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In this Letter a new model for the band struc-
ture of n-Sn is proposed which is compatible with
the experimental results reported on this materi-
al and particularly with the measurements of
magnetoresistance and the pressure dependence
of the conductivity (o) and Hall coefficient (R)
which have been in relatively poor agreement with
models previously suggested.

Theoretical calculations of Herman, ' and of Liu
and Bassani, ' predict the lowest conduction band
to be at the center of the Brillouin zone with I',
(I', ' single group representation) symmetry, and
the highest valence band to have I',+ (I"»' single
group representation) symmetry. This is in
agreement with magnetoresistance measurements'
near 77 K and with oscillatory magnetoresistance
data' at and below 4'K, both of which show no
measurable anisotropy. However, several unre-
lated measurements require the presence of con-
duction-band minima of (111) symmetry. Mag-
netoresistance measurements near 200 K by
Tufte and Ewald' have shown that this transport
property is dominated by electrons in such mini-
ma. Pressure measurements of the intrinsic
conductivity near this temperature' can be inter-
preted to give a pressure coefficient of an ener-
gy gap identical to that of Ge which has a set of
(111) conduction-band minima lowest. Measure-
ments of the conductivity, the Hall coefficient,
and the magnetic susceptibility as a function of
temperature' have shown that above 150 K, in
sa,mples with impurity concentration of 10"/cc
or less, carriers are intrinsically excited with
an activation energy of about 0. 09 eV. These
facts suggest that at 0 K, we might expect the
I', band to be lowest, with (111), plausibly L,+
(L, single group representation) symmetry, mini-
ma slightly higher in energy.

However, this combination of (000) and (111)
bands runs into immediate difficulties. In the
first place, the oscillatory magnetoresistance
measurements of Hinkley and Ewald yield an ef-
fective mass of 0. 02mo with no apparent depend-
ence on carrier concentration. The effective
mass of the F, electrons can be predicted from
the 0 P method, if we assume that the main in-
teraction is with the I',+ (valence) band, that the
I 7 Fs energy separation is less than or equal
to 0. 09 eV, and that the square of the matrix ele-

ment is 23 eV, which is roughly its value in Ge
and InSb. The predicted mass is then more than
a factor of three smaller than 0. 02ypgo and is
highly carrier- concentration dependent. In the
second place, there is experimental' and theoret-
ical evidence' that the I', -I'8+ and I.,+-I'8+ en-
ergy gaps should increase with pressure at the
approximate rates of 12x10 ' eV/bar and 5x10 '
eV/bar, and, assuming these coefficients, only
the pressure behavior above 200'K is in agree-
ment with the above model.

One clue to the proposed band structure is ob-
tained from a plot of the 1, -I'8+ energy gap ver-
sus A' for the isoelectronic sequence of o, -Sn (A

=0), InSb (II, =1), and CdTe (A =2). A is a meas-
ure of the antisymmetric potential in the lattice,
and, as suggested by Herman, ' this plot should
show a linear variation. The line drawn between
CdTe and InSb gaps intercepts the z = 0 axis at an
energy value about 0. 2 eV below zero. We should
like to point out that this negative gap suggests
the model of Fig. 1, and that in terms of this
new model the transport measurements are under-
standable.

In Fig. 1, the F, state is placed 0. 3 eV below
the F, states. The k P interaction between the
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FIG. 1. Energy-band extrema for the proposed model
of gray tin.
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In paramagnetic substances the orbit-lattice
interaction has been well known to play an im-
portant role in spin-lattice relaxation, '& a dy-
namic process. %e have examined the static
consequences of this interaction inasmuch as
it yields an additional polarization (or depolar-
ization) of the orbital magnetic moment in the
presence of the external magnetic field. Our
investigation is mainly of the simple case of a
rare earth ion surrounded by a cube of diamag-
netic ions. The following approximations are
made: (1) The orbit-lattice interaction arises
from the linear distortion of the crystal field
exerted by the nearest neighbors, which is eval-
uated on a simple semiempirical point-charge
model. (2) A single-ion approximation is used.
(3) The lattice vibrations are treated by the De-
bye model.

%e have evaluated the correction to the sus-
ceptibility of ytterbium gallium garnet, and to
the g shift for Tm+ and Ho+' in CaF2 at low
temperatures. Convergence of the perturbation
development is quite good because of the ab-
sence of odd-order perturbations in the phonon
amplitudes. The correction to the magnetic
moment of the ground state is caused entirely
by the admixture of excited states through the
simultaneous action of both the Zeeman term
and the orbit-lattice interaction. At low tem-
peratures this correction arises primarily from
the effect of zero-point lattice vibrations and
hence is independent of temperature. The tem-
perature-dependent portions, which start with
a term in T4, are negligible below 30'K.

Susceptibility of ytterbium gallium garnet. —
Since the next excited level of Yb+I within the

4=7/2 multiplet is separated by 550 cm ' from
the ground level, s it suffices to consider only
the ground Kramers doublet as populated. The
lowest order correction is then given by a third-
order perturbation, of the first order in the
Zeeman energy and the second order in the or-
bit-lattice interaction. Neglecting the effect of
the excited 8=5/2 level and the deviation of the
static crystal field from cubic symmetry, we
find the g shift to be

gg = -1.81 x 10 2.

The correction to the second-order Zeeman
term comes from a fourth-order perturbation
calculation, of the second order both in the Zee-
man and in the orbit-lattice interactions. Using
the closure approximation which turns out to be
very satisfactory, we obtain an energy shift of

&E &'&/E &" = 0.058,

where E'~ is the second-order Zeeman energy
arising from the nearest quartet. The correc-
tion is comparable in order of magnitude with
the second-order Zeeman effect arising from
admixture of the excited 8= 5/2 multiplet be-
cause the Zeeman energy (L+28) PH is nondi-
agonal in J, and would be observable in the ideal
cubic case. In the garnets, uncertainty due to
the deviation of the static crystal field from
cubic symmetry overshadows our correction
and makes its effect on the susceptibility un-
observable. If, however, the orbit-lattice cou-
pling were as strong as in the now largely aban-
doned "fast-relaxing" model, 4 then the suscepti-
bility would be completely altered from its ordi-
nary value.


