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BAND-LIMITED FUNCTIONS: Lp -CONVERGENCE

JUAN A. BARCELO AND ANTONIO CORDOBA

Abstract. We consider the set BP(Q) (functions of LP(Tl) whose Fourier
spectrum lies in [-Í2, +Í2] ). We prove that the prolate spheroidal wave func-
tions constitute a basis of this space if and only if 4/3 < p < 4. The result
is obtained as a consequence of the analogous problem for the spherical Bessel
functions. The proof rely on a weighted inequality for the Hubert transform.

1. Introduction

In this paper we shall study a set of functions, namely the prolate spheroidal
wave functions, which have been considered by several authors because of their
relations with several problems in communication theory. We refer to the papers
[3, 4 and 10] where Slepian, Landau and Pollak analyse their properties and give
a description of their important applications. Those functions, which from now
on will be denoted by bn(x), n = 0,1,2, ... , appear naturally related to the
uncertainty principle. That is, when one considers in communication theory
the impossibility of the simultaneous confinement of a given signal and of its
amplitude spectrum. Given a time interval [-T,+T] and a frequency interval
[-£2, +£2] we may ask for signals /(/) of total energy ||/||2 = 1 and such that

r2= f \f(t)\2dt,    to2= fa\f(7)\2d7,
J-T J-n

being as close to 1 as possible, where /(£) = / e~2"'xif(x) dx denotes the
Fourier transform.

t = 1 means that the signal is confined to the period \t\ < T or that / is
time-limited.

to = 1 means that its power spectrum is confined to the frequency band
|£| < £2 or that / is bandlimited.

A well-known fact about the Fourier transform is that t and to cannot both
be equal to 1 at the same time. In [3], Landau and Pollak proved that the
couple (r,co) corresponding to a signal /,  ||/||2 = 1, describes the planar
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656 J. A. BARCELO AND ANTONIO CORDOBA

region defined by the inequality

cos~'(t) + cos_1(w) > cos"1 JIq,       0<t<1,0<w<1,

A° " SUPi/_r l/WI2^//eZ.2(R),||/||2 = lsupp(/) c [-£2, +£2]|

(with the proviso that if t or w = 1   (= 0), then the other is > 0  (< 1) ).
Another interesting result where the functions bn(x) play an important role is

the so-called dimension theorem. Roughly speaking it says that the set of signals
band-limited to the interval [-£2, +£2] and "concentrated" in [-T,+T], has
dimension 4£2r. Landau and Pollak [4] and Slepian [8] give precise statements
of this theorem.

In the proofs of those results the operator

appears quite naturally. It is a positive operator and by the standard theory it
has a countable family of eigenvalues: 1 > X0 > A, > • • • decreasing to 0. The
associated family of normalized eigenfunctions are the bn 's. The functions bn
can be chosen to be real valued and they constitute a complete orthonormal
system in the space of band-limited functions:

Z?2(£2) = {/€ L2(R)/supp(/) c [-£2, + £2]}.

Furthermore the family {k~xl2bn(x)x<T +T](x)} is also a complete orthonor-
mal system in the space of time-limited functions, i.e. L [-T, +T]. Further
information of these statements are included in the survey article of Slepian,
reference [9].

In this work we extend the results mentioned above to the case Z/(R), p ^ 2.
To do this we consider the spaces

Zy£2) = {/ G Z/(R)/ supp(/) c [-£2, + £2]},       1 < p < oo.
Given / G BAO,), one can consider its Fourier coefficient

iffbH)*ff(x)bH(x)dx,
and its partial sums aNf(x) = ^20<n<N(f ,bn)bn(x).  We can now state our
main result:

Theorem 1.  lim^^ \\oNf - /||¿,(R) = 0 for every f G Bp(Q) if and only if
A/3<p<A.

This theorem is closely related to the analogous statement for spherical Bessel
functions 7„(x): given f GBp(l/2n) we may consider

VW-   E (2n + l)rt-l(f,jn)jn(x),
0<n<N
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BAND-LIMITED FUNCTIONS: ¿"-CONVERGENCE 657

then we have

Theorem 2.  SNf converges to f in Bp(l/2it) if and only if A/3 < p < A.
§2 of this paper is devoted to the presentation of some preliminary results

and statements. We shall define the functions bn(x), jn(x) and describe their
required properties as well as those of the spaces BAil). §3 contains the proofs
of Theorems 1 and 2.

