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Abstract: 

In this paper, we consider a model of lossless image compression in which each band of a multispectral image is 
coded using a prediction function involving values from a previously coded band of the compression, and 
examine how the ordering of the bands affects the achievable compression. 
 
We present an efficient algorithm for computing the optimal band ordering for a multispectral image. This 
algorithm has time complexity O(n2 ) for an n-band image, while the naive algorithm takes time (n!). A slight 
variant of the optimal ordering problem that is motivated by some practical concerns is shown to be NP-hard, 
and hence, computationally infeasible, in all cases except for the most trivial possibility. 
 
In addition, we report on our experimental findings using the algorithms designed in this paper applied to real 
multispectral satellite data. The results show that the techniques described here hold great promise for 
application to real-world compression needs. 
 
Index Terms—Compression, lossless compression, image compression, multispectral images, satellite data, NP-
completeness. 
 
Article: 

1 INTRODUCTION 
MULTISPECTRAL satellite images require enormous amounts of space, and with NASA’s project EOS (the 
Earth Observing System), data will be generated at an unprecedented rate. The estimates are that over a terabyte 
(1012 bytes) of data will be generated every day by the EOS satellites, most of it multispectral image data. 
Largely due to this fact, a lot of attention has recently been focused on compression of multispectral images [1], 
[2], [3], [4], [5]. However, most of the compression methods that exploit spectral as well as spatial redundancy 
have been lossy compression algorithms, and for archival storage and for certain applications it is important to 
use lossless compression in order to preserve all of the data that is collected. One notable exception to this is the 
work of Roger and Cavenor [4] who extensively study various prediction and coding methods used for lossless 
compression of AVIRIS data. Table 1 lists some current, widely used multispectral sources, with their 
acronyms, full names, and basic properties—it is data from these sensors that we used in this study. 
 
In this paper, we study lossless compression of multispectral images. Spectral redundancy is extracted by 
coding each band of the multispectral image by making use of a second ―prediction band.‖ In much the same 
way that standard single-image lossless compression is separated into the two separate components of 
prediction and coding, we divide the lossless compression of multispectral images into three components: band 
ordering, prediction, and coding. The new stage, band ordering, refers to selecting a permutation of the bands in 
which the bands that are coded first act as good predictors for the later bands in the ordering. The band ordering 
phase is independent of the other phases of the compressor, and the computational problems associated with this 
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phase are identified and studied in this paper. In particular, given any particular predictor and coder (such as 
those in this paper or those 

 

studied by Roger and Cavenor [4]), we give an efficient algorithm for computing the optimal ordering of the 
bands for compression performance. For an n-band multispectral image, our algorithm runs in O(n2) time, 
which is a vast improvement over the obvious (n!). solution. In timing tests performed on a DEC Alpha work-
station, our algorithm computed the optimal ordering from the input matrices (see Section 2) of a 12 band image 
in 1/ 100 of a second, whereas the naive algorithm took 87 minutes; more dramatically, our algorithm took 
approximately seven seconds to find the optimal ordering for all 210 bands of the AVIRIS data set, whereas the 
naive algorithm would take considerably more time than the universe has been in existence! 
 
In some cases, however, the optimal ordering may not be a practical archival format for large numbers of bands 
(see Section 3 for more information on this), so we consider the natural restriction on band orderings that 
overcomes this problem. We refer to the restricted ordering as the optimal compression order with bounded 
prediction. Unfortunately, this new problem is shown to be NP-hard except in the most trivial case, so it is 
computationally infeasible. 
 
Next, we examine various possibilities for the prediction phase for multispectral data. Most predictors for image 
data use some form of linear prediction, and most of these use fixed coefficients for the prediction (or take 
coefficients from a small set of possibilities, as in lossless JPEG compression [6]). With multispectral images it 
is vital that the linear prediction coefficients be chosen adaptively, and different methods for doing this are 
discussed in Section 4. 
 
