}+m_{2}+m_{3}\right)^{2}}^{\infty} \frac{\partial_{m_{i}^{2}} V_{3}^{D}\left(x, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{(x-s)} \mathrm{d} x .
$$

The four integrands I_{i} (for the y_{2}-integration) of $\mathfrak{J}\left(F_{i}\right), i \in\{0,1,2,3\}$ can be expressed over a common denominator with numerators $\operatorname{num}_{i}\left(y_{2}\right)$, and for $D=2$ (the $\left(s_{n}^{n-2}\right)^{\frac{D}{2}-1}=1$ is absent), there is indeed a relation between the four numerators.

$$
\begin{equation*}
\operatorname{num}_{\mathbf{3}}\left(y_{2}\right)=c_{0}^{3} \operatorname{num}_{0}\left(y_{2}\right)+c_{1}^{3} \operatorname{num}_{1}\left(y_{2}\right)+c_{2}^{3} \mathbf{n u m}_{\mathbf{2}}\left(y_{2}\right), \tag{3.17}
\end{equation*}
$$

where c_{i}^{3} are rational functions of $s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}$ independent of y_{2}.
For $D=2$, a second relation follows from the fact that the integrand involves the square root of a quartic polynomial ([5], App. D),

$$
\frac{1}{\sqrt{y_{2}^{2}-m_{3}^{2}}} V_{3}^{2}\left(y_{2}\right)=\frac{1}{\sqrt{s} \sqrt{\left(y_{2}-m_{3}\right)\left(y_{2}+m_{3}\right)\left(y_{2}-y_{+}\right)\left(y_{2}-y_{-}\right)}}
$$

where we set for the quadratic polynomial $\lambda\left(s_{3}^{1}\left(y_{2}\right), m_{1}^{2}, m_{2}^{2}\right)$,

$$
\lambda\left(s_{3}^{1}\left(y_{2}\right), m_{1}^{2}, m_{2}^{2}\right)=: s\left(y_{2}-y_{+}\right)\left(y_{2}-y_{-}\right)
$$

which defines $y_{ \pm}$. See Sect. 2.3.
Investigating

$$
J_{n}=\int_{m_{3}}^{\mathbf{u} \mathbf{p}_{3}^{0}} \frac{y_{2}^{n}}{\sqrt{s} \sqrt{\left(y_{2}-m_{3}\right)\left(y_{2}+m_{3}\right)\left(y_{2}-y_{+}\right)\left(y_{2}-y_{-}\right)}} d y_{2},
$$

as in [5] delivers a further relation between the F_{i}, and we are hence left with only two independent master integrals for the imaginary parts of b_{3} in $D=2$.

For b_{3} and $D=4$, on the other hand we need a double subtraction in the dispersion integral for $F_{0}=\Phi_{R}^{4}\left(b_{3}\right)$,

$$
\Phi_{R}^{4}\left(b_{3}\right)\left(s, s_{0}\right)=\frac{\left(s-s_{0}\right)^{2}}{\pi} \int_{\left(m_{1}+m_{2}+m_{3}\right)^{2}}^{\infty} \frac{V_{3}^{D}\left(x, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{(x-s)\left(x-s_{0}\right)^{2}} \mathrm{~d} x,
$$

whilst for $F_{i}=\partial_{m_{i}^{2}} F_{0}$ a once-subtracted dispersion integral suffices,

$$
F_{i}(s)=\frac{\left(s-s_{0}\right)}{\pi} \int_{\left(m_{1}+m_{2}+m_{3}\right)^{2}}^{\infty} \frac{\partial_{m_{i}^{2}} V_{3}^{D}\left(x, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{(x-s)\left(x-s_{0}\right)} \mathrm{d} x
$$

The four integrands I_{i} (for the y_{2}-integration) of $\mathfrak{\Im}\left(F_{i}\right), i \in\{0,1,2,3\}$ have to be expressed over a different common denominator $D=4$, in particular having an extra factor s_{3}^{1}. There is no relation between them.

This reflects the fact that the F_{0} dispersion

$$
\Phi_{R}^{4}\left(b_{3}\right)\left(s, s_{0}\right)=\frac{\left(s-s_{0}\right)}{\pi} \int_{\left(m_{1}+m_{2}+m_{3}\right)^{2}}^{\infty}\left(\frac{V_{3}^{D}\left(x, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{(x-s)\left(x-s_{0}\right)}-\frac{V_{3}^{D}\left(x, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{\left(x-s_{0}\right)^{2}}\right) \mathrm{d} x,
$$

subsumes the Taylor expansion s near s_{0} to second order.
In contrast, the $F_{i}, i \in\{1,2,3\}$,

$$
\partial_{m_{i}^{2}} \Phi_{R}^{4}\left(b_{3}\right)\left(s, s_{0}\right)=\partial_{m_{i}^{2}} \frac{1}{\pi} \int_{\left(m_{1}+m_{2}+m_{3}\right)^{2}}^{\infty}\left(\frac{V_{3}^{D}\left(x, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{(x-s)}-\frac{V_{3}^{D}\left(x, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}\right)}{\left(x-s_{0}\right)}\right) \mathrm{d} x,
$$

subsume the Taylor expansion in s near s_{0} to first order.
This is in agreement with the powercounting in Eq. (3.15) and forces the relation between the four F_{i} to be $\sim s \partial_{s} F_{0}$, see Eq. (3.13). The relation Eq. (3.17) is spoiled by the extra coefficient in the Taylor expansion of $\Phi_{R}^{4}\left(b_{3}\right)\left(s, s_{0}\right)$.