The main point of the proof is to show the uniform boundedness in B(£2)
(4/3 < p < A) of the partial sum operators:

oNf(x) = f KN(x,y)f(y)dy    where KN(x,y) =   £   bn(x)bn(y).
J 0<n<N

We use several clever identities verified by Bessel functions to decompose KN
in several pieces. A typical one is given by x y (x-y)~ J'N+in(x)JN+in(y)
where Jv denotes the Bessel function of order v . Therefore our proof rely on
a two-weight inequality for the Hubert transform. However, to get the needed
uniform estimates no one of the known results for the Hilbert transform seems
to apply directly, and we are forced to produce a rather careful analysis of the
size of both JN+Xn(x) and J'N+i,2(x) in the delicate region, i.e. when x~7Y.

2. Preliminary results and definitions
In the introduction we have considered the family {bn} as eigenfunctions

of the operator P defined by (1). If we normalize P by considering the inte-
gration in the interval [-1,-1-1] and taking c = 2itilT, the eigenfunctions of
the corresponding operator P acting on L [-1, + 1] are exactly those of the
following Sturm-Liouville problem:

(2) (i_x2)/'-2xj/ + U-c2x2)v = 0
imposing as boundary conditions that the solutions must be finite or contin-
uous at the extreme points. This equation appears in the study of the three-
dimensional wave equation by the method of separation of variables, using a
prolate spheroidal coordinate system. This point of view is developed in [2]
and [12].

Problem (2) only has solutions for a discrete set of real values Xn(c) > n =
0,1,2, ... . If we denote by Sn(x) the corresponding eigenfunctions, they
satisfy the following relations:

' 2cit-x[Rn(l)]2Sn(x) = f_^§^Sn(t)dt,

2i"Rn(l)Sn(x) = f  eicxtSn(t)dt,

where R„(t) is a solution of (2) with x — Xn(c) > normalized in such a way
that its behavior at infinity is given by (l/ct)cos[ct - (n + l)it/2]. Obviously
the relations given by (3) allow us to extend Sn(t) as an entire function in the
complex plane.
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658 J. A. BARCELO AND ANTONIO CORDOBA

Let us define

kn(c) = Xn = 2cit-x[Rn(l)f,    bn(x,c) = bn(x) = sJknT-xuZxSn(xT-x),

where un = $x_x[Sn(t)]2dt.
The functions bn satisfy the following orthogonality relations:

/T roo
bn(t)bm(t)dt = kn8nm,     /     bn(t)bm(t)dt = 8nm,

-T J — oo

and they constitute a complete orthogonal system in L2[-T, +T], which fol-
lows easily from the analogous statement for the family of functions Sn(x) on
L2[-l, + l].

We have

fJ — oo

bn(x) = rny/Ta-%lbn(TQ-ix)xl_Qi+a](x)
and the Plancherel's theorem (see [11]) shows that {bn} is a complete orthonor-
mal system in Z?2(£2).

The spherical Bessel functions 7„(x) = y(it/2)x~xJn+x,2(x), where Jn+X ,2(x)
denotes the Bessel function of order n + l/2, belong to the space LP(R), p > 1,
and their behavior at infinity is given by x~x sin[x - (nit)/2] (see [14]). They
satisfy the orthogonality relation:

j„(t)jjt)dt = x(2n+l)-x3nm

and their Fourier transforms are given by

(4) ]n(x) = (-i)nitpn(2itx)x[+x_n(2nx)

where pn is the Legendre polynomial of order zz. Formula (4) together with

Plancherel's theorem shows that the family of functions \J(2n+ l)it~xjn(x)
also constitutes a complete orthonormal system in Z?2(£2).

