Band Structure of Nickel: Spin-Orbit Coupling, the Fermi Surface and Theoptical Conductivity.

Ching-ping Shih Wang
Louisiana State University and Agricultural \& Mechanical College

Follow this and additional works at: https://digitalcommons.Isu.edu/gradschool_disstheses

Recommended Citation

Wang, Ching-ping Shih, "Band Structure of Nickel: Spin-Orbit Coupling, the Fermi Surface and Theoptical Conductivity." (1974). LSU Historical Dissertations and Theses. 2700.
https://digitalcommons.Isu.edu/gradschool_disstheses/2700

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the inissing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.
WANG, Ching-ping Shih, 1947-
BAND STRUCTURE OF NICKEL: SPIN ORBIT COUPLING,
THE FERMI SURFACE AND THE OPTICAL CONDUCTIVITY.
The Louisiana State University and Agricultural
and Mechanical College, Ph.D., 1974
Physics, solid state

Xerox University Microfilms, Ann Arbor. Michigan 48100

Submitted to the Graduate Faculty of the Louisiana state University and Agricultural and Mechanical College
in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in
'The Department of Physics and Astronomy
by
Ching-Ping Shih Wang
B.S., Tung-Hai University, Taiwan, 1969
M.S., Louisiana State University, Baton Rouge, La., 1971 August 1974

To My Mother

'IABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS i i
LIST OF TABLES vi
LIST GF FIGURES vii.
ABSTRACT ix
CHAPTER I. INTRODUCTION 1
CHAPTER II. THE TIGHT BINDING METHOD AND SELF- CONSISTENCY PROCEDURES 10
A. The Basic Approximations 10
B. The Tight Binding Method 15
C. Self-Consistent Procedure 33
D. Spin Orbit Coupling 41
CHAPTER III. APPLICATIONS AND RESUL'T'S 49
A. Spin and Charge Density 49
B. Momentum Distribution of Electrons 53
C. The Density of States 61
D. The Fermi Surface 64
E. Optical Conductivity 68
CHAPTER IV. CONCLUSION 80
REFERENCES 84
'IABLES 93
FIGURLS 117
ADPENDICES 136
A. The Fourier Transform ut Gaussian ()rbitals 136
B. Ferromagnetic Kerr Effect 138
C. Computer Programs 142

LIST OF FIGURES

Figure Page

1. Coordinates for the Evaluation of Three Center Integrals 117
II. Self-Consistent Energy Bands for Majority Spin States 118
III. Self-Consistent Energy Bands for Minority Spin States 119
IV. Self-Consistent Energy Bands Including Spin Orbit Couplirg 120
V. Band Electrons Charge Density in Three
Principle Directions 121
VI. Magnetic Scattering Form Factors 122
VII. Spin Density in Three Principle Directions 123
VIII. Compton Profile in Three Principle
Directions 124
IX. Anisotropy in Compton Profile 125
X. Comparison of the Spherical AverageCompton Yrofile with γ-Ray Compton
Scattering Measurements 126
XI. Projeceed Density of States for Majority Spin 127
XII. Projected Density of States for Minority
Spin 128
XIII. 'lotal Density ot States 129
XIV. Fermi Surface Cross Section in the
(100) Plane 130
XV. Fermi Surface Cross Section in the
(1i0) Plane 131
XVI. Joint Density of States 132
XVII. The Real Part of the $x x$ Component ofthe Conductivity Tensor from 0 to
1.2 eV 133
XVIII. The Real Part of ${ }^{3} x x$ from 1.0 eV to
6.0 eV 134
xix. The Imacinary part of "xy from 0 to 6 eV. 135
calculated using matrix elements computed from wave functions including spin orbit coupling. Results were obtained for both the diagonal and the off diagonal elements of the conductivity tensor.

CHAPTER I

INTRODUCTION

Energy band computations for transition metals have been of continuing interest in solid state physics. These calculations are of fundamental importance in the construction of the band theory of itinerant electron magnetism. It is assumed that the electrons responsible for the magnetism are not localized, but instead occupy Bloch states with wave functions extending throughout the crystal. Four major items of evidence strongly support the applicability of the general picture of itinerant electron ferromagnetism to nickel. First, energy band calculations have reproduced in reasonable detail the Fermi surface determined by measurements of the de HaasVan Alphen effect and cyclotron resonance. Second, the saturation moment for nickel is found to be 0.616 Bohr magnetons/atom. ${ }^{2}$ The difference from an integral number is too large to be attributed to an orbital component of the magnetic moment. Third, the high field Hall and magnetoresistance measurements of fawcett and Reed ${ }^{3}$ indicate that the $3 d$ electrons responsjble for the maqnetism have a mobility comparable with those of predominent $s-p$ character. Fourth, the electronic specific heat meas:urement for nickel, $7.028 \mathrm{mo} /\left(\mathrm{mol}{ }^{\circ} \mathrm{K}^{2}\right)$, ${ }^{3}$ shows What at ladst some of the 3 a electrons have acquired an
itinerant behavior and contributed to the Fermi surface. A detailed comparison of itinerant versus localized-spin models can be found in Herring's book. 5

Some of the more important calculation on the band structure of nickel used the LCAO (tight binding) method, 6-11 the APW (Augmented Plane Wave) method, 12-15 the KK? (Green function) method, $8,16-17$ and the combined interpolation scheme. 16,18-23 Both APW ${ }^{24-26}$ and KKR 27,28 methods, in their usual forms, employ the "muffin-tin" approximation in which the crystal potential is assumed to be spherically symmetric in spheres inscribed within a polyhedral atomic cell about each lattice site and constant between these spheres. In the case of a APW calculation, the electronic wave functions are expanded in terms of spherical waves (products of radial wave functions and spheri(al harmonics) inside each sphere and plane waves between them. The eigenvalue problem is solved by varying the expansion coefficients in such a way that the logarithmic derivatives of wave functions are continuous across the boundary of the spheres. The $K K R$ method employs a variational principle in which the schrödinger equation is transformed into a homogenous integral equation. 'lhe trial wave function is expanded in terms of spherical waves. The variational condition gives a set of limedr homodeneous equations and the dispersion relathon is ohtained by solving the seouldr equation whose
matrix elements consists of two parts. The first part is a geometrical structure constant arising from the lattice Green function which needs to be calculated only once for each type of lattice. The second part involves the logarithmic derivatives of the trial radial wave functions evaluated on the inscribed sphere.

One essential problem in the energy band calculation is to obtain a self-consistent potential. The effects of different starting atomic configurations on the results of non-self-consistent band calculations have been illustrated in the work of Mattheiss. ${ }^{13}$ Both methods described here have been made self-consistent to the extent of the muffin-tin approximation. 15,17 For a transition metal, the 3 d states are moderately sensitive to the nonspherical part of the potential (the crystal field effects). ${ }^{29}$ The non-muffin-tin corrections to the band structure of paramagnetic nickel has been studied by Painter. 30,31 The d bandwidth is narrowed by 0.010 Ry . and the $\mathrm{s}-\mathrm{d}$ separation is reduced by 0.003 Ry . The $\mathrm{L}_{2 \uparrow}^{\prime}$ state which is important in determining the Fermi surface neck at L is shifted by +0.010 Ry . Although the order of the $\mathrm{I}_{2}+$ and $\mathrm{L}_{3}+$ states remains the sume, this shift in energy is sufficiently large to offect detailed comparison with experiments. 'T'wo calculations have been reported previously in which some derire of self-consistency was achieved. The first of theri, by Wakoh ${ }^{17}$ employed the KKR method and used the

Slater average free electron exchange potential. ${ }^{32}$ The effect of reducing the parameter in the $X \alpha$ exchange potential ${ }^{35}$ has been illustrated in two self-consistent APW calculations by Connolly. ${ }^{15}$ The Kohn-Sham-Gaspar exchange potential ${ }^{33,34}(\alpha=2 / 3)$ was found to yield more realistic results than the full slater exchange ${ }^{32}(\alpha=1)$. Spin orbit interaction was neglected in both calculations. The combined interpolation scheme is an interpolative calculation which describes the energy bands in terms of a minimal hasis set and corresponding disposable parameters. 18,19 It combines a tight binding treatment for the d bands with a pseudo potential appropriate for the $s-p$ bands. The basis functions consist of linear combination of atomic orbitals for d states and orthogonalized plane waves for the $s-p$ bands. The orthogonality condition between the conduction $s-p$ bands and the core states is simulated by the inclusion of the pseudo potential. There are two major interactions between the d bands and the conductions $s-p$ bands. The first, hybridization, is included through the use of k dependent matrix elements. The second interaction, arising from the requirement of orthogonalization of basis states, can be either described in terms of k dependent form factors ${ }^{19}$ or included in the hybridization parameters. ${ }^{18}$ The parameters appearing in the Hamiltonian matrix elements are optimized to satisfy most experimental data and first principle calculations. The enerqies and
wave functions are obtained by diagonalizing the Hamiltonian matrix at a general point of the Brillouin zone. The $\dot{k} \cdot p$ perturbation theory has been proved to be very useful to determine the energies in the vicinity of symmetric points. 20 In qeneral, the combined interpolation scheme provides a simple and economical way of calculating energy bands, when enough experimental information is available to determine the parameters.

The LCAO method employs the variational principle with trial bloch functions expanded in terms of localized orbitals suitably formed at each lattice site. In its original corm, ${ }^{36}$ this method is linited by severe problens involviny calculation of three center integrals. Lin and co-workers 37,38 showed that this difficulty can be avoided by expressing the crystal potential as fourier series over the reciprocal lattion vectors. Furth rmore, the namiltonian and overlap matrix olements an be expressed in a closed form it the basis sut is chosen to consist of adussian type orbitals. This method has the advantage that energies and eifenfunctions can be obtained directly at a large number of points in the brillouin zone without resorting to an interpolation scheme.

The self-consistent procedure within the frumework of the tight binding dpmoximation was tirst introduced by Gallaway and fry. ${ }^{39}$ the plosent wolk is the tirst selfconsistont tight binding ealculation ever achieved. ${ }^{11}$ The Hamitomion amd valap matrix wement; obtained in the:
previous non-self-consistent tight binding calculation for ferromagnetic nickel by Langlinais and Callaway ${ }^{10}$ were used as input material for the first iteration of the self-consistent procedure. Eighty-nine points in $1 / 48 t h$ of the Brillouin zone were used to determine the charge density in the final stages of an iterative procedure. Exchange has been included according to the $X a$ method. ${ }^{35}$ It was found that the Kohn-Sham-Gaspar ${ }^{33,34}$ value of the coefficient $(2 / 3)$ appeared to yield the most satisfactory results for the Fermi surface and other properties. Separate exchange potentials are obtained for electrons of majority and minority $(t$ and $t)$ spins and energy bands are computed separately for the two spin states. This calculation is a test of the ability of such a procedure (the spin-polarized method) to account for the magnetic and electronic properties of a ferromagnetic metal. The results oftained are in reasonable dgreement with a variety of different experiments and other self-consistent calculations. This method was later applied to ferromagnetic iron, 40 paramagnetic chromium, ${ }^{41}$ and potassium. ${ }^{42}$ The results are found to be equally siccessful.

This calculation was subsequently extended to include the effects of spin orbit coupling. Spin orbit coupling is of major significance in a description of the propertioc of fermomanetic transition metals. It leads to the wxistonce of magnetic anisotropy, the aromalous Hall effect,
and magneto-optical effects. Substantial modifications of the Fermi surface result from changes in the connectivity of the energy bands. Attempts have been made to study spin orbit effects in the band structure of nickel for more than 30 years. $18,22,43-49$ Much of this work, however, has been based on oversimplified tight binding models of the d band structure. Other investigations have employed interpolation schemes desiqned to fit empirical information concerning the band structure, magnetic properties, and Fermi surface. 18,22 we are not aware of previous attempts to include spin orbit coupling into a first principles band calculation for this metal. The plan of this dissertation is as follows: In Chapter II we outline the procedure of a self-consistent tight binding calculation including the effects of both exchange and spin-orbit coupling. Some emphasis has been placed on the basic approximations reviewed in Section A. Modifications and improvements have been included in the discussion of the tight binding method and the construction of initial one electron potential in Section B. For an exact description of the procedure to construct the non-self-consistent eneray bands for nickel, one is referred to Langlinais's dissertation. ${ }^{10}$ Section C contains a detailed discussion of the self-consistent procedure. The method employed to incorporate spin orbit Anturaction is presented in Section 1 . The energy bands
obtained before and after including the effects of spin orbit interaction are discussed at the end of sections C and D respectively.

Chapter III is designated to compare the energies and wave functions obtained with the results of different experiments. In Section A the charge and spin density are compared with the x-ray and neutron diffraction measurements. The momentum distribution of electrons was examined through the calculation of the compton profile in Section B. The Fermi surface effects on the structure observed in the Compton profile is analyzed. Spin orbit interaction is neqlected in the above calculations. Including the effects of spin orbit interaction, energies, wavefunctions, and momentum matrices were obtained at 1357 regularly spaced points in $1 / 16$ th of the Brillouin zone. The density of states discussed in Section C was obtained by the Gilat-Raubenheimer method in combination with an interpolation scheme. The Fermi surface properties are shown in Section D and are compared with experiments. Major emphasis has been placed on the calculation of the optical conductivity tensor. The one electron theory of the interband conductivity tensor is discussed in section f: A possible lifetime broadening effect has breen corsidered through the inclusion of a phenomenological constant relaxation time. Detailed analysis and comparison with tho ordinary and magneto-oftical measurements are
attempted. Our general conclusions are stated in Chapter IV. A complete set of computer programs is included in Appendix C. The first few programs concerning the construction of the initial one electron potential and the Hamiltonian matrices have been rewritten in order to improve their accuracy and efficiency. They will be used subsequently to calculate the band structure of vanadium.

THE TIGHT BINDING METHOD AND SELF-CONSISTENCY PROCEDURES

This chapter is divided into four sections. In Section A, we shall briefly discuss the basic approximations. In Section B, we shali review the tight binding method, the choice of a basis set, and the construction of a one-electron potential. In section C, we shall outline the self-consistency procedure within the framework of tight binding approximation. In Section D, we shall describe the methods employed to incorporate the spin orbit interaction.

A. The Basic Approximations

To calculate the energy levels of electrons in solida one has to solve the Schrödinger equation for a very large number of nuclei and electrons. Numerous simplifying approximations dre necessary in order to solve this many body problem. The basic approximations involved in the framework of energy band theory are: first, the solid is an infinite periodic array of atoms or ions; second, the olectronic and nuclear motions are independent, the Born Oppenheimer approximation; and third, the single electron moves in a periodic potential due to the nuclei and other wections, the Hartree-Fock theory.

It is usually not possible to solve the Hartree-Fock equation directly due to the non-local nature of the exchange potential. Several approximations have been developed to construct an averaged local exchange potential. We shall briefly outline them here:

The first approximation was introduced by Slater ${ }^{32}$ and is based on the theory of the free electron gas. The exchange potential in a gas of density ρ is given by

$$
\begin{equation*}
v_{x \text { gas }}=-8 F\left(\frac{|\vec{k}|}{k_{F}}\right)\left(\frac{3}{8 \pi} \rho\right)^{1 / 3} \tag{2.1}
\end{equation*}
$$

where \vec{k} is the wave vector of a plane wave state. Electrons occupy states within a sphere centered on $\vec{k}=0$ and of radius k_{F} for each spin, with

$$
\begin{equation*}
F(y)=\frac{1}{2}+\frac{1-y^{2}}{4 y} \ln \left|\frac{1+y}{1-y}\right| \tag{2.2}
\end{equation*}
$$

Atomic units are used throughout this paper unless otherwise specified. In the Hartree Fock theory the density of states, which depends inversely on $d E / d k$, would vanish on the Fermi surface. This is one of the major difficulties of Hartree-Fock theory, which results from the neglect of electron correlation. It can be avoided if one considers an averaged local exchange potential. The simplest approximation is to treat p as the local charde density and to replace $F(y)$ by its average value over all
occupied states, 3/4. Thus we have an exchange potential which we call V_{xS},

$$
\begin{equation*}
V_{x S}=-6\left[\frac{3}{8 \pi} \rho(\vec{r})\right]^{1 / 3} . \tag{2.3}
\end{equation*}
$$

An alternative approximation to the exchange potential was suggested by Kohn and Sham ${ }^{33}$ following an earlier treatment by Gaspar. ${ }^{34}$ They applied the variational method to an inhomogeneous system of interacting electrons. In the limit of slowly varying density this procedure leads to an exchange potential differing from $V_{x S}$ in that the value of $F(y)$ at the Fermi level, namely $1 / 2$ is used.

$$
\begin{equation*}
V_{x, K S G}=-4\left[\frac{3}{8 \pi} \mu(\dot{r})\right]^{1 / 3}=\frac{2}{3} v_{x S} . \tag{2.4}
\end{equation*}
$$

Attempts have been made to use an exchange potential

$$
\begin{equation*}
v_{x u}=x v_{x S} \tag{2.5}
\end{equation*}
$$

now known as the $\mathrm{X} \alpha$ method. The parameter α is allowed to vary between 1 and $2 / 3$ or even slightly smaller than $2 / 3$ to get the best result.

It may seem desirable to choose the value of a which minimizes the total energy of the system since the theory is based on the variational approximation. The objection aquinst this procedure is that the Hamiltonian instead of
the wavefunctions is varied in the process. Our calculation employed this $X \alpha$ exchange potential. The parameter x is chosen to yield the best results in comparison with experimental measurements. It will be discussed in more detail in Section C.

A more elaborate suggestion was made by Liberman, 50 independently of Sham and Kohn, 51 and later modified by slater, Wilson and wood ${ }^{35}$ to retain the dependence of $F(y)$ on Y with $y=k / k_{F}$ determined in the free electron gas approximation as a function of energy and density. The problem can be solved self-consistently but the cost in computer time is very high. For a more detailed discussion and comparison of exchange potentials one is referred to the paper by Slater, Wilson and Wood. ${ }^{35}$ A generalization of the Kohn-Sham theory of the inhomogeneous electron gas with emphasis on spin effects was later made by Rajagopal and Callaway. 52 For a ferromagnetic system the exchange potential can be written as:

$$
\begin{equation*}
u V_{X G}(\vec{r})=-6 \alpha\left[\frac{3 \mu_{\sigma}(\vec{r})}{4 \pi}\right]^{1 / 3} \tag{2.6}
\end{equation*}
$$

where $u=\dagger$, + and ${ }_{\|}(\vec{r})$ is the density of electron with spin••

We consider the following one-electron Hamiltonian

$$
\begin{equation*}
H^{\prime}-v^{2}+V_{C}(\vec{r})+x V_{x}(\vec{r})+V_{S O}(\vec{r}) . \tag{2.7}
\end{equation*}
$$

The first term is the kinetic energy. The second term is the Coulomb potential which can be represented by the superposition of atomic potential at each lattice sites.

$$
\begin{equation*}
V_{C}(\vec{r})=\sum_{R_{\mu}} V_{a}\left(\vec{r}-\vec{R}_{\mu}\right) \tag{2.8}
\end{equation*}
$$

The atomic potential due to the nuclei and the electron charge distribution $\rho_{a}(\vec{r})$ can be expressed as

$$
\begin{equation*}
v_{a}(\vec{r})=-\frac{2 Z}{|\vec{r}|}+2 \int \frac{\rho_{a}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r^{\prime} \tag{2.9}
\end{equation*}
$$

where Z is the atomic number which is 28 for nickel. The third term in Eq. (2.7) is the $X \alpha$ exchange potential for a spin polarized system as shown in Eq. (2.6) and the last term is the spin-orbit interaction.

$$
\begin{equation*}
\mathrm{V}_{\mathrm{SO}}(\vec{r})=\frac{\not \hbar}{4 \mathrm{~m}^{2} c^{2}}[\vec{\sigma} \times \vec{\nabla} \mathrm{V}(\vec{r})] \cdot \overrightarrow{\mathrm{p}}, \tag{2.10}
\end{equation*}
$$

where \vec{v} is the Pauli spin operator, $V(\dot{r})$ is the crystal potential and \vec{P} is the momentum operator. The last term was neglected in this calculation until the self-consistent procedure had been completed. It will be discussed in detail in Section D.