We are left with four, not two, master integrals. Indeed, starting with a dotted logdivergent banana integral reducing the number of dots demands more subtractions in the dispersion integral. Any relation between imaginary parts with different numbers of dots is spoiled by the difference in degree needed for the subtractions in the dispersion integral.

Acknowledgements This is work originating from discussions with Karen Vogtmann and Marko Berghoff which are gratefully acknowledged. I thank Spencer Bloch, David Broadhurst and Bob Delbourgo for friendship and for sharing insights into the mathematics and physics of quantum field theory over the years and David for pointing out some older literature. Enjoyable discussions with Ralph Kaufmann on possible similarities of the structure of phase-space integrals and his use of singularity theory in applied quantum field theory [35] were a welcome stimulus to write these results.

Funding Open Access funding enabled and organized by Projekt DEAL.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Feynman rules for banana graphs

Having introduced the graphs b_{n} as our subject of interest we define Feynman rules for their evaluation. We follow the momentum routing as indicated in Fig. 1.

The graph b_{n} gives rise to an integrand $I_{b_{n}}$ (setting $k_{0}=(0, \overrightarrow{0})^{T}$, where the D-vector k_{0} is set to the zero-vector $\left.(0, \overrightarrow{0})^{T} \in \mathbb{M}^{D}\right)$:

$$
I_{b_{n}}=\omega_{(n-1)}^{D} \prod_{j=0}^{n-1} \frac{1}{\left(k_{j+1}-k_{j}\right)^{2}-m_{j+1}^{2}}
$$

and we set $Q_{j+1}=\left(k_{j+1}-k_{j}\right)^{2}-m_{j+1}^{2}, 0 \leq j \leq(n-1)$ for the n quadrics Q_{j+1}, $j=0, \ldots, n-1$. Here,

$$
\omega_{(n-1)}^{D}:=d^{D} k_{1} \cdots d^{D} k_{n-1}
$$

is a $D \times(n-1)$-form in a $(n-1)$-fold product \mathbb{M}_{n} of D-dimensional Minkowski spaces

$$
\mathbb{M}_{n}:=\left(\mathbb{M}^{D}\right)^{\times(n-1)}
$$

The function $\Phi_{R}^{D}\left(b_{n}\right)(s)$ is multi-valued as a function of $s:=k_{n}^{2}$. It has an imaginary part given by a cut which amounts to replacing for each quadric

$$
\frac{1}{Q_{j+1}} \rightarrow \delta_{+}\left(\left(k_{j+1}-k_{j}\right)^{2}-m_{j+1}^{2}\right)
$$

in the integrand $I_{b_{n}}$. This is Cutkosky's theorem [36] applied to b_{n}. The distribution δ_{+}acts as

$$
\delta_{+}\left(\left(k_{j+1}-k_{j}\right)^{2}-m_{j+1}^{2}\right)=\Theta\left(k_{j+1 ; 0}-k_{j ; 0}\right) \delta\left(\left(k_{j+1}-k_{j}\right)^{2}-m_{j+1}^{2}\right),
$$

using the Heavyside distribution Θ and Dirac δ-distribution.
The integrand for the cut banana is correspondingly

$$
\begin{equation*}
I_{\mathrm{cut}}\left(b_{n}\right)=\omega_{(n-1)}^{D} \prod_{j=0}^{n-1} \delta_{+}\left(\left(k_{j+1}-k_{j}\right)^{2}-m_{j+1}^{2}\right) \tag{A.1}
\end{equation*}
$$

We take the external momentum k_{n} to be timelike so that we can choose $k_{n}=\left(k_{n ; 0}, \overrightarrow{0}\right)^{T}$ and set $k_{j}=\left(k_{j, 0}, \vec{k}_{j}\right)^{T}$. We also set $\overrightarrow{k_{j}} \cdot \overrightarrow{k_{j}}=: t_{j}$ and have $k_{j}^{2}=k_{j ; 0}^{2}-t_{j}$, and finally define $\hat{k_{j}}=\vec{k}_{j} / \sqrt{t_{j}}$. Hence,

$$
\mathrm{d}^{D} k_{j}=\mathrm{d} k_{j, 0}{\sqrt{t_{j}}}^{D-3} \mathrm{~d} t_{j} \mathrm{~d} \hat{k}_{j},
$$

with an angular measure

$$
\int_{S^{D-2}} \mathrm{~d} \hat{k}_{j} 1=\omega_{\frac{D}{2}} .
$$

Here,

$$
\begin{equation*}
\omega_{\frac{D}{2}}=\frac{2 \pi^{\frac{D-1}{2}}}{\Gamma\left(\frac{D-1}{2}\right)}, \Gamma\left(\frac{1}{2}\right) \equiv \sqrt{\pi} . \tag{A.2}
\end{equation*}
$$

Δ_{H}

$\otimes I+I \otimes$

30labelings
Fig. 7 The Hopf algebra disentangling the five-banana b_{5}. On the right, we also get roses with n petals, or tadpoles in a physicists parlance. There are $5=\binom{5}{4}$ labellings for the b_{4} banana in the first term in the second row, and $10=\binom{5}{3}=\binom{5}{2}$ for the next two tensorproducts. The final term in the third row has $30=\binom{5}{2}\binom{3}{2}$ labellings, as there are $\binom{5}{2}$ possibilities to label the edges of the first b_{2} banana, and then $\binom{3}{2}$ to label the second one