Problem (2) can be considered as a perturbation of the Sturm-Liouville prob-
lem for Legendre's equation, and their solutions Sn(x) can be expanded as a
series in the normalized Legendre's polynomials qn(x) = y/(2n + l)/2pn(x).
Therefore we can express the functions bn(x) in terms of the spherical Bessel
functions 7„(x). More concretely, if Sn(x) = E[_(n-i)/2]<¿<oo£/(/c>n)an+2k(x)
then relations (3) and (4) imply that

bn(x) = V2Qu7X J2 (-l)kd(k,n)V2nTÂk + îjn+2k(2itÇlx).
í-{n-l)/2]<k<oo

In this series expansion the "leading" coefficient is the one corresponding
to k = 0.  In fact, when n is big enough, we have the asymptotic bn(x) ~

^/(2n+l)it-xjn(x)   (£2=l/27t).
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If we substitute the expression of Sn(x) as a series of Legendre's polynomials
in problem (2), we obtain the relations satisfied by the coefficients d(k,n):

d(k,n)f(k,n,c)
= A(k,n)d(k- 1 ,n) + B(k,n)d(k + 1 ,n),       k >[-(«- l)/2],

(5)
d([-(n-l)/2],n)(3xn(c)-c2)c 2

= 2/\ßd([-(n-l)/2]+l,n)    if «is even,

d([-(n - l)/2],n)(xn(c) - 2 - (3/5)cV2
= (2/5)^3ffd([-(n - l)/2] +l,n)    if « is odd,

where

...     ,       ¡2n + Ak + 3  i _.,     .       /2zi + Ak + 1   -i
A{k>n) = V2n + Ak-iy^>    B{k>n) = V2n + Ak + 5y»^>

-i _        n(n- 1) o_    2n(n + l)-l i_    (n + l)(n + 2)
7"    ~ (2n + l)(2n - I) '    7" ~ (2n + 3)(2n - 1) '    7" ~ (2n + l)(2n + 3) '

2..0

f(k,n,c) = Xn(c)-(n + 2k)(n + 2k+l)-c%+2k

Since A(k,n) and B(k,n) are bounded by 1/2, uniformly in k and n , in
order that (5) be verified one of the following two inequalities must hold:

(6)
\d(k,n)\\f(k,n,c)\<\d(k-l,n)\, k>[-(n-l)/2]+l.

I \d(k,n)\\f(k,n,c)\<\d(k+l,n)\,
Using the Rayleigh quotient characterization of Xn(c) we obtain

(7) n(n + 1) <X„(c) <n(n + l) + c

This last relation, together with the fact that at least one of the inequalities con-
tained in (6) must hold ((5) in the case k = [-(n - l)/2]), yields the existence
of an integer N(c) such that if n > N(c) we have
W , 2

i3kn+4k   +2k>l, k>l,

\f(k,n,c)\>

\d(k,n)\<

-3kn - Ak  -2k

f
3kn + Ak2 + 2k

2

>l,    kG[[-(n-l)/2],-l],

\d(k-l,n)\,       k>l,

-\d(k+l),n)\,    kG[[-(n-l)/2],-l].
-3kn-Ak2-2k

(This is true because the series defining SN(x) must be convergent at the ex-
treme points.)
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660 J. A. BARCELO AND ANTONIO CORDOBA

Since u2n = fX_{[Sn(x)]2dx = £t_(„_1)/2]<*<TO[rf(fc>")]2> (8) produces, for
« > N(c), the following estimates:

(9)
nÀ + A(c)

<!«<,

where A(c) is a constant depending only upon the parameter c.
Relations (8) and (9) yield the following: if n is big enough and if £2 1/27T,

we have bn(x) ~ y 2« + l)n  xjn(x), as it was stated in the introduction.
In the statements of Theorems 1 and 2 we have introduced the family of

spaces Z? (£2) which are a natural generalization of Z?2(£2)

Bp(il) = {fG Lp(R)/supp(f) c [-£2, +£2]}.

They are Banach's spaces with the induced topology of LP(R). If p < q
then B (il) Ç B (il) and the inclusion is continuous and dense. We have
that bn(x) G Bp(il) for every p > 1 and if £2 = 1/27T then jn(x) G Bp(il),
p > 1, for every n .

The dual space (Zip(£2))* is equal to Zy£2), l/p + l/q = 1, 1 < p <
oo, in the standard sense, that is, given T g (BAU))* there exists a unique
g G Bq(il) such that T(f) = (f,g) for every / G Bp(il). Also we have the
norm equivalence: there exists a positive constant A > 0 so that ^HgL <
llalla (ii)* - llalla (tne vawe °f the constant A depends on the norm of the
Hubert transform on Lg(R) ).