B. The Tight Binding Method

The tight binding or LCAO (Linear Combination of Atomic Orbitals) method was first proposed by Bloch (1928) ${ }^{36}$ and later modified by Lafon and $\operatorname{Lin}(1966))^{37}$ The three center integrals which are normally encountered in the tight binding calculations can be eliminated by expressing the crystal potential as Fourier series over the reciprocal lattice vectors. If the basis set is chosen to consist of Gaussian type orbitals (GTO) all integrals can be done analytically. The elements of the Hamiltonian and overlap matrices are expressed analytically in terms of the interatomic distance and Gaussian exponent parameters. A drastic reduction in the computation can therefore be effected.

In a LCAO calculation, one begins with a set of localized functions $u_{j}(\vec{r})$ which for convenience will be assumed to be normalized but need not be orthogonal. Conventionally $u_{j}(\vec{r})$ are chosen to be the atomic orbitals of the corresponding crystal. However, this is not necessary and may even be too restrictive. In the present calculation we used atomic wave functions (GTO) for all states except 3 d (e.g. ls, $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{p}$, and 4 p). The Gaussian exponent parameters and expansion coefficients were determined by Wachters ${ }^{53}$ from a self-consistent field calculat ion of free nickel atom. We believe it is
necessary to give the d wave functions more freedom to distort in the crystalline environment. A set of five separate radial GTO were used for each type of angular dependence. The orbital exponents used in defining these d functions were the same as given by wachters. 53 The basis set thus consisted of 38 functions for each spin: 4 for s-type symmetry (1s, $2 \mathrm{~s}, 3 \mathrm{~s}$, and 4 s), 9 for p-type symmetry $\left(2 p_{x}, 2 p_{y}, 2 p_{z}, 3 p_{x}, 3 p_{y}, 3 p_{z}, 4 p_{x}, 4 p_{y}\right.$, and $4 p_{z}$), and 25 for d-type symmetry ($x y, y z, z x, x^{2}-y^{2}$, and $3 z^{2}-r^{2}$).

The use of GTO has been criticized since these functions have zero slope at the oriqin and decay too fast at large distances. In a crystal t'e second problem may not be as serious as in the case of a free atom since its long distance behavior is strongly modified by the overlap of wave functions on the neighboring lattice sites. To investigate the first problem we compared the HartreeFock atomic wave functions based on GTO ${ }^{53}$ with those based on STO (Slater-type orbitals). ${ }^{54}$ At the origin they disagree by about 2%. Therefore our charge density at the nuclei sites had an uncertainty of about 48 resulting from the use of GTO.

The basis function ${ }_{j}(\vec{k}, \vec{r})$ which satisfies Bloch's theorem for wave vector \vec{k} can be written as

$$
\begin{equation*}
\phi_{j}(\dot{k}, \dot{r})=\frac{1}{\sqrt{N}} \sum_{\dot{R}} e^{i \dot{k} \cdot \dot{R}_{\|}} u_{j}\left(\dot{r}-\vec{R}_{H}\right) \tag{2.11}
\end{equation*}
$$

where N is the total number of atoms in the crystal. The localized orbitals $u_{j}\left(\vec{r}-\vec{R}_{\mu}\right)$ are centered at lattice site \vec{R}_{n}. The crystal structure for nickel is face centered cubic. Its lattice constant is $6.644 \mathrm{a} . \mathrm{u}$. when extropolated to $0^{\circ} \mathrm{K}$ using the coefficient of thermal expansion. 55 The localized orbitals can be separated into radial and angular parts

$$
\begin{equation*}
u_{j}(\vec{r})=u_{n \ell m}(\vec{r})=R_{n \ell}(|\vec{r}|) K_{\ell m}(\theta, \phi) \tag{2.12}
\end{equation*}
$$

where $K_{\ell m}((1, \psi)$ are the Kubic harmonics and the radial wavefunction can be represented by GTO

$$
\begin{equation*}
R_{i \ell}(r)=N_{\ell i} r^{\ell-1} e^{-\alpha_{\ell i} r^{2}} \tag{2.13}
\end{equation*}
$$

with the normalization constant given as

$$
\begin{equation*}
N_{\ell, i}=\left[\frac{2\left(2\left(\alpha_{\ell i}\right)^{\ell+\frac{1}{2}}\right.}{\Gamma\left(\ell+\frac{1}{2}\right)}\right] 1,2 . \tag{2.14}
\end{equation*}
$$

In the cases where atomic wavefunctions were required the $R_{n \times}(\vec{r})$ were linearly expanded in GTO

$$
\begin{equation*}
R_{n \ell}(\vec{r})=\ddot{i}_{i} C_{n \ell i} N_{\ell i} r^{\ell-1} e^{-\alpha_{\ell i} r^{2}} \tag{2.15}
\end{equation*}
$$

where we have included the principle quantum number n. The values $C_{n x i}$ and $x_{x, i}$ have been tabulated by wachters. 53

In the modified LCAO calculation the crystal potential is expanded in Fourier series

$$
\begin{equation*}
V(\vec{r})=\sum_{\underset{K}{\mid}} e^{i \vec{K} \cdot \vec{r}} V(\vec{K}) \tag{2.16}
\end{equation*}
$$

which can be inverted to obtain

$$
\begin{equation*}
V(\vec{K})=\frac{1}{N} \int e^{-i \vec{K} \cdot \vec{r}} v(\vec{r}) d^{3} r \tag{2.17}
\end{equation*}
$$

with s being the volume of a primitive cell. For a periodic potential, $V(\vec{K})$ vanishes unless \vec{K} is a reciprocal lattice vector. The Coulomb part of the potential has been discussed in Section A. It was assumed that for the initial iterative stage of the self-consistent calculation the crystal charge density can be represented by the superposition of overlapping neutral atom charge density, the atoms being in $3 d^{9} 4 s^{l}$ configuration. This is somewhat different from the ground state configuration of a free nickel atom ($3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$) because the effective occupation number is expected to change in forming a crystal as the sharp atomic energy levels broaden into overlapping bands. The starting electronic configuration should in principle be immaterial to a self-consistent calculation.

The magneton number which is the difference of occupation number between up and down spin has been measured to be 0.56 electrons per atom. ${ }^{2}$ We assume in
the first iteration that this is due to d electrons only. The spherically averaged atomic charge density in Eq. (2.9) can be written as

$$
\begin{equation*}
\|_{a}(r)=\sigma_{a \uparrow}(r)+\theta_{a \downarrow}(r) \tag{2.18}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho_{a \cdot \rho}(r)=\frac{1}{4 \pi} \sum_{i} n_{i \sigma}\left|R_{i}(r)\right|^{2} . \tag{2.19}
\end{equation*}
$$

We use the radial wavefunction obtained by Clementi (1965) in a Hartree-Fock self-consistent field calculation for free nickel atom in $3 \mathrm{a}^{8} 4 \mathrm{~s}^{2}$ configuration 54 in constructing the initial charge densities. The occupation numbers assumed are as follows

	1 s	2 s	2 p	3 s	3 p	4 s	3 d
$\mathrm{n}_{\mathrm{i} \uparrow}+$	1	1	3	1	3	0.5	4.78
$\mathrm{n}_{\mathrm{i} \downarrow}+$	1	1	3	1	3	0.5	4.22

The Fourier coefficient of the coulomb potential is

$$
\begin{aligned}
& v_{c}(\dot{K})-\frac{l}{N G i} \int e^{-i \vec{K} \cdot \hat{r}} v_{c}(\vec{r}) d^{3} r
\end{aligned}
$$

Using the relation

$$
\begin{equation*}
\ddot{F}_{\mathrm{R}} e^{-\mathrm{i} \overrightarrow{\mathrm{~K}} \cdot \vec{R}_{\mu}}=\mathrm{N} \sum_{\mathrm{K}}^{\mathrm{K}}{ }^{\delta} \vec{K}^{\delta} \vec{K}_{S} \tag{2.21}
\end{equation*}
$$

where \vec{k}_{s} is a reciprocal lattice vector. We obtain

$$
\begin{equation*}
V_{C}\left(\vec{K}_{s}\right)=\frac{1}{\lambda} \int V_{a}(\vec{r}) e^{-i \vec{K}_{s} \cdot \vec{r}^{2}} d^{3} r \tag{2.22}
\end{equation*}
$$

Eq. (2.9) is substituted into Eq. (2.22). One obtains

$$
V_{c}\left(K_{s}\right)=\frac{-8 \pi Z}{6 K_{s}^{2}}+\frac{32 \pi^{2}}{K_{s}^{3}} \int_{o}^{\infty} \mu_{a}(r) \sin \left(K_{s} r\right) r d r
$$

With ${ }_{a}(r)$ given in Er. (2.18) the integral can be easily evaluated.

For the limit $\vec{K}_{s}=0$ one has to expand the sine term in the integrand before taking the limit $\vec{K}_{S} \rightarrow 0$

$$
\begin{aligned}
& V_{C}(0)=\lim _{\overrightarrow{K_{S}}+0}\left[-\frac{8 \pi Z}{3 K_{S}^{2}}+\frac{32 \pi^{2}}{s i K_{S}^{3}} \int_{0}^{\infty} \rho_{a}(r)\right. \\
& \left(K_{S} r-\frac{\left(K_{S} r\right)^{3}}{3!}+\ldots\right) r d r
\end{aligned}
$$

$$
\begin{align*}
& -\frac{16 \pi^{2}}{3 i} \int_{0}^{10} a_{a}(r) r^{4} d r \tag{2.24}
\end{align*}
$$

which can be readily evaluated analytically. The construction of an averaged local exchange potential has been discussed in Section A. The corresponding Fourier coefficients for spin ore

$$
\begin{aligned}
V_{\mathbf{x} \sigma}\left(\vec{K}_{s}\right) & =\frac{1}{N \Omega} \int e^{-i \vec{K}_{s} \cdot \vec{r}_{r}} V_{x \sigma}(\vec{r}) d^{3} r \\
& =\frac{1}{\sqrt{\Omega}} \int_{c e l l} e^{-i \vec{K}_{s} \cdot \vec{r}} V_{x \sigma}(\vec{r}) d^{3} r \\
& =\frac{4 \pi}{\sqrt{\Omega} K_{S}} \int_{0}^{r o}-6\left(\frac{3}{4 \pi} \rho_{\sigma}(r)\right]^{1 / 3} \sin \left(K_{s} r\right) r d r
\end{aligned}
$$

where r_{o} is the radius of the Wigner-Sitz sphere which has a volume equal to that of a primitive cell. The spherical averaged total charge density for electrons of spin a can be written as

$$
\begin{equation*}
\rho_{\sigma}(r)=\left\langle\sum_{R_{j 1}} \rho_{a \sigma}\left(\left|\vec{r}^{r}-\vec{R}_{\mu}\right|\right)\right\rangle a v \tag{2.26}
\end{equation*}
$$

where the atomic charge density $\rho_{a_{u}}(r)$ is defined in Eq. (2.19). The summation from each lattice site was carried out up th the shell of neighbors where the desired degree of convergence has been reached. Although the individual atomic charge densities were assumed to be spherically symmetric, the superposed density has only cubic
symmetry about any lattice site. The bracket <..> av. stands for the spherical average evaluated in the following way: The total charge density is expanded in a series of Kubic Harmonics up to the eighth order. The spherical average $\theta_{\sigma}(r)$ is approximated as the zeroth order term in the expansion, and can be obtained by solving a set of four linear inhomogeneous equations along four inequivalent directions. Finally, the 96 point Gaussian formula was used to perform the numerical integration in the wignerSitz sphere for each given reciprocal lattice vectors. The one-electron Schrödinger equation to be solved takes the following form

$$
\begin{equation*}
\hat{H} \psi_{n}(\vec{k}, \vec{r})=E_{n}(\vec{k}) \psi_{n}(\vec{k}, \vec{r}) \tag{2.27}
\end{equation*}
$$

where \hat{H} is the Hamiltonian described in Eq. (2.7). The crystal wavefunction $\psi_{n}(\vec{k}, \vec{r})$ were expanded as a serics in the basis function $\phi_{i}(\vec{k}, \vec{r})$

$$
\begin{equation*}
\psi_{n}(\vec{k}, \stackrel{+}{r})=\sum_{i} a_{n i}(\vec{k}) \phi_{i}(\vec{k}, \stackrel{\rightharpoonup}{r}) \tag{2.28}
\end{equation*}
$$

in which n is the band index and \vec{k} is the wave vector of the state. 'Ihe set of basis functions consisting of only atomic states does not form a complete set, so the corresponding eigenfunctions are not the exact solution of the Sehädinumer equation. However, inclusion of all the
bound states and some of the excited states can be expected to yield a fair approximation to the actual wavefunctions. The expansion coefficient $a_{n i}(k)$ and energy $E_{n}(\vec{k})$ are to be determined by solving the Secuiar equation

$$
\begin{equation*}
\operatorname{Det}\left|H_{m n}(\vec{k})-\varepsilon S_{m n}(\vec{k})\right|=0 \tag{2.29}
\end{equation*}
$$

where

$$
\begin{align*}
H_{m n}(\vec{k}) & =\left\langle\phi_{m}(\vec{k}, \vec{r})\right| \hat{H}\left|\phi_{n}(\vec{k}, \vec{r})\right\rangle \\
& ={\underset{R}{R}}_{R_{\mu}} e^{-i \vec{k} \cdot \vec{R}_{\mu} \int u_{m}^{\star}\left(\vec{r}-\vec{R}_{\mu}\right) \hat{H} u_{n}(\vec{r}) d^{3} r} \\
& =T_{m n}(\vec{k})+V_{m n}(\vec{k}) \tag{2.30}
\end{align*}
$$

The kinetic energy matrix is given by

$$
T_{m n}(\vec{k})=\sum_{R_{\mu}} e^{-i \vec{k} \cdot \vec{R}_{\mu}} \int u_{m}^{*}\left(\vec{r}-\vec{R}_{\mu}\right)\left(-\nabla^{2}\right) u_{n}(\vec{r}) d^{3} r
$$

The matrix element of the crystal potential expanded in Fourier series over the reciprocal lattice vectors can be expressed as follows

$$
v_{m n}(\vec{k})=\sum_{K_{s}}\left[V_{c}\left(\vec{k}_{s}\right)+\alpha V_{x \sigma}\left(\vec{k}_{s}\right)\right] S_{m n}\left(\vec{k}_{s}, \vec{k}_{s}\right)
$$

The generalized overlap matrix is given by

$$
S_{m n}\left(\vec{k}^{\prime} \vec{k}_{s}\right)=\sum_{R_{\mu}} e^{-i \vec{k} \cdot \vec{R}_{\mu}} \int u_{m}^{*}\left(\vec{r}^{(}-\vec{R}_{\mu}\right) e^{i \vec{k}_{s} \cdot \vec{r}_{r}} u_{n}(\vec{r}) d^{3} r \quad .
$$

For a crystal with inversion symmetry the $e^{i \vec{k}_{s} \cdot \vec{r}}$ term in the above equation can be replaced by $\cos \left(\vec{k}_{\mathrm{S}} \cdot \vec{r}\right)$. The overlap matrix element in Eq. (2.29) is

$$
\begin{equation*}
S_{m n}(\dot{k})=S_{m n}(\vec{k}, \overrightarrow{0}) \tag{2.34}
\end{equation*}
$$

All these matrix elements can be evaluated analytically provided one choose linear combinations of GTO as the basis functions. No method has yet been found to express them in a closed form when the atomic wave functions are expanded in Slater-type orbitals. This was the reason for choosing GTO in the expansion of the basis function. We shall evaluate the integral $<u_{\ell, m, n}\left(\dot{r}_{A}\right) \mid\left(\cos \vec{K} \cdot \dot{r}_{C} \mid u_{q, s, t}\right.$ $\left(\vec{r}_{\mathrm{B}}\right)>$ following the procedure modified by chaney and Dorman. ${ }^{56}$ The function $u_{\ell m n}(\vec{r})$ are GT() of order (ℓ, m, n)

$$
\begin{equation*}
u_{\ell, m, n}(\vec{r})=x^{\ell} y^{m} z^{n} e^{-\alpha r^{2}} \tag{2.35}
\end{equation*}
$$

Appropriate normalization constants for both the orbital and the angular parts of the wavefunctions have to be included. The orbital on the left hand side has exponent α_{1} and is centered at lattice site \vec{A} and that on the right hand side has exponent α_{2} and is centered at \vec{B}. The coordinates for various points are shown in Fig.]. The integral appearing in Eq. (2.33) can be obtained by putting \vec{B} and \vec{C} at the origin.

$$
\begin{align*}
& \left.u_{\ell, m, n}\left(\vec{r}_{A}\right)\left|\cos \vec{k} \cdot \vec{r}_{C}\right| u_{q, s, t}\left(\vec{r}_{B}\right)\right\rangle \\
& =\int d^{3} r x_{A}^{\ell} y_{A}^{m} z_{A}^{n} e^{-\alpha} 1_{A}^{r_{A}^{2}} \cos \vec{k} \cdot \vec{r}_{C} x_{B}^{q} y_{B}^{s} z_{B}^{t} e^{-\alpha} r_{B}^{2} \tag{2.36}
\end{align*}
$$

where

$$
\vec{r}_{\mathrm{A}}-\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{A}}, \vec{r}_{\mathrm{B}}=\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{B}} \text { and } \vec{r}_{\mathrm{C}}=\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{C}} .
$$

The product of two Gaussians situated at center \vec{A} and \dot{B} is proportional to a third Gaussian situated at a point í along the line $\overrightarrow{A B}$

$$
\exp \left(-\alpha_{1} r_{A}^{2}-\alpha_{2} r_{B}^{2}\right)=\exp \left[-\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}} \overrightarrow{R A}^{2}\right] \exp \left[-\left(\alpha_{1}+\alpha_{2}\right) r_{D}^{2}\right]
$$

where

$$
\begin{equation*}
\vec{D}=\frac{\alpha_{1} \vec{A}+\alpha_{2} \vec{B}}{\alpha_{1}+\alpha_{2}} \tag{2.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}} \tag{2.39}
\end{equation*}
$$

Writing

$$
\vec{r}_{A}=\vec{r}_{D}+\overrightarrow{A D}, \vec{r}_{B}=\vec{r}_{D}+\overrightarrow{B D} \text { and } \vec{r}_{C}=\vec{r}_{C}+\overrightarrow{C D}
$$

and taking the binomial expansion, the integral can be written as
$\xi \quad \underset{a b c}{y}\binom{l}{a}\binom{m}{b}\binom{n}{c}\binom{q}{d}\binom{s}{e}\binom{t}{f} \quad(A D)_{x}^{l-a}(A D)_{y}^{m-b}(A D)_{z}^{n-c}$ abc def

$$
(B D)_{x}^{\mathrm{q}-\mathrm{d}}(\mathrm{BD}){\underset{Y}{s-e}(B D)_{Z}^{t-f} .}^{s-f}
$$