We then have as integrations

$$
\int_{\mathbb{M}^{D}} \mathrm{~d}^{D} k_{j} f\left(k_{j}\right)=\int_{-\infty}^{\infty} \mathrm{d} k_{j ; 0} \int_{0}^{\infty}{\sqrt{t_{j}}}^{D-3} \mathrm{~d} t_{j} \int_{S^{D-2}} \mathrm{~d} \hat{k}_{j} f\left(k_{j, 0}, t_{j}, \hat{k_{j}}\right) .
$$

Appendix B: Minimal subtraction

For the reader which likes to compare with dimensional regularization and the use of minimal subtraction as renormalization, we have kept D complex in most formulae and note that in such a situation the coproduct for b_{n} reads

$$
\begin{equation*}
\Delta_{H}\left(b_{n}\right)=b_{n} \otimes \mathbb{I}+\mathbb{I} \otimes b_{n}+\sum_{x,|x| \leq n} x \otimes t_{n-|x|} . \tag{B.1}
\end{equation*}
$$

Here, the sum is over all monomials x of banana graphs b_{j} on less than n edges. For example,

$$
\Delta\left(b_{5}\right)=b_{5} \otimes \mathbb{I}+\mathbb{I} \otimes b_{5}+\binom{5}{2} b_{2} \otimes t_{3}+\binom{5}{3} b_{3} \otimes t_{2}+\binom{5}{4} b_{4} \otimes t_{1}+\binom{5}{2}\binom{3}{2} b_{2} b_{2} \otimes t_{1} .
$$

In Feynman graphs, this is Fig. 7.
Explicitly, $\Phi_{M S}^{D}\left(b_{3}\right)$ reads, for example,

$$
\Phi_{M S}^{D}\left(b_{3}\right)=-\left\langle\Phi^{D}\left(b_{3}\right)\right\rangle+\sum_{c y c l}\left\langle\left\langle\Phi^{D}\left(b_{2}\left(e_{i}, e_{j}\right)\right)\right\rangle \Phi^{D}\left(t_{1}\left(e_{k}\right)\right)\right\rangle+\Phi^{D}\left(b_{3}\right)
$$

$$
-\sum_{c y c l}\left\langle\Phi^{D}\left(b_{2}\left(e_{i}, e_{j}\right)\right)\right\rangle \Phi^{D}\left(t_{1}\left(e_{k}\right)\right) .
$$

Here, Φ^{D} are unrenormalized Feynman rules in D dimensions which evaluate into a Laurent series in $D-2 n, n$ a suitable integer, $\langle\ldots\rangle$ is the projection onto the pole part and the sum is over the three cyclic permutations of i, j, k.

This MS-renormalization results $\Phi_{M S}^{D}\left(b_{n}\right)$ can be related to $\Phi_{R}^{D}\left(b_{n}\right)$ if so desired. See also the discussion with regards to MS and tadpoles in [28].

Appendix C: Tensor structure

Tensor integrals

We are not interested in $\Phi_{R}^{D}\left(b_{n}\right)$ alone. To satisfy the needs of computational practice, we should also raise the powers of quadrics by taking derivatives $\partial_{m_{j}^{2}}^{k}$ with respect to mass squares m_{j}^{2} and we should allow scalar products $k_{i} \cdot k_{j}$ in the numerator.

For such a generalization to arbitrary powers of propagators and numerator structures, we use the notation

$$
\Phi_{R}^{D}\left(b_{n}\right)_{v}\left(s,\left\{m_{i}^{2}\right\}\right),
$$

where v is a $\left(\frac{n(n+1)}{2}-1\right)$-dimensional row vector with integer entries (see Sect. (2.5.1.)) in [10].

- The first n entries $v_{i}, 1 \leq i \leq n$ give the powers of the n edge propagators $\frac{1}{Q_{e}}$,
- the $(n-2)$ entries $\nu_{i},(n+1) \leq i \leq(2 n-2)$ are reserved for powers of $k_{i} \cdot k_{n}$ $(1 \leq i \leq(n-2)$),
- the $(n-2)$ entries $\nu_{i},(2 n-1) \leq i \leq(3 n-4)$ are reserved for powers of $k_{2}^{2}, \ldots, k_{n-1}^{2}$,
- and the remaining $(n-2)(n-3) / 2$ entries are reserved for powers $v_{j l}$ of $k_{j} \cdot k_{l}$, $|j-l| \geqslant 1,1 \leq j, l \leq(n-1)$ and $3 n-3 \leq i \leq\left(\frac{n(n+1)}{2}-1\right)$.
This is all what is needed as $k_{1}^{2}=Q_{1}+m_{1}^{2}$ and $2 k_{i} \cdot k_{i-1}=k_{i}^{2}+k_{i-1}^{2}-Q_{i}-m_{i}^{2}$, $n \geq i \geq 2$.

