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We investigate the transport properties of neutral, fermionic atoms passing through a one-dimensional

quantum wire containing a mesoscopic lattice. The lattice is realized by projecting individually controlled,

thin optical barriers on top of a ballistic conductor. Building an increasingly longer lattice, one site after

another, we observe and characterize the emergence of a band insulating phase, demonstrating control over

quantum-coherent transport. We explore the influence of atom-atom interactions and show that the

insulating state persists as contact interactions are tuned from moderately to strongly attractive. Using

bosonization and classical Monte Carlo simulations, we analyze such a model of interacting fermions and

find good qualitative agreement with the data. The robustness of the insulating state supports the existence

of a Luther-Emery liquid in the one-dimensional wire. Our work realizes a tunable, site-controlled lattice

Fermi gas strongly coupled to reservoirs, which is an ideal test bed for nonequilibrium many-body physics.
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I. INTRODUCTION

Quantum effects are the cornerstone of most of the

properties encountered in electronic materials and devices.

Even the fundamental and apparently simple question as to

why a material behaves in a transport experiment as a

metal, an insulator, or a semiconductor relies on subtle

effects, such as the antisymmetrization of fermionic wave

functions and the interference of matter waves in a periodic

potential [1]. While noninteracting systems are mostly well

understood, predicting the transport properties when inter-

actions are relevant often remains an intellectual challenge,

which is of practical importance, as it paves the way to

engineering devices with new functionalities.

Given the complexity of interacting many-body prob-

lems, simplifying theories have been worked out, which are

particularly suitable for high-dimensional systems. For

example, fermions with weak repulsive interactions can

be described by Landau’s Fermi liquid theory, where the

many-body excitations simply behave like free particles,

the so-called Landau quasiparticles, whose effective

parameters, like the mass, are renormalized. For weak

attractive interactions, such a Fermi liquid is unstable due to
the formation of pairs, which ultimately turns it into a

superfluid that can be described by mean-field theory.
However, there are situations where such simplifying

assumptions are not applicable. This is particularly the
case in one-dimensional interacting quantum systems,

where Fermi liquid or mean-field descriptions fail and
where all excitations become collective, leading to a set of
properties known as a Tomonaga-Luttinger liquid [2].
One of the important challenges in the context of

transport is the robustness of the superfluid state against
scattering events and perturbations happening at the single-

particle level. In two or three dimensions, one expects for
very strong scattering a superfluid-to-insulator transition to

take place. This may, for instance, arise from the competi-
tion between superfluidity and the presence of a periodic
lattice causing Bragg scattering at the band edges. Indeed,

calculations based on mean-field theory support the occur-
rence of a superfluid-to-band-insulator transition as the

strength of the periodic lattice is increased [3].

In one dimension, however, a very different outcome is

expected. Based on work by Luther and Emery [4], it is

known that a one-dimensional fermionic system with

attractive contact interactions always exhibits an excitation

gap in the spin sector. The charge sector remains gapless

and can be described as a Tomonaga-Luttinger liquid of

spinless pairs, which can be viewed as composite bosons

similar to Cooper pairs. Therefore, the presence of a weak

*
mlebrat@phys.ethz.ch

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 8, 011053 (2018)

2160-3308=18=8(1)=011053(18) 011053-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.8.011053&domain=pdf&date_stamp=2018-03-29
https://doi.org/10.1103/PhysRevX.8.011053
https://doi.org/10.1103/PhysRevX.8.011053
https://doi.org/10.1103/PhysRevX.8.011053
https://doi.org/10.1103/PhysRevX.8.011053
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


periodic lattice and the correct commensurability, i.e., one

pair per site, leads to the opening of a gap in the charge

sector. This turns the system into a correlated insulator,

even for arbitrarily strong attractive interactions. This is in

stark contrast with the mean-field predictions applicable for

higher dimensions.

Studying the effect of a weak periodic structure on the

transport properties of fermions with an attractive contact

interaction would thus address this challenge and at the

same time serve as a probe for the existence of the Luther-

Emery liquid and its properties. This is the task that we

undertake in the present paper, using and expanding the

toolbox of cold-atom experiments [5–8] to investigate

transport in mesoscopic lattices [9,10]. Thanks to our

ability to optically imprint an arbitrary structure on a one-

dimensional wire between two large atom reservoirs [see

Fig. 1(a)], we perform conductancemeasurements through a

weak periodic potential as a function of the chemical

potential. With reservoirs in the normal phase, we observe

the emergence of a band structure as the number of

individually controlled and equidistantly positioned scat-

terers is increased [Fig. 1(b)]. In addition to changing the

density in the wire, the conductor-to-insulator transition is

further characterized by tuning the lattice height and temper-

ature.We then increase the attractive interactions to unitarity

and still observe an insulating phase at commensurate

filling, with a conductance very close to the one observed

in the normal system, indicating a crossover from a band

insulator to a correlated insulator. The persistence of the

insulating behavior even for resonant interactions and

superfluid reservoirs is a strong indication of the existence

of a Luther-Emery liquid pinned on the weak periodic

potential [Fig. 1(c)]. From a more general perspective, our

work extends recently developed methods for conductance

measurements with cold atoms [11–15] to unexplored

regimes of strongly correlated insulators.

The plan of the paper is as follows. After detailing the

experimental setup in Sec. II, we present measurements of

the conductance as a function of the chemical potential in the

wire and the number of sites in the lattice in Sec. III.We then

study the conductance of a fixed-length lattice as a function

of lattice height and temperature in Sec. IV, showing the

boundaries between band conductor and band insulator. In

Sec. V, we measure the conductance as a function of

chemical potential for various interaction strengths and

compare the outcome with the results of a Tomonaga-

Luttinger liquid model. Finally, we present our conclusions

in Sec. VI. Technical details can be found in theAppendixes.

II. SETUP

The structure central to our experimental setup is a

quantum wire smoothly connected to two reservoirs acting

as a source and a drain [16], typically containing altogether

Nat ¼ 9 × 104 6Li atoms in each of the lowest and third

lowest hyperfine states [Fig. 1(a)]. The wire is created by

intersecting the dark planes of two orthogonal, repulsive,

TEM01-like laser beams. The vertically [horizontally]

propagating beam has a Gaussian envelope with a 1=e2

waist of 9.1ð3Þ μm [30ð1Þ μm]. They confine atoms to a

quasi-one-dimensional geometry with transverse frequen-

cies ωx ¼ 2π × 22ð9Þ kHz and ωz ¼ 2π × 13ð5Þ kHz,
respectively, at the center. We tune the local chemical

potential in and around the wire using an attractive
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FIG. 1. Concept and experimental realization. (a) Sketch of a

one-dimensional lattice projected onto a quantum wire that

connects two macroscopic atom reservoirs. The lattice beam

here is made up of six repulsive, holographically shaped barriers

that are imaged into the atomic plane with a high-resolution

microscope. The sites are spaced by 0.97 μm. An attractive gate

beam allows us to locally increase the chemical potential by an

energy Vg. (b) Real part of the wave function ψðyÞ and trans-

mission T for a single atom incoming on a one-dimensional

lattice of barriers for various energies E. T ðEÞ is zero for energies
below the lattice zero-point energy (green arrow), and features a

conduction band (yellow) and a band gap (purple). The nonzero

transmission in the gap as well as the modulation in the

conduction band originate from the finite size. (c) Possible

insulating and conducting states for two-component fermions

in a one-dimensional lattice. The atoms are delocalized at

incommensurate densities and become localized at lattice fillings

close to two particles per site. For strong attractive interactions,

the conductor is made of extended pairs, and the insulator is made

of pairs pinned to lattice sites. For noninteracting particles, the

system forms a band conductor and a band insulator for

incommensurate and commensurate fillings, respectively.
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Gaussian “gate” beam, propagating along the z direction

with a 42.5ð3Þ μm waist and creating a potential dip Vg at

its center. In our measurements, this varies the local density

from zero to about 3 atoms per micron, which amounts to

populating up to two transverse modes of the wire. The

reservoirs are evaporatively cooled down to an absolute

temperature T ¼ 67ð3Þ nK, which is 1 order of magnitude

smaller than ℏωx=kB and ℏωz=kB. The cooling is efficiently
performed in a homogeneous magnetic field B ¼ 690 G, at

which the three-dimensional scattering length a diverges

due to a broad Feshbach resonance. This choice compels us

to subsequently ramp-up the magnetic field to the right side

of the resonance, where the scattering length is tuned to its

transport value, from a ¼ −∞ to a ¼ −2.65 × 103a0,

where a0 ¼ 5.29 × 10−11 m is the Bohr radius.
Finally, the mesoscopic lattice is produced using

light at 532 nm holographically shaped with a Digital
Micromirror Device (Appendix A). We can imprint up to
nine barriers centered on the wire and equally spaced by
d ¼ 0.97 μm [Fig. 1(a)], associated to a lattice recoil

energy Er ¼ ℏ2ðπ=dÞ2=2m ¼ 0.42 μK, where m is the

mass of 6Li atoms, setting here and in the following
kB ¼ 1. The setup gives full control over the number
and positions of the barriers, allowing us to change the
potential landscape at the single-site level. This is similar in
spirit to techniques pioneered with scanning tunneling
microscopes on solid-state surfaces [17,18], yet going
beyond noninteracting situations.

