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Band-like transport in small-molecule thin films
toward high mobility and ultrahigh detectivity
phototransistor arrays
Deyang Ji1,2, Tao Li 3, Jie Liu4, Saeed Amirjalayer1,2,5, Mianzeng Zhong6, Zhao-Yang Zhang3

Xianhui Huang3, Zhongming Wei 6, Huanli Dong 4, Wenping Hu 4,7 & Harald Fuchs1,2

With the fast development of organic electronics, organic semiconductors have been

extensively studied for various optoelectronic applications, among which organic photo-

transistors recently emerged as one of the most promising light signal detectors. However, it

is still a big challenge to endow organic phototransistors with both high mobility and high

light-sensitivity because the low mobility of most organic photoresponsive materials limits

the efficiency of transporting and collecting charge carriers. We herein report band-like

charge transport in vacuum-deposited small-molecule thin films for organic phototransistor

arrays which can be operated at very low dark currents (~10−12A). Both high mobility and

excellent optical figures of merit including photosensitivity, photoresponsivity and detectivity

are achieved, wherein, unprecedentedly, a detectivity greater than 1017 cm Hz1/2W−1 is

obtained. All these key parameters are superior to state-of-the-art organic phototransistors,

implying a great potential in optoelectronic applications.
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O
wing to their ability of capturing and converting incident
light into detectable electrical signals, phototransistors
have been extensively investigated in the area of optoe-

lectronics, and targeted for many innovative applications such as
imaging, optical communication, and biomedical sensing1,2. In
recent years, organic phototransistors (OPTs) have emerged as
one of the most promising light signal detectors, benefiting from
the attractive properties of organic semiconductors including low
cost, lightweight, compatibility with flexible substrates, ease of
large-area processing, and tailorable optoelectronic properties by
synthetic methods3–5. With a synergistic combination of intro-
ducing new materials and optimized preparation technologies,
the key figures of merit of OPTs are now comparable and even
superior to that of silicon-based phototransistors6. However, the
low mobility of most organic photoresponsive materials limits the
efficiency of transporting and collecting charge carriers, restrict-
ing the further development of OPTs7. Recently, some single-
crystal phototransistors showed promising mobility and light-
sensitivity8, but precise manipulation of single crystals is still a
formidable challenge for large-scale fabrication and application.
In comparison, thin-film devices can preferably maximize the
advantage of organic semiconductors for more complex integra-
tion. For the above reasons, it is highly desirable to develop thin-
film OPTs preferably with both high mobility and superior light-
sensitivity.

Herein, we report high-performance OPT arrays with vacuum-
deposited 2,6-diphenylanthracene (DPA) as organic photo-
responsive layers. It is noteworthy that the small-molecule thin-
film field-effect transistors show “band-like” charge transport,
implying the highly crystalline nature of the thin films. Both high
mobility and excellent optical figures of merit are successfully
obtained, showing a prospect of high-performance OPTs for both
experimental research and practical applications.

Results
Characterization of DPA thin films and their TFTs. Compared
to polymer materials, small molecule semiconductors have
defined molecular structures for convenient synthesis and pur-
ification, which is important for the fabrication of high-
performance devices9. Acenes are typical small molecules that
have been extensively studied for organic electronics. It has been
verified that extending the π-conjugation system can reduce the
reorganization energy and enhance electronic coupling for higher
charge carrier mobility10, which, however, is normally at the
expense of the environmental stability and optoelectronic prop-
erties. For example, pentacene-based transistors exhibit a higher
mobility than tetracene, but display lower stability and photo-
sensitivity (pentacene, ~10; tetracene, ~103)11. In order to achieve
a good balance between mobility and stability, we previously