For example,

$$
\begin{aligned}
& \Phi_{R}^{D}\left(b_{4}\right)_{\left(v_{1}, \ldots, \nu_{13}\right)}\left(s, m_{1}^{2}, \ldots, m_{4}^{2}\right) \\
& =\int_{\mathbb{M}_{4}} \omega_{(3)}^{D} \prod_{j=0}^{3} \frac{\left(k_{1} \cdot k_{4}\right)^{\nu_{5}}\left(k_{2} \cdot k_{4}\right)^{\nu_{6}}\left(k_{2}^{2}\right)^{\nu_{7}}\left(k_{3}^{2}\right)^{\nu_{8}}\left(k_{1} \cdot k_{3}\right)^{\nu_{13}}}{\left(\left(k_{j+1}-k_{j}\right)^{2}-m_{j+1}^{2}\right)^{v_{j+1}}} .
\end{aligned}
$$

For the imaginary part, we have correspondingly

$$
\Im\left(\Phi_{R}^{D}\left(b_{4}\right)_{\left(\nu_{1}, \ldots, \nu_{13}\right)}\right)\left(s, m_{1}^{2}, \ldots, m_{4}^{2}\right)
$$

$$
\begin{aligned}
= & \int_{\mathbb{M}_{4}} \omega_{(3)}^{D} \prod_{j=0}^{3} \partial_{m_{j+1}^{2}}^{v_{j+1}}\left(\left(\prod_{l=0}^{3} \delta_{+}\left(k_{l+1}-k_{l}\right)^{2}-m_{l+1}^{2}\right)\right) \\
& \left.\times\left(k_{1} \cdot k_{4}\right)^{\nu_{5}}\left(k_{2} \cdot k_{4}\right)^{\nu_{6}}\left(k_{2}^{2}\right)^{\nu_{7}}\left(k_{3}^{2}\right)^{\nu_{8}}\left(k_{1} \cdot k_{3}\right)^{\nu_{13}}\right) .
\end{aligned}
$$

We discuss differential equations for $\Phi_{R}^{D}\left(b_{n}\right)_{v}$, as well as partial integration identities and the reduction to master integrals starting from our representation for $\Phi_{R}^{D}\left(b_{n}\right)_{\nu}$ in Sects. (3.3, 3.4).

Dispersion for $\Phi_{R}^{D}\left(b_{n}\right)_{v}$

For banana graphs b_{n} on two vertices, dispersion for tensor integrals is rather simple:

$$
\begin{equation*}
\Phi_{R}^{D}\left(b_{n}\right)_{v}\left(s, s_{0},\left\{m_{j}^{2}\right\}\right)=\frac{\left(s-s_{0}\right)^{|[n, v]|}}{\pi} \int_{\left(m_{1}+\cdots m_{n}\right)^{2}}^{\infty} \frac{V_{[n, \nu]}^{D}}{(x-s)(x-s)^{[n, v] \mid}} \mathrm{d} x, \tag{C.1}
\end{equation*}
$$

where $|[n, v]|-1$ is the superficial degree of divergence of $\Phi_{R}^{D}\left(b_{n}\right)_{v}$ according to v :

$$
\begin{equation*}
|[n, v]|=\left(\frac{D}{2}-1\right)(n-1)+\sum_{j=1}^{n} v_{j}+\left\lceil\sum_{j=n+1}^{2 n-2} \frac{v_{j}}{2}\right\rceil+\sum_{j=2 n-1}^{3 n-4} v_{j}+\sum_{j l} v_{j l} \tag{C.2}
\end{equation*}
$$

This is based on

$$
\Im\left(\Phi_{R}^{D}\left(b_{n}\right)_{v}\right)\left(s, s_{0},\left\{m_{j}^{2}\right\}\right)=\Theta\left(s-\left(m_{1}+\cdots m_{n}\right)^{2}\right) V_{[n, v]}^{D} .
$$

For $V_{[n, v]}^{D}$, see Eqs. (2.25-2.29).

Appendix D: Pseudo-thresholds

Let us remind ourselves of a parametric analysis of the second Symanzik polynomial (with masses) Φ for the banana graphs b_{b} :

$$
\begin{equation*}
\varphi\left(b_{n}\right)(s)=\left(\prod_{j=1}^{n} A_{j}\right)\left(s-\left(\sum_{j=1}^{n} m_{j}^{2} A_{j}\right)\left(\sum_{j=1}^{n} \frac{1}{A_{j}}\right)\right) . \tag{D.1}
\end{equation*}
$$

The equation

$$
\varphi\left(b_{n}\right)\left(m_{\text {normal }}^{n}\right)=0,
$$

has a solution in the simplex $A_{i}>0$ for positive A_{i} given by $A_{i} m_{i}=A_{j} m_{j}$.

For m any pseudo-mass, the solution of $\varphi\left(b_{n}\right)(m)=0$ requires at least one A_{i} to be negative and it hence gives no monodromy on the physical sheet.

Still, the variations associated with pseudo-masses and thresholds are needed for a full analysis of $\Phi_{R}^{D}\left(b_{n}\right)$ to find their Hodge structure.

So, let σ_{n} be a sequence of the form

$$
\sigma^{n}:=\left(\pm m_{1} \pm m_{2} \pm \cdots \pm m_{n}\right)
$$

with a sign chosen for each entry m_{i}. Let $p(i) \in\{ \pm 1\}$ be the sign of the i-entry. A global sign change leaves the pseudo-thresholds invariant $(|a-b|=|b-a|)$, so we have 2^{n-1} choices and adopt to the convention $p(1)=+1$.