III. INTERFERENCES AND BAND GAP OPENING

A fundamental consequence of quantum mechanics on
transport is the role played by interferences in determining
the conductance of a system. For periodically arranged
barriers, constructive or destructive interferences in the
forward direction yield the well-known lattice band struc-
ture even when scattering by an individual barrier is very
weak, which results in the energy dependence of the
transmission of an incident matter wave [19]. The trans-
mission probability, which is essentially a single-particle
property, is in turn proportional to the linear response
conductance of a noninteracting Fermi gas through the
Landauer-Büttiker formula.

We observe how transport is hampered by a lattice built

site by site, by measuring the conductance G of the system

for increasing number of barriers as a function of the local

chemical potential in the wire μwire ¼ μres þ Vg − Vwire,

where the reservoir chemical potential μres and the potential

of the wire Vwire stay typically constant. Varying the gate

potential Vg therefore allows us to probe the conductance in

an energy-resolved manner.

These measurements are performed with an attractive

Fermi gas with a scattering length of a ¼ −2.65 × 103a0,
where we expect the gas to be normal in the reservoirs

and the wire. The reservoirs are characterized in the bulk

by the dimensionless parameter 1=kFa ¼ −2.1, where

kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2mμres
p

=ℏ is the Fermi wave vector and μres ¼
0.47 μK is the typical chemical potential. This parameter

locally increases in the three-dimensional regions close to

the wire due to the presence of the attractive gate beam, but

temperature remains above the local superfluid critical

temperature [20] for the values of the gate potential Vg <

1.5 μK reached in our experiment. At the center of the wire,

the spin gap Δs is also smaller than the temperature. One-

dimensional theory based on a Bethe ansatz in the absence

of any scattering potential [21] predicts values Δs < 30 nK

for densities larger than 1 atom per micron (Appendix B).

The results are shown in Fig. 2(a). As long as the gate

potential is not large enough for the local chemical potential

μwire to be positive, conductance is zero. In the barrier-free

wire, G increases with Vg, as an increasing number of

transverse modes gets populated. For a Fermi gas with the

same attractive scattering length flowing through a quan-

tum point contact, a plateau would be expected at a

conductance higher than the conductance quantum 1=h
as an effect of attraction between the particles [14]. In

contrast, it does not appear here, most likely owing to the

choice of a longer wire, which was shown to produce less

robust conductance plateaus [16].

Upon placing a single repulsive barrier of height Vl ¼
0.40ð2Þ μK at the center of the wire, the conductance curve

is shifted to the right, indicating that larger gate potentials

Vg are required to overcome the barrier potential Vwire and

enable transport. For increasing gate potential, G increases

monotonically up to high values characteristic of the

multimode regime. As more barriers are inserted to form

a lattice with a fixed central height Vl, the conductance at

low gate potential is barely modified up to Vg ≈ 0.9 μK.

This is in contrast with classical Ohm’s law for series

addition of incoherent barriers, where conductance is

expected to decrease as the inverse of the length.

Beyond this value of Vg, transport is significantly

modified and an inflection point appears already with three

barriers, which then turns into a local conductance mini-

mum for larger numbers of barriers. The reduction of

conductance with increasing chemical potential is charac-

teristic of holelike transport, and signals the emergence of

the band-insulating state. This effect is observed here for a

shallow lattice potential, Vl ¼ 0.94ð5ÞEr, where the band

gap and bandwidth of the infinite, homogeneous lattice

with equivalent spacing and height are expected to be 0.20

(1) and 0.33ð1Þ μK, respectively. The measured conduct-

ance is in qualitative agreement with a calculation based on

the Landauer-Büttiker formula and the solution of the one-

dimensional Schrödinger equation for our potential

(Appendix C), shown in Fig. 2(b).

The evolution of transport with the number of barriers

represents a direct investigation of the scaling of conduct-

ance with the system size. The dependence of G on the

barrier number N is presented in Fig. 2(c) for several values

of Vg. Over the whole length range N ¼ 1–9 the evolution
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ofGwith number of barriers is well fitted by an exponential

decay. We first use these fits to estimate the initial variation

of conductance with length, yielding dG=dN at N ¼ 1 as a

function of Vg [Fig. 2(d)]. A sharp threshold at Vg;c ¼
0.85ð2Þ μK is observed: below Vg;c, conductance is unaf-

fected by extending the lattice beyond a single barrier—a

regime that can be empirically termed as “ballistic.” On the

contrary, we measure above Vg;c a conductance decay of

1=h per additional lattice site—a “nonballistic” regime.

The fit also provides a decay coefficient κ which, for

single particles with energies inside the band gap, should

reflect the nonzero imaginary part of their Bloch wave

vector in an infinite lattice. We present in Fig. 2(e) the

associated length scale κ−1 as a function of Vg. Inside the

band gap for Vg ≈ 1.15 μK (white area), it is about two

lattice periods d and is indeed comparable to the minimum

decay length 1.4d that is theoretically expected for Bloch

waves. For gate potentials Vg < 1.05 μK inside the band,

the precise evolution of conductance with number of

barriers greatly depends on the uniformity of the potential,

as observed with numerical simulations in Appendix C. We

therefore do not give any specific meaning to the minimum

measured at Vg ≈ Vg;c. For Vg > 1.3 μK above the gap, the

second transverse mode of the wire then becomes

populated and conductance cannot be interpreted as the

transmission of a one-dimensional lattice.

The decay length is overall bounded by the length of the

quantum wire, set by the shorter confining beam with a

1=e2 waist of 9 μm, which is about 9 lattice periods d. It is
below 6d for most values of Vg, which motivates the use of

a finite-size lattice made of 6 barriers to investigate the

properties of the infinite system in what follows.

IV. CONDUCTOR-INSULATOR TRANSITION

We now map out the conductance of a six-barrier lattice

as a function of both chemical potential and lattice depth,

demonstrating the emergence of a band structure in a

different way. The full map is presented in Fig. 3. For low

attractive gate potential Vg, the lattice is empty and the

conductance is zero. Upon increasing Vg, the lattice band is

visible as a first triangular lobe of nonzero conductance. Its

bandwidth decreases from 0.4 μK to less than 0.1 μK by

increasing the lattice height Vl from 0.2 to 1.0 μK, and the

band is shifted upwards as a result of a larger lattice zero-

point energy. A second triangular lobe of even larger

conductance, associated with additional transport in the

second transverse mode of the wire, is visible above the

band. Both lobes are separated by a gap that increases with

FIG. 2. Building up a lattice site by site. (a) Conductance G as a function of attractive gate potential Vg without scattering structure,

with one barrier, and with a lattice of 2–9 barriers. The potential height of the central barrier is set to Vl ¼ 0.40ð2Þ μK ¼ 0.94ð5ÞEr,

where Er is the lattice recoil energy. The first and second bands of an infinite lattice of the same height are indicated by gray areas,

separated by a gap which coincides with the location of the conductance minimum for 9 barriers. Right-hand panels: Actual quasi-one-

dimensional potentials for 1, 2, 4, and 9 barriers. (b) Conductance GLB obtained from noninteracting Landauer-Büttiker theory at a

temperature T ¼ 67 nK and a typical chemical potential difference Δμ ¼ 0.1 μK between the reservoirs. (c) Conductance G as a

function of number of barriers N for four gate potentials Vg ¼ 0.55, 0.73, 0.95, and 1.11 μK (light to dark blue), together with

exponential fits GðNÞ ¼ ðG1 − G
∞
Þ exp½−κðN − 1Þ� þG

∞
. (d) Fitted derivative of the conductance for one lattice site G0ð1Þ. A sharp

drop is located at Vg;c ¼ 0.85ð2Þ μK using a sigmoid fit, hinting that transport is becoming nonballistic. (e) Characteristic length scale

κ−1 associated with the exponential decay and normalized by the lattice spacing d. It reflects the inverse imaginary part of the wave

vector of a Bloch wave in the lattice gap (white area).
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Vl. The experimental data are in very good agreement with

finite-temperature, noninteracting theory shown as inset in

Fig. 3 except in the two-mode regime at large Vg, where

conductance is larger than two conductance quanta 2=h.
This excess, already visible in Fig. 2(a) and previously

observed in Ref. [14], can be attributed to the presence of

attractive interactions.