$\left|\cos \vec{K} \cdot \overrightarrow{C D} \cdot u_{a, b, c}\left(\vec{r}_{D}\right)\right| \cos \vec{k} \cdot \dot{r}_{D}\left|u_{d, e, f}\left(\vec{r}_{D}\right)\right\rangle$

$$
-\sin \vec{k} \cdot \overrightarrow{C D}^{r} \cdot u_{a, b, c}\left(\vec{r}_{D}\right)\left|\sin \vec{k} \cdot \vec{r}_{D}\right| u_{d, e, f}\left(\vec{r}_{D}\right), l
$$

where

$$
\begin{equation*}
\xi=\exp \left[-\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}} \vec{A} B^{2}\right] \tag{2.42}
\end{equation*}
$$

and ($\left.\begin{array}{l}\ell \\ a\end{array}\right)$ are binomial coefficients with $0 \leq a \leq \ell$. The remaining integrals are central cell integrals about lattice site \vec{D}. These can be evaluated analytically in Cartesian coordinates. For a crystal with inversion symmetry only those terms which are even functions of K_{x}, K_{y}, and K_{z} will contribute. The integral can be reduced to

$$
\begin{aligned}
& \therefore \quad \therefore \quad\binom{\ell}{a}\binom{m}{b}\binom{n}{c}\binom{\mathrm{q}}{d}\binom{\mathrm{~s}}{\mathrm{e}}\binom{\mathrm{t}}{\mathrm{f}} \quad(\mathrm{AD})_{\mathrm{x}}^{\ell-\mathrm{a}}(\mathrm{AD})_{\mathrm{y}}^{\mathrm{m}-\mathrm{b}}(\mathrm{AD})_{\mathrm{z}}^{\mathrm{n}-\mathrm{c}} \\
& \text { def }
\end{aligned}
$$

$$
\begin{align*}
& (-1)^{a+b+c+d+e+f} G_{a+d}\left(K_{x}, C D_{x}\right) G_{b+e}\left(K_{y}, C D_{y}\right) \\
& \mathrm{G}_{\mathrm{C}+\mathrm{f}}\left(\mathrm{~K}_{\mathrm{z}}, \mathrm{CD}_{\mathrm{z}}\right) \tag{2.43}
\end{align*}
$$

In the case that n is an even number

$$
G_{n}(K, R)=\frac{(-1)^{n / 2}}{2^{n}}(\pi \gamma)^{1 / 2} \exp \left(-\frac{\gamma K^{2}}{4}\right) H_{n}\left(\frac{K}{2}, \gamma\right) \cos (K R)
$$

$$
\begin{equation*}
\gamma=\frac{1}{\alpha_{1}+\alpha_{2}} \tag{2.45}
\end{equation*}
$$

$H_{n}\left(\frac{K}{2}, r\right)$ is a Hermite polynomial satisfying the following recurrence relation

$$
\begin{equation*}
H_{n+2}\left(\frac{K}{2}, \gamma\right)=K \gamma H_{n+1}\left(\frac{K}{2}, \gamma\right)-2(n+1) \gamma H_{n}\left(\frac{K}{2}, \gamma\right) \tag{2.46a}
\end{equation*}
$$

with

$$
\begin{equation*}
H_{o}\left(\frac{\mathrm{~K}}{2}, \gamma\right)=1 \tag{2.46b}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{H}_{1}\left(\frac{\mathrm{~K}}{2}, \gamma\right)=\mathrm{Kr} \tag{2.46c}
\end{equation*}
$$

In the case in which n is an odd number,

$$
G_{n}(K, R)=K l\left(\frac{n}{2}+1\right) \gamma^{\frac{n}{2}+1}{ }_{1} F_{1}\left(\frac{n}{2}+1, \frac{3}{2} ;-\frac{\gamma K^{2}}{4}\right)
$$

where ! $\left(\frac{n}{2}+1\right)$ is the Gamma function and ${ }_{1} F_{1}\left(\frac{n}{2}+1, \frac{3}{2}\right.$; $-\frac{K^{2}}{4}$) is a confluent hypergeometric function satisfying the following relation

$$
\begin{align*}
& \frac{\mathrm{n}}{2} \mathrm{~F}_{1}\left(\frac{\mathrm{n}}{2}+1, \frac{3}{2} ; \mathrm{x}\right)+\left(\frac{3}{2}-\mathrm{n}-\mathrm{x}\right){ }_{1} \mathrm{~F}_{1}\left(\frac{\mathrm{n}}{2}, \frac{3}{2} ; x\right) \\
& \quad+\left(\frac{\mathrm{n}}{2}-\frac{3}{2}\right){ }_{1} \mathrm{~F}_{1}\left(\frac{\mathrm{n}}{2}-1, \frac{3}{2} ; x\right)=0 \tag{2.48a}
\end{align*}
$$

with

$$
\begin{equation*}
{ }_{1} F_{1}\left(\frac{3}{2}, \frac{3}{2} ; x\right)=e^{x} \tag{2.48b}
\end{equation*}
$$

and

$$
\begin{equation*}
1_{1} F_{1}\left(\frac{5}{2}, \frac{3}{2} ; x\right)=\left(1+\frac{2}{3} x\right) e^{x} \tag{2.48c}
\end{equation*}
$$

The overlap matrix element can easily be obtained by setting $\hat{K}=0$. The gradiant and kinetic energy matrix elements can be expressed as linear combinations of overlap matrix elements in the following way

$$
\begin{aligned}
& \left\langle u_{\ell, m, n}\left(\dot{r}_{A}\right)\right| v_{x}\left|u_{q, s, t}\left(\vec{r}_{B}\right)\right\rangle \\
& =4 u_{\ell, m, n}\left(\vec{r}_{A}\right) \mid u_{q-1, s, t}\left(\vec{r}_{B}\right) \quad-2 \alpha_{2}\left\langle u_{\ell, m, n}\left(\vec{r}_{A}\right) \mid u_{Q+1, s, t}\left(\overrightarrow{r_{B}}\right)\right\rangle
\end{aligned}
$$

and

$$
\begin{align*}
& <u_{\ell, m, n}\left(\vec{r}_{A}\right)\left|-\nabla_{x}^{2}\right| u_{q, s, t}\left(\vec{r}_{B}\right)> \\
& =-q(q-1)<u_{\ell, m, n}\left(\vec{r}_{A}\right) \mid u_{q-2, s, t}\left(\vec{r}_{B}\right) \\
& \left.+2 r_{2}(2 q+1)<u_{\ell, m, n}\left(\vec{r}_{A}\right) \mid u_{q, s, t}\left(\vec{r}_{B}\right)\right) \\
& \quad-4 \alpha_{2}^{2}<u_{\ell, m, n}\left(\vec{r}_{A}\right)\left|u_{q+2, s, t}\left(\vec{r}_{B}\right)\right\rangle \tag{2.50}
\end{align*}
$$

Similar expression can be obtained for the y and z components.

The Hamiltonian and overlap matrix elements are either real or imaginary depending on the parity of the wavefunction. We label them as follows

where

$$
\begin{equation*}
I_{m n}=\left\langle u_{m}\left(\vec{r}-\vec{R}_{\mu}\right)\right| \hat{H}\left|u_{n}(\vec{r})\right\rangle . \tag{2.52}
\end{equation*}
$$

Consider the unitary transformation $H^{\prime}=U H U^{-1}$ with

$$
\mathrm{U}=\left(\begin{array}{lll}
1 & 0 & 0 \tag{2.53}\\
0 & 1 & 0 \\
0 & 0 & \mathrm{i}
\end{array}\right)
$$

The result is

$$
\begin{aligned}
& \text { d }
\end{aligned}
$$

Here H^{\prime} is real and symmetry but the pd and ps block must be evaluated with care to avoid a possible error of negative sign. The eigenvectors of the transformed secular equation are

$$
\begin{equation*}
a_{n i}^{\prime}(\vec{k})=\sum_{m} u_{n m} a_{m i}(\vec{k}) \tag{2.55}
\end{equation*}
$$

The momentum matrix elements between the cell periodic part of the wavefunctions $w_{n}(\vec{k}, \vec{r})=e^{-i \vec{k} \cdot \vec{r}_{\psi}} \psi_{n}(\vec{k}, \vec{r})$ (the crystal momentum representation) are defined as

$$
\begin{equation*}
\overrightarrow{\mathrm{P}}_{\mathrm{nm}}(\overrightarrow{\mathrm{k}})=\vec{M}_{\mathrm{nm}}(\overrightarrow{\mathrm{k}})+\overrightarrow{k \mathrm{k}} \delta_{\mathrm{nm}} \tag{2.56}
\end{equation*}
$$

in which the momentum matrix elements between the crystal wavefunctions $\vec{M}_{n m}(k)$ can be evaluated in a similar way

$$
\begin{align*}
\vec{M}_{n m}(\vec{k}) & =\sum_{i j} a_{n i}^{*}(\vec{k}) \vec{p}_{i j}(\vec{k}) a_{m j}(\vec{k}) \\
& =\sum_{i j}\left(U^{-1} a^{\prime}(k)\right)_{n i}^{\star} \vec{p}_{i j}(\vec{k}) \quad\left(U^{-1} a^{\prime}(\vec{k})\right)_{m j} \\
& =\sum_{i j} a_{n i}^{\prime}(\vec{k})^{\star}\left(U \vec{p}(\vec{k}) \quad U^{-1}\right)_{i j} a_{m i j}^{\prime}(\vec{k}) \tag{2.57}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{d} \text { s p }
\end{aligned}
$$

The gradiant matrix elements

$$
\begin{equation*}
\left.\hat{v}_{\mathrm{nm}}=u_{\mathrm{n}}\left(\vec{r}-\dot{R}_{H}\right)|\vec{v}| u_{\mathrm{m}}(\vec{r})\right\rangle \tag{2.49b}
\end{equation*}
$$

In the next section we shall discuss the selfconsistency procedure and the choice of the exchange parameter ${ }^{2}$.

C. Self-Consistent Procedure

In this section we shall outline the essential
feature of the self-consistency procedure. ${ }^{59}$ This is accomplished by an iterative method. At any given iteration a potential was constructed from the band wavefunctions calculated in the previous iteration. The new potential was again used to calculate a new set of wavefunctions. The procedure was repeated until the desired degree of convergence was achieved.

The fundamental problem is to determine a new (or iterated) potential after a given stage of band structure has been completed. Since the calculation requires anly the Fourier coefficients of the potential it suffices to ohtain these. It was observed that only the Fourier coefficients of the potential for a few of the shortest reciprocal lattice vectors need to be considered in the iterative procedure to achieve self-consistency. Higher coefficients describe the charge density deep inside the core of an atom and do not change appreciably. For $\vec{k}_{\mathrm{s}} \neq 0$ the Fourier coefficients of the coulomb potential can be expressed 57

$$
\begin{equation*}
V\left(\vec{K}_{s}\right)=\frac{-8 \pi Z}{\Omega K_{s}^{2}}+8 \pi \frac{\rho\left(\vec{K}_{s}\right)}{K_{s}^{2}} \tag{2.59}
\end{equation*}
$$

The Fourier coefficients of the electron density are given by

$$
\begin{equation*}
\rho\left(\vec{K}_{S}\right)=\frac{1}{N} \int \rho(\vec{r}) e^{-i \vec{K}_{S} \cdot \vec{r}_{r}} d^{3} r \tag{2.60}
\end{equation*}
$$

in which the charge density can be written as

$$
\begin{equation*}
\rho(\vec{r})=\sum_{\substack{n \vec{k} \\ \text { occupied }}}\left|\psi_{n}(\vec{k}, \vec{r})\right|^{2} \tag{2.61}
\end{equation*}
$$

The Bloch function $\psi_{n}(\vec{k}, \stackrel{r}{r})$ are defined in Eq. (2.28). The summation includes that portion of the Brillouin zone in which band n is occupied. Substituting Eq. (2.61) into Eq. (2.60) and converting the sum on \dot{k} into an integral one obtains

$$
\begin{align*}
\rho\left(\vec{K}_{S}\right)= & \frac{1}{(2 \pi)^{3}} \sum_{\text {occupied }}^{i} \sum_{i j} \int d^{3} k a_{n i}^{*}(\vec{k}) S_{i j}\left(\vec{k}, \dot{K}_{s}\right) \\
& a_{n j}(\vec{k}) \tag{2.62}
\end{align*}
$$

The generalized overlap matrix $S_{i j}\left(\vec{k}^{\prime} \vec{K}_{s}\right)$ has been defined in Eq. (2.33). In the case $\dot{K}_{s}=0$ the Fourier coefficient of the coulomb, potential must be determined by a limiting process

$$
V(0)=\underset{K \rightarrow 0}{\frac{1}{i} i m}\left[-\frac{8 \pi Z}{\Omega K^{2}}+\frac{8 \pi}{K^{2}} \frac{1}{N \Omega} \int e^{-i \vec{K} \cdot \vec{r}} \rho(r) d^{3} r\right]
$$

This limit exists and can be obtained by expanding the exponential term in powers of $|\vec{K}|$ before taking the limit $\dot{k}+0$. The result is

$$
\begin{equation*}
V(0)=\frac{-4 \pi}{3 \Omega} \int_{\operatorname{cell}} \rho(\vec{r}) r^{2} d^{3} r \tag{2.64}
\end{equation*}
$$

The integral is over the volume of a primitive cell. The charge in $V(0)$ at a given stage of iteration can be evaluated analytically if we make the following assumption: first, the integral over a primitive cell can be replaced by that over the Wigner-Sitz sphere, and second, the change in $\rho(\vec{K})$ is spherically symmetric. Thus we can write

$$
\begin{equation*}
\Delta \rho(\vec{r})={\underset{K}{K}}^{\sum_{S}} \Delta \rho\left(\left|\vec{K}_{s}\right|\right) e^{i \dot{K}_{s} \cdot \vec{r}} \tag{2.65}
\end{equation*}
$$

Substituting Eq. (2.65) into Eq. (2.64) and evaluating the integral one obtains

$$
\begin{aligned}
& \Delta V(0)=\frac{-16 \pi^{2}}{3 \Omega} \sum_{\mathrm{K}_{s}} \Delta \rho\left(\left|\vec{K}_{s}\right|\right) \quad\left[\left(\frac{3 r_{o}^{2}}{\left|\overrightarrow{\mathrm{~K}}_{s}\right|^{3}}-\frac{6}{\left|\overrightarrow{\mathrm{~K}}_{s}\right|^{5}}\right)\right. \\
& \left.\sin \left(\left|\vec{k}_{s}\right| r_{0}\right)+\left(\frac{6 r_{o}}{\left|\vec{k}_{S}\right|^{4}}-\frac{r_{0}^{3}}{\left|\vec{k}_{S}\right|^{2}}\right) \cos \left(\left|\vec{k}_{s}\right| r_{o}\right)\right]
\end{aligned}
$$

where r_{0} is the radius of the Wigner-sitz sphere.
The exchange potential presents more difficulty because of the cube root dependence on the charge density. It was evaluated in the following way: The change in the Fourier coefficienes of charge density was averaged over directions of K_{s} and the raiulting Founier senies was sunmed to determine the change in charge density in an atomic cell for each spin. This was added to the starting charge density, the cube root was extracted, and a corrected exchange potential was formed. The corresponding fourier coefficients are obtained by a numerical 96 point Gaussian integration. The procedure just described has the disadvantage that the convergence in $\Delta \rho\left(\vec{K}_{S}\right)$ is slower than that in $\Delta V_{C}\left(\vec{K}_{S}\right)$ by an extra factor of K_{S}^{2} and more terms in $\Delta V_{C}\left(\vec{V}_{s}\right)$ have to be considered than necessary. An alternative procedure is to construct the iterated charge density directly from Eq. (2.61) and (2.28). This modification has been included in the self-consistency program listed in Appendix C.

The changes in the coulomb and exchange potential were added to the Hamiltonian matrix in the following way

$$
H_{i j}(\vec{k})=H_{i j}^{O}(\vec{k})+\sum_{K_{s}}\left(\Delta V_{c}\left(\vec{k}_{s}\right)+\alpha \Delta V_{x}\left(\vec{K}_{s}\right)\right] S_{i j}\left(\vec{k}_{,} \vec{K}_{s}\right)
$$

The $H_{i j}(\vec{k})$ was the iterated Hamiltonian while $H_{i j}^{O}(\vec{k})$ was the original Hamiltonian matrices defined in Eq. (2.30). The new Hamiltonian was again diagonalized to obtain a new set of eigenvalues and eigenfunctions. This procedure was repeated until the desired degree of convergency has been achieved. At first, our calculation employed a value of the exchange parameter α close to unity $(\alpha=0.972)$, which had been found to give the most satisfactory results. ${ }^{10}$ The charge density was sampled at 20 points in 1/48th of the Brillouin zone. Reasonably self-consistent results were obtained after about eight iterations. The resulting energy bands appeared to be unsatisfactory, both in regard to the relation of the p and d bands, and in regard to the magneton number. Estimates were made which indicated that the exchange parameter x should be decreased. It appeared that $\alpha=2 / 3$ should be employed and the selfconsistent calculations were repeated with this value. The results obtained in this case appeared to be in substantially better agreement with experiment.

Our experience with the effect of exchange on the band structure is similar to that reported by connolly. ${ }^{15}$ We found, in agreement with Connolly, that if the full Slater exchange is used, the energy of the state L_{2}^{\prime}, for both spin directions, is above the Fermi energy. Hence there would be no Fermi surface neck at L. The reduction of the exchange potential produced by use of the Kohn-ShamGaspar value of the parameter a raises the d levels substantially more than those of p symmetry. The L_{2}^{\prime} levels are then below the Fermi surface, while the large spin splitting of the L_{3} states forces $L_{3 \downarrow}$ above the surface. Another point of practical interest has to do with the number of iterations necessary to achieve convergence. In principle, when self-consistency has been reached, the iterated potential $V_{\text {out }}\left(\stackrel{*}{K}_{S}\right)$ should be equal to the input potential $V_{\text {in }}\left(\vec{K}_{s}\right)$ based on which $V_{\text {out }}\left(\dot{K}_{S}\right)$ are evaluated. Therefore, one should be free to modify the input potential at the beginning of each iteration by using

$$
\begin{equation*}
v_{\text {in }}^{\prime}\left(\vec{k}_{s}\right)=\beta v_{\text {out }}\left(\vec{K}_{s}\right)+(1-\beta) v_{\text {in }}\left(\vec{K}_{s}\right) \tag{2.68}
\end{equation*}
$$

where the unprimed $V\left(\vec{K}_{S}\right)$ are the iterated and input potentials for the last iteration. The weighting factor if was allowed to vary between 0 and 1 . We observed that the chance in the pourier coefficients of the coulomb potential $\therefore V_{C}\left(K_{S}\right)$ oscillated rapidly about their final
convergent values in the first few iterations. This can be avoided if we choose a value of β which will bring $\Delta V_{C}\left(\vec{K}_{s}\right)$ closer to their convergent values. A value of B close to 0.3 seemed to work very well for the first few iterations for transition metals. It should be increased when the oscillations settle down, especially the change in $V_{C}(K)$ becomes monotonic. The changes in the relative position of energy levels L_{2}^{\prime}, L_{3} and the Fermi energy produced an additional problem. The change in the Fourier coefficients appareatly became divergent after a rough degree of convergence seemed to have keen achieved. This was caused by oscillations in the position of L_{2}^{\prime} with respect to the fermi energy and could only be solved by introducing a very small value of B. The criterion employed to define an adequate degree of self-consistency was that the Fourier coefficients of Coulomb potential should be stable to 0.002 Ry . For the case $\alpha=2 / 3$, eight iterations were made using 20 points in $1 / 48$ th of the Brillouin zone, followed by three iterations using 89 points. It was sufficient to consider only Fourier coefficients of potential for the 50 shortest reciprocallattice vectors in the iterative procedure to achieve selfconsistency. The convergence of the exchange potential is somewhat more rapid than that for the Coulomb potential

Numerical values are presented for some Fourier coefficients in Table I. The calculated band structure is shown in Figs. II and III for electrons of majority (1) and minority spins (t) along some symmetry directions. The bands have the expected shape, showing hybridization between the relatively narrow d band complex and a broad s-p band. Certain characteristic energy differences are listed in Table II. There is a substantial degree of agreement between our values for some of these separations and the corresponding results obtained by connolly. ${ }^{15}$ These energy differences are also in fair agreement with the results of Wakoh, ${ }^{17}$ however, this author uses the full Slater exchange ($x=1$).