For a flag

$$
\left(b_{2} \subset b_{3} \subset \cdots \subset b_{n}\right),
$$

this determines subsequences $\sigma^{2} \subset \sigma^{3} \subset \cdots \sigma^{n}$ in an obvious manner.
Define

$$
\begin{equation*}
\operatorname{up}_{n}^{j, \sigma}:=\frac{s_{n}^{j}+m_{n-j}^{2}-(\overbrace{\sum_{\|, i=1}^{n-j-1} p(i) m_{i}}^{m_{\sigma^{n-j-1}}}}{2 \sqrt{s_{n}^{j}}} \tag{D.2}
\end{equation*}
$$

which also defines the pseudo-mass $m_{\sigma^{n-j-1}}$:

$$
\begin{aligned}
m_{\sigma^{n-j-1}} & =\sum_{\|, i=1}^{n-j-1} p(i) m_{i} \\
& =\underbrace{\mid \cdots \|}_{(n-1) \text { bars }} m_{1}+p(2) m_{2}\left|+p(3) m_{3}\right|+\cdots\left|+p(n-j-1) m_{n-j-1}\right| .
\end{aligned}
$$

Define

$$
\Theta_{n,+}=\Theta\left(s-\left(m_{n}+m_{\sigma^{n-1}}\right)^{2}\right), \Theta_{n,-}=\Theta\left(\left(m_{n}-m_{\sigma^{n-1}}\right)^{2}-s\right) .
$$

Now, set for $p(n-1)=+1$:

$$
\begin{aligned}
& \operatorname{Var}\left(b_{n}^{\sigma}\right)=\Theta_{n, p(n))} \\
& \times \underbrace{\omega_{\frac{D}{2}} \int_{m_{n}}^{\mathrm{up}_{n}^{0, \sigma}} V_{\sigma^{n-1}, n-1}^{D}\left(s_{n}^{0}-2 \sqrt{s_{n}^{0}} y_{n-1}+m_{n}^{2}, m_{1}^{2}, \ldots, m_{n-1}^{2}\right){\sqrt{y_{n-1}^{2}-m_{n}^{2}}}^{D-3} d y_{n-1}}_{V_{\sigma^{n}, n}^{D}, p(n-1)=+1} .
\end{aligned}
$$

and for $p(n-1)=-1$:

$$
\operatorname{Var}\left(b_{n}^{\sigma}\right)=\Theta_{n, p(n))}
$$

$$
\times \underbrace{\omega_{\frac{D}{2}} \int_{\mathrm{up}_{n}^{0, \sigma}}^{\infty} V_{\sigma^{n-1}, n-1}^{D}\left(s_{n}^{0}-2 \sqrt{s_{n}^{0}} y_{n-1}+m_{n}^{2}, m_{1}^{2}, \ldots, m_{n-1}^{2}\right) \sqrt{y_{n-1}^{2}-m_{n}^{2}}}_{V_{\sigma^{n}, n}^{D}, p(n-1)=-1}{ }^{D-3} d y_{n-1} .
$$

Apart from the variation for the normal threshold (with $p(i)=+1$ for all $1 \leq i \leq n$) which gives $\operatorname{Var}\left(b_{n}^{\left(+m_{1},+m_{2}, \ldots,+m_{n}\right)}\right)=\Im\left(\Phi_{R}^{D}\left(b_{n}\right)\right)$, we get $2^{n-1}-1$ further variations corresponding to pseudo-masses and their pseudo-thresholds. They will be discussed elsewhere.

Appendix E: \boldsymbol{b}_{3} parametrically

Let us recapitulate b_{3} in the parametric representation. We list basic considerations. A detailed analysis in the view of $[37,38]$ is left to future work.

E.1. The parametric integral

Let $\mathbf{Q}_{b_{3}}$ be the one-dimensional real vector space spanned by $s=k_{3}^{2}$, the square of the Minkowski four-momenta $k_{3},-k_{3}$ assigned to the two vertices of b_{3}. Let $\mathbb{P}_{b_{3}}=$ $\mathbb{P}^{2}\left(\mathbb{R}_{+}\right)$be a projective space given by the ratios of the nonnegative side lengths of the internal edges of Θ.

The parametric integrand function (we consider masses as implicit parameters)

$$
F_{b_{3}}: \mathbf{Q}_{b_{3}} \times \mathbf{Q}_{b_{3}} \times \mathbb{P}_{b_{3}} \rightarrow \mathbb{C}
$$

is (see, for example, Sect. (5.2.1.) in [39])

$$
\begin{align*}
F_{b_{3}}\left(s, s_{0} ; p\right):= & \left(s-s_{0}\right) A_{1} A_{2} A_{3} \frac{\ln \left(\frac{\Phi_{\Theta}(s ; p)}{\Phi_{\Theta}\left(s_{0} ; p\right)}\right)}{\psi_{\Theta}^{3}} \\
& +\left(s_{0} A_{1} A_{2} A_{3}-\left(m_{1}^{2} A_{1}+m_{2}^{2} A_{2}+m_{3}^{2} A_{3}\right) \psi_{\Theta}\right) \\
& \times \frac{\ln \left(\frac{\Phi_{\Theta}(s ; p)}{\Phi_{\Theta}\left(s_{0} ; p\right)}\right)-\left(s-s_{0}\right)\left(\partial_{s} \ln \left(\frac{\Phi_{\Theta}(s ; p)}{\Phi_{\Theta}\left(s_{0} ; p\right)}\right)\right)_{s=s_{0}}}{\psi_{\Theta}^{3}} . \tag{E.1}
\end{align*}
$$

Here,

$$
\Phi_{b_{3}}: \mathbf{Q}_{\Theta} \times \mathbb{P}_{\Theta} \rightarrow \mathbb{C}
$$

is

$$
\begin{aligned}
\Phi_{b_{3}}(r ; p) & =r A_{1} A_{2} A_{3}-\left(m_{1}^{2} A_{1}+m_{2}^{2} A_{2}+m_{3}^{2} A_{3}\right) \psi_{b_{3}} \\
\psi_{b_{3}} & =A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{1} .
\end{aligned}
$$

Note $F_{b_{3}}(s, p)$ and $\partial_{s} F_{b_{3}}(s, p)$ both vanish at $s=s_{0}$ for all p, so these are on-shell renormalization conditions.