The experimental data shown in Fig. 3 provide an

estimate of the centers of the band and gap, visible as

local maxima and minima of conductance. To locate more

precisely the band conductor-to-insulator transition, we

monitor the variation of conductance with increasing

temperature, which is positive for an insulator and negative

for a conductor. For this purpose, we use a six-barrier lattice

of height Vl ¼ 0.46ð2Þ μK, and perform an adiabatic

compression of the reservoirs in the transverse direction,

in order to vary temperature from 67 to 109 nK. This

process also changes the chemical potential of the reservoir

μres; hence, the variation of local chemical potential in the

wire is no longer given by the variation of Vg alone but by

the variation of μres þ Vg. Figure 4 shows conductance

curves as a function of the gate potential Vg corrected by

the chemical potential variation, such that the band and gap

positions can be directly compared. The local maximum

and minimum are clearly visible at the lowest temperatures,

and are blurred into a monotonically increasing curve at

T ¼ 109 nK. This also highlights the role played by finite

temperature inside the gap in Fig. 2, where conductance

is nonzero. Within our measurement accuracy, the

curves intersect at Vg þ μres ¼ 1.44 μK, which separates

a region where conductance decreases with temperature,

dG=dT < 0, from a region where conductance increases,

dG=dT > 0. This variation dG=dT can be accessed from a

linear fit on the conductance and is shown as an inset. The

point where dG=dT ¼ 0 agrees with noninteracting theory

and differs from the transition between the ballistic and

nonballistic regimes studied in Fig. 2 [which occurs there at

a corrected value Vg;c þ μres ¼ 1.32ð2Þ μK]. It is little

sensitive to the details of the one-dimensional lattice

potential (Appendix C) and is therefore a more faithful

estimation of the band-to-gap boundary. While the temper-

ature dependence of conductance is the traditional defi-

nition of an insulator adopted in condensed-matter physics,

the existence of a conductance minimum is a more practical

criterion in our cold-atom realization and the results of

Figs. 2 and 4 show the intimate link between the two
FIG. 3. Opening a gap by increasing the lattice height.

Experimental conductance through a six-barrier lattice as a

function of lattice height Vl and gate potential Vg (normalized

by the recoil energy Er ¼ 0.42 μK in the right and top axes). Two

conduction regions (tapered zones in light green and yellow) are

separated by an insulating region that broadens upon increasing

the lattice height. Inset: Conductance obtained from Landauer-

Büttiker theory as a function of lattice height Vl and mean

chemical potential in the reservoirs μres at a temperature T ¼
60 nK through a realistic six-barrier lattice.

FIG. 4. Smearing conductance by thermal decoherence. Ex-

perimental conductance G through a six-barrier lattice of height

Vl ¼ 0.46ð2Þ μK for three different temperatures as a function of

gate potential Vg, shifted by the reservoir chemical potential μres
to account for different optical trap frequencies. Inset: Variation

of conductance with temperature obtained from a linear fit to

temperatures T ¼ 67, 84, 97, and 109 nK. The sign of dG=dT
changes across the critical value Vg þ μres ¼ 1.44 μK.
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definitions. In the following, we extend the use of the latter

definition to stronger interactions and look for the presence

of a conductance minimum as a signature of an insulat-

ing state.

V. INTERACTIONS

Interferences, giving rise to the band structure, are

essentially single-particle properties. The control over

interactions in our system offers a unique opportunity to

explore the interplay of interferences with interactions. We

now investigate their effect on transport by increasing

attractive interactions up to the unitary limit. We tune

them to scattering lengths a < −7.5 × 103a0 so that the

region close to the wire ends is always superfluid for

attractive gate potentials Vg > 0.7 μK, contrary to the

measurements shown in Figs. 2–4. As in the previous

sections, conductance is obtained assuming a linear relation

between current and chemical potential bias, which here is

small compared to all other energy scales except temper-

ature (Appendix B). This assumption is further justified by

the absence of nonlinearities without lattice at moderate

interactions [14]. As the currents measured through the

lattice are low, we could not see any conclusive deviation

from this hypothesis within our experimental error.

The nonmonotonic behavior of the conductance

versus gate potential is very robust against interactions,

as shown in Fig. 5 for a six-barrier lattice of height

Vl ¼ 0.46ð2Þ μK ¼ 1.09ð5ÞEr. The contrast of the gap

varies very little as interactions are increased up to unitarity,

with a local conductance minimum (maximum) of about

0.3=h (0.9=h). The positions of the local extrema are

shifted towards lower Vg as attractive interactions are

increased, which is consistent with an increase of the atom

density at the center of the cloud when approaching

unitarity. The persistence of local extrema is very surprising

considering the dramatic consequences of attractive inter-

actions on transport in an atomic quantum wire, both

experimentally observed and theoretically expected in

the absence of a lattice [14,22–24].

The way the interactions affect transport in a periodic

lattice depends on dimensionality and on whether inter-

actions are attractive or repulsive. In dimensions greater or

equal to two, repulsive interactions usually lead to a Fermi

liquid state [25], very similar to noninteracting particles up

to the redefinition of a few parameters such as mass or

compressibility. For moderate lattices, the band behavior is

thus essentially unaffected. New effects, such as the

existence of a Mott insulator for commensurate fillings

of one particle per site, can thus occur only for large lattices

in the repulsive case. Attractive interactions, on the other

hand, lead to a drastic change of the excitations and turn a

fermionic system into a superconductor, a collective state

for which the flow of particles is impervious to obstacles

such as disorder or a weak lattice. As a result, the effects of

the lattice are reduced and even at a commensurate filling

the band gap disappears when it is smaller than the

superconducting gap in the absence of a lattice [3].

This competition between a band insulator and super-

conductivity has, however, a very different outcome in one

dimension where the effects of interactions are drastically

enhanced. These effects are captured at low energy by the

Tomonaga-Luttinger liquid theory [2], in which no indi-

vidual quasiparticles similar to free particles exist, and

where excitations of the many-body state separate into

collective charge and spin excitations. This has several

consequences on the ground state of an interacting quantum

system. For bosons, in marked contrast to the higher-

dimensional counterparts, even an infinitesimal lattice is

able to lead to a Mott state for repulsive interactions at

commensurability of one boson per site [26], provided the

repulsion between the bosons exceeds a certain threshold.

This existence of this critical value and the corresponding

phase transition has been demonstrated with cold atoms

[27–29]. For fermions, repulsive interactions lead to a

Tomonaga-Luttinger liquid state [2] in which the spin

sector has dominant antiferromagnetic tendencies. The

charge sector is fully decoupled, spin-charge separation

being one of the remarkable properties of one-dimensional

interacting systems. In a one-dimensional periodic

FIG. 5. Robustness of the gap with increasing interactions.

Conductance G through a six-barrier lattice of height Vl ¼
0.46ð2Þ μK as a function of gate potential Vg for different

scattering lengths ranging from moderately attractive (yellow)

to resonant interactions (dark purple). For a one-dimensional

density of two particles per site, where the conductance

minimum is observed, the Gaudin-Yang parameter at the wire

center is equal to −1.7, −1.9, −2.3, −2.6, and −3.0 for the five

values of the scattering length ranging from −7.5 × 103a0 to

−∞; it increases upon decreasing density or equivalently gate

potential (Appendix D). Inset: Conductance GTL obtained from

Tomonaga-Luttinger theory around the conductance dip at

temperature T ¼ 150 nK.
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structure, the system will turn to be a Mott insulator for a

filling of one particle per site for arbitrarily weak repulsion.

For two particles per site one recovers a band insulator even

in the presence of repulsion between particles. For attrac-

tive interactions, the outcome is quite different: the spin

excitations are gapped, leading to a state where only charge

excitations exist at low energy. This state, known as a

Luther-Emery liquid [2,4], can also be deeply affected even

by a very weak lattice contrarily to its high-dimensional

BCS counterpart [3]. It can lead to an insulating state with

one pair per lattice site on average. Thus, at commensurate

filling, even for infinitely attractive interactions, conduc-

tion is not recovered and the system remains an insulator.