In the proof of Theorems 1 and 2 a rather complete analysis of the size
of both Jn+X ,2(x) and J'n+l/2(x) in the "critical region" (i.e. when x ~ n )
is needed. Both functions have representations as oscillatory integral and the
stationary phase method has been used to achieve our estimates.

To simplify notation let us take v = n+1/2. The estimates are the following:

Jv(v + x) =
cos(9(x))

\¡2~it(2vx + x )2U/4
+ h(x ,v),       x>v 1/3

where

d(x) = v arceos V 2.1/2  ,   it-(2vx + x)'  +-,
v + x A

\Kv,x)\<
+ 1

(2vx + xy*     VAX

V +x

where A is a constant independent of v .

vXß <x<v,

X > V ,
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BAND-LIMITED FUNCTIONS:  ¿"-CONVERGENCE 661

1 /3To get estimates from above we have to divide the intervals (v/2,v — v ' ]
and (v + ux/i, 2v] in the following manner:
/     /-> l/3i r- I    I       / <%7+l    V3 il    V3!      uu     2/3 ,~       -A/    .     2/3(v/2 ,v -v    ]c     {j     (v -2    v '  ,v -2 v    ] with u ' /2<2    < v     ,

0<7<A/-1

(z, + z,1/3,2z,]c      (J     (z, + 2V^ + 2'+V/3]withz,2/3<2*<2z,2/3,
o<7<jst—i

x \Jv(x)\ < \Jl(x)\ <

\x\<v/2                                                                       Av~x Av~x
v-2i*ivtß< \x\<v-2u1/3     (je{0,\,...,M-\})     A2-Ju~i'3 A2-J'2v-2'i

v-v^1 < \x\ < u + u1'3                                                         Av~xll Av-W
v + 2ivxl* < \x\ <í/ + 2>+1i/'/3       (7e{0, \,...K- 1})     A2-JlAv-i/i AV^v'1^
_|jc| > 2v_Ax-Xl2 Ax'1'1

where A is a constant independent of v .
The straightforward details are left to the reader.

3. Proofs

3.1. Proof of Theorem 2.
[A] We shall analyse first the reasons why p has to be contained in the interval

4/3 < p < A in order to have the convergence lim^^^ \\SNf - f\\ = 0 for
every / G B (il), where £2 = l/2it.

If ¿Z0<n<oo(2n + l)7t~l(fJn)Jn(x) converges for each / e Bp(l/2it), then
an application of the Banach-Steinhaus theorem together with the fact that the
norm of the operator Tn(f) = (f,jn) on Bp(l/2n) is given by \\jn\\q, l/p +
l/q = 1, yields (2n + l)\\j„\\p\\jn\\q = 0(1). Using the estimates for the Bessel's
functions discussed in §2, we have

■ n-x+x/p ifl<p<A,

(10) \\J„\\P~\  »_3/4log«     ifp = A,
„-5/6+1/3, tfp>4

(where the symbol an ~ bn has the standard meaning, that is, there exists a
universal constant 0 < A < oo suchthat A~x a  <b  < Aa  ).n —    n —        n '

It is clear that the condition (2n + l)||7„||p||7„||? = 0(1) is satisfied if and
only if 4/3 < p < A, which proves our assertion.

[B] To prove the convergence in Bp(l/2it), A/3 < p < A, we shall follow
the standard strategy, namely: we shall prove that the finite linear combinations
of the jn 's are dense in Bp(l/2it) and that the partial sum operators SN are
uniformly bounded there. The first part is the easiest and the heart of the proof
lies in the second. Before the discussion of the details we shall present a sketch
of the proof.
Sketch of the proof. In order to analyse the kernel corresponding to SN

QN(x,y)=   £  (2n + l)jn(x)jn(y)
0<n<N
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we shall follow an idea of H. Pollard (see [6] and also [1] where it has been used
to treat this kind of problems) which allows us to express QN(x ,y) in terms
of the Bessel's functions JN+li2(x) and J'N+l/2(x) ■ After a certain amount
of manipulation, the uniform boundedness of the partial sum operators SN is
reduced to the following inequality:

J b       x — y(*) dx\      <A

A/3 <p <A, v = N +1/2, B = {x/v + z/1/3 < x < 2v) and A is a universal
constant (i.e. independent of v ).