The parametric form is the integrand

$$
\begin{aligned}
\operatorname{Int}_{b_{3}}\left(s, s_{0} ; p\right) & :=F_{\Theta}\left(s, s_{0}, p\right) \Omega_{b_{3}} \\
\Omega_{b_{3}} & =+A_{1} d A_{2} \wedge d A_{3}-A_{2} d A_{1} \wedge d A_{3}+A_{3} d A_{1} \wedge d A_{2}
\end{aligned}
$$

We then have the renormalized value ${ }^{3}$

$$
\begin{equation*}
\Phi_{R}^{D}\left(b_{3}\right)\left(s, s_{0}\right)=\int_{\mathbb{P}^{2}\left(\mathbb{R}_{+}\right)} \operatorname{Int}_{\Theta}\left(s, s_{0} ; p\right) \tag{E.2}
\end{equation*}
$$

from integrating out p which is the parametric equivalent of Eqs. (2.1, 2.9).

E.2. Sectors and fibrations

To study fibrations in our integrand, we start from the fact that there are six orderings of the edge lengths for the three edge variables A_{i}.

Consider, for example, the sectors $1>3>2$ and $3>1>2$ of Fig. 5 so that edge e_{2} has the smallest length. For the choice $1>3>2$ rescale 4

$$
A_{2}=a_{2} A_{1}, A_{3}=a_{3} A_{1}
$$

and in that sector $1>3>2$, we have

$$
\int_{\mathbb{P}^{2}\left(\mathbb{R}_{+}\right) \cap(1>3>2)} F_{b_{3}} \Omega_{b_{3}}=\int_{0}^{\infty}\left(\int_{0}^{a_{3}} F_{b_{3}}\left(1, a_{2}, a_{3}\right) \mathrm{d} a_{2}\right) \mathrm{d} a_{3}
$$

A further change $a_{2}=a_{3} b_{2}$ leads to a sector decomposition (in the sense of physicists)

$$
\int_{0}^{\infty}\left(\int_{0}^{1} a_{3} F_{b_{3}}\left(1, b_{2} a_{3}, a_{3}\right) \mathrm{d} b_{2}\right) \mathrm{d} a_{3}=\int_{0}^{1} \underbrace{\left(\int_{0}^{\infty} a_{3} F_{b_{3}}\left(1, b_{2} a_{3}, a_{3}\right) \mathrm{d} a_{3}\right)}_{\operatorname{Fib}\left(b_{2}\right)} \mathrm{d} b_{2}
$$

For any chosen $0<b_{2}<1, a_{3} F_{b_{3}}\left(1, b_{2} a_{3}, a_{3}\right)$ gives points on the corresponding chosen fibre and $\operatorname{Fib}\left(b_{2}\right)$ is the integral along that fibre. Integrating b_{2} integrates all fibre integrals $\operatorname{Fib}\left(b_{2}\right)$ to the two sector integrals on both sides of the spine.

In fact, for $0<a_{3}<m_{1} / m_{3}$ we are on the left of the spine and for $m_{1} / m_{3}<a_{3}<$ ∞ on the right.

Let us look at $\Phi_{b_{3}}$ under the rescalings.
$\left.\Phi_{b_{3}}\left(A_{1}, A_{2}, A_{3}\right)=s A_{1} A_{2} A_{3}-\left(m_{1}^{2} A_{1}+m_{2}^{2} A_{2}+m_{3}^{2} A_{3}\right)\left(A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{1}\right)\right)$

[^2]\[

$$
\begin{aligned}
& \left.\rightarrow s a_{2} a_{3}-\left(m_{1}^{2}+m_{2}^{2} a_{2}+m_{3}^{2} a_{3}\right)\left(a_{2}+a_{2} a_{3}+a_{3}\right)\right) \\
& \left.\rightarrow s b_{2} a_{3}^{2}-\left(m_{1}^{2}+m_{2}^{2} b_{2} a_{3}+m_{3}^{2} a_{3}\right)\left(b_{2} a_{3}+b_{2} a_{3}^{2}+a_{3}\right)\right) \\
& =a_{3}\left(s b_{2} a_{3}-\left(m_{1}^{2}+m_{2}^{2} b_{2} a_{3}+m_{3}^{2} a_{3}\right)\left(b_{2}+b_{2} a_{3}+1\right)\right)=: \tilde{\Phi}_{b_{3}}\left(s, b_{2}, a_{3}\right) .
\end{aligned}
$$
\]

For $\psi_{b_{3}}$, we find

$$
\begin{aligned}
& \left(A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{1}\right) \\
& \quad \rightarrow\left(a_{2}+a_{2} a_{3}+a_{3}\right) \\
& \quad \rightarrow a_{3}\left(b_{2}+b_{2} a_{3}+1\right)
\end{aligned}
$$