This state can then be seen as the many-body equivalent of

the band insulator for noninteracting particles, with fillings

of two particles per site [Fig. 1(c)]. It is furthermore

associated with the existence of charge-density waves,

whose observation was proposed through structure factor

measurements with cold atoms [30].

In order to analyze the behavior observed experimen-

tally, we consider a theoretical model of fermionic atoms

with an attractive contact interaction in a one-dimensional

wire and an external potential. The system is described by

the Hamiltonian

H ¼ HGY þHlattice; ð1Þ

where the fermions without external potential obey the

Gaudin-Yang Hamiltonian [31,32],

HGY ¼ −
ℏ2

2m

X

i

∂2

∂y2i
þ g1

X

i<j

δðyi − yjÞ; ð2Þ

where yi is the position of the ith atom in the wire and g1 is
the strength of the short-range interaction. The influence of

the optical lattice is taken into account by

Hlattice ¼
Z

dyVðyÞρðyÞ; ð3Þ

where VðyÞ is the potential of the lattice and ρðyÞ is the total
local density of fermions.

We proceed by treating the experimentally relevant low-

energy degrees of freedom of the Gaudin-Yang model

Eq. (2) with the Tomonaga-Luttinger liquid theory [2,33].

This describes the appearance of a gap in the spin sector

and provides a transformation to the Luther-Emery liquid

made of bound pairs of finite extent, strongly repelling each

other as a result of the exclusion principle between their

fermionic constituents. The resulting system is described

by a sine-Gordon equation, whose parameters can be

obtained as a function of the strength of the short-range

interaction (Appendix D).

We then compute the transport properties of the system

by attaching this one-dimensional system to two reservoirs.

The choice of a one-dimensional model is justified here by

the fact that the 9-μm wire is longer than the superfluid

coherence length ℏvF=T ≈ 3 μm in the reservoirs, where

vF is the Fermi velocity. This situation is different from

previous works with a short quantum point contact [12]

where the physics is governed by the reservoir-induced

proximity effect. We neglect the contact resistance com-

pared to the resistance of the scattering potential in the wire

and use the approximation of one-dimensional leads [34].

We evaluate the conductance by numerically solving the

sine-Gordon equation mentioned above in a noisy thermal

background (Appendix E). The results are shown as inset in

Fig. 5 as a function of the chemical potential in the wire,

μwire ≈ Vg − const, where Vg is the gate potential and the

constant contribution is due to the chemical potential of the

reservoirs at the wire entrance. They are in good qualitative

agreement with the experiment and correctly predict a

conductance minimum compatible with the formation of an

insulator. This occurs at a lattice filling of two fermions per

site, which can be translated into a local chemical potential

μwire ¼ 0.25–0.45 μK using an approximate equation of

state for the wire (Appendix E). A better quantitative

agreement for the value of the conductance is found by

increasing the effective temperature used in the simulation

(150 nK in the inset of Fig. 5, compared to about 70 nK in

the experiment). This discrepancy may stem from neglect-

ing the influence of the reservoirs and from taking into

account only classical fluctuations of the bosonized fields.

The robustness of the insulating state even at unitarity

strongly indicates that we indeed realize the Luther-Emery

state inside the wire. An alternative way to understand the

Luther-Emery liquid is to consider a one-dimensional

theory where the elementary constituents are not the

fermionic atoms, but instead weakly bound bosonic pairs

with an effective finite-range repulsion (Appendix F).

These pairs form a so-called super-Tonks-Girardeau gas

(STG). The insulating state can be identified with a Mott-

type insulator of bosons [2,33]. We emphasize that in

contrast to previous works, where STG gases were theo-

retically predicted [35] and experimentally realized [36] as

a highly excited and strongly correlated metastable gaslike

state of attractive bosons, in our case the STG phase is

realized with spin-1=2 fermions [37]. The finite size of the

pairs, which is a key ingredient to the finite-range repul-

sion, allows us to obtain the essential properties of the STG

gas as a stable ground state. This demonstrates the potential

of our fermionic setup to simulate novel one-dimensional

bosonic phases as well.

VI. CONCLUSIONS

In this work, we demonstrate local control of the

potential landscape in a quantum wire to study the transport

properties of a one-dimensional fermionic insulator created

by a mesoscopic lattice, in the presence of attractive

interactions. We are able to observe the effect of quantum
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interferences on transport by projecting one by one optical

barriers varying on distances of the order of the Fermi

wavelength. By mapping out conductance against chemical

potential, lattice height, and temperature, we confirm that

our observations are in agreement with the physics of a

band insulator and confront our system with the traditional

definition of an insulating phase.

These results serve as a reference point to study the fate

of the band insulator with stronger attractive interactions,

where the superfluid gap in the wire is expected to be larger

than the band gap. Surprisingly, the system remains

insulating at commensurate filling for arbitrarily large

attractive interactions. We explain this peculiar behavior

by the formation of a so-called Luther-Emery liquid. The

conductance measurements are qualitatively reproduced by

a Tomonaga-Luttinger model, allowed by the high control

offered by the experimental setup. Our experiment thus

constitutes a direct observation of the existence of the

Luther-Emery phase in a one-dimensional system of

fermions with attractive interactions.

The system demonstrate the possibility to realize

transport measurements between two reservoirs of fer-

mions with tunable interactions and an arbitrary potential,

allowing us to probe a very rich palette of physical

effects. Beside an extended study of the Luther-Emery

phase as a function of lattice height and temperature, the

effect of the competition between potential and inter-

actions on transport could be investigated when one or a

few impurities are added to a Tomonaga-Luttinger liquid,

or in the presence of disorder. There, size represents a

controllable length scale which is crucial to determine the

physical nature of the many-body system. For example,

one expects a linear scaling between conductance and

system size for normal metals, and an exponential scaling

for insulators (such as, e.g., an Anderson or many-body

localized insulator).

The structures projected onto the transport channel can

be readily extended to two-dimensional lattices, with the

advantage that chemical potential and temperature can be

tuned independently of the lattice parameters. This opens

the path to investigating edge effects or creating exotic band

structures showing an interesting interplay with inter-

actions, such as semimetals or flatbands. More generally,

our system is relevant for studying transport processes

where the energy dependence of the conduction channel

plays a crucial role, for example, to introduce thermoelec-

tric coupling [38].

By varying the arbitrary potentials over time, our setup

allows us in principle to study the time-dependent response

of correlated systems, and to implement quantum pumps

[39–41] or Floquet-engineered topological bands [42].

Close-to-resonance beams could be furthermore used to

implement spin-dependent potentials or spin-orbit coupling

locally, or to study the effect of dissipation on quantum

coherence and superfluidity.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Experimental sequence

The experimental cycle to prepare and manipulate an

ultracold Fermi gas of 6Li atoms is based on

Refs. [14,16]. In summary, the atom cloud is prepared

in a balanced mixture of the lowest and third-lowest

hyperfine states and loaded into an elongated hybrid

trap, confining transversally (x, z directions) with a

1064-nm optical dipole trap and longitudinally (y
direction) by a quadratic variation of the magnetic field.

Shortly before performing a conductance measurement,

the gas is brought to temperatures close to 10% of the

Fermi temperature through evaporative cooling on a

broad Feshbach resonance at 689 G. Its absolute

temperature T is fixed by the confinement frequencies

of the dipole trap, which are directly related to its depth,

set to 1.50 μK in Figs. 2, 3, and 5 (T ¼ 67 nK), and

between 1.50 and 4.51 μK in Fig. 4 (T ¼ 67–109 nK).

To set the s-wave scattering length a for transport

measurements, the magnetic field is then ramped in

200 ms to a value of 949 G in Figs. 2, 3, and 5

(a ¼ −2.65 × 103a0), and between 689 and 726 G in

Fig. 4 (a ¼ −∞ to −7.51 × 103a0).
To impose a chemical potential bias, we displace the

cloud using a magnetic field gradient in the y direction. We

then split it into two asymmetric reservoirs using an

elliptical repulsive beam at 532 nm, superimposed to

the laser beams shaping the quantum wire and the lattice.

The magnetic trap is then recentered on the constriction

beams. The atom flow through the constriction is initiated

by switching off the elliptical beam and lasts for 4 s.