Exchange splittings of certain states are given in Table III. Results from the non-self-consistent calculation ($x=0.972$), together with other self-consistent calculations, ${ }^{15,17}$ are shown for comparison. It is seen that the splitting of states of predominately d symmetry has decreased slightly but not by as much as would have been expected in view of the decrease in α. There is significant variation in the amount of splitting from band to band. A striking result is that the splitting of states of predominately $s-p$ symmetry is nearly zero. These results can be qualitatively explained in terms of the redistribution of spin density which will be discussed in section A of Chapter III. The spin polarization
becomes negative (minority spin predominates) in the outer portions of the atomic cell. Highly extended states (s-p) experience cancellation of positive and negative exchange potentials. The more extended d states near the bottom of the band are also located on the average in a region of weaker exchange potential.

The self-consistent energy bands and wave functions were used to calculate the spin density, X-ray form factor and Compton profile. In the next section we discuss the inclusion of the spin orbit interaction to the selfconsistent potential.
D. Spin Orbit Coupling

The calculation previously described was extended by the inclusion of spin orbit coupling. Other relativistic effects were neglected. Introduction of spin orbit coupling into a band calculation for a ferromagnet causes substantial complications. First, since spin orbit coupling connects states of \uparrow and \downarrow spin, the size of the Hamiltonian matrix is increased (in our case 76×76), and the elements become complex. This causes a considerable increase in computing time. Second, the symmetry group is reduced. The appropriate group theory has been presented by Falicov and Ruvalds ${ }^{58}$ and racknell. In addition the band structure depends on the direction of spin alignment. separate band structures must be computed for each
direction spin alignment investigated. However, because of limitations of computer time, we have restricted our calculations to a single direction of spin alignment: the [001] axis.

Falicov and Ruvalds ${ }^{58}$ considered for inclusion in the space group: (1) the ordinary lattice translation, (2) rotation about the direction of spin alignment, \hat{n}, (3) the product of these rotations with the inversion, and (4) combinations of these rotation and rotation-inversion with translation. Wigner pointed out that there may be an additional symmetry to be considered. ${ }^{59}$ Although time reversal, by itself, is not a symmetry operation, the product of time reversal and either a two-fold rotation about an axis perpendicular to the field direction \hat{n} or a reflection in a plane containing the \widehat{f} axis is a candidate for a symmetry operation of the crystal. A detailed discussion of the additional symmetry operations has been presented by Cracknell. 60

The computation of the matrix elements of the spin orbit interaction was performed as follows. The additional term in the llamilionian has the form

$$
\begin{equation*}
H_{s .0} \frac{\hbar}{4 m^{2} c^{2}} \therefore\left(v_{c} \times \vec{p}\right) \tag{2.69}
\end{equation*}
$$

The potential V_{c} used in (2.69) was that obtained from the self-consistent band calculation, expressed as a fourier
series

$$
\begin{equation*}
V_{c}={\underset{k}{k}} V_{c}\left(\vec{k}_{s}\right) e^{i \dot{k}_{s} \cdot \dot{r}} \tag{2.70}
\end{equation*}
$$

Use of Gaussian orbitals is advantageous, as all matrix elements of the $H_{s} . O$. Can be reduced to sums of simple analytic functions of the reciprocal lattice vectors. We found in several tests that the only non-negligible matrix elements of $H_{s . o . ~ a r e ~ t h o s e ~ i n ~ t h e ~} p-p$ and $d-d$ blocks, with orbitals centered on the same atomic site ("central cell"). The central cell matrix elements of $\mathrm{H}_{\text {s.o. }}$. have the following form

$$
\mathrm{H}_{\text {s.o. }}=\left|\begin{array}{cc}
\uparrow & \downarrow \tag{2.71}\\
v_{1} & v_{2} \\
& \left.+\left|\begin{array}{cc}
\\
-v_{2}^{*} & v_{1}^{\star}
\end{array}\right|| | c c \right\rvert\,
\end{array}\right|
$$

in which the spin states considered are indicated by arrows. The forms of the sub-matrices v_{1} and v_{2} are as follows for the p-p block:

$$
\cdot \mathrm{P}\left|v_{1}\right| \mu=-y_{\uparrow}\left|\begin{array}{lll}
x \uparrow & y \uparrow & z \uparrow \tag{2.72}\\
0 & i A & 0 \\
-i \Lambda & 0 & 0 \\
0 & 0 & 0
\end{array}\right|
$$

The symmetries of the basis states are indicated above and to the left of the matrix.

In these equations,

$$
\begin{equation*}
A=\left(\frac{3}{4 \pi}\right) N \underset{K}{K} V(K) K^{2} F(K) \tag{2.74}
\end{equation*}
$$

in which

$$
\begin{equation*}
F(K)=\frac{h^{2}}{24 m^{2} c^{2}} \pi^{3 / 2} \gamma^{5 / 2} \exp \left(\frac{-\gamma K^{2}}{4}\right) \tag{2.75}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{1}{x_{1}+x_{2}} \tag{2.76}
\end{equation*}
$$

The sums include all reciprocal lattice vectors; ${ }_{1}$ and u_{2} are the exponents of the Gaussian orbitals, and N is the product of the appropriate normalization constants. The corresponding formulas for the d-d block are ${ }^{61}$
$x y^{\dagger} \quad y z \uparrow \quad z x \uparrow \quad x^{2}-y^{2} \uparrow \quad 3 z^{2}-r^{2} \uparrow$

$x y \downarrow \quad y z \downarrow \quad z x \downarrow \quad x^{2}-y^{2} \downarrow \quad 3 z^{2}-r^{2} \downarrow$

where

$$
\begin{align*}
1 & \frac{15}{4} \sum_{K} V(K) F(K)\left[x_{2} \gamma^{2}\left(K_{X}^{4}+K_{Y}^{4}+K_{z}^{4}\right)\right. \\
& \left.+\left(2 x_{1}^{-r}\right)_{2}\right) \gamma^{2}\left(K_{x}^{2} K_{Y}^{2}+K_{Y}^{2} K_{z}^{2}+K_{z}^{2} K_{X}^{2}\right)-4 K^{2} 1 \tag{2.79}
\end{align*}
$$

$$
C=\frac{15}{4 \pi} \frac{N_{Y}}{4} \sum_{K} V(K) \quad F(K) \quad\left[Y\left(K_{X}^{2} K_{Y}^{2}+K_{Y}^{2} K_{z}^{2}+K_{z}^{2} K_{x}^{2}\right)-2 K^{2}\right]
$$

All of the basis functions are assumed to be normalized with respect to the angular integrations so that N depends on the orbital exponents only. Spherical symmetry of the potential has not been assumed in writing these formulas. There are in this case, two independent constants involved in the $d-d$ spin orbit Hamiltonian. In fact, spherical symmetry is a good approximation, since it is the potential close to a nucleus which is important. For a spherically symmetric potential, we have simply

$$
\begin{equation*}
B=2 C=\xi, \tag{2.81}
\end{equation*}
$$

where ξ is the usual spin orbit coupling parameter if atomic wave functions are employed in the usual form, $\mathrm{H}_{\mathrm{S} . \mathrm{O}}=\mathrm{S}, \mathrm{L} \cdot \mathrm{S}$.

In our calculation, the spin orbit parameters, A, B, C, depend on the indices of the pair of orbital functions used in calculating the matrix elements. In order to compare calculations of properties of nickel which are dependent on spin orbit coupling, it is useful to compute an equivalent atomic spin usbit coupling parameter. This calculation was performed with the wavefunctions of

Wachters ${ }^{53}$ and our self-consistent potential. We found $\xi=0.0067 \mathrm{Ry}$. This result is somewhat larger than the atomic value $\xi=0.0055 \mathrm{Ry} .{ }^{62}$ The difference between B and 2C was found to be zero within the accuracy of our calculation.

The Hamiltonian including exchange and spin orbit coupling was diagonalized at 1357 points in $1 / 16^{\prime}$ th of the Brillouin zone. The calculated band structure is shown along certain symmetry lines in Fig. IV. Some calculated energy levels at symmetry points are listed in Table IV. Since the actual symmetry group for this problem does not permit a particularly informative classification of states, we have labelled states at symmetry points in $F i g$. IV in terms of the predominant component; that is, neglecting the mixing of states of majority and minority spin components. This labelling is possible since spin orbit coupling is small compared to the exchange splitting. It will be noticed that the band structure shown in Fig. IV is quite similar to that formed by superposing the majority and minority spin bands shown in Fig . II and III. However, spin orbit coupling removes many of the accidental degeneracies present in such a picture. The interplay of spin orbit and exchange effects can be illustrated by considering the points X. In the present case, there are two ineruivalent points of this type which are not connected by an operation of the symmetry group: these
are denoted $\mathrm{X}(001)$ and $\mathrm{X}(100)$. Since the exchange splitting is large compared to spin orbit coupling, we can qualitatively consider the latter as a perturbation. Specifically, let us consider the states $X_{5 \downarrow}$ near the top of the d band. For $X(100)$, the basis functions are of the symmetry $x y^{\downarrow}, x^{\downarrow} \downarrow$. Spin orbit coupling does not connect these states, instead there is coupling between these and other majority and minority spin states. Since these states are separated from $\mathrm{X}_{5 \downarrow}$, the splitting of $\mathrm{X}_{5 \downarrow}$ is small (0.0012 Ry). On the other hand, for $\mathrm{x}(001)$, the basis function are $z y, z x$. There is a non-zero spin orbit matrix element between these states, leading to a considerably larger splitting (0.0078 Ry.).

In the following chapter, results are presented for the charge density, the spin density, the Compton Profile, the density of states, the Fermi surface, and the optical conductivity tensor. A detailed comparison of theory and experiment is attempted.

CHAPTER III
APPLICATIONS AND RESULTS

In this chapter the energy and wavefunctions obtained in our calculation are compared with experiment. We present in Section A the spin and charge density. Section B contains a discussion of the method employed to calculate the momentum distribution of electrons in solids. The procedure used to calculate the density of states is described in Section C. Our results for Fermi surface properties are presented in Section D and are compared with experiment. Finally, the calculation of the optical conductivity is summarized in Section E.

Section A. Spin and Charge Density

The Kohn-Sham-Gaspar exchange prescription is based on a variational calculation of the total energy, regarded as a functional of the charge density. It is therefore particularly interesting to examine the results of our calculation with respect to the charge density. Some calculated charge densities along three main crystalloyraphic directions are listed in Table V. Contribution from the band electrons has been separated in the table. Figure V shows the band electron charge densities $p_{b}\left(\begin{array}{r}r\end{array}\right)$ along [100], [110], and [111] directions. The spherical averace Hartree-Fock atomic charqe densities based on

GTO ${ }^{53}$ are also included for comparison. The ground state atomic configuration $\left(3 d^{8}, 4 s^{2}\right)$ was employed. There is considerable asymmetry in the charge distribution as $n_{b}(\vec{r})$ is spread out along the [100] direction relative to the [110] and [lll] directions.

The contact charge density $\rho_{b}(0)$ in the solid differs from that in the atom as a result of two principal effects. ${ }^{63}$ First, the s wave functions are normalized within an atomic cell. This tends to increase $\rho_{b}(0)$ relative to a free atom. Second, hybridization mixes d and p components into a s band. This tends to reduce ${ }^{0}(0)$. There is some partially compensating increase due to inclusion of s charcter into primarily d-like bands. The final result for $f_{b}(0)$ is not greatly different from the free atom value.

The theoretical results for the Fourier coefficients of the charge density can be compared with experimental observations of the X-ray atomic scattering factor by Diana, Mazzone, and De Marco. 64 The results are presented in Table VI. The small differences between the theoretical values for $\dot{K} \sim[333]$ and \dot{K}_{\sim}. [511] and between \vec{K}_{\sim} [600] and $\dot{K}_{\sim}\{442$ I indicate slight departures of the charge distribution from spherical symmetry. Although there are deviations between theory and experiment which are outside the fuoted experimental error, we feel that the agreement is fairly (qood. In the case of the 1111$],[200]$ vectors, our
results are significantly closer to experiment than are values calculated from free atom Hartree-Fock charge densities for either $\mathrm{d}^{8} \mathrm{~s}^{2}$ or d^{10} configurations and reported by Diana et al.

The distribution of spin density in nickel has been investigated by Mook through neutron diffraction. ${ }^{65}$ This experiment determines a magnetic form factor, $f(\vec{K})$, which is the ratio of the magnetic scattering amplitude for a scattering vector \vec{K}, to that for $\vec{k}=0$. This function has been computed by Hodges, Ehrenreich, and Lang using their combined tight-binding and pseudopotential interpolation method. 18 It is customary to express $f(\vec{K})$ as the sum of three terms

$$
f(\vec{K})=\frac{2}{g} f_{\operatorname{spin}}(\vec{K})+\frac{(g-2)}{q} f_{\text {orb }}(\vec{K})+f_{\text {core }}(\vec{K})
$$

in which g is the spectroscopic splitting factor and has been determined to be 2.18 for $N i$. ${ }^{66}$ The quantity $f_{\text {spin }}$ is the form factor for the unpaired (mainly d) electrons, and is normalized so that $\mathrm{f}_{\text {spin }}(0)=1$:

$$
f_{\operatorname{spin}}(\dot{k})=(N v)^{-1} \int e^{i \vec{K} \cdot \vec{r}}[\rho \dagger(\dot{r})-n t(\dot{r})] d^{3} r,
$$

in which v is the magneton number. Although the core has a net spin of zero, exchange effects produce a slight difference in the radial distributions of \uparrow and \downarrow spin core electrons, and so, lead to a small contribution fcore. Finally, there is a contribution, forb from the possible unquenched orbital angular momentum of the d electrons. This term has been studied by Blume. ${ }^{67}$ However, the assumptions of this calculation are not in accord with the band picture described here.

We have calculated the spin and core contributions to $f(\vec{K})$, using the wavefunctions obtained from our band calculation. The formulas are obtained immediately from Eq. (2.62) and the results are tabulated in Table VII. The magnetic form factors are shown in Fig. VI where they are compared with the experimental values of Mook. A satisfactory, although not perfect degree of agreement is obtained. It will be noted that there can be considerable departures from spherical symmetry: f(k) is not simply a function of $|\vec{k}|$, in agreement with experiment.

It is also of interest to examine the position dependence of the spin density $\rho_{i}(\vec{r})-\rho_{\downarrow}(\vec{r})$. Results are shown in Fig. VII and Table VIII. Contribution from the core and band electrons are separated in the table. In contrary to the results of the charge distribution, the magnetic moment densities in [111] and [110] directions
are larger than that in [100] direction. This result is in agreement with Mook's analysis. The contribution to the contact charge density from electrons of minority spin is slightly larger than that from electrons of majority spin.

It will be noted that the spin density is negative at large values of \vec{r}, indicating that there is a net negative spin polarization in the outer portion of the atomic cell. This result is also in agreement with the measurement of positron annihilation. 68
B. Momentum Distribution of Electrons

Recently, there has been a renewed interest in the Compton scattering experiments in solids. Unlike X-ray scattering factors, which are insensitive to the outer electron charge density, the Compton measurements are sensitive to the momentum distribution of outer electrons. Thus the Compton scattering experiments can provide a critical test for the wavefunctions from energy band calculation.

Platzman and Tzoar, by considering time dependent scattering theory, justified the use of the impulse approximation in the theory of Compton line shape. ${ }^{69}$ The result can be summarized as follows: The impulse approximation is valid if (1) the wavelength of the incident photon is so short that it interacts with only
a single electron and ejects it instaneously from the Fermi sea, (2) the energy transferred to the electron is large enough that the collision time is much shorter than the time required for any rearrangement of the remaining electrons. The net effect is that the photon exchanges energy and momentum with a single electron in a constant potential field. The differential scattering cross section of photons from a system of electrons in solid can be shown to be

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \omega \mathrm{~d} \Omega}=\left(\frac{\mathrm{e}^{2}}{\mathrm{mc}}\right)^{2}\left(\vec{\varepsilon}_{1} \cdot \vec{\varepsilon}_{2}\right)^{2}\left(\frac{\omega_{2}}{\omega_{1}}\right) \frac{\mathrm{m}}{|\overrightarrow{\mathrm{k}}|} \frac{1}{\sqrt{\Omega}} J_{\hat{k}}(q)
$$

The Compton profile is given by

$$
\begin{equation*}
J_{\hat{k}}(q)=\frac{\Omega}{(2 \pi)^{3}} \int d^{3 \vec{p}} \mu(\vec{p}) \delta(q-\vec{p} \cdot \hat{k}) \tag{3.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{k}=\frac{\dot{k}}{|\vec{k}|} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\frac{m \omega}{|\vec{k}|}-\frac{|\vec{k}|}{2} \tag{3.6}
\end{equation*}
$$

Here $\hat{l}_{1}, \hat{2}_{2}, \hat{k}_{1}, \vec{k}_{2}$, and ω_{1}, ω_{2} are the polarization, moment um and frequency of the incident and the scattered
photons respectively, $\vec{k}=\vec{k}_{1}-\vec{k}_{2}$ and $\omega=\omega_{1}-\omega_{2}$ are the momentum and energy transferred to the electrons, and s is the volume of a primitive cell. The delta function appearing in Eq. (3.4) is deduced from the energy conservation

$$
\begin{equation*}
\omega=\frac{|\vec{k}|^{2}}{2 m}-\frac{\vec{k} \cdot \vec{p}}{m} \tag{3.7}
\end{equation*}
$$

The scattered photon is shifted in energy both by the momentum transfer $k^{2} / 2 \mathrm{~m}$ and the doppler shift component $(\vec{k} \cdot \overrightarrow{\mathrm{p}} / \mathrm{m})$. The momentum distribution function which also appears in Eq. (3.4) gives the probability of finding the initial electron with a given momentum \vec{p}.

The summation in Eq. (3.8) includes occupied states specified by band index n and wavevector \vec{g} and $\psi_{n}(\vec{q}, \vec{p})$ is the fourier transform of the Bloch wavefunction $\psi_{n}(\vec{g}, \vec{r})$

$$
\begin{aligned}
& \psi_{n}(\vec{g}, \vec{p})=\frac{1}{\sqrt{N \Omega}} \int e^{-i \vec{p} \cdot \vec{r}} \psi_{n}(\vec{g}, \vec{r}) d^{3} r
\end{aligned}
$$

where the second summation runs over all reciprocal lattice vectors $\dot{k}_{s}, a_{n i}(\dot{q})$ is the expansion coefficients of the crystal wavefunctions, and ${ }_{i}(\dot{p})$ is the fourier
transform of the atomic wavefunctions $u_{i}(\vec{r})$

$$
\begin{equation*}
x_{i}(\vec{p})=\frac{1}{\sqrt{\Omega}} \int e^{-i \vec{p} \cdot \vec{r}} u_{i}(\vec{r}) d^{3} r \tag{3.10}
\end{equation*}
$$

The expressions for $X_{i}(\vec{p})$ are given in Appendix A. The integral in Eq. (3.4) implies that the Compton profile measures the number of electrons having a fixed value of momentum in the direction of the photon's scattering vector \hat{k}.