We thus find in the region where e_{2} is the smallest edge the integrand function $\operatorname{Int}_{b_{3}, 2}\left(b_{2}, a_{3}\right)$

$$
\left.\begin{array}{rl}
\operatorname{Int}_{b_{3}, 2}\left(b_{2}, a_{3}\right):= & a_{3} F_{b_{3}}\left(1, b_{2} a_{3}, a_{3}\right)=\left(s-s_{0}\right) b_{2} a_{3} \\
& \times \frac{\ln \left(\frac{\tilde{\Phi}_{3} b_{2}-\left(m_{1}^{2}+m_{2}^{2} b_{2} a_{3}+m_{3}^{2} a_{3}\right)\left(1+b_{2}\left(1+a_{3}\right)\right)}{s_{0} a_{3} b_{2}-\left(m_{1}^{2}+m_{2}^{2} b_{2} a_{3}+m_{3}^{2} a_{3}\right)\left(1+b_{2}\left(1+a_{3}\right)\right)}\right)}{\left.\tilde{\Phi}_{b_{3}\left(s, b_{2}, a_{3}\right)}\right)} \\
& \left(b_{2}\left(1+a_{3}\right)+1\right)^{3} \\
& +\left(s_{0} b_{2} a_{3}-\left(m_{1}^{2}+m_{2}^{2} b_{2} a_{3}+m_{3}^{2} a_{3}\right)\left(b_{2}\left(1+a_{3}\right)+1\right)\right) \\
\left(b_{2}\left(1+a_{3}\right)+1\right)^{3}
\end{array}\right) .
$$

Note that $\operatorname{Int}_{b_{3}, 2}\left(0, a_{3}\right)=0$ as it must be as petals evaluate to zero under renormalized Feynman rules in on-shell renormalization conditions.

Finally,

$$
\operatorname{Fib}\left(b_{2}\right)=\int_{0}^{\infty} \operatorname{Int}_{b_{3}, 2}\left(b_{2}, a_{3}\right) \mathrm{d} a_{3}
$$

A point along the $(1=3)$-line of the spine is given by $\left(1, b_{2}, 1\right) \in \mathbb{P}_{b_{3}}$, for all $0<b_{2}<1$.

Remark 3.10 Upon rescaling in each of the sectors in the three cubes of Fig. 5 accordingly and summing over sectors, we get a symmetric representation equivalent to averaging over the three possible ways of expressing Eq. (2.7) using any of $s_{3}^{1}\left(y_{2}, m_{i}^{2}\right)$ and similar to [9].