Subsequently, the magnetic field is ramped within 200 ms

back to the Feshbach resonance, which is where we finally

obtain the density distribution by absorption imaging along

the x direction after a time of flight of 1 ms.
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2. Holographic beam shaping

The lattice is shaped using a Digital Micromirror Device
(DMD DLP5500 0.55” XGA from Texas Instruments),
consisting of an array of microscopic mirrors that can be
individually oriented to an onor an off state and act altogether
as a reflective diffraction grating. We illuminate the DMD
with a collimated, 532-nm beamwith an incidence angle that
allow a 30% diffraction efficiency into the sixth order when
all mirrors are on. The hologram represented on the array is a
binary mask of lines whose local width and displacement
affect the local amplitude and phase of the diffracted beam.
This beam is then optically conjugated using relay lenses to
the back focal plane of a microscope objective, which
effectively projects its Fourier transform onto the atomic
plane. A second microscope objective placed symmetrically
with respect to the atomic plane allows us to image the light
potentials created by the DMD on a CCD camera. In
addition, we can correct optical aberrations to limit the
wavefront distortion on the atoms to about λ=10 using a
technique similar to a Hartmann-Shack analysis.
To project the lattice onto the quantum wire, we first

align the relevant DMD diffraction order by scanning it
across the wire and measuring the subsequent variations of
atom current, a technique known as scanning gate micros-
copy [15]. The DMD beam is located on the wire center
when the conductance is minimal. The lattice hologram
itself is displayed on a grid of 660 × 660 mirrors. The size
of the hologram and the number of on mirrors decreases
when the lattice is made longer in the associated Fourier
plane. Hence, we observe a drop of the intensity diffracted
from the DMD, from 13% of the incident intensity for a
single barrier to 0.8% for a 10-barrier lattice. The potential
height at the center of the lattice is calibrated for all lengths
to account for this drop.

APPENDIX B: DATA ANALYSIS

1. Energy scales

The energy and temperature scales relevant in the

experiment are summarized in Fig. 6.

(i) The chemical potential bias Δμ ¼ 0.1 μK is smaller

than the energy scales characterizing the wire,

lattice, and spin gap. This supports the use of a

linear model to obtain the conductance.

(ii) The confinement energies ℏωx and ℏωz are the

largest energy scales, confirming that our system is

effectively one dimensional when the local chemical

potential is sufficiently low.

(iii) The lattice recoil energy Er ¼ 0.42 μK is compa-

rable to the typical lattice height Vl ¼ 0.4 μK,

placing the system in the nearly free-particle regime

rather than the tight-binding regime.

(iv) The band gap Eg ¼ 0.2 μK is larger than both

temperature T and chemical potential bias Δμ in a

typical setting. It becomes unresolved in conduct-

ance measurements when the lattice height Vl is

decreased (Fig. 3) or the temperature is in-

creased (Fig. 4).

(v) At the lowest scattering length a ¼ −2.65 × 103a0
used in the experiment, temperature T is larger than

both the critical superfluid temperature Tc in the

vicinity of the wire and the spin gap Δs in the wire,

indicating that the system is in the normal phase.

(vi) On the contrary, for scattering lengths used in Fig. 5,

the regions of the Fermi gas connected to the wire

are superfluid (T < Tc). The spin gap Δs is larger

than temperature except in the case of the smallest a
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FIG. 6. Summary of the energy and temperature scales relevant

for the quantum wire. Typical values are indicated by black lines,

whereas energies depending on a parameter scanned in Figs. 3–5

are represented by colored ranges. The superfluid critical temper-

ature Tc in the vicinity of thewire increases with gate potentialVg,

and is reported here for two values Vg ¼ 0.7 and 1.1 μK

corresponding to the conductance onset and gap with a lattice,

respectively. The 1D spin gapΔs at the center of thewire decreases

with the 1D density ρ, and is reported here for two values

corresponding to a lattice filling of one and three particles per site.

BAND AND CORRELATED INSULATORS OF COLD … PHYS. REV. X 8, 011053 (2018)

011053-9



and largest densities, which supports the Luther-

Emery liquid hypothesis. Depending on interaction

and density, Δs may be smaller (small a or large ρ)

or larger (large a or small ρ) than the lattice gap Eg.

Mean-field theory predicts the presence of a tran-

sition in 2D and 3D when Eg ≈ Δs [3], which here is

not observed experimentally.

2. Temperature estimation

For Figs. 2–4, temperature is extracted from the density

pictures of the cloud in the magnetic harmonic trap along y
taken at unitarity. To filter out imaging noise, we apply a

principal component analysis [43] on sets of pictures

belonging to the same experimental run grouped by trap

depth. This method reconstructs each picture from the mean

picture of the series and a linear combination of the fivemost

relevant deviations to the mean. We obtain the internal

energy from the second moment along y using the virial

theorem [44], which is then converted into entropy using the

known equation of state of the unitary Fermi gas [45],

approximating the hybrid trap by a harmonic potential.

Assuming that the magnetic field and trap depth ramp

preceding imaging is adiabatic, we equate the entropies

of the gas at imaging and at the end of transport, where it can

be expanded for theweakly interacting, degenerate gas [46]:

S

Nat

¼ kBπ
2
T

TF

�

1þ 64

35π2
kFa

�

; ðB1Þ

where the Fermi temperature TF ¼ ℏω̄ð6NatÞ1=3=kB is

inferred from the atom number Nat and the mean trapping

frequency ω̄ ¼ ðωxωyωzÞ1=3, and the corresponding Fermi

wave vector is defined as kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mkBTF

p
=ℏ. This allows us

to access the temperature T at the end of transport. The

temperatures stated in the text are estimated at half the

transport time, and are obtained after subtracting the heating

occurring during 2s in the dipole trap. This heating rate is

independently calibrated and ranges from 1ð2Þ nK=s
(Figs. 2 and 3 and lowest temperature of Fig. 4) to

8ð2Þ nK=s (largest temperature of Fig. 4).

The superfluid critical temperatures stated in the text and

shown in Fig. 6 are computed at the minima of the quasi-

one-dimensional potential located at the entrance and exit

of the quantum wire [14]. Under the assumption that the

local chemical potential μ̃ at these points is about the Fermi

energy ẼF in a local density approximation, we compute a

local interaction parameter 1=k̃Fa, which is then converted

into a critical temperature using Ref. [20].

3. Thermodynamical properties of the reservoirs

In Figs. 2–4, we use the equation of state of the

homogeneous, weakly interacting Fermi gas [46] to compute

the density ρ̃ðr⃗Þ for one spin species in the local density

approximation:

ρ̃ðr⃗Þ ¼ −
1

λ3T
Li3=2ð−z̃Þ

�

1þ 2a

λT
Li1=2ð−z̃Þ

�

; ðB2Þ

where z̃ðr⃗Þ ¼ exp½μ̃ðr⃗Þ=kBT� is the local fugacity of the gas,
μ̃ðr⃗Þ ¼ μres − Vðr⃗Þ is the local chemical potential in the

knownpotentialVðr⃗Þ created by the trap and the constriction,
λT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏ2=mkBT
p

is the thermal de Broglie wavelength,

and Lin indicates the polylogarithm function of order n. The
local compressibility can be inferred from the density

as κ̃ ¼ ∂ρ̃=∂μ̃ja.
The atom number Nat and compressibility κ of the entire

reservoirs are then obtained by spatially integrating ρ̃ðr⃗Þ,
κ̃ðr⃗Þ and are sampled at fixed temperature T for several

values of the chemical potential in the reservoirs μres. The

interpolated functions μresðNatÞ, κðNatÞ are then used to

estimate the chemical potential in each reservoir and the

mean compressibility for every absorption picture. Within

linear approximation, conductance can be inferred from the

atom number difference between the reservoirs after 4 s of

transport and the compressibility [16].

To account for the wide range of interactions in Fig. 5,

we instead use there the zero-temperature equation of state

of the balanced Fermi gas across the BEC-BCS crossover.

The local pressure P̃ðμ̃Þ created by one spin species as a

function of the local chemical potential is

P̃ðμ̃Þ ¼ P0ðμ̃ÞhBCSS ðℏ=
ffiffiffiffiffiffiffiffiffi

2mμ̃
p

aÞ; ðB3Þ

where P0 ¼ ½ð2mÞ=ℏ2�3=2μ̃5=2=15π2 is the pressure of a

spin-polarized ideal Fermi gas and hBCSS ðδ̃Þ is a correction
factor determined experimentally [47]. Its derivatives

yield the local density ρ̃ ¼ ∂P̃=∂μ̃ja and compressibility

κ̃ ¼ ∂ρ̃=∂μ̃ja. We then apply the procedure described above

to obtain compressibility and conductance for every

absorption picture.