Neglecting spin-orbit interaction, the expansion coefficients $a_{n i}(\vec{g})$ have been tabulated for 89 independent points in $1 / 48$ th of the Brillouin zone. The summation over all \vec{g} in the Brillouin zone may be expressed in terms of a sum over \vec{g} in the primitive $1 / 48$ th of the zone and a sum over group operations which generate the star of $\stackrel{\rightharpoonup}{g}$. The symmetry properties of the Bloch function can then be used to transform the variables of integration. The final form of the expression for the Compton profile is

$$
\begin{align*}
& \sum_{B} \delta\left[q-\left(\vec{g}+\vec{K}_{s}\right) \cdot \beta \hat{k}\right] \text {. } \tag{3.11}
\end{align*}
$$

The sum over k includes all operators in the cubic point aroup.

If a CTO involves the factor $e^{-\alpha r^{2}}$ its Fourier transform will be proportional to $e^{-p^{2} / 4 \alpha}$. These factors govern the convergence of the sum over reciprocal lattice vectors in Eq. (3.11). For band states, the effective w's are not large and good convergence is obtained. However, convergence is much slower for core functions where large w's are encountered. A check on convergence can be obtained from the normalization condition on $J_{k}(q)$:

$$
\begin{equation*}
\int_{-\infty}^{\infty} J \hat{k}(q) d q=n_{e} \tag{3.12}
\end{equation*}
$$

in which n_{e} is the number of electrons per atom. In our calculation, the sums over \vec{K}_{s} were carried out over approximately 3000 permuted reciprocal lattice vectors. No contribution was included from the $1 s$ wavefunctions (the impulse approximation is probably not valid for $1 s$ electrons in X-ray Compton scattering measurements). The convergence of the reciprocal lattice sum for the band (3d and 4s) electrons is quite good; however, it is not complete for the core electrons. There remain small contributions, mostly from the $2 s$ and $2 p$ electrons, that have been neglected. Consequently, the theoretical curves are probably slightly too low. This effect will be important mainly for laryer values of 11 than are studied here. 'Ihe contribution from the ls electrons was determined u:ima atomic wavefunctions. This was included in
our calculation in order to compare with the experimental results using high energy rays.

The compton profile in [100], [110], and [111] directions are shown in Fig. VIII. The contribution from core electrons (2s, 2p, 3s, 3p) has been separated from the total in the figures. The difference in Compton profiles along different directions is illustrated in Fig. IX. The experimental measurements of Eisbergen and Reed ${ }^{71}$ are also included for comparison. Considerable structure is evident in the curves. Much of this structure can be attributed to Fermi surface effects. 70 The momentum density $\rho(\vec{p})$ suffers some discontinuity whenever \vec{p} touches a piece of Fermi surface. For a fixed direction of momentum transfer \hat{k}, the Compton profile $J_{\hat{k}}(q)$ measures the amount of the momentum density, contained in a plane perpendicular to \hat{k}, sweeping through the momentum space. The profile will have a cusplike behavior when the plane perpendicular to \hat{k} happens to be tangent to a piece of flat Fermi surface. A thorough measurement on the Compton line shape can, therefore, provide information on the shape of the Fermi surface. Similar structures corresponding to Fermi surfaces in the higher order of the Br illouin zone should exist for larger values of q . The sharpness of the breaks in $J_{\hat{k}}\left(\mathrm{C}_{1}\right)$ indicates the amount of discontinuity presented in $"(j)$. The periodicities in the anisotropy of the Compton profile along different directions reflect
the position of the reciprocal lattice vectors and hence the size and structure of the primitive cell. Of course, many body effects would be expected to reduce the visibility of these structures through the introduction of additional high momentum components into the band wavefunctions.

The Compton profile along the $[1,0,0]$ direction is relatively smooth since most of the Fermi surfaces parallel to this direction are moderately spherical. (See Figs. XIV and XV). The structures presented in $J_{[1,1,0]}(q)$ $-J[1,0,0](q)$ can be understood based on the Fermi surface effects along the $[1,1,0]$ direction. The fine structure near the origin reflects the anisotropy in the dimensions of the X hole pockets. The structures near 0.45 and 0.58 a.u. correspond to the two square pieces of the Fermi surface centered at $\Gamma^{\prime}(0,0,0)$. Similarly, structures near $0.76,0.89,1.79$, and 1.92 a.u. correspond to those centered at $2 \pi / a(1,1,1)$ and $2 \pi / a(2,0,0)$. Fine structures near the I^{\prime} points displaced by a reciprocal lattice vector to locations of magnitude 1.34 , and $2.68 \mathrm{a} . \mathrm{u}$. when projected onto the $[1,1,0]$ direction, can be attributed to the effects of X hole pockets. The rapid raise near the origin in $J_{[1,1,1]}(9)-J_{[1,0,0]}(q)$ reflects the disference in the cross sectional area of the 1 centered electron Fermi sullwes. The contributions from the $L_{2 \uparrow}^{\prime}$ necks are resolved in this picture into two small bumps near 0.27
a.u.. Fine structures near 0.82 and 1.36 a.u. correspond to $L_{2 \uparrow}^{\prime}$ centered at $2 \pi / a(2,0,0)$. The minima near 0.55 and 1.64 a.u. can be attributed to the cross sections of the X hole pockets in the plane perpendicular to the $[1,1,1]$ direction. Finally, the structures in $J_{[1,1,0]}(q)$ $-J[1,1,1](q)$ can be interpreted as the combination of the Fermi surface effects described above.

The spherical average Compton profile was obtained using a sixth order Kubic harmonics expansion. The spherical averace $J_{a v}(q)$ was approximated as the zeroth order term in the expansion. The results are compared with r ray Compton scattering measurements 71,72 in Fig. X . The contributions from occupied band states are also included for detailed comparison. The contribution from the atomic core states that we used to subtract from the experimental measurements has been tabulated in Ref. 71 . The agreement is reasonably good except for large values of q in the total $J_{a v}(q)$. This discrepancy may be attributed to many body effects. Numerical values for the Compton profile and the contribution from band electrons can be found in Tables $I X$ and X respectively.

C. The Density of States

Gilat has reviewed different methods of calculating the density of states. ${ }^{73}$ We employ here the GilatRaubenheimer ${ }^{74}$ method in combination with an interpolation scheme. The method is similar to that used by Cooke and Wood, ${ }^{75}$ except that our interpolation procedure is based on second order $\vec{k} \cdot \vec{p}$ perturbation theory. The band calculation with spin orbit coupling included 1357 points in 1/16'th of the Brillouin zone. Energies, wave functions, and momentum matrix element: were obtained at these points. A finer mesh was constructed by dividing the original step size by three -- this represents 26 additional points around each previous general point. The $\vec{k} \cdot \vec{p}$ calculation was performed as follows. If a given band at the "original" point (\vec{k}_{O}) was separated by 0.005 Ry or more from all other bands ordinary perturbation theory was employed to determine the energy at the additional points (\dot{k}). Thus

$$
\begin{align*}
E_{n}(\dot{k})= & E_{n}\left(\vec{k}_{o}\right)+\frac{h}{m}\left(\vec{k}-\vec{k}_{o}\right) \cdot \vec{\pi}_{n n}+\frac{k^{2}}{2 m}\left(\vec{k}^{2}-\vec{k}_{o}^{2}\right) \\
& +\frac{k^{2}}{m^{2}} \underset{j(j \neq n)}{\therefore} \frac{\left[\left(\vec{k}-\vec{k}_{o}\right) \cdot \vec{\pi}_{n j}\right]\left[\left(\vec{k}-\vec{k}_{o}\right) \cdot \vec{\pi}_{j n}\right]}{E_{n}\left(\vec{k}_{o}\right)-E_{j}\left(\vec{k}_{o}\right)} \tag{3.13}
\end{align*}
$$

The matrix element is

$$
\dot{n}_{n j}=\frac{(2 \pi)^{3}}{\partial} \int w_{n}^{*}\left(\vec{k}_{o}, \vec{r}\right)\left(\vec{p}+\frac{\not k}{4 m c^{2}} \vec{\sigma} \times \vec{\nabla} v(\vec{r})\right) w_{j}\left(\vec{k}_{o}, \vec{r}\right) d^{3} r
$$

in which si is the volume of the cell and W is the cell periodic part of the Bloch function.

$$
\begin{equation*}
w_{n}(\dot{k}, \dot{r})=e^{-i \vec{k} \cdot \vec{r}} \psi_{n}(\vec{k}, \vec{r}) \tag{3.15}
\end{equation*}
$$

Numerical tests showed that the spin orbit contribution to the matrix element (the term in (3.14) proportional to (rxVV) was negliqible; hence in practice $\vec{\pi}_{n j}$ was always replaced by $\overrightarrow{\mathrm{P}}_{\mathrm{nj}}$. nnly 12 bands were included in the sum in (3.13). Thus, the second order term is not computed exactly, but since the other energy denominators are much larger, the accuracy should be sufficient. When two or more bands at \dot{k}_{0} were separated by less than 0.005 Ry , an effectivi Hamiltonian was diagonalized. The elements of this Hamiltonian are

$$
\begin{align*}
& H_{\cdot n}\left(k_{0}\right)-\left[E_{0}\left(k_{0}\right)+\frac{k^{2}}{2 m}\left(\vec{k}-\dot{k}_{0}\right)^{2}\right]_{2 n}+\frac{k}{m}\left(\vec{k}-\dot{k}_{0}\right) \cdot \pi_{i n} \\
& \frac{k^{2}}{m^{2}} \ddot{j} \frac{\left[\left(k_{j}-k_{0}\right) \cdot \dot{\pi}_{0} j\left[\left(k^{k}-k_{0}\right) \cdot \dot{j}_{j n}\right]\right.}{E_{A}-E_{j}\left(k_{0}\right)} \tag{3.16}
\end{align*}
$$

in which E_{A} is the average energy of the nearly degenerate levels at \hat{k}_{0}. The prime on the sum indicates that the nearly degenerate levels are excluded. As before, only twelve bands were included in the sum in Eq. (3.16), so that second order term is not exact.

The linear analytic integration scheme was then applied to each minicell constructed around each mesh point. ${ }^{74}$ Projection operators were used to separate the contributions from majority and minority spins to the density of states. Our results for the majority and minority spin state densities and for the total are shown in Figs. XI-XIII. The total density of states at the Fermi energy was found to be 23.56 electrons/atom-Ry. The electronic specific heat coefficient $\gamma=\pi^{2} / 3 N\left(E_{F}\right) k^{2}$, whero k is the Boltzman's constant, was found to be $4.08 \mathrm{~mJ} /$ (mol ${ }^{0}{ }^{2}$). Measurements of the low temperature specific heat yield a value of $7.028 \mathrm{~mJ} /\left(\mathrm{mol}{ }^{\circ} \mathrm{K}^{2}\right) .{ }^{76}$ Part of the discrepancy may be attributed to neglect of the electronphonon interaction. The magneton number was found to be 0.62, somewhat higher than the experimental value of $0.56 .{ }^{2}$ Our calculation predicts that a minority spin hole pocket associatud with the $X_{2,}$ level should exist. This has not been observed experimentally, although it has also been predicted by other self-consistent calculations. ${ }^{15}$ This hole pooket is probably responsible for the disaqreement wetwen theoretical and experimental values of the
magneton number.

D. The Fermi Surface

The Fermi surface of nickel has been carefully studied through measurements of the de Haas-van Alphen effect ${ }^{77-81}$ and cyclotron resonance. ${ }^{82}$ These observations are of great importance in that they confirm the general picture of itinerant electron ferromagnetism in nickel, in which the electrons responsible for magnetic order are not localized, but instead have wave functions extending throughout the crystal and contribute to the formation of a Fermi surface.

The major features of the Fermi surface of nickel can be understood on the basis of a calculation in which spin orbit coupling is neglected, but this interaction must be included in a detailed comparison of theory and experiment. ${ }^{20}$ As was noted above, the spin orbit splitting of the states $X_{5 \downarrow}(001)$ and $X_{5 \downarrow}(100)$ is quite different. This leads to a significant difference in the sizes of the hole pockets around these points and to large anisotropy of de Haas-van Alphen frequencies. ${ }^{79}$ A rapid variation of the de Haas-van Alphen amplitude when the applied magnetic field is tilted a few degrees from the [ll0] direction in a (lino) plane has been interpreted as resulting trom magnet tc breakdown across a small gap resulting from the removal of an accidental degeneracy between spin
orbit split bands. 20
In our calculation, spins are quantized along the [001] axis. We are therefore limited in principle to an investiqation of the Fermi surface in the ${\underset{z}{z}}^{z}$ constant plares. However, the dependence of the band structure on the field direction is probably not large except for the small hole pockets at X, and we will discuss cross sections in a (1I0) plane as well. Our Fermi surface cross sections shown in Figs. XIV and $X V$, where they are compared with recent results of Stark 81 for the large portions of the surface and of Tsui ${ }^{80}$ concerning the hole pocket at X. Stark has derived Fermi surface radii from his measurements using the Kubic Harmonic expansion method of Mueller and priestly. 83 His inversion program included seven Kubic Harmonics. We have plotted the Fermi surface radii obtained in this manner on the figures. An empirical formula given by Tsui has been used to outline an experimentally determined cross section for the small hole pocket at X. Some numerical results for dimensions of the $\mathrm{X}_{5} \downarrow$ hole pocket are given in Table XI and extremal areas are listed in Table XII. Comparisons are made with experiment ${ }^{79,80,81}$ and with the calculations of zornberg. ${ }^{22}$

There is a substantial degree of arreement between the theoretical and experimental results. It is apparent that the band calculation is able to describe the major fieces of fermi surface correctly. The most significant
disagreement concerns the $X_{2 \downarrow}$ hole pocket, which is not observed experimentally, but is predicted by our calculations. Since this pocket is predicted by other band calculations using a local exchange potential, it is possible that this prediction indicates a basic inadequacy of the local exchange approximation.

The majority-spin portion of the Fermi surface lies entirely in the upper $s-p$ band. The surface is in contact with the Brillouin zone near the points L . A neck of roughly circular cross section is formed at each such point. We obtained a value of $0.0035 \mathrm{a} . \mathrm{u}$. for the cross sectional area of this neck in the hexagonal face of the zone. This is smaller than the experimental measurement of 0.0072 a.u. obtained by Tsur. 80 It is probable that the $L_{2 \uparrow}^{\prime}$ level is too close below the Fermi level due to insufficient variational freedom in the s-p type basis functions which are expanded in atomic orbitals. The wave function associated with the $L_{2 \uparrow}^{\prime}$ state has pure p-type symmetry. Only the p-p block needs to be considered to investigate this problem. The L_{2}^{\prime} level calculated by expanding the basis functions in ten individual GTo for each type of p symmetry (x, y, and z) Lies 0.008 Ry . below that of atomic GTO. The Gaussian exponents used were the same as the one for atomic GTO. But the smallest axponent was not included because it gave rise to a negative eigenvalue in the overlap matrix. A rough
estimate of the new cross sectional area was made after raising the Fermi energy with respect to the $\Delta_{1 \uparrow}$ level by $0.008 \mathrm{Ry} . . \quad$ The result is 0.0068 a.u., in good agreement with the measurements of Tsui.

Goy and Grimes ${ }^{82}$ have observed cyclotron resonance associated with the majority spin Fermi surface neck at L, the hole pocket X_{5+} and, according to our interpretation, the two large pieces of Fermi surface around r. The wave functions associated with the smaller piece have predominately $e_{g \downarrow}$ symmetry near the $\Gamma-X$ line, but mixed components of $s-p \downarrow$ and $t_{2 g \downarrow}$ near $\Gamma-K$. The states associated with the larger, nearly square section, are of predominately majority spin but have the same spatial symmetry as those on the smaller square, except near the [100] axis where there is a strong, spin orbit induced mixing with minority spin d band states.

The experimentally observed cyclotron effective mass has been compared with the effective mass m_{c}^{*} obtained from the band structure according to the formula

$$
\begin{equation*}
\frac{m_{c}^{*}}{m}=\frac{k^{2}}{\pi}\left(\frac{d A}{d E}\right)_{E} \tag{3.17}
\end{equation*}
$$

in which m is the free electron mass, and A is the area of the cyclotron orbit. Our results and the experimental findings are presented in Table XIII. The results of the semi-empirical calculation of Zornbery ${ }^{22}$ are also
shown. It will be seen that the agreement is fairly good for the X_{5} pocket, with the deviation between theory and experiment being of the amount and direction expected to allow for a reasonable enhancement through the electronphonon and the electron-magnon interactions. However, our result for the minority spin square is larger than the experimental value, while that for the majority spin square is much smaller than that observed.

E. Optical Conductivity

The optical properties of nickel have been the subject of intensive studies for a long time. As a result of difficulties in sample preparation, accuracy of the measurements, and data analyses the agreement among different experiments has frequently been poor. Therefore, a first principles calculation of optical conductivity is desired to settle some of the controversies as well as to improve our understanding of the electronic structure.