The coder for multispectral images is the simplest part, and is discussed in Section 5. We investigate the use of 
various configurations of an arithmetic coder, using data within both the current band and the previous 
―prediction band‖ as context for the coder. 
 
Finally, in Section 6, we present some experimental results using the techniques and algorithms presented in 
this paper on real multispectral data obtained from NASA. The experiments show that the compression methods 
we developed can have a substantial practical impact on compression performance. In addition, our experiments 
show that using a fixed, precomputed band ordering can achieve almost optimal performance on a large class of 
data; therefore, using a precomputed band ordering can give a very fast, high-performance compression system 
for multispectral images. 
 
2 TERMINOLOGY AND NOTATION 
Just as single-image data can be represented by a two-dimensional array S[x, y], the data of a multispectral 
image can be represented as a three-dimensional array, with entry M[b, x, y] representing the pixel from band b, 
row x, column y. In traditional single-image compression, when coding pixel S[x, y], the previously coded 
neighboring pixels may be used to predict the value of the current pixel. Likewise, when coding pixel M[b, x, y] 
for a multispectral image, the previously coded neighboring pixels may be used for prediction, but we also 



allow neighboring pixels to come from a previously coded band. In other words, for any band b, we choose a 
prediction band p(b) and use pixel values from band p(b) in the encoding of M[b, x, y]. 
 
The compression methods described in this paper all code the pixels of a band in scan order. At any point in 
time, the pixel M[b, x, y] that the compression algorithm is predicting or coding is called the ―current pixel,‖ 
which comes from the ―current band‖ (band b). As mentioned above, we also designate a separate band p(b) as 
the ―prediction band‖ for the current band. Just as in single-image compression, all pixel values used in 
prediction must be coded before the current pixel, including pixel values from the prediction band. Thus, we 
may use the prediction band’s pixel location corresponding to the current pixel (i.e., M[p(b), x, y]) if and only if 
band p(b) is coded before band b. Clearly, the ordering of the bands determines what bands may be selected as 
the prediction band for the current band, and determining an ordering of the bands that maximizes compression 
over all possible orderings is a fundamental problem. 
 
For any given predictor/ coder pair, and two bands b1 and b2, we can define the following two values: 

 

 Bb1 ,b2 is the compressed size of band b2 if band b1 is used for prediction, but M[b1, x, y] is not used in the 

prediction of M[b2, x, y]. In other words, this is the compressed size for band b2 using b1 for prediction, 

even if band b2 is encoded before band b1. 

 Ab1 ,b2 is the compressed size of band b2 if band b1 is used for 

prediction, and the current pixel location from band b1 is used in the prediction. This is the compressed 
size possible 

for band b2 if band b2 is encoded after band b1. 
 

We will represent the A and B values for a multispectral image as matrices. See Fig. 1 for example A and B 
matrices, which were obtained from bands 1–4 of the Thematic Mapper data of the Washington D.C. area. 
 
In the next section, we will examine various ways of choosing a band ordering when given matrices A and B. 
 
3 DETERMINING BAND COMPRESSION ORDER 
In this section, we examine the following problem: In what order should we compress the bands of a 
multispectral image to achieve the best compression? For example, if band 2 acts as a good predictor for band 1, 
substantial savings may be achieved by compressing band 2 first. We will show that, given the matrices as 
defined in the previous section, the optimal ordering of the bands can be found very efficiently. For 
multispectral data with a small number of bands, this result shows that optimal ordering is both simple and 
practical. 
 
However, for data with a large number of spectral bands (such as the 210 band AVIRIS data), the optimal 
ordering can be computed, but may not be what is desired. In particular, given a compressed file containing all 
210 bands of AVIRIS data, it may be desirable to be able to extract one particular band from the compressed 
data. Unfortunately, the band dependencies of the optimal ordering may be a single, long chain, which would 
mean that all bands would have to be uncompressed in order to uncompress the last single band in the chain. A 
good solution to this problem would be to partition the bands into small sets, each containing at most b bands, 
and then when compressing one band, the only other bands that may be used for prediction are those within the 
same set. With this method, at most b bands would have to be uncompressed in order to extract a single band 
from the compressed file. For a particular partition size bound b, we will call the optimal solution to this 
problem the optimal compression order with bounded prediction. 
 