reported a simple and unique structured small molecule, DPA
(Fig. 1a). The phenyl groups were introduced at 2-, 6- positions of
anthracene leading to relative reduction of π conjugation com-
pared with pentacene and the highest occupied molecular orbital
(HOMO) energy level of DPA was lowered down to −5.6 eV with
an estimated energy band gap of ~3.0 eV, which all helped to
improve its stability12. Benefitting from a dense herringbone
packing motif (Supplementary Fig. 1a) and multi C–H–π inter-
actions (intermolecular distance only 2.84–2.86 Å, Supplementary
Fig. 1b), a charge carrier mobility of its single crystal up to
34 cm2V−1 s−1 was achieved13, which was comparable to the best
performance of single-crystalline pentacene14. Moreover,
anthracene with strong fluorescence was used as the semi-
conducting core, contributing to a photoluminescence quantum
yield of DPA of up to 41.2%13. As shown in Fig. 1b, c, DPA thin
film exhibits strong absorption in the UV–vis range and a three
orders of magnitude longer exciton lifetime (~1.5 ns) than pen-
tacene (~1 ps)11, indicating its great potential for applications in
optoelectronics, such as OPTs (Fig. 1d).

Highly ordered and highly crystalline (X-ray diffraction
measurement, Supplementary Fig. 2) 20 nm DPA thin-film
field-effect transistors (TFTs) arrays (7 × 7) were fabricated on
octadecyltrichlorosilane (OTS)-treated SiO2(300 nm)/Si substrate
with gold as top-contact source/drain electrodes (Supplementary
Fig. 3). Different thicknesses (5, 10, 15, and 20 nm) of DPA thin
films were deposited onto OTS/SiO2(300 nm)/Si substrate and a
layer-by-layer grown mode was clearly observed during the film
growth process from 5 to 20 nm (Supplementary Fig. 4), which
was consistent with the previous work12. The d001 spacing was
calculated to be ~1.8 nm from the (001) diffraction pattern peak
(2θ= 4.88) of the DPA film (Supplementary Fig. 2), which was
very close to the length of an individual DPA molecule12. This
indicated that DPA molecules preferentially grew perpendicularly
on the OTS surface, which offered a favorable charge transfer
channel at the semiconductor–dielectric interface15. As a result,
all the devices exhibited high mobility values ranging from 4 to
7.5 cm2V−1 s−1 (Fig. 2a) and outstanding operating stability in
the dark with ON–OFF ratios of 107–108 and switching cycle of
>3000 times at ambient conditions (Supplementary Fig. 5a). The
typical transfer and output characteristics are shown in
Supplementary Fig. 6. The DPA thin-film transistors were also
tested in the vacuum with the temperature lowered down from
300 to 100 K. Figure 2b depicts representative transfer curves at
varied temperatures with the square root of source/drain current
(−IDS) plotted against the gate voltage (VGS), showing the
threshold voltage (Vth) shifted to more negative values (Supple-
mentary Fig. 7) with decreasing temperature. This phenomenon
is commonly observed from other organic field-effect transis-
tors16–18, indicating the gate voltage fill up low-mobility trap
states19. Correspondingly, the temperature dependence of the
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mobility is further shown in Fig. 2c. Interestingly, an increase of
the mobility (from 4.6 to 11 cm2V−1 s−1) was recorded with
decreasing temperature (from 300 to 200 K). This negative
temperature coefficient of hole mobility (dµ/dT < 0) demonstrates
that band-like transport exists19. It is worth emphasizing that
most of the reported band-like transport occurs in single crystals
due to their intrinsic order16–19. We can therefore infer that the
observed band-like transport very likely indicates a high degree of
order present in vacuum-deposited DPA thin films, as corrobo-
rated by the X-ray measurements. When the temperature was
below the inflection point (200 K, Fig. 2c), the charge carriers
became thermally activated, which was dominated by shallow
traps20,21 and resulted in a decrease of mobility to 5.9 cm2V−1 s−1

at 100 K. According to μ= μ0exp(−EA/kBT), where EA is the
activation energy and kB is the Boltzmann constant, a value of
about 9.48 meV for EA was calculated (Fig. 2d). Thus, the low
activation energy of thin-film DPA indicated a low degree of
energetic disorder at the interface22,23 between thin-film DPA and
OTS for the further study of photoelectric properties.