We have calculated the interband optical conductivity of nickel. We will present results in two cases: (1) including a phenomenological constant relaxation time 1 , and (2) in the limit, 0 so that the band states are sharp. 'rhe general expression can be obtained from the Kubo formalis ${ }^{84}$:

$$
\begin{align*}
;_{\alpha \beta}(\dot{q}, \omega)= & -\frac{\mathrm{Ne}^{2}}{i m(1)} \delta_{\alpha \beta}+\frac{1}{E \omega} \int_{-\infty}^{0} d t \cdot\left[J_{\alpha}(\vec{q}, 0)\right. \\
& \left.J_{\beta}(\vec{q}, t)\right], e^{-i \omega t} \tag{3.18}
\end{align*}
$$

where \dot{q}, ω, and N are the wave vector, frequency and the electron density respectively. $J_{x}(\dot{q}, t)$ are the Cartesian components of the fourier transform of the current operator of the system in the interaction picture.

$$
\begin{equation*}
\xi(\dot{q}, t)=e^{i \hat{H}_{O} t} \dot{J}(\dot{q}) e^{-i \hat{H}_{O} t} \tag{3.19}
\end{equation*}
$$

in which it is the Hamiltonian of the system in the absence of the external field. The ensemble average o is to be computed with the equivalent density matrix $\%_{0}=1 / Z e^{-\mathrm{BH}_{0}}$ where $\mathrm{z}=\operatorname{Tr}\left(\mathrm{e}^{-\mathrm{BH}} \mathrm{H}_{0}\right)$ is the usual partition function. We are concerned with energy in the optical and infrared region. The corresponding photon wavelength is large compared to the lattice constant. Consequently, the spatial variation of the electric field over the unit cell can be neglected and it is sufficient to consider the limit $\dot{f} \times 0$ only. Denoting $\dot{J}(t)=\dot{j}(\hat{0}, t)$, it an asily be verified that
in which $1 \mathrm{i}, \mathrm{j}$, are eigenstates of H_{0} with eigenvalue ${ }_{\mathrm{E}} \mathrm{i}_{\mathrm{j}}{ }_{j}$ and $\hbar \omega_{i j} \bar{F}_{i} \xi_{j}$. At zero temperature, further simplification is possible within the Hartree Fock approximation. In this case the wave function of the system is considered to be Slater determent of single particle bloch functions $\psi_{n}(\vec{k}, \vec{r})$. Since the current operator f for the system is the sum of one particle operators ${\underset{j}{s}}$, the possible matrix elements j|j|i involve the excitation of a single particle from a state $\psi_{\ell}(\vec{g}, \vec{r})$ which is occupied in the ground state of the system to some unoccupied state $\psi_{n}(\dot{k}, \dot{r})$
 We can rewrite lis. (3.21) in the following form:

$$
\begin{align*}
& t^{i \ldots n v}(\dot{k}) t-\eta_{\ell n}^{\beta}(\dot{k}) \pi_{n i}^{\prime}(\dot{k}) \theta^{-i \omega} n j(\dot{k}) t, \tag{3.23}
\end{align*}
$$

For convenience we employ discrete normalization.
"n, (\dot{k}) is the energy difference between band n and l

$$
\begin{equation*}
\omega_{n \ell}(\vec{k})=\frac{1}{\vec{k}}\left(E_{n}(\vec{k})-E_{Q}(\vec{k})\right) \tag{3.24}
\end{equation*}
$$

The sum over ℓ, \vec{k} include occupied states (o) only while that over n, k include unoccupied states (u) on1y. Eq. (3.23) is inserted into Eq. (3.18). We considered the frequency w to have a positive imaginary part i / τ so that the integral in Eq. (3.18) will converge at the lower limit. The result is

$$
\begin{align*}
& \sigma_{\alpha \beta,}(\omega)=\frac{-\mathrm{Ne}^{2}}{\operatorname{im}\left(\omega+\frac{1}{1}\right)}:_{\alpha \beta}+\frac{i e^{2}}{\not k m^{2}\left(\omega+\frac{1}{1}\right)} \sum_{\ell \vec{k}}^{\substack{n \\
0}} \sum_{u} \\
& {\left[\frac{\pi_{\ell n}^{\alpha}(\vec{k}) \pi_{n \ell}^{R}(\vec{k})}{\omega+\frac{1}{\eta}-\omega_{n}(\vec{k})}-\frac{\pi_{\ell n}^{k}(\vec{k}) \pi_{n \ell}^{\alpha}(\vec{k})}{\left(\frac{i}{\tau}+\omega_{n \ell}(\vec{k})\right.}\right] .} \tag{3.25}
\end{align*}
$$

Further simplification is possible if one introduces the optical effective mass:

$$
\begin{equation*}
\left(\frac{\mathrm{N}}{\mathrm{~m}}\right)_{0}=\vdots_{v_{\mathrm{k}}} \frac{\left(\frac{1}{\mathrm{~m}_{\mathrm{k}}^{\star}(k)}\right)}{x} \tag{3.26}
\end{equation*}
$$

where
and the sum! in (3.26) includes all nf. The final exprossion for the oonductivity tensor is

The ordinary optical properties of ferromagnetic nickel are determined by the diagonal components of ; (we have 's $X_{x}=\sigma_{Y y}{ }^{\neq(\boldsymbol{y}} z_{z}$, z being the direction of spin alignment). The result of setting $x=\beta$ in (3.28) is

$$
\begin{equation*}
\frac{\left|\pi_{\ell n}^{(\ell}\right|^{2}}{{ }^{\omega}{ }_{n l}}-\frac{1}{{ }_{n \ell}^{2}-\left(\omega+\frac{1}{1}\right)^{2}} \tag{3.29a}
\end{equation*}
$$

It can be directly verified that this expression satisfies the sum rule

$$
\begin{equation*}
\int_{0}^{\infty} \operatorname{Re}\left({ }^{(1)}(x)\right) d \omega=\frac{\pi N e^{2}}{2 m} \tag{3.30}
\end{equation*}
$$

where m is the free electron mass. The first term in Eq. (3.29a) is the usual Drude formula with relaxation time i. In the limit in which the band states are sharp (: $+\infty$), we obtain the familiar expression for the real part of the conductivity for positive frerfuenciess

$$
\begin{align*}
& i_{\alpha \beta}(\omega)=\frac{i N^{2}}{\left(\omega+\frac{1}{T}\right)}\left(\frac{1}{m}\right)_{\alpha \beta}-\frac{2 i e^{2}}{m^{2} k} \underset{\substack{\mathrm{k}}}{X_{0} \mathrm{n} \vec{k}} \frac{1}{\omega_{n X}^{2}(k)-\left(\omega+\frac{i}{r}\right)^{2}} \\
& {\left[\frac{\omega+\frac{i}{i}}{\omega_{n \ell}} \operatorname{Re}\left(\pi^{\ell} n^{n} n_{n}^{i}\right)+i \operatorname{Im}\left(\pi_{\ell n}^{\alpha} n_{n \ell}^{\beta}\right)\right]} \tag{3.28}
\end{align*}
$$

$$
\operatorname{Re}\left[\sum_{v x}(\omega)\right]=\frac{\pi e^{2}}{2\left(m^{*}\right)_{r x x}} \delta(\omega)+\frac{\pi e^{2}}{m^{2} k \omega} \sum_{\substack{k \\ 0 \\ 0 \\ 0}}^{\sum}\left|\pi_{\theta_{n}}^{\ell}\right|^{2} \delta\left(N-\omega_{n v}\right)
$$

The off diagonal components of the conductivity vanish except for ${ }^{\prime} x_{y}=-{ }^{-y}$. In this case, we have

The share limit of this formula is, for positive frequencier,

If the matrix elements in these expressions are treated as constants, the conductivity is proportional to the joint density of states. We have computed this quantity by the same method described in section C in connection with the ordinary density of states. The joint density of states shown in Fig. XVI is dominated by an enormons spike, resulting from the nearly paral lel upper d bands, especially in the reqion $x-W-l$. However, the aphooximat $10 n$ in which the matrix foments are treated as
constant is a had one since in particular the transition associated with this spike has a very weak matrix element. (The states involved in the spike are predominately of opposite spin, and the matrix element would vanish except for the mixing of opposite spin components in the wave function).

We have calculated the optical conductivity including the \vec{k} dependence of all matrix elements both in the sharp limit, Eqs. (3.29b) and (3.31b) and with the inclusion of a relaxation time. The integration was performed by the method described in Section C in which the $\vec{k} \cdot \vec{p}$ method was used to calculate the energy for \vec{k} corresponding to a subdivided mesh in the Brillouin zone. The momentum matrix elements at the additional mesh points were found by linear interpolation between the values calculated at the hasic 1357 point grid. Numerical tests showed that the contrihution of the spin orbit coupling term to the matrix element $" n y[E q . ~(3.14)]$ was negligible for the determination of both the diagonal and off diagonal elements of the conductivity. We therefore replaced $\dot{\pi}_{n \ell} b_{y} \dot{p}_{n \ell}$ throughout the calculation. This implies that the off diagonal conductivity should be regarded as being produced by the modification of the band wave functions produced by the spin-orbit interaction.
Uur results for the real part of xx between 0 and 1.2 iV at shown in Fiq. XVII. The solia line reprosent:
the contribution from the interband conductivity in the sharp limit $\left({ }^{+\infty}\right)$ to which has been added an empirical Drude term,

$$
\begin{equation*}
{ }_{D}(\omega)=\frac{O}{1+\omega_{T}^{2}}, \tag{3.32}
\end{equation*}
$$

in which the constants have been taken to be ${ }_{o}=18.6 \times 10^{15}$ $\sec ^{-1}$ and $t=11.3 \times 10^{-15} \mathrm{sec}$. as determined by Lenham and Treherne. ${ }^{85}$ The dashed curve is the sum of the same empirical Drude term plus an interband contribution computed assuming essentially the same τ. We have also computed $\operatorname{Re}\left(y_{z z}\right)$, which is not the same as $\operatorname{Re}\left({ }_{s}{ }_{x x}\right)$ in the present case. However, the differences are quite small and are not significant on the scale of this graph. The conductivity in the energy region $1.0-6.0 \mathrm{eV}$ is shown in Fig. XVIII. The experimental results of several authors ${ }^{86-91}$ are also shown in these fiqures. Althourh there is a large amount of scatter in the experimental data, there is a reasonable degree of general aqreemont between many of the measurements, particularly in reqard to the madnitude and the general trend. There is less adreement in regard to detailed structure. We believe that it is :significant that our calculations are in qood agreement with the general magnitude of the observed conductivity in the low energy region. In particular, the departure from the Drude term seems to be alver
satisfactorily. There is little agreement between theory and experiment in regard to specific structures at low energies except, possibly in the $0.2-0.5 \mathrm{eV}$ reqion where structure in our calculated conductivity appears in some of the observations and is confirmed by thermoreflectance measurements. 92

A most important feature of our calculated results is the peak at 0.80 eV which results from transitions between the nearly parallel upper d bands near the zone face. This transition is a direct measure of the exchange splitting responsible for ferromagnetism. This peak is quite pronounced when the band states are considered to be sharp; however, it is much reduced if reasonable allowance is made for finite lifetimes of the states. We do not notice any comparable structure in the experimental data in this energy region, and we infer from this discrepancy that our calculation has probably overestimated the exchange splitting. It is not obvious from the data available to us whether or not this transition has actually been observed; however, we tentatively suggest that the broad rise beqinning at 0.5 eV in the results of Lynch et al. ${ }^{87}$ may be associated with this transition. If thi; interpretation is correct, the d band exchange splitting is about 0.5 eV , in fair agreement with other estimates, ${ }^{22}$ and sidnificantly smaller than our caloulated value.

Some structure is present in our calculated conductivity in the $2-3$ eV range, but this is much reduced when lifetime broadening is included. Failure to observe structure in this energy range ${ }^{93}$ sugqests that lifetime effects are indeed appreciable. At higher energies, the experimental conductivity shows a large increase, beginning near 4 ev. A corresponding feature is present in our results, but it is displaced to higher energies b about l ev. In our calculations, this peak results from transitions between the lower $s-d$ bands and the $s-p$ bands above the Fermi energy. The bands involved are in the outer part of the Brillouin zone, along the $\&$ axis, and in the vicinity of the symmetry points X and L. The discrepancy in energy between theory and experiment is probably an indication of the inadequacy of our use of atomic wave functions rather than separated orbitals to represent s- and p-like states.

The absorptive part of the off diagonal elements of the conductivity tensor can be determined from measurements of the ferromagnetic Kerr effect ${ }^{94}$: plane-polarized light reflected from a magnetized ferromagnetic metal hecomes elliptically polarized with its major axis rotated from the oriqinal direction of polarization. Macroscopically, the rotation angle can be related to the atsorptive part of the off didqonal elements of the conductivity tensont throuqh Maxwell's fieid equations. ${ }^{94}{ }^{9 t}$, The detailed
derivation is presented in Appendix B. This effect involves spin orbit coupling in an essential way. Previous calculations have been based on perturbation theory and simple models of the band structure. ${ }^{96}$ A major conflict developed between the results of different measurements 97,98 However, more recent work ${ }^{99-103}$ has tended to confirm, in a general way, the results of Krinchik and collaborators. We have calculated the off diagonal element ${ }^{0} x y$ of the conductivity tensor. Our results for $\omega \operatorname{Im}\left(\sigma_{x y}\right)$ are shown in Fig. XIX, where they are compared with results of Yoshino and Tanaka, ${ }^{99}$ Krinchik and Artemjev ${ }^{101}$ and Erskine and Stern. 10 intraband contribution ${ }^{104}$ since the experimental data do not extend to low enough energies to permit determination of this quantity. Such a term would simply shift the calculated curves by a constant. The theoretical curves have the same general shape and order of magnitude as the experimental ones. However, the agreement in detail is not particularly qood. The negative portion of tyy at low energy can be interpreted as indicating the dominance of transitions of minority spin electrons. 103 The experimental curves become positive at a lower energy than the theoretical results. This is presumably a consequence os our overestimation of the exchange splitting. The negative fedt at hiqh energies is found, in our calculation to be displaced by about 1 eV with respect to the corresponding
experimental feature. A similar result was found for the diagonal elements of the conductivity and the explanation is probably the same. The smooth behavior of the experimental curves probably indicates the presence of substantial lifetime broadening.

CHAPTER IV

CONCLUSION

A self-consistent band structure for ferromagnetic nickel has been investigated using the tight binding method. The effects of exchange and spin-orbit interaction have been included. We believe that the comparison of the results of this calculation with experiment indicates that simple energy band theory employing a local exchange potential can successfully predict the essential features of the charge and magnetic moment distributions, momentum density, the Fermi surface, and of the optical properties of nickel. Although numerous discrepancies in detail exist, there is a large degree of general agreement between theory and experiment. There is no evidence for unexpectedly large many body effects, although some of the disagreement between theory and experiment may be due to our use of a simple, single particle approach. In view of the success of these calculations, 11,105,106 and of our recent application to ferromagnetic iron, 107 it seems that band theory should provide a basically satisfactory account of the properties of ferromagnetic nickel. The principal ubstacles to such a conclusion concers observations of tunneling, ${ }^{108}$ and of spin polarized photoamission ${ }^{103,110}$ which revealed that the spin polarization of eleetrons at energy 10^{-3} and $0.4-0.8$ eV. below the

Fermi level is $+11 \%$ and $+15 \%$ respectively. The direction of the electron magnetic moments was found to be parallel to the magnetization. Based on oversimplified theories, it was interpreted as a measure of the spin polarization of the density of states. This indicated a contradiction with the results of band theory. It is possible, however, that detailed calculations of such phenomena based on band theory may remove much of the apparent disagreement. 111,112 We hope to undertake this investigation.

This calculation can be improved in several ways.
First, the variational freedom in the trial wave functions would be increased and the accuracy of the results improved if all the basis functions were chosen to be individual GTO. Some discrepancies in the Fermi surface and the optical properties have been shown in Chapter III as an indication of the inadequancy of our use of atomic wave functions rather than independent Gaussian orbitals to represent s and p-like states. Recently, the band structures of $\mathrm{Li},{ }^{113} \mathrm{Na},{ }^{114}$ and Al^{115} have been investigated using basis functions consisting of individual GTO. Successful results were obtained after repeating the whole calculation several times with different sets of GTO. In principle, d basis set consists of individual Gaussian orbitals with large exponents that are capable of reproducing the atomic core states and one or two small - x_{i} onents to dilow sufficient variational freedom in the
conduction s and p-like states is more likely to give a satisfactory result. Of course those small exponents are subject to the restriction that the eigenvalues of the corresponding overlap matrices cannot be negative or unreasonably small.

A second modification which would be helpful is to include more conduction states, such as 4 f for transition metals. The eigenfunctions are expected to be a better approximation to the exact solutions of the Schrodinger equation. The hybridization between the 4 f and band states will undoubtly improve our results of energy bands and conductivity tensor. In the conventional LCAO calculation, ${ }^{38}$ where the expressions for integrals between higher states are obtained by successive differentiations, the problem may seem to be too complicated to be considered. The modification, made by chaney and Dorman, ${ }^{56}$ to separate the variables in Cartesian coordinate and to take binomial expansions in the integrand drastically reduce the complexity of the problem. As a matter of fact, the integral program included in Appendix C is written in general that it can be used to calculate integrals between any pair of Gaussian orbitals.

Another possible improvement is to retain the angular dependence of the charge distribution when calculating the Xir exchange potential. Ihis may effect the relative positions between the Fermi level and the $X_{2 \downarrow}$ state of e^{2}
symmetry as well as the unobserved X_{2}, hole pocket. The procedure involves three dimensional numerical integrations over rapidly oscillating functions which must be calculated with care. The cost in computer time, in this case, will be fairly high.

REFERENCES

1. For a review of the band theory of ferromagnetism, see A. J. Freeman and R. E. Watson, in "Magnetism", Vol. IIa, edited by G. T. Rado and H. Suhl (Academic press, New York, 1965), p. 83.
2. H. Dannan, R. Heer, and A. J. P. Meyer, J. Appl. Phys. 39, 669 (1968).
3. E. Fawcett and W. A. Reed, Phys. Rev. Letters 9, 336 (1962); Phys. Rev. 131, 2463 (1963).
4. M. Dison, F. E. Hoare, T. M. Holden, and D. E. Moody, Proc. Roy. Soc. (London) A285, 561 (1965).
5. C. Herring, in "Magnetism", Vol. IV, edited by G. T. Rado and H. Suhl (Academic Press, New York, 1966), p. 120.
6. G. C. Fletcher and E. P. Wohlfarth, Phil. Maq. 42, 106 (1951).
7. G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).
8. J. Yamashita, M. Fukuchi, and S. Wakoh, J. Phys. Soc. Japan, 18, 999 (1963).
9. J. Callaway, H. M. Zhang, T. E. Norwood, and J. Langlinais, Int. J. Quant. Chem. 4, 425 (1971).
10. J. Langlinais and J. Callaway, Phys. Rev. B́ㅗ, 124
(1972); J. Langlinais, Ph.D. Thesis, Louisiana State Univer:sity (1971) (unpublished).
11. J. Callaway and C. S. Wang, Phys. Rev. B7, 1096 (1973).
12. J. G. Hanus, M. I. T. Solid State and Molecular Theory Group Quarterly Progree Report No. 44, p. 29 (1962) (unpublished).
13. L. F. Mattheiss, Phys. Rev. 134, A970 (1964).
14. E. C. Snow, J. T. Waber, and A. C. Switendick, J. Appl. Phys. 37, 1342 (1966).
15. J. W. D. Connolly, Phys. Rev. 159, 415 (1967).
16. S. Wakoh and J. Yamashita, J. Phys. Soc. Japan 19, 1342 (1964).
17. S. Wakoh, J. Phys. Soc. Japan 20, 1894 (1965).
18. L. Hodges, H. Zhrenreich, and N. D. Lang, Phys. Rev. 152, 505 (1966).
19. F. M. Mueller, Phys. Rev. 153, 659 (1967).
20. J. Ruvalds and L. M. Falicov, Phys. Rev. 172, 508 (1968).
21. H. Zhrenreich and L. Hodges, Meth. Comp. Phys. 8, 149 (1968).
22. E. I. Zornberg, Phys. Rev. Bl, 244 (1970).
23. J. Callaway and H. M. Zhang, Phys. Rev. Bl, 305 (1970).
24. J. C. Slater, Phys. Rev. 5l, 846 (1937).
25. J. C. Slater, Phys. Rev. 92, 603 (1953).
26. M. M. Saffern and J. C. Slater, Phys. Rev. 92, 1126 (1953).
27. J. Korringer, Physica 13, 392 (1947).
28. W. Kohn and N. Rostoker, Phys. Rev. 94, lll (1954).
29. J. Callaway and D. M. Edwards, Phys. Rev. 118, 923 (1960).
30. G. S. Painter, Phys. Rev. Bl, 3520 (1973).
31. G. S. Painter, J. S. Faulkner and G. M. Stocks, Phys. Rev. B9, 2448 (1974).
32. J. C. Slater, Phys. Rev. 81, 385 (1951).
33. W. Kohn and L. J. Sham, Phys. Rev. 140, All33 (1965).
34. R. Gaspar, Acta Phys. Hung. 3, 263 (1954).
35. J. C. Slater, T. M. Wilson, and J. H. Wood, Phys. Rev. 179, 28 (1969).
36. F. Bloch, 2. Physik 52, 555 (1928).
37. E. E. Lafon and C. C. Lin, Phys. Rev. 152, 579 (1966).
38. R. C. Chaney, T. K. Tung, C. C. Lin and E. E. Lafon,
J. Chem. Phys. 52, 361 (1970).
39. J. Callaway and J. L. Fry in "Computational Methods in Band Theory" edited by P. M. Marcus, J. F. Janak, and A. R. Williams (Plenum, New York, l972), P. 5l2.
40. R. A. Tawil and J. Callaway, Phys. Rev. B7, 4242 (1973).
41. J. Rath and J. Callaway, Phys. Rev. B8, 5398 (1973).
42. Y. M. Ching and J. Callaway, Phys. Rev. Letters 30, 441 (1973).
43. H. Brooks, Phys. Rev. 58, 909 (1940).
44. G. C. Fletcher, Proc. Phys. Soc. (London) 67, 505 (1954).