References

1. Veltman, M.: Unitarity and causality in a renormalizable field theory with unstable particles. Physica 29, 186 (1963)
2. Brödel, J., Duhr, C., Dulat, F., Penante, B., Tancredi, L.: Elliptic Feynman integrals and pure functions. J. High Energy Phys. 2019, 23 (2019). arXiv:1809.10698 [hep-th]
3. Broedel, J., Duhr, C., Dulat, F., Marzucca, R., Penante, B., Tancredi, L.: An analytic solution for the equal-mass banana graph. JHEP 09, 112 (2019)
4. Caffo, M., Czyż, H., Laporta, S., Remiddi, E.: The master differential equations for the 2-loop sunrise selfmass amplitudes. Nuovo Cim. 111(4), 365-389 (1998). arXiv:hep-th/9805118
5. Remiddi, E., Tancredi, L.: Schouten identities for Feynman graph amplitudes; the Master Integrals for the two-loop massive sunrise graph. Nucl. Phys. B 880, 343 (2014). arXiv: 1311.3342 [hep-th]
6. Adams, L., Bogner, C., Weinzierl, S.: The sunrise integral and elliptic polylogarithms. PoS LL 2016, 033 (2016). https://doi.org/10.22323/1.260.0033. arXiv:1606.09457 [hep-ph]
7. Bloch, S., Kerr, M., Vanhove, P.: Local mirror symmetry and the sunset Feynman integral. Adv. Theor. Math. Phys. 21, 1373 (2017). https://doi.org/10.4310/ATMP.2017.v21.n6.a1.arXiv:1601.08181 [hep-th]
8. Bloch, S., Kerr, M., Vanhove, P.: A Feynman integral via higher normal functions. Compos. Math. 151(12), 2329-2375 (2015). https://doi.org/10.1112/S0010437X15007472. arXiv:1406.2664 [hep-th]
9. Davydychev, A., Delbourgo, R.: Explicitly symmetrical treatment of three-body phase space. J. Phys. A 37, 4871-4886 (2004). arxiv:hep-th/0311075
10. Zayadeh, R.: Picard-Fuchs Equations of Dimensionally Regulated Feynman Integrals. Thesis Mainz University. https://openscience.ub.uni-mainz.de/bitstream/20.500.12030/3696/1/3663.pdf
11. Bönisch, K., Fischbach, F., Klemm, A., Nega, C., Safari, R.: Analytic structure of all loop banana amplitudes. J. High Energy Phys. 2021, 66 (2021). arXiv:2008.10574 [hep-th]
12. Broadhurst, D.: Feynman integrals, L-series and Kloosterman moments. Commun. Number Theory Phys. 10(3), 527-569 (2016)
13. Kersevan, B.P., Richter-Was, E.: Improved phase space treatment of massive multi-particle final states. Eur. Phys. J. C 39, 439-450 (2005). ((hep-ph/0405248))
14. Block, M.M.: Phase-space integrals for multiparticle systems. Phys. Rev. 101, 796 (1956)
15. Srivastava, P.P., Sudarshan, G.: Multiple production of pions in nuclear collisions. Phys. Rev. 110, 765 (1958)
16. Bloch, S., Vanhove, P.: The elliptic dilogarithm for the sunset graph. J. Number Theor. 148, 328-364 (2015). https://doi.org/10.1016/j.jnt.2014.09.032. arXiv:1309.5865 [hep-th]
17. Brown, F.: Invariant differential forms on complexes of graphs and Feynman integrals. SIGMA 17, 103 (2021)
18. Bloch, S., Esnault, H., Kreimer, D.: On motives associated to graph polynomials. Commun. Math. Phys. 267, 181-225 (2006)
19. Broedel, J., Duhr, C., Matthes, N.: Meromorphic modular forms and the three-loop equal-mass banana integral. J. High Energy Phys. 2022, 184 (2022). https://doi.org/10.1007/JHEP02(2022)184. arXiv:2109.15251
20. Coleman, S., Norton, R.: Singularities in the physical region. Nuovo Cim. 38, 438 (1965)
21. Kreimer, D.: Multi-valued Feynman graphs and scattering theory. In: Bluemlein, J., et al. (eds.) Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory. Texts \& Monographs in Symbolic Computation. Springer, Berlin (2019)
22. Bloch, S., Kreimer, D.: Cutkosky Rules and Outer Space. arXiv:1512.01705
23. Chetyrkin, K., Tkachov, F.: Integration by parts: the algorithm to calculate β-functions in 4 loops. Nucl. Phys. B 192, 23 (1981)
24. Laporta, S.: High-precision calculation of multi-loop Feynman integrals by difference equations. Int. J. Mod. Phys. A 15, 5087 (2000)
25. Remiddi, E.: Differential equations for Feynman graph amplitudes. Nuovo Cim. A 110, 1435-1452 (1997). hep-th/9711188
26. Kalmykov, M., Kniehl, B.: Counting the number of master integrals for sunrise diagrams via the Mellin-Barnes representation. JHEP 1707, 031 (2017). arXiv:1612.06637 [hep-th]
27. Bitoun, T., Bogner, C., Klausen, R.P., Panzer, E.: Feynman integral relations from parametric annihilators. Lett. Math. Phys. 109(3), 497-564 (2019). arXiv:1712.09215 [hep-th]
28. Kreimer, D., Yeats, K.: Algebraic interplay between renormalization and monodromy. Adv. Theor. Math. Phys. (2023). In print. arXiv:2105.05948 [math-ph]
29. Kreimer, D.: Outer space as a combinatorial backbone for Cutkosky rules and coactions. https://doi. org/10.1007/978-3-030-80219-6_12. arXiv:2010.11781 [hep-th]
30. Culler, M., Vogtmann, K.: Moduli of graphs and automorphisms of free groups. Invent. Math. 84(1), 91-119 (1986)
31. Vanhove, P.: Feynman integrals, Toric geometry and mirror symmetry. In: Blümlein, J., Schneider, C., Paule, P. (eds.) Elliptic Integrals. Elliptic Functions and Modular Forms in Quantum Field Theory. Texts \& Monographs in Symbolic Computation, Springer, Berlin (2019)
32. Carlson, B.C.: Special Functions of Applied Mathematics, AP (1977)
33. Brucher, L., Franzkowski, J., Kreimer, D.: Loop integrals, R functions and their analytic continuation. Mod. Phys. Lett. A 9, 2335-2346 (1994). arXiv:hep-th/9307055 [hep-th]
34. Mastrolia, P., Mizera, S.: Feynman integrals and intersection theory. JHEP 02, 139 (2019). https://doi. org/10.1007/JHEP02(2019)139. arXiv:1810.03818 [hep-th]
35. Kaufmann, R.M., Khlebnikov, S., Wehefritz-Kaufmann, B.: Singularities, swallowtails and Dirac points. An analysis for families of Hamiltonians and applications to wire networks, especially the Gyroid. Ann. Phys. 327, 2865-2884 (2012)
36. Cutkosky, R.E.: Singularities and discontinuities of Feynman amplitudes. J. Math. Phys. 1, 429-433 (1960). https://doi.org/10.1063/1.1703676
37. Berghoff, M.: Feynman amplitudes on moduli spaces of graphs. Ann. Inst. Poincaré D7(2), 203 (2020). arXiv:1709.00545
38. Berghoff, M., Kreimer, D.: Graph complexes and Feynman rules. Commun. Number Theor. Phys. 17, 103-172 (2023). https://doi.org/10.4310/CNTP.2023.v17.n1.a4. arXiv:2008.09540 [hep-th]
39. Brown, F., Kreimer, D.: Angles, scales and parametric renormalization. Lett. Math. Phys. 103, 9331007 (2013). https://doi.org/10.1007/s11005-013-0625-6. arXiv:1112.1180 [hep-th]

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: ${ }^{1}$ Often b_{2} is called a bubble, b_{3} a sunset and b_{4} a banana graph. We call all $b_{n}, 2 \leq n<\infty$ banana graphs.

 Dirk Kreimer
 kreimer@math.hu-berlin.de
 1 Humboldt U. Berlin, Unter den Linden 6, 10099 Berlin, Germany

[^1]: ${ }^{2}$ The argument can be extended by replacing the requirement $\Im\left(T_{n}(s)\right)=0$ by $\operatorname{Var}_{x}\left(T_{n}(s)\right)=0$ where Var_{x} is the variation around a given threshold divisor x. For banana graphs b_{n}, we only have to consider $x=s_{\text {normal }}$.

[^2]: ${ }^{3}$ Divergent subgraphs exist but do not need renormalization as the cographs are tadpoles which can be set to zero in kinematic renormalization. Accordingly F_{Θ} vanishes when any two of its three edge variables A_{i} vanish.
 ${ }^{4} \Omega_{b_{3}} \rightarrow A_{1}^{3} d a_{2} \wedge d a_{3}$ under that rescaling.