We will show that finding the optimal compression order with bounded prediction is easy if b = 2, but is NP-
hard, and hence, computationally intractable, for any b 3. 
 
3.1 Unconstrained Optimal Ordering 



In this section, we consider the problem of finding an optimal compression order, with no constraints on how 
many bands are necessary for uncompression of a single band. This ordering is the best possible ordering for 
encoding bands, and is practical when either there is a small number of bands (such as the five bands of CZCS 
data, or the seven bands of TM data), or if extraction of a single band is never needed (an archive of AVIRIS 
data may require uncompression of all 210 bands when it is accessed). 
 
We will transform the problem of finding an optimal compression ordering into a problem on weighted directed 
graphs which has a known efficient solution. The directed graph G = (V, E) is constructed so that each edge Ei ,j 
has a corresponding weight Wi ,j that represents the compression savings attainable by compressing band i 
before band j. To construct this graph, define Bmin, j as 

 

 

Bmin,j represents the minimum compressed size of band j if the current pixel location is not used from any other 
band. In particular, a compressed size of Bmin, j is attainable for band j regardless of the order in which the bands 
are compressed. 
 
Of course, if the bands are ordered such that band i is encoded before band j, then the current pixel location 
from band i can be used to predict the current pixel of band j. In some cases, the resulting compressed size may 
be substantially smaller than the size that was attainable without considering ordering. We define the edge 
weights of our graph in terms of the savings possible by encoding band j using the current pixel location from 
band i for prediction. In particular, 

 

 
The problem of finding an optimal compression order is equivalent to the problem of finding a maximum 
weight directed spanning forest of G. The resulting spanning forest defines a partial order on the vertices. Since 
the spanning forest is maximum weight, the partial order represents the maximum compression savings of any 
band ordering, or the optimal compression order of the bands of the multispectral image. It is known that a 
maximum weight directed spanning forest (also known as an ―optimal branching‖) can be found in O(| V | log | 
E | + | E | ) time on sparse graphs and O(| V | 2) time on dense graphs [7], [8], so it follows that an optimal 
compression order can be found in O(n2) time. 

 



 

The graph G that is derived from the sample A and B matrices of Fig. 1 is shown in Fig. 2, where dashed and 
solid lines both represent graph edges, and the solid lines are the edges that are part of the maximum weight 
directed spanning forest. Thus, the solid lines describe the optimal compression ordering for these four bands. 
Band 2 is coded first, and then band 1 is coded using band 2 for prediction; band 3 is coded using band 2 for 
prediction; and band 4 is coded using band 3 for prediction (of course, this is just one arbitrarily chosen 
ordering that is consistent with the partial order defined by the spanning tree). The total weight of the selected 
spanning forest is 45,465, meaning that this band ordering can save 45,465 bytes over an ordering-independent 
coding scheme. We summarize the result of this section in the following theorem. 
 
THEOREM 1. Given values Ai, j and Bi, j for all pairs of bands (i, j) from an n-band multispectral image, the 

optimal compression ordering can be computed in O(n 
2
) time. 

 
3.2 Optimal Ordering with Bounded Prediction 
As mentioned at the beginning of this section, the optimal ordering is not always practical. In particular, if it is 
necessary to be able to extract and uncompress a single band of the image efficiently, the optimal compression 
ordering does not always make this possible. Consider a case where the directed spanning tree, obtained as in 
the previous subsection, is actually a long directed path. In a 210 band data set, it would be possible for band 
210 to be coded using band 209 for prediction, band 209 to be coded using band 208, etc. Thus, in order to 
extract band 210, all of the 209 other bands would have to be uncompressed in addition to band 210. 
 