Charge transfer mechanism and performance of the OPTs.
High mobility values demonstrate high efficiency of transporting
and collecting charge carriers, normally contributing to higher
photosensitivity and photoresponsivity in the OPTs (Table 1). For
p-channel OPTs operating in the dark, some charge carriers
(holes) will be trapped between the active layer and dielectric
layer by the interface defects (Fig. 3a), and these trapped holes
will increase the turn-on gate voltage required for transistors,
shifting the threshold voltage towards a higher value. When the
device is under illumination and the photovoltaic mode is
dominant, the photogenerated electrons/holes in the conductive

channel will move and accumulate around the source/drain
electrodes (Fig. 3b) driven by the inner electric field24, which
leads to band bending25 in the semiconductor (Fig. 3c). As a
result, the potential barrier for the injection of holes into the
source electrode is lowered26, and there will be more holes
involved in the charge transport process (Fig. 3b) under the same
driving voltage compared to the situation in the dark, thus
increasing the photocurrent and inducing a positive shift of the
threshold voltage. Typical transfer characteristics of the photo-
transistor in dark and under illumination are shown in Fig. 3d.
Moreover, the OPTs showed outstanding operating stability
under the illumination intensity of 0.6 mW cm−2 with ON–OFF
ratios of 106–107 and switching cycle of >3000 times at ambient
conditions (Supplementary Fig. 5b). From the transfer curve in
dark, a relatively high threshold voltage (Vth) (~−53 V) was
recorded, which could be attributed to both the contact resistance
(a ~0.4 eV mismatch between the HOMO energy level of DPA
(5.6 eV) and the work function of gold (5.2 eV)), and the rela-
tively high density of traps (5.94 × 1012 cm−2) at the dielectric
interface increasing the turn-on voltage of the transistors. As a
consequence, the phototransistor in the off-state exhibited a low
dark current of only several pA. With an increase of illumination
intensity (from 0 to 0.6 mW cm−2), a large shift of the threshold
voltage (Vth) was observed (Supplementary Fig. 8) with the
mobility increased to 12 cm2V−1 s−1 (Supplementary Fig. 9). The
large shift of the Vth (~+63 V) demonstrated high density of
trapped photogenerated carriers (ΔNtrap= ΔVthCox/q27, where q,
Cox, and ΔVth are elementary charge, capacitance of the dielectric
layer, and threshold voltage shift, respectively) at the dielectric/
semiconductor interface28. The increased mobility indicated a
large number of photogenerated carriers formed the conductive
channel to improve charge transfer. In addition, the output
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Table 1 Comparison of current work with representative phototransistors based on organic semiconductors

Semiconductor Mobility

(cm2V−1 s−1)

Photosensitivity Photoresponsivity

(AW−1)

Detectivity

(cmHz1/2W−1)

Light density

(mWcm−2)

Ref.