Dividing the interval B in dyadic pieces B- = (v + 2Jux/3, v + 2J+Xvl/3], the

"size" of x1' Jv(x) in those intervals in balanced by the decrease of x1' fv(x),
therefore a "brute force" argument using Minkowski's inequality would yield a
logarithmic growth in inequality (*). To eliminate the log TV factor one needs a
more suitable analysis, namely the following: the integration with respect to the
variable x is decomposed in a sum of integrals, one for each interval B.. For
a fixed 7 , we divide the y-integration in three parts, corresponding to the sets
U/c<7_i Bk ' U/07+1 Bk anci Bj-\ u Bj u Bj+\ • The contribution of the last two
terms can be controlled by the standard boundedness properties of the Hubert
transform and the estimates of the functions Jv(x) and J'v(x). In Ufcw-i Bk
we have that

\xXI2j'v(x)H(yXI2Jv(y)f(y)xu       BM)(x)\
*—' k <ji — I      K

<A\xX/24(x)M(yX/2Jv(y)f(y)X[v+v¡n¡2v(y))(x)\

where H denotes the Hubert transform, M is the Hardy-Littlewood maximal
operator and A is a constant independent of v . Then we are in conditions to
use a two-weight inequality obtained by E. Sawyer [7] to finish the proof.

The details.   First, we use the relationship (2n + l)x~ 7„(x) = jn_x(x) +
jn+x(x) (see [14]) to get a simplified expression for the kernels, that is:

r-.  ,      s       xy   , .     , .. , .      .   .  . .      ...     sin(>>-x)
QN(x>y) = y^{jN+l(x)jN(y)-jN(x)jN+x(y)) +   v_x '.

Next we use the following equality:

QN(x,y) + QN+l(x,y) = 2QN(x,y) + (2N + 3)jN+x(x)jN+x(y)
to get

xy
QN(x,y) = - 2{x_y)JN+l(y)[JN+2(x)-JN(x)]

xy
- 2(x-y)j^{X){]N{y) ~ jH+2W

2sin(y-x)_(2N + 3)
+      y _ x 2      JN+AA->JN+Ay>-
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The operator associated to the third kernel is an ordinary singular integral
and it is bounded on L"(R), 1 < p < oo. The fourth is uniformly bounded on
Z/(R) if 4/3 < p < A as we have observed in part 2. Since the first two are
"duals", taking into account the identity (see [14]):

Jn+3/2(X' ~ l(^N+l/2(X) ~ *'Ar+5/2W)

we may reduce our problem to the proof of the following inequality:
|/> \   UP

(r »'V)/"\ J —oo J — c

yl/2JN+iß(y)f(y)
dy dx\      <A\\f\\x - y ' "p

for every / G LP(R), A/3 < p < A, where A, independent of N, is a finite
constant.

Let
Rx = {t/\t\<(N+1/2)+ (N+l/2)xß},

R2 = {t/(N + 1/2) + (N+ 1/2)1/3 < |r| < 2(N + 1/2)},
Z?3 = {í/|í|>2(/V+l/2)}.

Using these sets we obtain the following nine integrals:
IP      \ Up

dx\      ,       j, k = 1,2,3.
(/, '     "+"2( >JR, x-y ay

Which, except for the case j = k = 2, can be majorized by A\\f\\p ( A inde-
pendent of N, A/3 < p < A ) by the use of the boundedness properties of the
Hubert transform together with the estimates obtained in part 2 for JN+l/2(x)
and  ^+1/2^) •

Therefore, if we denote v ,(x) = |x1/2/^+1,2(x)| and v2(x) = \xx/2JN+x,2(x)\
we have to prove the inequality

(H) wvfaHiv^nWpïM
or, what it is the same,

\\vxXRH(f)\\p<A\\v2XXRlf\\p

with A independent of 7Y, fGLp(R) and 4/3 <p < A.
This estimate can be considered as a two-weight inequality for the Hubert

transform, namely with weights

w(x) = vp(x)xRi(x)    and     u(x) = v~"(x)xRl{x).