For data sets with a large number of bands, a reasonable approach would be to partition the bands into small 
sets (containing, say, b bands each), and then compress each set using its optimal compression ordering. In this 
case, if a single band needs to be extracted, only the other bands in the same set as the requested band will 
possibly need to be uncompressed. We call such an ordering the optimal compression order with bounded 
prediction, and prove the following theorem regarding the complexity of com puting such an ordering. 
 
THEOREM 2. Given values Ai ,j and Bi ,j for all pairs of bands (i, j) from an n-band multispectral image, the 

problem of finding an optimal compression order with bounded prediction is NP-hard if b 3, but can be 

computed in O(n
3
) time if b = 2. 

 



PROOF. To show that the problem of finding an optimal compression order with bounded prediction is NP-hard 
for b 3, we will show that the following decision problem is NP- complete. 
 
COMPRESSION ORDER WITH BOUNDED PREDICTION (COWBP): Input to this problem are the matrices 
A and B, and a compressed size bound C. The problem is to decide whether there exists a partitioned 
compression ordering for the bands such that no partition contains more than three bands, and the total 
compressed size is at most C. 
 
This problem is clearly in NP, and to show that it is NP- complete, we will reduce the PARTITION INTO 
PATHS OF LENGTH TWO (PIPLT) to COWBP. PIPLT, which is known to be NP-complete [9], takes an 
undirected graph with n = 3q vertices as input, and asks whether or not there exists a partition of the graph into 
paths of length two. 
 
Given a graph G = (V, E) that is input to the PIPLT problem, we convert the graph into an instance of COWBP 
by setting the inputs as follows: 

 

 
 

Next, we show that there is a partitioned compression ordering satisfying the conditions of this instance of 
COWBP if and only if the original graph G can be partitioned into paths of length two. 
 
First, assume that G can be partitioned into paths of length two, where the paths are given by triples <vi, 1, vi, 2, 
vi, 3> for I = 1, 2, ... , q. These triples define the partition of the COWBP input, and the ―bands‖ can be 
compressed by coding vi,2 using vi,1 (without the current pixel), vi,1 using vi,2 (with the current pixel), and then 
vi,3 using vi ,2 (with the current pixel). The resulting compressed size for this set i of the partition is therefore 
Bvi,1,vi,2 + Avi 2,vi,1 + Avi,2,vi,3 = 2 + 1 + 1 = 4. Since there are q = a sets in the partition, the total compressed size 
for all bands is exactly 4/3 n, so if the original problem is in PIPLT, then the computed problem is in COWBP. 
 
Next, assume that the computed problem is in COWBP, so there is a partitioned compression ordering with total 
compressed size at most 4/3n. We can choose an optimal partitioned compression ordering such that band i is 
compressed using the current pixel of band j only if Ai, j = 1  (otherwise, the current pixel is not required since 
Bi, j = Ai, j= 2). Furthermore, we can assume that any two bands in the same partition are in the same connected 
component of the ordering, since if this were not the case we could split the partition into smaller independent 
partitions that did have the desired property. Let ci be the number of sets in the partition with size i (for 1  i 

3). Under our assumptions, the compressed size of any set of size 1 is 2, any set of size 2 is 3, and any set of 
size 3 is 4, so the total compressed size is 

 

 
 

The only way to have c1 + c2 + c3  n/3 is for c1 = c2 = 0 and c3 = n/3, so all partitions must have exactly three 
bands, 
which must correspond to paths of length two in the original graph. Therefore, if the computed problem is in 
COWBP, then the original problem is in PIPLT, which completes the NP-completeness proof. 
 
A simple padding argument shows that COWBP remains NP-complete when generalized to any constant b > 3. 
 