APPENDIX C: NONINTERACTING

SIMULATIONS

1. Landauer-Büttiker formula

To model the experimental results at the lowest scattering

length a ¼ −2.65 × 103a0 presented in Figs. 2–4 and

include the presence of higher-energy modes above the

transverse ground state of the constriction, we apply the

Landauer-Büttiker formalism [48]. It separates the con-

ductance of noninteracting fermions into contributions

from independent transport channels:

G ¼ 1

hΔμ

X

n;m

Z

∞

−∞

dET n;mðEÞ½fLðEÞ − fRðEÞ�: ðC1Þ

Every channel is associated to a transverse mode of the

quantum wire, indexed by the quantum numbers n, m
along directions x and z, respectively, and characterized

by a transmission coefficient T n;mðEÞ whose energy
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dependence reflects the interference processes at work

inside the mesoscopic structure. In this picture, transport

results from the difference in the Fermi-Dirac distributions

fL, fR, describing the particle energies in the two reservoirs
linked by the channels. The function fL (fR) is temperature

dependent and centered around the chemical potential μL
(μR) of the left (right) reservoir. The chemical potential bias

that drives the atom current is defined as Δμ ¼ μL − μR.

The transmission T n;mðEÞ of each channel is obtained

from the squared scattering amplitude of a single particle

through a one-dimensional effective potential Veff;n;mðyÞ.
This potential has contributions from each of the four

beams that shape the constriction: the transverse energies of

the space-dependent harmonic confinement provided by

the wire in directions x and z, Vx;nðyÞ¼ ð1=2þnÞℏωxfxðyÞ

and Vz;m ¼ ð1=2þmÞℏωzfzðyÞ, the attractive gate poten-
tial VgðyÞ ¼ −VgfgðyÞ, and the lattice potential VlðyÞ. The
envelope functions fx, fy, fz incorporate known informa-

tion on the geometry of these laser beams and are detailed

in Table I. Additionally, the conductance shown in Fig. 2(b)

includes a repulsive potential of 0.3 μK, necessary to

match the Vg axis of the experimental data, and resulting

from a probable nondarkness of the repulsive TEM01-like

laser beams.

2. Nonuniformity of the scattering potential

The effective one-dimensional potential differs from an

ideal finite-length lattice due to the presence of the quantum

wire effective potential Vx;nðyÞ þ Vz;mðyÞ and due to the

nonuniform envelope of the lattice potential VlðyÞ. Both
factors contribute to reducing the height of the outermost

parts of the lattice relative to the chemical potential of the

reservoirs.

To illustrate these two effects on conductance independ-

ently, we simulate the conductance measurements shown in

Figs. 2 and 4 for different one-dimensional potentials with

lattice heightVl ¼ 0.40 μK [Fig. 7(a)]: (i) with a sine lattice

of N barriers and spacing d ¼ 0.97 μm, on top of a flat

TABLE I. Envelope functions determining the effective quasi-

one-dimensional potentials.

Envelope function Waist Description

fxðyÞ ¼ expð−y2=w2
xÞ wx ¼ 9.1ð3Þ μm x confinement

fzðyÞ ¼ expð−y2=w2
zÞ wz ¼ 30ð1Þ μm z confinement

fgðyÞ ¼ expð−2y2=w2
gÞ wg ¼ 42.5ð3Þ μm gate potential

FIG. 7. Effect of the lattice potential on conductance, obtained from noninteracting Landauer-Büttiker theory. Results for (i) an ideal

one-dimensional lattice potential on a flat background, (ii) an ideal lattice in the quasi-one-dimensional potential created by the quantum

wire, and (iii) a real lattice in the effective potential of the quantum wire. Column (a): Effective potential of the lowest transverse mode.

Column (b): Conductance GLB versus local chemical potential in the wire μwire for different numbers of barriers N at temperature T ¼ 0

and infinitesimal bias Δμ. Column (c): identical with T ¼ 60 nK and Δμ ¼ 100 nK. Column (d): Conductance GLB versus chemical

potential μwire for N ¼ 6 barriers, Δμ ¼ 100 nK, and different temperatures T.
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background: Veff;n;mðyÞ¼Vl;idealðyÞ¼Vlsin½πðy=dþN=2Þ�2
if y ∈ ½−Nd=2; Nd=2�, and Veff;n;mðyÞ ¼ 0 else; (ii) with a

sine lattice added to the effective potential of the quantum

wire,Veff;n;mðyÞ ¼ Vx;nðyÞ þ Vz;mðyÞ þ Vl;idealðyÞ; (iii)with
a real lattice obtained by directly imaging the optical

intensity of the lattice beam, added to the effective potential

of the quantum wire, Veff;n;mðyÞ ¼ Vx;nðyÞ þ Vz;mðyÞ þ
Vl;realðyÞ.
The transmission amplitude of a free particle incident on

the potential is obtained by solving the Schrödinger

equation numerically over a length which is as long as

the lattice for potential (i), and which is 120 μm long for

potentials (ii) and (iii), larger than the 1=e2 waists wx and

wz of the envelopes of the quantum wire. The sum over the

transverse modes n,m in Eq. (C1) is truncated to the lowest

energy channel in case (i), enforcing the maximum con-

ductance to 1=h [Figs. 7(i)(b)–7(i)(d)], and to the five lowest
channels in cases (ii) and (iii), giving rise to conductance

plateaus at multiples of 1=h at zero temperature and without

lattice potential [Fig. 7(ii)(b) and 7(ii)(c)]. The effect of the

attractive gate potential on this region (where it is homo-

geneous to a good approximation) is to shift the mean value

of the chemical potential μwire ¼ ðμL þ μRÞ=2 with respect

to the zero-point energy of the channel; its variation amounts

to a change of origin of the x axis in Figs. 7(b)–7(d).

We now simulate scattering through these three potentials

in different situations relevant to the experiment. First, we

vary the number of barriers N making up the lattice,

comparing the ideal case at temperature T ¼ 0 and infini-

tesimal chemical potential bias Δμ [Fig. 7(b)], where

Eq. (C1) simplifies toG ¼ P

n;mT n;mðμwireÞ=h, to the more

realistic situation where T ¼ 60 nK and Δμ ¼ 100 nK

[Fig. 7(c)]. Second, we vary the temperature at fixed lattice

length N ¼ 6 [Fig. 7(d)].

For the ideal lattice potential, the gap is visible as an

interval around μwire ¼ 0.6 μK, where conductance uni-

formly converges to zero upon increasing N [Fig. 7(i)(b)].

The band appears as a succession of N − 1 conductance

peaks that equal the number of hybridized orbitals expected

in a tight-binding model. When including the potential of

the quantum wire [Fig. 7(ii)(b)], the number of oscillations

decreases, which can be interpreted as a decrease of the

effective length of the lattice. The nonuniform lattice

potential further reduces the contrast of the band oscil-

lations and the effective gap width [Fig. 7(iii)(b)].

Adding a finite chemical potential bias blurs out the band

oscillations but the gap subsists as a local conductance

minimum between 0.3=h and 0.6=h depending on the lattice
length, as observed in the experiment. As the lattice length is

increased, the precise evolution of the conductance curves is,

however, sensitive to the details of the potential. On the

contrary, increasing the temperature above T ¼ 60 nK at

fixed lattice length N ¼ 6 [Fig. 7(d)] softens the local

extrema of conductance rather independently of the precise

lattice potential. Importantly, all conductance curves nearly

intersect at the chemical potentials demarcating the zero-

temperature bands and gaps, justifying the use of dG=dT as

an indication of the conductor-insulator transition in Fig. 4.

APPENDIX D: BOSONIZATION

In this appendix, we present an effective theory to model

the one-dimensional wire and lattice in the presence of

strong interactions.

We focus on the case of a single conduction channel in the

wire; at zero temperature this approximation is valid as long

as the Fermi energy in the wire is smaller than ℏω⊥ [21], or,

equivalently, ðρ0a⊥Þ2 ≲ 1, where ρ0 is the 1D density

including both spin species, transverse confinement fre-

quencyω⊥¼
ffiffiffiffiffiffiffiffiffiffiffi

ωxωz
p ¼2π×15.2kHz, and a⊥¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mω⊥

p

¼
6.28×103a0 is the transversal oscillator length. In the

experiment, this corresponds to densities ρ0≲3atoms=μm,

which is fulfilled in the central region of the wire.