As far as we know there is not general result which can be directly applied
here. However, if in (11) we substitute H by M, then Sawyer ([7]) obtained a
necessary and sufficient condition upon u/(x) and u(x) to have the inequality:

(12) \\vxXRM(v2XRlf)\\<A\\f\\p
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or, what it is the same,

(^j[Mf(x)]pw(x)dx^j   "<A^j\f(x)\pu(x)dx\

namely, for every interval I one must have

(13) f[M(xIuX~q)(x)]pw(x)dx < C f[u(x)]x'q dx < oo

where C is independent of the interval and l/p + l/q = 1. Furthermore C
and A are comparable.

To finish the proof we shall assume first that (12) holds for A/3 < p < A and
we prove (11). Then, of course, we will prove (12). Let v = N + 1/2 and, in
the following, we shall assume that A is an absolute constant, not necessarily
the same at each occurrence.

Let Bj = {x GR/v+ 2J vxß <\x\<v + 2J+xvxß}nR2, 7 = 0,1,... ,K-l,

where K satisfies v2ß <2K < 2v2ß . We have

\^XRH(vlXRlf)fp<     Y.     [<XBj\H{v2fXu^ )(x)fdx,
0<7<Jf-l

<A E  [vUBjmv2fxUo<i< 2s)(x)\pdx

+ A     E     fvUBj\H(v2fX[j   i<<+¡B,)(x)\Pdx
a<j<K-tJ '   ~'~J+

+ A    E     ívUBj\H(v2fX[j+2<i<k_¡Bi)(x)\pdx.
o<z<x-r

To estimate the integrals appearing in the first sum, let us observe that if
x G Bj and y G Bt, i < j - 2, then |x - y\ > 2j~xvxß, which shows that, in
this case, the Hubert transform is majorized pointwise by the maximal function
M(v2xR f). Therefore, applying (12) we get

E     /^MVJu«   ,B)(x)\Pdx<A\\f\\p,        A/3<p<A.

In the second sum we apply the estimates obtained in §2 for vx and v2
together with the boundedness of the Hubert transform, we get

E     Í vUBj\H(v2fX[J ¡B(x)\pdx<A\\f\\pp,        Kp<œ.

For the third summation we use the inequality (X!lail)i' ^ AJ7,2'P' \ax\p
(where A = A(p) is a finite constant) to get

E    \(vÍXB\H(v2fXü¡+2<¡<K_iB¡(x)fdx

<A    E E      2"ll2f<XBj\H(v2fxBi+iJ(x)\pdx.
0<7<zc-l

0<j<a:-1 0<í"<AT-7+1
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Applying Holder's inequality and taking into account the size of v2  in the
interval Bj+j+2, we obtain

vUBi\H(v2fxBi^)(x)\p < 2'^-xh-^-x'\fxB¡+Jp

and

E     /<XBj\H(v2fX[J, 2<       )(x)\pdx<A\\f\\p,       A/3<p<A.
0<j<K-lJ J+ "'-

Therefore we only need to show (12) to finish the proof. That is, we have to
show that Sawyer's condition (13) is satisfied:

J \M(Xxvq2)(x)\pvPx dx < A jvq2 dx

I c R2 is an interval, l/p +l/q = 1 and 4/3 < p < A.
Since vx and v2 are even functions, there is no loss of generality if we

assume that I c [v + vxß ,2v]. Let Bj = {t/v + 2jvxß < t <u + 2j+xuXß}nR2,
j = 0,1, ... ,K -I. If x G B., using the estimates that we have for v2 on the
sets Bi, we get

l/60-//4N9 1;f<j    ,^M(xlv\)(x)<A    £    (uX/62-"4)qMxBt(x)
0<i<K-\

<A    ¿2   ivl,62-'yMXBi(x) + A{Vl'62-J/4)'MXBj{x)
0<K7-1

+ A      £      (vX/62-'/4)qMxBi(x)
j+\<i<K-l

< £    (uX/62-i/4)2i-J + Auq/62-qj,4 + A      J2      ^1/62"'/Y
0</<7—1 J+l<i<K-\

< Auq/62-qJ/4.