When we allow the partition to contain only sets of size two or smaller (i.e., b = 2), the encoding size of bands i 
and j in the same set would result in a compressed size of exactly 



 
 

Let M = max(Bi, j), and create a complete undirected graph with weights Wi, j = 2M - Ci, j. Finding a maximum 
weight matching on this graph gives the optimal partitioning of the bands into sets of size 2, which also gives us 
exactly the optimal compression ordering with bounded prediction (b = 2). It has been known since 1976 that 
such a matching can be found in O(n3) time [10]. It should be noted that algorithms for matching are known that 
take advantage of input instances with bounded integral weights on the edges, and beat the O(n3) time bound 
with slightly better asymptotic results [11]. Without explicit bounds on the compressed size of the bands of our 
multispectral image, it is impossible to state our results in terms of the improved algorithms, and we refer the 
interested reader to the algorithm reference [11].  
 
4 PREDICTION FOR MULTISPECTRAL IMAGES 
The vast majority of lossless image compression algorithms are made up of a prediction stage in which pixel 
values are predicted, and a coding stage in which the difference between the actual pixel value and the predicted 
value is coded (for recent examples, see [12], [6]). The predictor typically uses a linear function to predict the 
current pixel value, based on the values of previously coded pixels (the ―neighborhood‖ of the current pixel). In 
compression algorithms that code the pixels in scan-order, the neighborhood is usually a subset of the 4-
neighborhood shown in Fig. 3b, where the current pixel is marked with the solid circle. For example, we may 
predict the current pixel by computing the average of its two nearest neighbors: (A + C)/ 2. The lossless JPEG 
scheme has eight different possible linear prediction functions of A, B, and C, and is free to use any of those 
eight [6]. 
 

 
 
Since the relationship between different bands of a multispectral image is not known ahead of time, we must 
find a good prediction function by examining the image data. In particular, in our experiments we consider both 
two-neighborhoods and four- neighborhoods for pairs of bands (see Fig. 3), and use the actual image data to 
determine the coefficients of the linear function of neighborhood values that minimize the variance of the 
prediction error. Determining the coefficients in this way is similar (although not exactly the same) to standard 
linear prediction methods (see for example [13]), and can be done using least squares approximation algorithms. 
 
The experiments of this paper were done with a predictor that finds linear coefficients for the two-neighborhood 
and four- neighborhood of the current pixel location, where values from both the current band and the 
prediction band are used in the prediction function. Both the two-neighborhood and four- neighborhood are then 
used for a second pass on the data using the computed coefficients, and whichever resulted in a smaller 
compressed size is reported. The program computes the coefficients both with and without the current pixel 
location in the prediction band, and the resulting compressed sizes are used for the A and B matrix values, 
respectively. 
 
5 CODING FOR MULTISPECTRAL IMAGES 
The coder has the responsibility of turning the predicted values into an output bit-stream. Various approaches 
have been taken in different compression systems, including Huffman coding, Rice coding, and arithmetic coding 
(or variants such as Q-coding). A good explanation of coding in general, including Huffman coding and 
arithmetic coding, can be found in [14]; Rice coding is described in [15], which is similar to Golumb coding as 
described in [16]. Huffman coding performs poorly on small alphabets or when the prediction phase produces 
very small (or low entropy) errors, and Rice coding performs poorly for small errors or when the errors are not 



generated according to a Laplacian distribution. While the distribution of errors is usually close to Laplacian, it 
was discovered in our experiments that CZCS data produced very markedly non-Laplacian error distributions (the 
other sensors produced prediction errors that were more or less Laplacian). 
 
Our final choice for a coder was an adaptive arithmetic coder with three neighboring prediction errors used as 
context for the coder (the two nearest neighbors in the current band, and the current pixel location from the 
prediction band when possible). While the actual prediction errors could easily be used for neighboring pixels in 
the same band, the prediction error for the current location in the prediction band was estimated by using the 
simple single-image linear prediction formula, X – , where X is the prediction band pixel in the 
current location, and A and C are neighboring pixels in the prediction band as defined by Fig. 3a. The prediction 
errors were bucketed (similar to [17]) into ―zero,‖ ―small‖ (1-2), ―medium‖ (3-8), and ―large‖ (over 9), with the 
sign of the error also used in the context. Since the context is computed from three prediction errors with seven 
possible values each, the coder uses 343 contexts. 
 