BBDTE (SC) 1.62 105 9.8 × 103 N/A 0.037 8

Me-ABT (SC) 1.66 104 1.2 × 104 N/A 0.03 35

TFT-CN (SC) 1.36 5 × 105 9 × 104 6 × 1014 0.179 36

A-EHDTT (SC) 1.2–1.6 1.4 × 105 1.4 × 104 N/A 0.0014 37

PY-4(THB) (SC) 0.7 1.2 × 106 2 × 103 N/A 0.0056 38

p-DTS(FBTTh2)2 (SC) 1.8 103–104 3 × 103 N/A 7 39

DNTT (TF) N/A 8.1 × 104 1.7 × 104 2 × 1014 1 31

Spiro-DPSP (TF) 1.3 × 10−6 5 × 102 1 N/A 0.19 40

6T (TF) 0.09 1.3 × 103 1.5–2.4 N/A 1.5 41

ABT(TF) 0.4 800 1000 N/A 0.03 42

DPP-DTT/PCBM (TF) N/A 5 × 104 350 5.7 × 1013 89 43

DPP-DTT/PCBM (TF) 0.14 p/0.06 n 3 × 104 8 × 105 3 × 1012 57 44

F16CuPc (TF) 5.3 × 10−4 22 1.5 × 10−3 N/A 5.6 45

P3HT (TF) 0.01-0.07 3.8 × 103 245 N/A 51 46

TIPS-Pentacene (TF) 0.02 106–107 N/A N/A 9–13 47

DPA (TF) 7.5a/12b 8.5 × 107 1.34 × 105 1.2 × 1017 0.07–0.6 This work

SC single crystal, TF thin film aDark bIllumination
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currents of DPA-based OPTs under different illumination
intensities increased accordingly (Supplementary Fig. 10), also
indicating that more charge carriers were generated29. Conse-
quently, a high number of photogenerated carriers and more
efficient charge trapping jointly led to a high photoresponse30.
Supplementary Fig. 11a shows the photosensitivity (Iillumination/
Idark, P) as a function of gate-source voltage (VGS) with the best
value reaching as high as ~8.5 × 107 (Fig. 3e) at VGS ~ −30 V
under the illumination intensity of 0.6 mW cm−2.

The photoresponsivity (R) and detectivity (D*) are other key
figures of merit used to evaluate the phototransistor performance.
R can be expressed as

R ¼ IilluminationðPiSÞ
�1 ð1Þ

where Pi is the incident light intensity and S is the area of the
illuminated channel. Figure 3e and Supplementary Fig. 11b depict
the dependence of R with illumination power intensity and VGS,
respectively. All the devices could achieve photoresponsivity higher
than 104AW−1 with the best value up to 1.34 × 105AW−1 at the
VGS of ~−100 V with an illumination intensity of 0.07mW cm−2,
which proves their strong ability to convert light into electric
current. The specific detectivity (D*) can be written as31

D� ¼ R SΔfð Þ1=2ðinÞ
�1 ð2Þ

where Δf is the operation bandwidth and in is the measured noise
current. Assuming that the major contribution is the shot noise
from dark current, D* is then given by32

D� ¼ RS1=2ð2e IDarkÞ
�1=2 ð3Þ

An unprecedented D* value of 1.2 × 1017 cmHz1/2W−1 was
obtained (Fig. 3f and Supplementary Fig. 11c), which can be
attributed to the low dark current (~10−12A), high photorespon-
sivity (R) and the small area (7.2 × 10−5 cm2) of the illuminated
channel as stated in Eq. (3). This superior detectivity also indicates
that the devices would be very powerful for detecting incident weak
light signals. To the best of our knowledge, these essential key
parameters, including P, R, and D*, are superior to state-of-the-art
OPTs (Table 1)4,5 and are among the best of all previously reported
phototransistors to date3,33–48. We also tested the stability of the
devices and found even after 4 months stored in the air
(Supplementary Fig. 12), the best values of P, R, and D* could still
reach 4.4 × 107, 1.1 × 105AW−1, and 0.98 × 1017 cmHz1/2W−1,
respectively, which indicated high stability of the DPA-based OPTs.

Time-dependent density functional theory (TDDFT) calcula-
tions. In order to understand the photophysical properties, time-
dependent density functional theory (TDDFT) calculations were
performed. Due to highly ordered and highly crystalline DPA
thin film deduced from its high charge mobility and “band-like”
charge transport property, we thus first optimized, based on the
single crystal data (Supplementary Fig. 1a), the structure and
packing mode of DPA (Supplementary Fig. 1b). The structure
obtained by periodic DFT calculations (Supplementary Fig. 1c) is
in good agreement with the experimental result. To get insight
into the electronic properties of the molecular systems after
photo-excitation, the electronic excitation was subsequently cal-
culated by using a model system consisting of 5 DPA molecules.
Based on these calculations, the alteration of the electronic dis-
tribution upon photo-excitation can be extracted. The detailed
analysis of the first excited state revealed that this electronic
transition is mainly associated with a transition from the HOMO
to the lowest unoccupied molecular orbital (LUMO) and LUMO
+ 2 (Fig. 3g). Comparing these molecular orbitals before and after

excitation provides a fingerprint of the photo-induced redis-
tribution of electrons and reveals an increase of electron density
between the DPA molecules after electronic excitation. This
enhanced electronic overlap between adjacent molecules pro-
motes the charge carrier mobility in the system. The TDDFT
calculations are consistent with the improved performance of the
DPA system under illumination and allow rationalizing the band-
like transport properties.