Now we use the estimates for vx  and Z?   and, without loss of generality, we
shall assume that

/      ,  ~n+l    1/3        ,  ~m-\    1/3.  _ T _ ,      ,   _«    1/3 .   ~m    1/3N(z/ + 2     z/ '  ,v + 2      v')gIg(v + 2v'  ,v + 2  v ' ),

n,m = 0,1, ... ,K - I, m - n > 2. We have

f\M(Xlvq2)(x)\pvpdx<A    £    (2J/4v~l/6)P f \M(Xlvq2)\pdx
Jl n<j<m-\ Jb>

< Auq/6uXß     Vs     2i~(qj/4) = v4I/«/6+1/32w(1_i/4)
n<j<m-\

Using the asymptotic behavior of Jv(x) in the interval (v + 2n+xvxß,v +
2m-xuxß) it is easy to see that /, v¡ dx ~ „«/6+1/32m(,-i/4), which proves (12)
and, therefore, Theorem 2.
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3.2. Proof of Theorem 1. From the point of view of the proof of Theorem 1 it
is clear that the particular value given to £2 is irrelevant. Therefore, to simplify
notation, we shall take 2itil = 1.

We shall prove that the family of operators oN - SN is uniformly bounded
on Z/(R), showing, in particular, that Theorem 2 implies Theorem 1.

The kernels corresponding to oN - SN is given by

TN(x,y) = -   J2   d(0,n)d(l,n)u~2V2liTlV2h~+5
0<n<N

x(jn(x)jn+2(y)+jn+2(x)jn(y))

-   Y   d(0,n)d(-1,n)u~2\l2n + ls/2n^3
0<n<N

x (Jn(x)jn_2(y)+jn_2(x)jn(y)) + RN(x,y)

= -TxN(x,y) - T2N(x,y) + RN(x,y).

To get this expression we have used the series expansion of the functions
bn(x) in terms of the spherical Bessel functions 7„(x).

Since the decay of the coefficients d(k,n) and the behavior of the quotient
[d(k,n)] u~ is known for n greater than a certain N(c), we may assume,
modulus a finite part of the sum which therefore is uniformly bounded, that
the summation index begins with N(c).

A direct application of the estimates (8) and (9) shows that RN(x ,y) yields
a uniformly bounded family of operators on ZP(R), 1 < p < oo.

The study of the operators associated to the kernels TxN(x ,y) and TN(x ,y)
is completely similar and, in the following, we shall only consider TN(x ,y).
Let us assume the following lemma whose proof will be given at the end.

Lemma. If
pN(x,y) =     E     v/2« + lN/2« + 5(7„(x)7„+2(y) + jn+2(x)jn(y)),

N(c)<n<N

then we have
p      \ Up

\J — OO  I J — '
dx)      <AN2ßPN(x,y)f(y)dy

for every f G LP(R), I < p < oo, and A is independent of N.

Using (5) with zc = 0, we can decompose TN(x ,y) in two kernels:

^i»1/      ^ v^       A(l,n)   [d(0,n)]2 ^——r /=—-=■
TN(x,y)=     E     /(l,„,c)       u2      ^n-+-lV2T+-5

N(c)<n<N J v   '    '   ' un

*(jn(x)jn+2(y) + jn+2(x)jn(y)),

TXn\x,y)=     T      ^(1'")/(2'")f0'")v/2¥TTv^T5
Nictn<Nf{Un'C) Un

x(jn(x)jn+2(y)+jn+2(x)jn(y)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BAND-LIMITED FUNCTIONS: ¿"-CONVERGENCE 667

Since (||7jp||„+2ll? + \\Jn+2\\p\\W = 0(n~5/6) (l/p + l/q = 1) for every
p, 1 < p < oo, the estimates (8) give us the uniform boundedness on LP(R),

1 21 < p < oo, of the operators associated to the kernels TN' (x,y).
Summation by parts allows us to decompose again T^'x(x ,y) in the follow-

ing manner:

^       ( A(l,n)   [d(0,n)f       A(l,n + l)   [d(0,n + l)]2\
¿-       \f(l,n,c)      u1 f(l,n + l,c)        M2 rn^x,y>N(c)<n<N-l   V v    '     '   ' un J v ' un+\ J

A(l,N)   [d(0,N)]2
+ f(l,N,c)      ul      WX'n

The lemma together with estimates (8) and (9) yields that the second part
of the kernel produces a uniformly bounded family of operators on Z/(R),
1 <p < oo.