The actual prediction errors are encoded by first encoding a tag denoting negative, positive, or zero error, and 
then encoding the error magnitude two bits at a time. This method substantially reduces the amount of storage 
required for maintaining the error frequency statistics, since frequency tables only need to be maintained for a 
four symbol alphabet (the 2-bit blocks). For example, in an image with 16 bit pixels, the error can range from -
65,535 to +65,535, so directly coding the prediction error would require 131,071 frequency counts per context 
(for a total of almost 4.5 million counts over all contexts). On the other hand, keeping statistics only for the 
error sign and the two-bit blocks of the error magnitude requires only 35 frequency counts per context (for a 
total of 12,005 frequency counts over all contexts). It is very significant to note that when the errors are 
Laplacian distributed (the majority of cases), encoding the errors in this significantly more efficient way is fully 
as efficient as keeping separate frequency counts for all possible error values. Furthermore, when the errors are 
not Lapla- 
 

 

cian distributed (such as for the CZCS data), this method greatly outperforms true Laplacian coders such as the 
Rice coder, and performs almost as well as the arithmetic coder with full frequency counts. 
 
6 EXPERIMENTAL RESULTS 
We performed many experiments using the algorithms described in this paper and real multispectral satellite 
data. Our experiments show that band reordering can substantially improve compression performance for 
certain data sets, and that using a fixed, precomputed band ordering works well for entire classes of data, giving 



a very fast and high-quality compression system for multispectral images. The data for our experiments came 
from the four types of sensors listed in Table 1. 
 
The first set of images, representing a cross-section of the image sources, contains TM data ―neworl,‖ ―ridgely,‖ 
and ―washdc,‖ five bands of CZCS data ―czcs,‖ AVHRR data ―avhrr1‖ and ―avhrr2,‖ and an AVIRIS data set 
denoted ―aviris.‖ Most of these data sets are available by anonymous ftp from site chrpalg. gsfc. nasa. gov, so 
are available to other researchers for comparison purposes. 
 
To compute the A and B matrices, the entries were computed in parallel on a CM-5 parallel computer. Once 
these values were computed, the A and B matrices were fed into implementations of the algorithms described in 
Section 3 for finding the optimal band ordering, and for finding the optimal paired ordering. The results are 
given in terms of compression ratio and encoded bits per pixel in Table 2, and the compression ratios are shown 
graphically in Fig. 4. The compression ratio using our prediction and coding phases, but with no inter-band 
prediction, is shown as ―Independent Coding‖ (meaning that the bands are coded independently of other bands). 
In addition, the compression ratios found using lossless JPEG (with each band coded independently of the 
others) and the UNIX compress command are included for comparison purposes. The performance of lossless 
JPEG compares well with the best lossless single-image compressors. The UNIX compress results are included 
since many installations currently choose this method for compressing their multispectral data sets, and these 
results emphasize how poor this choice is. 
 
As can be seen from Table 2 and Fig. 4, the effect of band ordering depends heavily on the source of the data. In 
particular, large gains were seen by selecting the optimal band ordering for the AVIRIS and CZCS data, 
moderate gains were seen in the TM data sets, and almost nothing was gained by band-ordering in the AVHRR 
data. This suggests that the individual bands of the AVHRR data are more independent than the bands of the 
other sensors, which is supported by the technical specifications of the sensor. 
 