Grain boundaries (GB) effect on the performance of the OPTs.
In order to further verify that efficient carrier transport is a
prerequisite for high light-sensitivity, we also studied the grain
boundaries (GB) effect on the performance of the OPTs and
adopted another two thicknesses (10 and 30 nm) of DPA active
layers. As for 10 nm DPA film, the OTS/SiO2/Si substrate was not
fully covered, leading to higher density of GB than that of 20 nm
film. When the deposited film was thicker than 20 nm (e.g.,
30 nm), it was found that surface aggregation generally resulted in
the growth of more GB (Supplementary Fig. 13). Typical transfer
characteristics of the phototransistors based on 10 and 30 nm in
dark and under illumination are shown in Supplementary Fig. 14.
As shown in Supplementary Fig. 15a, the mobilities of all the
devices were enhanced under illumination, and it was found that
the mobility was mainly affected by the density of GB, rather than
the film thicknesses (μ20nm > μ30nm > μ10nm). This phenomenon
can be explained by the trapping of charge carriers by the GB
during carrier transport, resulting in a decrease of the mobility. In
addition, the corresponding output current also depended on the
efficient carrier transport (I20nm > I30nm > I10nm) (Supplementary
Fig. 16). P and R showed the same trend as that of the mobility
(P20nm > P30nm > P10nm, Supplementary Fig. 15b and R20nm >
R30nm > R10nm, Supplementary Fig. 15c), which further confirmed
that higher mobility would contribute to higher photosensitivity
and photoresponsivity.

The performance of the photodetectors. Owing to their excellent
light-sensitivity, DPA-based OPTs are promising for the use of
high-performance photodetectors. As shown in Fig. 3h, light
irradiation can act as an independent parameter for regulating the
output current of the OPTs at different illumination intensities
(VDS=−100 V, VGS= 0 V). The photocurrent was enhanced
gradually with the increase of illumination intensity (from 0 to
0.6 mW cm−2) and the device contact-resistance correspondingly
decreased (Supplementary Fig. 17), which can be attributed to the
lowered injection barrier induced by light irradiation. The output
current generated at fixed illumination was stable with the time-
dependent photocurrent (0.6 mW cm−2, VGS= 0 V) shown in
Supplementary Fig. 18. Subsequently, we monitored the current
between the source and drain (IDS, VDS=−100 V, VGS= 0 V)
while regularly turning the light on and off. As shown in Sup-
plementary Fig. 19, the OPT device exhibited photoswitching
time of τrising= ~1 s and τdecay= ~1 s, and the ON–OFF ratio was
depended on the illumination intensity (Supplementary Fig. 20).
Compared with inorganic phototransistors49–51, the relatively
long response time of DPA-based OPTs can be ascribed to
trapped photogenerated charge carriers at the organic semi-
conductor/dielectric interface and the slow nature of the recom-
bination of generated carriers5,52,53. An example of three
consecutive ON–OFF cycles is shown in Supplementary Fig. 21.