4r. K. Merkle, Z. Naturforsch 14a, 938 (1959).
46. J. C. Slonczewski, J. Phys. Soc. Japan 17, S-34 (1962).
47. J. Friedel, P. Lenglart, and G. Leman, J. Phys. Chem. Solids 25, 781 (1964).
48. G. Allan, G. Leman, and P. Lenglart, J. de Phys. 29, 885 (1968).
49. N. Mori, J. Phys. Soc. Japan 27, 307 (1969).
50. D. Liberman, Phys. Rev. 171, 1 i1968).
51. L. J. Sham and w. Kohn, Phys. Rev. 145, 561 (1966).
52. A. K. Rajagopal and J. Callaway, Phys. Rev. B7, 1912 (1973).
53. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).
54. E. Clementi, "Tables of Atomic Functions" (IBM Corp., San Jose, Califormia, 1965).
55. D. E. Gray, American Institute of Physics Handbook, 3rd Edition (McGraw-Hill Book Co., New York, 1972), pps. 9.6, 4.126.
56. R. C. Chaney and F. Norman, Int. J. Quantum Chem. (1974), to be published, and the roferences citod therein.
57. J. Callaway, Energy Band Theory (Academic Press, New York, 1964) p. 64.
58. L.. M. Falicov and J. Ruvalds, Phys. Rev. 172, 498 (1968).
59. F . Wioner, Group Theory and It: Application to the Quantum Mechanics of Atomic Spectra (translated ty J. . (iriffin) (Academic Press, New York, 1959) F. 347.
60. A. P. Cracknell, Phys. Rev. Bl, 1261 (1970).
61. The $d-d$ portion of the spin orbit coupling matrix in a cubic crystal, with allowance for cubic symmetry of the crystal potential has been given by J. A. Ricodeau, Phys. Rev. B7, 4950 (1973).
62. E. V. Conden and B. H. Shortley, Theory of Atomic Spectra (Cambridge, Eng. Univ. Press, 1951), p. 210.
63. R. E. Watson, A. A. Misetich and L. Hodges, J. Phys. Chem. Solids 32, 709 (1973).
64. M. Diana, G. Mazzone and J. J. DeMarco, Phys. Rev. 187, 973 (1969).
65. H. A. Mook, Phys. Rev. 148, 495 (1966).
66. A. J. P. Meyer and G. Asch, J. Appl. Phys. Suppl. 32, 3305 (1961).
67. M. Blume, Phys. Rev. 124, 96 (1961).
68. V. L. Sedov, 2h. Eksperim: Teor. Fiz. 48, 1200 (1964) [English transl: Soviet Phys. - JFTP 2l, 800 (1965)).
69. P. M. Platzman and N. Tjoar, Phys. Rev. 139, A4l0 (1965).
70. P. Eisenberqer, L. Lam, P. M. Platzman and P. Scrimidt, Phys. Rev. B6, 3671 (1972).
71. P. Eisenberger and W. A. Reed, Phys. Rev. B9, 3242 (1974).
72. S. Manninen and T. Paakkari (to be published).
73. G. Gilat, J. Comp. Phys. 10, 432 (1972).
74. G. Gilat and L. J. Raubenheimer, Phys. Rev. 144, 390 (1966).
75. J. F. Cooke and R. F. Wood, Phys. Rev. B5, 1276 (1972).
76. M. Dixon, F. F. Hoare, T. M. Holden and D. Z. Moody, Proc. Roy. Soc. (London) A285, 561 (1965).
77. A. S. Joseph and A. C. Thorsen, Phys. Rev. Letts. 11, 554 (1963).
78. D. C. Tsui and R. W. Stark, Phys. Rev. Letts. 17, 871 (1966).
79. L. Hodges, D. R. Stone, and A. V. Gold, Phys. Rev. Letts. 19, 655 (1967).
80. D. C. Tsui, Phys. Rev. 164, 669 (1967).

8!. R. W. Stark, private communication.
82. P. Goy and C. C. Grimes, Phys. Rev. B7, 299 (1973).
83. F. M. Mueller, Phys. Rev. 148, 636 (1966); F. M.

Mueller and M. G. Priestly, Phys. Rev. 148, 638 (1966).
84. R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
85. A. I. Lenham and D. M. Treherne in "Ontical Properties and Electronic Structure of Metals and Alloys", F. Abeles, Fid. (North-Holland, Amsterdam, 1966), p. 196.

8b. M. 1'h. Stoll, Sol. St. Comm. 8, 1207 (1970); J. Appl. P1y: . 42, 1717 (1971).
87. W. N. Wornch, R. Rosei, and J. H. Weaver, Sol. St.

Comon. 9, 2195 (1971). We wish to thank lrof. Weaver
for furnishing corrected values of the conductivity. 88. M. Shiga and G. P. Pells, J. Phys. Ć, 1847 (1969). 89. M. M. Kirillova, Zh. Eksp. Teor. Fiz. 61, 336 (1971). [Soviet Phys. JETP 34, 178 (1972)].
90. I. I. Sasovskaya and M. M. Naskov, Fiz. Metal Metalloved 32, 723 (1971); 33, 86 (1972).
91. P. R. Johnson and R. W. Christy, Phys. Rev. B9, 5056 (1974).
92. J. Hanus, J. Feinleib, and W. J. Scouler, Phys. Rev. Letts. 19, 16 (1967).
93. B. W. Veal and A. P. Paulikas, Intern. J. Maqnetism 4, 57 (1973).
94. P. N. Argyres, Phys. Rev. 97, 334 (1955).
95. H. S. Bennett and E. A. Stern, Phys. Rev. 137, A448 (1965).
96. B. R. Cooper, Phys. Rev. 139, Al504 (1965).
97. D. H. Martin, S. Doniach, and K. J. Neal, Phys. Letts. 9, 224 (1964); D. H. Martin, K. J. Neal. and T. J. Dean, Proc. Phys. Soc. (London) 86, 605 (1965).
98. G. S. Krinchik and G. M. Nurmukhamedov, Zh. Eksp. Teor. Fiz. 48, 34 (1965). [Soviet Phys. JETP 21, $22(1965)$).
99. T'. Yoshino and S. Tanaka, Optics Comm. 1, 149 (1969). 100. (i. S. Krinchik and V. A. Artemjev, 2h. Eksp. Teor. Fiz. 53, 1901 (1967). SSoviet Phys. JETp 26, 1080 $([96,8)]$.
101. G. S. Krinchik and V. A. Artemjev, J. Appl. Phys. 39, 1276 (1969).
102. G. S. Krinchik and V. S. Gushchin, Zh. Eksp. Teor. Fiz. 56, 1833 (1969). [Soviet Phys. JETP 24, 984 (1969)].
103. J. L. Erskine and E. A. Stern, Phys. Rev. Letts. 30, 1329 (1973).
104. J. L. Erskine and E. A. Stern, Phys. Rev. B8, 1239 (1973).
105. J. Rath, C. S. Wang, R. A. Tawil and J. Callaway, Phys. Rev. B8, 5139 (1973).
106. C. S. Wang and J. Callaway, Phys. Rev. B9, 4897 (1974).
107. M. Singh, C. S. Wang and J. Callaway, Phys. Rev., to be published.
108. F. M. Tedrow and R. M. Meservey, Phys. Rev. Letts.

26, 192 (1971), Phys. Rev. B7, 318 (1973).
109. U. Banninger, G. Busch, M. Campagna, and H. C. Siegman, Phys. Rev. Letts. 25, 585 (1970).
110. C. Busch, M. Campagna and H. C. Siegman, Phys. Rev. B4. 746 (1971).
111. N. V. Smith and M. M. Traum, Phys. Rev. Letts. 27, 1388 (1971).
112. B. A. Politzer and P. H. Cutler, Phys. Rev. Letts. 28. 1330 (1972).
113. Y. M. Ching and J. Callawdy, Phy: . Rev. B9, 5l15 (1974).
114. Y. M. Ching and J. Callaway, to be published.
115. R. A. Tawil and S. P. Singhal, to be published.

TABLE I
Fourier Coefficients of the Coulomb and Exchange Potential and the
Corresponding Corrections Resulting From Self-Consistency (in a.u.)

$\overrightarrow{\mathrm{K}}\left(\frac{2^{-}}{\mathrm{a}}\right)$	$V_{c}(\vec{K})$	iv $\mathrm{C}_{\mathrm{C}}(\overrightarrow{\mathrm{K}})$	$V_{X+}(\vec{K})$	$\Delta \mathrm{V}_{\mathrm{X} \uparrow}(\overrightarrow{\mathrm{K}})$	$V_{x+}(\vec{K})$	$\because V_{x+}(\vec{K})$
$(0.0 .0)$	-1.6870	-0.0796	-1.4091	-0.0917	-1.3998	-0.1092
1.1.1)	-0.9690	-C.095	-0.2630	0.0150	-0.2532	0.0189
2.0.01	-0.8560	-0.0687	-0.1328	0.0210	-0.1246	0.0261
2.2.0)	-0.6043	-0.0205	-0.0350	0.0062	-0.0334	0.0082
3.1.1)	-0.5033	-0.0095	-0.0626	-0.0052	-0.0634	-0.0058
2.2.2)	-0.4775	-0.007t	-0.0666	-0.0068	-0.0677	-0.0079
4.0.0)	-0.3964	-0.0027	-0.0501	-0.0055	-0.0510	-0.0067
$(3.3 .1)$	-0.3528	-0.0020	-0.0228	-0.0013	-0.0231	-0.0017
4.2.0)	-0.3399	-C.0015	-0.0145	0.0000	-0.0146	-0.0001
4.2.2)	-0.2972	-C.0008	0.0062	0.0030	0.0065	0.0035
(3,3,3)	-0.2715	-0.0006	0.0076	0.0029	0.0079	0.0034
5,1,1)	-0.2710	-0.0001	0.0076	0.0029	0.0079	0.0034
(4.4.0)	-0.2368	-0.0001	-0.0048	0.0004	-0.0048	0.0005
(5,3,1)	-0.2199	c. COOL	- C.0130	-0.0011	-0.0112	-0.0013
$(6.0 .0)$	-0.2144	0.0004	-0.0150	-0.0015	-0.0152	-0.0017
4.4.2)	-0.2149	-0.0000	-0.0150	-0.0015	-0.0152	-0.0017
(0.2.0)	-0.1963	0.0003	-0.0185	-0.0022	-0.0189	-0.0025
$(5,3,3)$	-0.1847	C. 0000	-0.0166	-0.0019	-0.0169	-0.0022
6.2.2)	-0.1809	0.0002	-0.0153	-0.0017	-0.0156	-0.0020
(4.4.4)	-0.1679	0.0000	-0.0084	-0.0005	-0.0086	-0.0006
(5.5.1)	-0.1591	C.0001	-0.0032	0.0003	-0.0033	0.0004
(7,1,1)	-0.1589	c. COO_{3}	-c.0032	$) .0003$	-0.0033	0.0004
(6.4.0)	-0.1563	c.0001	-0.0017	0.0006	-0.0018	0.0007

TABLE II

Energy Difference for selected States

Majority Spin

$\begin{gathered} \text { Connolly } y^{15} \\ ((t=2 / 3) \end{gathered}$			$\begin{gathered} \text { Wakoh }^{17} \\ (x=1) \end{gathered}$
	Present $(x=2 / 3)$	Langlinais ${ }^{10}$ and	
		Callaway	
		($\alpha=0.972$)	

$\Gamma_{25}^{\prime}-\Gamma_{1}^{\prime}$	0.478	0.483	0.506	0.488
$\Gamma_{12^{-\Gamma^{\prime}}}^{25}$		0.091	0.084	0.079
$\mathrm{X}_{5}-\mathrm{X}_{1}$	0.330	0.300	0.324	0.347
$\mathrm{X}_{5}-\mathrm{X}_{2}$		0.009	0.016	0.019
$x_{4}^{\prime}-x_{5}$		0.177	0.144	0.226
$\mathrm{X}_{5}-1{ }^{-1}$	0.625	0.639	0.663	0.639
$x_{4}^{\prime}-l_{1}^{\prime}$	0.841	0.816	0.807	0.865
$L_{2}^{\prime}-L_{32}$		0.036	0.016	-0.011

TABLE II
Energy Difference for Selected States

Minority Spin

Connolly ${ }^{15}$	Present	Langlinais	Wakoh 17
$(x=2 / 3)$	$(x=2 / 3)$	and	$(x=1)$
		Callaway	
		$(\alpha=0.972)$	

${ }_{2}{ }_{25}-1$	0.542	0.534	0.544	0.535
$\Gamma_{12} \Gamma^{-1}{ }_{25}^{\prime}$		0.095	0.087	0.083
$\mathrm{x}_{5}-\mathrm{x}_{1}$	0.362	0.323	0.324	0.372
$\mathrm{x}_{5}-\mathrm{x}_{2}$		0.010	0.017	0.020
$x_{4}^{\prime}-x_{5}$		0.118	0.101	0.171
$\mathrm{x}_{5}-1 \mathrm{l}$	0.698	0.698	0.707	0.695
$\mathrm{X}_{4}^{\prime-r_{1}}$	0.842	0.816	0.808	0.866
$L_{2}^{\prime}-L_{32}$		-0.024	-0.029	-0.047

TABLE III

Exchange Splitting of Certain States

```
at Symmetry Points (in Ry)
```

Present	Langlinais	Wakoh	
$(\alpha=2 / 3)$	and	$(\alpha=1)$	Connol1y
	Callaway	$(\alpha=2 / 3)$	

Γ_{1}	0.001	0.022	0.018	-0.004
Γ_{25}^{\prime}	0.052	0.060	0.067	0.060
Γ_{12}	0.057	0.063	0.071	
X_{1}	0.038	0.049	0.049	
X_{3}	0.044	0.054	0.058	
X_{2}	0.060	0.065	0.073	
X_{5}	0.060	0.066	0.074	
X_{4}^{\prime}	0.001	0.023	0.048	
L_{1}	0.030	0.060	0.066	
L_{31}	0.052	0.065	0.074	
L_{32}	0.060	0.000		
L_{2}^{\prime}	0.020			

TABLE IV
Energy Levels at Symmetry Points (Ry)

! 0000	$\mathrm{X}(100)$	X (001)	$\mathrm{L}\left(2^{1} \frac{1}{2} \frac{1}{2}\right)$
$-0.2850\left(\Gamma_{12}{ }^{*}\right)$	-0.0983 ($\mathrm{X}_{4}^{\prime}+$)	$-0.0983\left(\mathrm{X}_{4}^{\prime} \downarrow\right)$	-0.2264 ($\mathrm{L}_{3} \downarrow$)
-0.2851 (${ }_{12}{ }^{*}$)	-0.0993 ($\left.\mathrm{X}_{4}^{\top}{ }^{\dagger}\right)$	-0.0993 ($\left.\mathrm{X}_{4}^{\prime} \uparrow\right)$	-0.2300 (L_{3} + $)$
$-0.3408\left(\Gamma_{12} \uparrow\right.$)	-0.2149 ($\left.\mathrm{X}_{5} \downarrow\right)$	-0.2124 ($\mathrm{X}_{5}{ }^{+}$)	-0.2520 ($\mathrm{L}_{2}^{\prime} \downarrow$)
$-0.3413\left(\mathrm{I}_{12}{ }^{\text {¢ }}\right.$	$-0.2160\left(x_{5} \downarrow\right)$	-0.2203 ($\mathrm{x}_{5} \downarrow$)	-0.2521 (L ${ }_{2}^{\dagger}{ }^{\text {) }}$
-0.3778 ($\mathrm{I}_{25}{ }^{1}$)	-0.2272 ($\mathrm{X}_{2} \downarrow$)	$-0.2255\left(x_{2} \downarrow\right)$	$-0.2860\left(L_{3} \uparrow\right)$
$-0.3808\left(\Gamma_{25}^{\prime} \downarrow\right)$	-0.2758 ($\mathrm{X}_{5} \uparrow$)	-0.2736 ($\mathrm{X}_{5} \uparrow$)	-0.2898 ($\mathrm{L}_{3} \uparrow$)
-0.3854 (r_{25}^{1})	$-0.2773\left(x_{5} \uparrow\right)$	$-0.2805\left(\mathrm{X}_{5} \dagger\right)$	$-0.3736\left(L_{3}+\right.$)
-0.4304 ($\mathrm{F}_{25}^{1}{ }^{\text {+ }}$)	$-0.2869\left(x_{2} \uparrow\right)$	$-0.2859\left(\mathrm{X}_{2} \uparrow\right)$	$-0.3803\left(L_{3} \downarrow\right)$
-0.4338 (${ }_{2}^{1} 55^{4}$)	$-0.5179\left(x_{3} \downarrow\right.$)	$-0.5178\left(x_{3} \downarrow\right)$	$-0.4263\left(L_{3} \uparrow\right.$)
-0.4365 ($\mathrm{C}_{25}{ }^{\text {+ }}$)	-0.5398($\mathrm{X}_{1}+$)	-0.5398 ($\mathrm{X}_{1} \downarrow$)	$-0.4330\left(L_{3} \uparrow\right.$)
-0.9144 (1) ${ }^{\text {t }}$)	-0.5619 ($\mathrm{X}_{3} \uparrow$)	$-0.5619\left(x_{3}{ }^{1}\right)$	$-0.5873\left(L_{1}+\right)$
-0.9155 (l^{\dagger})	-0.5775 ($\mathrm{X}_{1}{ }^{\text {(}}$)	-0.5774 ($\mathrm{X}_{1}{ }^{\dagger}$)	$-0.6178\left(L_{1}{ }^{\dagger}\right)$

Table IV (cont'd)

Energy Levels at Symmetry Points (Ry)