It is interesting to note that for data sets in which band ordering made a difference, the performance of paired 
ordering is only a moderate improvement over independent coding. This implies that the band dependencies are 
of a more global nature than pairs of bands. In light of our proof that computing the optimal partitioning into 
blocks of size three or more is NP-hard, it seems that close-to-optimal performance is not possible without using 
the absolute optimal ordering and risking long dependence chains. To examine the importance of selecting a 
good partitioning, we divided the 210 bands of AVIRIS data into blocks of five adjacent bands per block, 
without regard for the content of those bands. In other words, the blocks consisted of bands 1-5, bands 6-10, 
bands 11-15, etc. Within each block, the bands were optimally ordered, 

 



 

 

 

but there is no reason to believe that the chosen blocks bear any resemblance to the optimal partitioning. The 
results are shown in Table 3. 
 
It can be seen from Table 3 that simply picking blocks of adjacent bands for the partitioning seems to work well 
for AVIRIS data. While the compression ratio does not quite match the performance of the optimal ordering, 
the added benefit of allowing efficient extraction of a single band from the compressed archive may be worth 
sacrificing some compression. 
 
The next experiment we conducted was to determine how much the band ordering depends on the sensor, and 
how much it depends on the individual data sets. For this test, we obtained seven independent data sets from a 
single sensor (CZCS) and ran all of the previous tests, in addition to the following test: for any particular data 
set, the optimal compression ordering for the other six data sets is computed, and then that ordering is used for 
the data set being tested. The results, with the last type of test labeled as ―Pre-Computed Order,‖ are shown in 
Table 4 and Fig. 5. 
 
As can be seen from these results, in most cases the order computed from the other images gave a compression 
ratio that was competitive with the optimal order computed specifically for that image. This suggests that, at 
least for CZCS data, the band ordering is more a function of the sensor than of the individual image; therefore, a 
reasonable approach to take in a production compression package would be to compute the optimal ordering 
from a large, representative set of images, and hard-code this band ordering into the compressor. To compress a 
multispectral image with this approach, no band-ordering has to be computed, and the A and B matrices do not 
need to be computed, so the compression is very efficient. The results of this last experiment show that this 
approach should yield almost optimal compression. 
 
The optimal ordering for CZCS data, computed from our seven 

 



 
data sets, and the optimal ordering for the TM data, computed from data sets ―washdc‖ and ―neworl,‖ are shown 
in Table 5. 
 
7 CONCLUSIONS 
In this paper, we have extensively studied the benefits and problems associated with reordering the bands of a 
multispectral image for performing lossless compression. Under a reasonable model of inter-band prediction, 
we have shown how to efficiently compute the optimal compression band ordering. In addition, we have 
formalized the restrictions that arise when bands need to be extracted individually from a compressed archive, 
and have shown that computing the optimal ordering under these restrictions is NP-hard, except in the most 
simple case. 
 
Our experiments show that for certain data sources (such as CZCS or AVIRIS imagery), the band ordering 
algorithms of this paper can substantially improve compression performance. Interestingly, some data sources 
(such as the AVHRR data) do not benefit from the techniques of this paper at all, implying that the bands are 
independent, and can be treated separately (as if the 

 

 

 



data was not a multispectral image at all). By computing the band ordering as described in this paper and 
evaluating the compression results, it is easy to determine if band reordering is going to have a substantial 
benefit for a particular data set. 
 
While computing the optimal band ordering may be efficient (i.e., polynomial time), it is certainly not fast, 
requiring that all pairs of bands be tested as prediction-coding pairs. An alternative is to compute a fixed band 
ordering for a class of data, and use that fixed ordering when coding all data sets in that class. For instance, a 
fixed ―CZCS ordering‖ could be precomputed and used for all CZCS data sets. The ordering computed in this 
way from our sample data was given in Section 6. This has the benefit of being extremely fast (similar in speed 
to simply ignoring inter- band correlation); furthermore, our experiments have shown that for CZCS data, the 
results are almost indistinguishable from the optimal ordering results. Thus, this last approach of using a fixed 
band reordering seems to be a very promising lossless multispectral compression method. 
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