A two-terminal photodetector was also fabricated and accord-
ing to the absorption spectrum, the photodetector was irradiated
using monochromatic light at 430 nm (0.4 mW cm−2). The
resistance of the device was as high as 1.1 × 1012Ω in the dark
at a bias voltage of 10 V and it quickly dropped to 1.5 × 108Ω
when the light source was turned on (Fig. 4a). With the light on
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and off, consecutive ON–OFF cycles (ON–OFF ratio up to ~103)
were recorded (Fig. 4b) with photoswitching time of τrising=
~0.4 s and τdecay= ~0.4 s, respectively (Supplementary Fig. 22).
Figure 4c shows the typical photoresponse (Iillumination/Idark) with
irradiation wavelengths ranging from 300 to 500 nm. The current
spectrum agreed well with the optical absorption curve, which
further confirmed the photoresponse of the detector at 430 nm
wavelength originated from the light absorption of the DPA layer.
Moreover, a 6 × 11 imaging matrix on a silicon wafer was
fabricated. The current signals shielded by the shadow mask with
a hollowed symbol “C” (Fig. 4d) were in the 10−10A level, while
the output currents from the light exposed areas were kept at
around 10−8A. As shown in Fig. 4d, by recording the current of
the matrix, a spatial mapping of the characters can be presented
with high accuracy. All the above evidence proved the excellent
optoelectronic properties of DPA molecules.

Discussion
In conclusion, high-performance and high-stability photo-
transistors based on small-molecule DPA were investigated. The
OPTs not only have high mobility (12 cm2V−1 s−1 under illu-
mination), but also show outstanding photoresponsivity (1.34 ×
105AW−1), detectivity (1.2 × 1017 cmHz1/2W−1) and Iillumination/
Idark ratio (8.5 × 107). Simultaneously, two-terminal photo-
detectors irradiated under 430 nm illumination show ON–OFF
ratios up to 2 × 103 in the air. All the above values are superior to
state-of-the-art OPTs and are among the best of all previously
reported phototransistors. We believe the small-molecule DPA
offers great opportunity toward high-performance OPTs and their
arrays for both fundamental research and practical applications.

Methods
Device fabrication and characterization. Bottom-gate top-contact DPA thin film
transistors were fabricated by the following procedures: SiO2/Si substrates used in
the study were successively cleaned with deionized water, acetone, pure ethanol,
piranha solution (H2SO4:H2O2= 7:3), deionized water, isopropanol, and then
dried with nitrogen. The surface of SiO2/Si substrate was treated with O2 plasma
(50W, 1 min). Here, plasma treatment was carried out using Gala Instrument
Prep2; treatment of SiO2/Si wafer with OTS was then carried out by conventional
vapor deposition method at a vacuum chamber (0.1 Pa) at 120 °C for 2 h; the
substrate was transferred to a vacuum chamber and thin films of 20 nm DPA was
deposited on OTS treated SiO2/Si at a substrate temperature of 50 °C and a
deposition speed of 0.05 Å s−1; 30 nm Au as source/drain electrodes were deposited
on the DPA surface with metal mask with a deposition speed of 1 Å s−1. The
morphology of DPA was characterized by atomic force microscopy (AFM) using a
Nanoscope IIIa instrument (USA). X-ray diffraction (XRD) of the DPA layer was
recorded on a D/max2500 with a Cu Kα source (k= 1.541 Å). The electrical
characteristics of the DPA TFTs were measured at room temperature in air and in
the vacuum by using a Keithley 4200 SCS semiconductor parameter analyzer and a
Micromanipulator 6150 probe station. The mobility was extracted from the
saturation region by using the equation of IDS= (W/2L)Ciµ(VG−VT)2.

Computational details. The VASP code was used for all periodic density func-
tional theory (DFT) calculations54. The unit cell consisting of two DPA molecules
was optimized (both lattice constant and molecules) applying the projector-
augmented-wave-based pseudopotentials55,56 together with the PBE GGA-type
functional57. Dispersion effect was accounted in the framework of the DFT-D3
correction method developed by Grimme et al.58. The plane-wave cutoff for the
wave functions was 800 eV and ionic relaxations were carried out until all forces
were smaller than 20 meV/A. The analysis of the electronic properties was per-
formed at the CAM-B3LYP level together with the 6-31 G** basis set as imple-
mented in the Gaussian package59 using the non-periodic model system as
described in the main text.

Data availability
The authors declare that the data supporting the findings of this study are available
from the corresponding authors upon reasonable request.
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