The first part of TxN'x(x ,y) can be further decomposed:

^ A(l,n)   f[d(0,n)]2 _ [d(0,n+l)]2\
N(C)k»-J(l>n>cA <  '   £¡   )ni v)

^       [d(0,n+l)f ( A(l,n)        A(l,n + l) \
¿- u2 \f(l,n,c)     f(l,n + l,c)J   "K   ,y)'N(c)<n<N-\ Un+\ \J \   *    »   I       J\   ' '   I /

Using (9) we obtain ([d(0,n)]2u~2 - [d(0,n+ l)fu~lx) = 0(n~2) ; (7), (8)
and the definition of f(l ,n,c) produces

(A(l,n)[f(l,n,c)Tx -A(l,n + l)[f(l,n+l,c)]'x) = 0(n'2).

These facts together with the lemma prove that the remainder kernels also gen-
erate uniformly bounded operators on LP(R), 1 < p < oo.

Proof of the lemma. We use the identity (2n + l)x_17n(x) = 7„_,(x) + 7„+1(x)
to get

V"    (2w +
(2« + 3)

E(2n + l)2 + (2n + 5)2.. .  ..     , , , . . . .,
-n„,^-(Jn(x)jn+2(y) +Jn+2(x)jn(y))

N{c)<n<N

= (x~2+y-2)     Y    (2n + 3fjn(x)jn(y) + QxN(x,y)
N(c)<n<N

where    QXN(x,y)    is   "essentially"   the   partial   sum   kernel   associated   to
{s/2h-+ïjn(x)}.

Since |x1/2/^+1/2(x)| < A, \xx/2JN+x/2(x)\ < ANX/6, x G R, and A is
an absolute constant, the boundedness of the Hubert transform on LP(R) to-
gether with (10) yield that the operator whose kernel is QXN(x,y) is bounded
on LP(R), 1 < p < oo, with a norm majorized by ANX/6.
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Therefore, to finish the proof of the lemma it is enough to show that the
integral operator associated to the first kernel is also bounded on Z/(R), with
a norm controlled by AN2ß. To see that we apply partial summation to get

(x~2+y~2)    E    (2n + lfjn(x)jn(y)
N(c)<n<N

= AN(x,y) + AN(y,x) + BN(x,y) + BN(y,x) + CN(x,y) + D(x,y),

ti \ i   -2   ,     -2.    1/2   1/2. .-1AN(x,y) = it(x    +y    )x'y'(x-y)

X J2        (4n + 6)Jn+y2(X)Jn+V2(y)'
N(c)<n<N-l

BN(x,y) = (it/2)(2N+l)(2N + 3)(x-2+y-2)
x xx/2yx,2(x - y)~x j'N+y2(x)JN+y2(y),

CN(x,y) = -(l/2)(2N+l)(2N + 3)(2N + 5)(x'2+y-2)jN+x(x)jN+x(y),

where D(x ,y) is independent of N and bounded on LP(R), 1 < p < oo.
To control CN(x ,y) we observe that (10) yields

(\\JNx~\\\jJq + \\jN\\p\\jNx-\) = 0(N-lV6),    l/p+l/q= l, Kp<oo,

which implies that the corresponding operator has norm < N '    on Z/(R),
1 < p < oo .

Finally, the estimates l-ZÓ+3/2(*)*~3/2| < An~y2 and K+3/2(*)-*_3/2| <
An~ , A independent of n , added again to the boundedness of the Hubert
transform produces the bound AN ' for the norm of the integral operators
whose kernels are given by ^(x,^) or BN(x,y).   Q.E.D.

4. Final remarks
(1) The analogous problem to the one considered in Theorem 1 but in re-

lation with the time-limited functions, has also been treated. The result is the
following:

Theorem 3. Let f G LP[-T, +T], A/3<p<A,and

0<n<N

where (f,bn) = ¡ITf(x)bn(x)dx. Then we have limJv^oo \\oNf - f\\m_T +T]
= 0. Furthermore the interval A/3 < p < A is the best possible.

The techniques of the proof are completely similar to those of Theorem 1,
except that, in this case, we use the properties of Legendre's polynomials. It is
a well-known fact that these polynomials constitute a basis of Lp[-l, + 1] if
and only if 4/3 < p < A, see references [5 and 6].
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(2) It seems natural to extend some of the harmonic analysis of the classical
Fourier series to the developments considered in this work, as well as to consider
the higher-dimensional case. We have made progress in both areas and have
obtained some positive partial results, which we plane to present in a future
communication.
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