In one dimension, the crossover from attractive fermions

to strongly bound repulsive bosonic dimers does not

happen across the 3D unitarity point (a ¼ �∞), but at

the confinement-induced resonance (CIR) [21] for a pos-

itive 3D scattering length aCIR ¼ a⊥=A ¼ þ6.08 × 103a0,
with A ≈ 1.0326. The 3D unitarity point loses its pecu-

liarity in 1D, and the 1D system is there still described by

strongly attractive fermions with finite g1. In this work, all

experiments are performed at a < 0 and are therefore on

the attractive side of the CIR. Interactions are parametrized

in the 1D region by an interaction strength g1 ¼
2ℏω⊥að1 − Aa=a⊥Þ−1 and a dimensionless Gaudin-Yang

parameter γ ¼ mg1=ℏ
2ρ0 < 0; see Fig. 8.

The experimentally relevant low-energy degrees of free-

dom of a two-species fermionic system are described by the

bosonized Hamiltonian densities for the charge (c) and the

spin (s) sectors [2]:

Hc ¼
1

2π

�

vcKcð∇θcÞ2 þ
vc

Kc

ð∇ϕcÞ2
�

− VðyÞρðyÞ; ðD1Þ

Hs¼
1

2π

�

vsKsð∇θsÞ2þ
vs

Ks

ð∇ϕsÞ2
�

þ 2g1

ð2παÞ2 cosð
ffiffiffi

8
p

ϕsÞ;

ðD2Þ

where here and in the following we set ℏ ¼ kB ¼ 1, y is the
direction along the wire, ϕc;sðyÞ, θc;sðyÞ are the bosonic

fields, vc;s and Kc;s are the Luttinger parameters, α is the

cutoff, VðyÞ is the external potential, and the density ρðyÞ is
given by

ρðyÞ ¼ ρ0 −

ffiffiffi

2
p

π
∇ϕcðyÞ

þ ρ0fei½2kFy−
ffiffi

2
p

ϕcðyÞ� cos½
ffiffiffi

2
p

ϕsðyÞ� þ c:c:g
þ Cρ0½ei½4kFy−2

ffiffi

2
p

ϕcðyÞ� þ c:c:�: ðD3Þ
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The nonuniversal amplitude C in Eq. (D3) is interaction

dependent and in our strongly interacting case (jγj > 1)

reduces to C ≈ 1. The Luttinger parameters vc;s, Kc;s are

functions of the parameter γ and can be numerically

calculated from the exactly solvable Gaudin-Yang model

Eq. (2) using the Bethe ansatz [21]; see Fig. 8. The

renormalization treatment of the sine-Gordon Hamiltonian

Eq. (D2) shows [2] that at γ < 0 the spin sector flows to a

strong coupling fixed point, so ϕs orders opening a spin gap

Δs, and the dispersion relation for low-lying spin excitations

becomes ϵk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔs=2ℏÞ2 þ ðvskÞ2
p

[21]. Physically, this

corresponds to the tendency of the fermions to form

bound pairs.

Such a quantumphasewith gapped spin and gapless charge

modes is referred to in the literature as the Luther-Emery

liquid [4]. LikeLuttinger liquids,Luther-Emery liquids have a

diverging dc conductivity and can be considered as analogs of

superconductors in 1D, with the formation of singlet fer-

mionic pairs. As long as T < Δs, which happens already at

a≲ −5 × 103a0, the spin sector influences local densities

only through Gaussian fluctuations of the ϕs field around

zero, allowing us to simplify the expression Eq. (D3) to

ρðyÞ ¼ ρ0 −

ffiffiffi

2
p

π
∇ϕcðyÞ þ 2ρ0fs cos½2kFy −

ffiffiffi

2

p
ϕcðyÞ�

þ 2Cρ0 cos½4kFy − 2

ffiffiffi

2

p
ϕcðyÞ�; ðD4Þ

where the influence of the spin sector mentioned

above is taken into account by the fluctuation factor fs ¼
hcos

ffiffiffi

2
p

ϕsð0Þi ≈ 0.5.

APPENDIX E: CONDUCTANCE

To calculate the conductance of the strongly interacting

fermions in a periodic potential, we follow an approach

similar to the one introduced by Maslov and Stone in

Ref. [34]. The current is driven by the chemical potential

difference Δμ between the ends of the 1D wire. Namely,

when there is an external chemical potential, the

Hamiltonian density of the charge sector Eq. (D1) acquires

an additional term,

HμðyÞ ¼ −μðyÞρðyÞ ¼ μðyÞ
ffiffiffi

2
p

π
∇ϕc; ðE1Þ

wherewe omit the constant factors whichwill not show up in

the equation ofmotion aswell as the oscillating factorswhich

will average to zero by calculating average currents. We

assume that the chemical potential takes two different,

constant values in the leads, μL ¼ μR þ Δμ, and changes

linearly in the wire between the leads μðyÞ ¼ μL − Ey (the

sign is chosen as to induce a left-to-right current), so that we

can introduce a fictitious electric fieldE¼−∇μðyÞ¼Δμ=LE,

whereLE is the length of the regionwhere the electric field is

applied.

The total current

I↑↓ðyÞ ¼
ffiffiffi

2
p

π
∂tϕcðy; tÞ ðE2Þ

is given by the continuity equation ∂tρþ∇j ¼ 0.

The one-species conductance that is relevant experimen-

tally is
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G↑ ¼
1

2L

Z

dy
I↑↓ðyÞ
Δμ

: ðE3Þ

Assuming that the experimental temperature is large

enough to neglect the correction due the quantum tunnel-

ing, we calculate the conductance by numerically solving

the classical equation of motion for ϕc, which reads:

−2
ffiffiffi

2
p

VðyÞρ0½2sinð2
ffiffiffi

2
p

ϕcðy;tÞ−4kFyÞ
þfssinð

ffiffiffi

2

p
ϕcðy;tÞ−2kFyÞ�

¼ vc

πKc

∂yyϕcðy;tÞ−
1

πvcKc

∂ttϕcðy;tÞ−
ffiffiffi

2
p

V 0ðyÞ
π

þ
ffiffiffi

2
p

π
EðyÞ:

ðE4Þ

We solve the equation ofmotion [Eq. (E4)] with the initial

condition ϕcðy; 0Þ ¼ 0 (no current at t ¼ 0) in a finite-size

region of lengthL ¼ 16 μm.The boundary conditions are of

the Sommerfeld type (outgoing wave) with additional white

noise, which takes into account the finite temperature of the

leads. Namely, the boundary term is

dϕcðL; tÞ þ vc∇ϕcðL; tÞdt ¼ σTdWLðtÞ;
dϕcð0; tÞ − vc∇ϕcð0; tÞdt ¼ σTdW0ðtÞ; ðE5Þ

where dWL;0ðtÞ are two independent Wiener processes and

σT is a phenomenological parameter characterizing the

amplitude of the thermal noise.

The resulting stochastic differential equation is solved

with the Euler-Maruyama method. To calibrate the noise

we solve the dynamics of the Luttinger liquid without

external potential and without the applied voltage; i.e., we

solve Eq. (E4) with VðyÞ ¼ 0, Eðy; tÞ ¼ 0, and ϕcðy; 0Þ ¼
0 as initial condition, but with the noisy boundary con-

ditions Eq. (E5). For each value of the noise amplitude σT
and filling factor ν ¼ dρ0=2, we then calculate the equal-

time correlation function [2],

CTðyÞ ¼ h½ϕcðy; tÞ − ϕcð0; tÞ�2i; ðE6Þ

where the angular brackets denote the time average (as the

Luttinger liquid with noise is ergodic and the time average

is equal to the ensemble average), and zero marks the

middle of the wire.

Taking this into account, the exact equal-time correlation

function [2] in the thermal ensemble is

CTðyÞ ¼ KF1ðyÞ ¼
Kc

2
log

�

β2v2c

π2α2
sinh2

�

πy

βvc

��

≈
Kc

2
log

�

β2v2c

4π2α2
exp

�

2πy

βvc

��

≈ K log

�

βvc

2πα

�

þ Kcπy

βvc
; ðE7Þ

where β ¼ 1=T and α is the cutoff. In the last line, we use the

experimentally relevant high-temperature limit πy=βvc ≫ 1.

We then fit CTðyÞ with a straight line CTðyÞ ¼ Aþ By and
calculate the temperature from its slope, B ¼ KcπT=vc.
For numerical stability, the lattice and the electric field

are applied in the central region of length LV ¼ 4 μm and

LE ¼ 8 μm, respectively; at the ends of this central region

they smoothly go to zero with σh ¼ 1 μm:

EðyÞ ¼ Ehillðy; LEÞ; ðE8Þ

VðyÞ ¼ V0½sinðπy=dÞ2 − 1=2�hillðy; LVÞ; ðE9Þ

hillðy; LÞ ¼ 1

2

�

erf

�

−yþ L=2

σh

�

þ erf

�

yþ L=2

σh

��

;

ðE10Þ

where V0 ¼ 459 nK and E ¼ 18.75 nK=μm; see Fig. 9. To

test the algorithm, we successfully reproduced the results of

Ref. [34] in the absence of the optical lattice, with and

without thermal noise.

The results of the finite-temperature simulations with the

optical lattice are summarized in Fig. 10, where conduct-

ance is plotted as a function of the local 1D density ρ0 and

the local chemical potential μwire in the wire. They predict a

conductance minimum at a particle density ρ0 of two

particles per site, which is the density where a band

insulator is formed in the absence of interactions. The

local chemical potential μwire is obtained from ρ0 using

local density approximation and the zero-temperature

equation of state μðρ3D; aÞ [Eq. (B3)]. We assume there

that the 3D density at the center of the atom cloud is given

as ρ3D ¼ ρ0=σ2D, where σ2D ≈ 1 μm2 is the estimated wire

cross section. Although it does not account for the complex

geometry of the constriction, which continuously trans-

forms 3D reservoirs into 2D sheets and then to the 1D

wire, this simplified model is able to produce interaction-

dependent shifts of the conductance minimum along the

chemical potential axis that are quantitatively comparable

to the experimental data.

0

5

10

15

20

E
 (

n
K

/µ
m

)

-5 0 5

200

-100

0

100

200

y (µm)

V
 (

n
K

)

FIG. 9. Profiles of the fictitious electric field (top) and the

lattice potential (bottom) used in the numerical simulations.
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Our Luttinger liquid formalism is applicable only

when a single conductance channel contributes to transport,

which happens in practice for chemical potentials close

to the conductance minimum. At low chemical potentials

μwire < 0.2–0.3 μK, it does not capture the drop of con-

ductance associated with the closure of a single conduct-

ance channel [12]. On the other hand, for larger chemical

potentials, μwire > 0.4–0.5 μK, the high conductance

experimentally observed might be explained by the con-

tribution of the higher transverse channels due to Andreev

processes, as put forward in Ref. [22] to account for

anomalous conductances observed in a quantum point

contact with attractive interactions [14].

The chemical potential μwire can be related to the

experimental variable Vg through

Vg þ μres ¼ Vwire þ μwire; ðE11Þ

where Vwire is the local ground-state energy at the wire

center and μres is the chemical potential away from the

constriction inside the reservoirs. If no spurious light

potential is present in the wire, the ground-state energy

Vwire is about the zero-point energy of the wire transverse

confinement, Vwire ¼ ℏðωx þ ωzÞ=2 ¼ 830 nK, up to a

renormalization factor due to interactions. By equating

Vg to the gate potentials where the conductance minima are

experimentally observed (cf. Fig. 5) and μwire to the

theoretical values corresponding to a commensurate filling

of two atoms per site, the reservoir chemical potential can

be estimated from Eq. (E11) to be μres ∼ 230–260 nK.

APPENDIX F: LUTHER-EMERY LIQUID AND

SUPER-TONKS-GIRARDEAU GAS

The Cooper pairs become effectively unbreakable mol-

ecules only at the CIR, where the system can be described

by a Tonks-Girardeau gas of bosons. In our experiment we

explore the regime of moderately strong attractions

between the fermions, where the pairs have a finite size

and are tightly bound, but not unbreakable.

× × × ×

FIG. 10. ConductanceGTL obtained from Tomonaga-Luttinger theory for one spin species in units of the conductance quantum 1=h as

a function of the mean 1D density ρ0 in the wire (left) and the local chemical potential in the wire μwire (right) for the scattering lengths

used in the experiment. All curves have a minimum around ρ0 ¼ 2 μm−1, which is the filling of a band insulator in the noninteracting

limit. Stronger interactions decrease conductance and tend to “widen” the conductance minima when plotted as a function of 1D density,

which can be explained by the renormalization of the potential due to spin fluctuations towards larger effective lattice heights.
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In this appendix, we show that in the absence of a periodic

potential a fermionic gas in Luther-Emery phase can be

mapped to a so-called super-Tonks-Girardeau gas, a gas of

bosons featuring long-range repulsion and a Luttinger

parameter Kb < 1 (the subscript b stands for bosonic).

First, we note that as long as the spin sector is ordered

(gapped) at hϕsi ¼ 0, we need to deal with the Luttinger

liquid of spinless fermions in the charge sector only,

described by the bosonized fields ϕcðyÞ, θcðyÞ to obtain

correctly the low-energy physics of the full model.

The bosonized density operator of 1D spinless bosons is

given by [33]

ρbðyÞ ¼
�

ρ̄b −
1

π
∇ϕbðyÞ

�

X

∞

l¼−∞

e2il½πρ̄by−ϕbðyÞ�; ðF1Þ

where ρ̄b is the average bosonic density.

Then, comparing Eq. (F1) with the one for 1D attractive

fermions, Eq. (D4), and taking into account only the

relevant harmonics l ¼ f0;�1;�2g, we can establish an

approximate correspondence of our attractive fermions and

interacting bosons:

ρ0 ↔ 2ρ̄b;

ϕc ↔
ffiffiffi

2

p
ϕb;

kF ↔ πρ̄b; ðF2Þ
from which it follows that Kc ↔ 2Kb and enables us to

draw a concurrent phase diagram of the 1D bosons and

fermions; see Fig. 11.

Experimentally, attractive interactions between fermions

stronger than jaj > 104a0 are routinely achieved, which

corresponds to the fermionic Luttinger parameter Kc ≈ 1.4;

see Fig. 8. This allows us to map our system to a STG

bosonic gas of Kb ≈ 0.7. Through this mapping, all long-

wavelength correlation functions for the Cooper pairs can

be directly mapped to the bosonic ones for the STG gas.

This correspondence holds only as long as the

spin sector is well locked in its minimum [implying that

fs ¼ hcos
ffiffiffi

2
p

ϕsð0Þi≲ 1], so that the Fermi gas is

described by one density mode. For instance, this is

fulfilled in the Tonks-Girardeau gas, where fs ¼ 1 and

our mapping, Eq. (F2), of Cooper pairs to bosons is exact.

If the interaction becomes too weak, the spin gap becomes

lower than the energy scale at which the system is probed,

and then it is necessary to include the two modes (spin and

charge). In this regime, one cannot map the system to a

single-mode bosonic STG gas anymore.

We estimate the pair size as ξ ¼ ℏ=
ffiffiffiffiffiffiffiffi

mϵ0
p

, where ϵ0 is the

energy of the bound state [49]; see Fig. 12. At moderately

strong attraction and densities ρ ≈ 2 atoms=μm, the pair

size ξ ≈ 0.4 μm is comparable but smaller than the inter-

particle separation ρ−1 ≈ 0.5 μm, and it becomes mean-

ingful to interpret the pairs as localized bosons. However,

we note that the mapping to a STG gas continues to hold

when the pair size is larger than the interparticle spacing, as

it relies only on the locking of the spin field. In the latter

case, the excitations are density waves and cannot be

interpreted as tightly bound pairs.

Kb

free

1

GTS USGT
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0.5

Kc

2LE

attractive

fermions
1

free

FIG. 11. Phase diagram of 1D bosons (top) and 1D spinless

attractive fermions (bottom) with respect to the Luttinger param-

eter Kb;c. The vertical arrow represents the mapping of the

attractive fermions in the Luther-Emery (LE) phase to the super-

Tonks-Girardeau gas (STG) discussed in the text. Bosons realize

the STG phase at Kb < 1, hard-core Tonks-Girardeau (TG) phase

at Kb ¼ 1, and a superfluid of weakly repulsive bosons (SU) at

Kb ≫ 1; the free boson limit is realized atKb → ∞. The fermions

are repulsive for Kc < 1, free at Kc ¼ 1, and attractive at Kc > 1.

The dashed region of the phase diagram corresponds to the

regime where the boson-to-fermion mapping breaks down due to

fluctuations of the spin field.
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FIG. 12. Pair size ξ as a function of the scattering length. Linear densities ρ0 from 1 to 3 atoms=μm correspond to interparticle

spacings from 1 to about 0.3 μm, which is of the order of the pair size. For higher densities and/or weaker interactions the pairs become

larger than the interparticle separation and the mapping to a super-Tonks-Girardeau gas fails. Left and right panels correspond to positive

and negative scattering lengths a.
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