$W\left(1, \frac{1}{2}, 0\right)$	W ($1,0, \frac{1}{2}$)	$K\left(\begin{array}{llll}\frac{3}{4} & \frac{3}{4} & 0\end{array}\right)$	K $\left(\frac{3}{4} \quad 0 \quad \frac{3}{4}\right)$
$0.2978\left(W_{3}{ }^{\uparrow}\right)$	$0.3057\left(W_{3} \uparrow\right)$	$0.1709\left(\mathrm{~K}_{3} \downarrow\right.$)	$0.1709\left(\mathrm{~K}_{3} \downarrow\right.$)
$0.2978\left(W_{3}{ }^{\text {¢ }}\right.$)	$0.2937\left(W_{3} \uparrow\right)$	$0.1519\left(\mathrm{~K}_{3} \uparrow\right.$)	$0.1519\left(\mathrm{~K}_{3}{ }^{\text {¢ }}\right.$)
-0.2164 ($\mathrm{W}_{\mathrm{l}}+$)	-0.2164 ($W_{1}^{\prime} \downarrow$)	-0.2368 ($\mathrm{K}_{2}+$)	-0.2367 ($\mathrm{K}_{2} \downarrow$)
-0.2766 ($\mathrm{W}_{\mathrm{l}}{ }^{\dagger}$)	-0.2766 (W_{1}^{\dagger})	-0.2703 ($\mathrm{K}_{4}{ }^{\text {b }}$)	-0.2707 ($\mathrm{K}_{4}{ }^{\downarrow}$)
-0.2881 ($\mathrm{W}_{1}+$)	-0.2881 ($W_{1} \downarrow$)	-0.2967 ($\mathrm{K}_{2} \uparrow$)	-0.2962 ($\mathrm{K}_{2}{ }^{\text {+ }}$)
-0.3429 ($\left.W_{1}{ }^{\dagger}\right)$	$-0.4328\left(W_{1} \uparrow\right)$	-0.3272 ($\mathrm{K}_{4}{ }^{\text {(}}$)	-0.3273 ($\mathrm{K}_{4}{ }^{\text { }}$)
-0.4387 $\mathrm{w}_{3} \downarrow$)	$-0.4357\left(W_{3} \downarrow\right.$)	$-0.3670\left(K_{3} \downarrow\right.$)	$-0.3669\left(\mathrm{~K}_{3}{ }^{+}\right)$
-0.4389 ($W_{3}+$)	-0.4428 ($\mathrm{W}_{3} \downarrow$)	-0.4090 ($\mathrm{K}_{3} \uparrow$)	-0.4091($\mathrm{K}_{3}{ }^{\text {¢ }}$)
-0.4766 ($\left.w_{2}^{\prime} \downarrow\right)$	$-0.4736\left(W_{2}+\right.$)	-0.4837 ($\mathrm{K}_{1} \downarrow$)	-0.4836 ($\left.\mathrm{K}_{1}{ }^{\downarrow}\right)$
-0.4815 ($\mathrm{W}_{3}{ }^{\text {r }}$)	$-0.4823\left(W_{3} \uparrow\right)$	-0.4929 ($\mathrm{K}_{1} \downarrow$)	-0.4929 ($\mathrm{K}_{1} \downarrow$)
$-0.4833\left(W_{3} \uparrow\right)$	-0.4848 ($W_{3} \uparrow$)	-0.5219 ($\mathrm{K}_{1} \uparrow$)	-0.5219 ($\mathrm{K}_{1}{ }^{\text {a }}$)
$-0.5183\left(W_{2}^{\dagger}{ }^{\dagger}\right)$	-0.5182 ($\left.W_{2}^{\prime} \uparrow\right)$	-0.5359 ($\mathrm{K}_{1} \uparrow$)	-0.5359 ($\mathrm{K}_{1}{ }^{\text {¢ }}$)

Charge Density in Three Principle Directions (in a.u.)
r
0.0
0.042
0.083
0.125
0.166
0.249
0.332
0.415
0.498
0.664
0.831
0.997
1.163
1.329
1.495
1.661
1.827
1.993
2.159
2.325
2.491
2.658
2.824
2.990
3.156
3.322

Total				Occupied Band States		
$[1,0,0]$	$[1,1,0]$	$[1,1,1]$	$[1,0,0]$	[$1,1,0]$	$[1,1,1]$	Atomic
13618.5000	13618.5000	13618.5000	7.1773			
1551.1533	1551.1521	1551.1516	0.8591	7.1773 0.8577	7.1773 0.8572	7.3732 0.4326
306.4941	306.4775	306.4719	0.6035	0.5868	0.8572 0.5813	0.4326 0.2974
167.8367	167.7840	167.7663	1.1779	1.1251	0.5813 1.1075	0.2974
109.8645	109.7699	109.7383	1.8276	1.7330	1.7014	1.0040
37.8764	37.7264	37.6764	2.7304	2.5804	2.5304	2.5369
13.4470	13.2772	13.2206	3.1473	2.9775	2.9209	2.8997
7.6750	7.5167	7.4639	3.0128	2.8544	2.8016	2.7698
6.0684	5.9375	5.8938	2.5477	2.4168	2.3731	2.3408
3.9026	3.8225	3.7958	1.6061	1.5260	1.4993	1.4679
2.1085 1.0764	2.0637	2.0487	0.9272	0.8824	0.8674	0.8287
1.0764 0.5794	1.0521	1.0438	0.5367	0.5125	0.5041	0.4566
0.3404	0.3331	1.5609 0.3300	0.3376	0.3241	0.3191	0.2647
0.2211	0.2179	0.2157	0.1638	0.1605	0.2176	0.1582
0.1611	0.1605	0.1587	0.1269	0.1263	0.1244	0.0961
0.1304	0.1320	0.1299	0.1061	0.1075	0.1055	0.0610 0.0414
0.1141	0.1177	0.1149	0.0940	0.0974	0.0947	0.0414 0.0299
0.1047	0.1108	0.1065	0.0866	0.0923	0.0882	0.0299 0.0224
0.0990	0.1084	0.1017	0.0817	0.0905	0.0842	0.0171
0.0954	0.1097	0.0989	0.0786	0.0915	0.0818	0.0131
0.0932	0.1152	0.0975	0.0766	0.0956	0.0806	0.0102
0.0920	0.1269	0.0970	0.0754	0.1040	0.0801	0.0080
0.0913	0.1503	0.0971	0.0748	0.1198	0.0802	0.0064
0.0910	0.1973	0.0974	0.0745	0.1487	0.0805	0.0051
0.0909	0.2918	0.0979	0.0744	0.2002	0.0810	0.0042

$\stackrel{\rightarrow}{K}\left(\frac{2 \pi}{a}\right) \quad \frac{\sin \theta}{\lambda}\left(\stackrel{\circ}{A}^{-1}\right) \quad \rho_{\operatorname{band}}(\stackrel{+}{K}) \quad \rho_{\operatorname{core}}(\stackrel{+}{K}) \quad \rho_{\operatorname{total}}^{(\stackrel{K}{K})} \quad \rho_{\exp }^{(\vec{K})}$

(1.1.1)	0.2463	4.7865	15.5905	20.3776	20.10 ± 0.16
$(2,0.0)$	D. 2844	4.0977	14.9348	19.0325	18.55 ± 0.16
(2.2.0)	0.4022	2.5201	12.8435	15.3636	$15.34+0.12$
(3.1.1)	0.4717	1.8478	11.6908	13.5386	
(2.2.2)	0.4926	1.6683	11.3655	13.0338	
(4.0.0)	0.5689	1.1514	10.2906	11.4420	11.18 ± 0.11
(3.3.1)	0.6199	0.8324	9.6686	10.5010	
(4.2.0)	0.6360	0.7690	9.4885	10.2575	
$(4,2,2)$	0.6967	0.5123	8.8753	9.3875	
($3,3.3$)	0.7390	0.3659	8.5054	8.8713	$8.74+0.09$
(5.1 .1)	0.7390	0.4030	8.5055	8.9084	8.73 ± 0.09
(4.4.0)	0.8045	0.2143	8.0121	8. 2264	
(5.3 .1)	0.8414	0.1497	7.7713	7.9210	
(6.0 .0$)$	0.8533	0.1616	7.6982	7.8598	
(4.4.2)	0.8533	0.1173	7.6982	7.8155	
(0.2.0)	0.8994	0.0807	7.4355	7.5161	
(5.3.3)	0.9326	0.0129	7.2640	7.2769	
(6.2.2)	0.9433	0.0207	7.2108	7.2315	
(4.4.4)	0.9853	-0.0417	7.0146	6.9730	
(5.5.1)	1.0156	-0.0527	6.8821	6.8294	
(7.1.1)	1.0156	-0.0211	6.8822	6.8610	-
$(6,4.0)$	1.0255	-0.0522	6.8403	6.7881	
(5.4.2)	1.0642	-0.0770	6.6824	6.6054	
(7.3.1)	1.0924	-0.0735	6.5727	6.4992	
$(5.5 .3)$	1.0924	-0.0958	6.5727	6.4769	
(8.0.0)	1.1377	-0.0675	6.4026	6.3351	
($7,3.3$)	1.1641	-0.1003	6.3068	6.2065	
$(8,2,0)$	1.1727	-0.0812	6.2757	6.1945	
(0.4 .4)	1.1727	-0.1129	6.2757	6.1629	
(8.2 .2$)$	1.2067	-0.0907	6.1553	6.0646	
(6.6.0)	1.2087	-0.1091	6.1553	6.0461	
(7.5.1)	1.2316	-0.1077	6.0685	5.9608	
(5.5.5)	1.2316	-0.1200	6.0684	5.9484	
(0.0.2)	1.2394	-0.1130	6.0401	$5.927 ?$	

TABLE VII
Magnetic Scattering Form Factors

$\frac{\mathrm{a}}{2 \pi} \overrightarrow{\mathrm{k}}$	$\frac{\sin \theta}{\lambda}\left(\AA^{-1}\right)$	$P_{\text {Spin }}(\vec{K})$	ρ core ${ }^{(\hat{K})}$	$\mathrm{f}(\overrightarrow{\mathrm{K}})$
(1.1.1)	0.2463	0.4779	0.0023	0.7598
(2,0.0)	0.2844	0.4241	0.0025	0.6752
$(2.2 .0)$	0.4022	0.2644	0.0026	0.4226
(3.1.1)	0.4717	0.1871	0.0022	0.2998
(2,2.2)	0.4926	0.1724	0.0021	0.2763
$(4,0.0)$	0.5689	0.1038	0.0015	0.1668
$(3.3 .1)$	0.6199	0.0882	0.0011	0.1414
$(4.2 .0)$	0.6360	0.0750	0.0010	0.1204
(4.2.2)	0.6967	0.0543	0.0006	0.0869
(3.3.3)	0.7390	0.0448	0.0004	0.0716
(5,1.1)	0.7390	0.0313	0.0004	0.0502
(4.4.0)	0.8045	0.0248	0.0002	0.0395
(5.3.1)	0.8414	0.0158	0.0001	0.0250
$(6.0 .0)$	0.8533	0.0024	0.0000	0.0039
(4.4.2)	0.8533	0.0182	0.0000	0.0288
(6.2.0)	0.8994	0.0008	-0.0001	0.0011
(5.3.3)	0.9326	0.0073	-0.0001	0.0113
(6.2.2)	0.9433	-0.0005	-0.0001	-0.0011
(4.4.4)	0.9853	0.0047	-0.0001	0.0072
(5,5,1)	1.0156	-0.0011	-0.0002	-0.0020
(7.1.1)	1.0156	-0.0122	-0.0002	-0.0195
(6.4.0)	1.0255	-0.0040	-0.0002	-0.0066
(6.4.2)	1.0642	-0.0043	-0.0001	-0.0070
(7.3.1)	1.0924	-0.0105	-0.0002	-0.0169
(5.5.3)	1.0924	-0.0027	-0.0002	-0.0045
(8.0.0)	1.1377	-0.0183	-0.0001	-0.0291
(7.3.3)	1.1641	-0.0090	-0.0001	-0.0145
(8.2.0)	1.1727	-0.0162	-0.0001	-0.0259
$(6.4 .4)$	1.1727	-0.0052	-0.0001	-0.0084
(8,2,2)	1.2067	-0.0144	-0.0001	-0.0230
(6.6.0)	1.2067	-0.0081	-0.0001	-0.0129
(7.5.1)	1.2316	-0.0091	-0.0001	-0.0145
(5.5.5)	1.2316	-0.0048	-0.0001	-0.0077
(0.6.2)	1.2398	-0.0073	-0.0001	-0.0117

TABLE VIII
Spin Density in Three Principle Direction

Total			Occupied Band States		
$[1,0,0]$	$[1,1,0)$	$[1,1,1]$	[1,0,0]	[$1,1,0]$	[1,1,1]
-0.0455	-0.0455	-0.0455	-0.1041	-0.1041	-0.1041
-0.0045	-0.0040	-0.0038	-0.0174	-0.0169	-0.1041
0.0225	0.0282	0.0301	0.0074	0.0130	-0.0167 0.0149
0.0760	0.0940	0.1000	0.0639	0.0819	0.0879
0.1378	0.1700	0.1807	0.1312	0.1633	0.1741
0.2197	0.2706	0.2876	0.2192	0.2701	0.2871
0.2489	0.3066	0.3258	0.2488	0.3065	0.2871 0.3257
0.2318	0.2857	0.3037	0.2310	0.2849	0.3257 0.3029
0.1910	0.2356	0.2505	0.1900	0.2347	0.3029
0.1150	0.1424	0.1516	0.1149	0.1422	0.1514
0.0620	0.0772	0.0824	0.0625	0.0778	0.0829
0.0314	0.0396	0.0425	0.0322	0.0404	0.0829
0.0157	0.0202	0.0219	0.0164	0.0209	0.0432 0.0226
0.0070	0.0094	0.0105	0.0076	0.0100	0.0111
0.0021	0.0032	0.0040	0.0026	0.0036	0.0044
-0.0006	-0.0002	0.0004	-0.0002	0.0001	0.0007
-0.0019	-0.0021	-0.0015	-0.0016	-0.0018	-0.0012
-0.0026	-0.0030	-0.0025	-0.0024	-0.0027	-0.0012
-0.0030	-0.0035	-0.0031	-0.0028	-0.0032	-0.0023
-0.0032	-0.0036	-0.0034	-0.0030	-0.0034	-0.00281
-0.0033	-0.0035	-0.0035	-0.0031	-0.0033	-0.0033
-0.0033	-0.0032	-0.0036	-0.0032	-0.0029	-0.0034
-0.0034	-0.0024	-0.0036	-0.0032	-0.0021	-0.0034
-0.0034	-0.0009	-0.0036	-0.0032	-0.0005	-0.0034
-0.0034	0.0020	-0.0036	-0.0032	0.0024	-0.0034
-0.0034	0.0073	-0.0036	-0.0032	0.0078	-0.0034

TABLE IX
Compton Profiles

q	$J_{[1,0,0]}(q)$	$J_{[1,1,0]}(q)$	$J_{[1,1,1]}(q)$	$J_{a v}(q)$
0.0	5.136	5.169	5.075	5.135
0.084	5.117	5.151	5.097	5.128
0.167	5.089	5.094	5.061	5.084
0.251	5.043	5.017	5.017	5.025
0.334	4.974	4.935	4.952	4.950
0.418	4.877	4.833	4.834	4.846
0.502	4.738	4.685	4.683	4.699
0.585	4.553	4.444	4.527	4.496
0.669	4.379	4.283	4.366	4.332
0.752	4.211	4.119	4.207	4.168
0.83 t	4.053	4.028	4.036	4.037
0.919	3.905	3.892	3.895	3.896
1.003	3.742	3.751	3.749	3.148
1.087	3.572	3.631	3.579	3.601
1.170	3.414	3.510	3.435	3.464
1.254	3.269	3.382	3.306	3.330
1.337	3.132	3.231	3.164	3.185
1.505	2.870	2.946	2.896	2.912
1.672	2.641	2.664	2.618	2.646
1.839	2.425	2.389	2.468	2.420
1.923	2.320	2.191	2.289	2.253
2.000	2.207	2.061	2.156	2.127
2.090	2.077	1.956	2.049	2.015
2.340	1.765	1.702	1.769	1.765
2.675	1.436	1.487	1.434	1.459
3.009	1.178	1.209	1.185	1.194
3.344	0.975	0.927	0.967	0.951
3.678	0.823	0.812	0.818	0.817
4.012	0.696	0.710	0.696	0.702
4.514	0.550	0.556	0.553	0.554
5.015	0.449	0.441	0.445	0.444
5.517	0.375	0.374	0.374	0.375
0.018	0.298	0.298	0.298	0.298

TABLE X
Occupied Band States Compton Profiles

q	$\mathrm{J}_{[1,0,0]}(\mathrm{q})$	$J_{[1,1,0]}{ }^{(q)}$	$J_{[1,1,1]}(\mathrm{q})$	$J_{a v}(q)$
0.0	2.735	2.770	2.679	2.738
0.084	2.722	2.755	2.705	2.732
0.167	2.700	2.705	2.675	2.695
0.251	2.tes	2.640	2.640	2.647
0.334	2.612	2.574	2.589	2.589
0.41%	2.518	2.474	2.441	2.506
0.502	2.428	2.372	2.367	2.387
0.585	2.275	2.165	2.244	2.217
$0.66 y$	2.138	2.164	2.121	2.090
0.75%	2.011	1.922	2.004	1.969
0.836	1.898	1.879	1.883	1.885
0.519	1.803	1.793	1.795	1.796
1.co:	1.655	1.766	1.705	1.703
1.087	1.582	1.642	1.596	1.613
1.170	1.4et	1.582	1.515	1.537
1.254	1.405	1.519	1.449	1.468
1.237	1.336	1.437	1.372	1.391
1.505	1.209	1.290	1.238	1.253
1.672	1.114	1.144	1.098	1.124
1.83%	1.033	1.001	1.081	1.031
1.923	0.993	0.867	0.966	0.928
2.006	0.941	c. 794	0.204	0.867
2.090	0.812	0.752	c.847	0.810
2.34 C	0.725	0.722	0.721	0.122
2.675	0.541	0.631	0.577	0.603
3.004	0.465	c. 494	0.473	0.480
3.344	0.373	0.325	c. 306	0.349
3.674	0.30 t	0.295	0.301	0.300
$4.01 \overline{18}$	0.244	0.250	0.242	0.249
4.614	0.172	c. 174	0.170	0.172
5.015	0.123	0.120	0.118	0.120
5.511	0.0 cs	0.093	0.093	0.091
6.010	0.054	0.054	0.054	0.054

TABLE XI

	$\begin{gathered} \text { Location } \\ \text { of } \\ \text { Pocket } \end{gathered}$	${ }^{\mathrm{k}} \mathrm{X}$ [${ }^{\mathrm{k}}$ XW	${ }^{\text {KU }}$
Present Calculation	(00 ± 1)	0.179	0.077	0.076
	(± 100)	0.195	$W\left(10 \frac{1}{2}\right) 0.080$	0.076
		$W\left(1 \frac{1}{2} 0\right) \underline{0.077}$		
Zornberg ${ }^{10}$	(00 ± 1)	0.201	0.092	0.095
(Parameterset IV)				
	$(\pm 1,0,0)$	0.218		0.104
		$W\left(1 \frac{1}{2} 0\right) 0.104$		
Hodges et .11 79	(00 ± 1)	0.184	0.095	0.089
	$(+100)$	0.208	0.106	0.102
$\text { Tsui }{ }^{80}$		0.207	0.099	0.087
Iable XI. Comparison of X_{5}, hole pocket dimensions in				
atomic units. Numbers underlined are dimensions in the				
plane normil to the applied magnetic field. These				
dimensions contribute to the observed dHva areas.				

TABLE XII

Band	Present	Zornberg ${ }^{10}$	Hodges et al ${ }^{79}$	Tsui ${ }^{80}$	Stark ${ }^{81}$
smani square (sp.)	0.84	0.86	1.12		0.90
Large square (spt)	1.24	1.18	1.33		1.15
- Centered d. sheet	2.20	2.05	2.25		
$x_{5}(\mathrm{~d} \cdot)$ pocket (100)	0.038	0.0665		0.0665	
(001)	0.018	0.0270		0.0270	
$x_{2}(\mathrm{~d}+1)$ pocket (100)	0.144			Not observed	
	0.089				
Tabie XII. Extremal areas of Fermi surface cross sections in atomic units.					
Refer to Fig. XIV for	desicnat	S.			

TABLE XIII

Band	$\begin{gathered} \text { Goy } \\ \text { Grimes } 82 \end{gathered}$	Present Results	$\begin{gathered} \text { Zornberg } 10 \\ \text { Parameter } \\ \text { Set IV } \end{gathered}$
! Centered d \downarrow sheet		8.84	8.
Large square (sp^)	5.09	2.22	2.9
Small square (spł)	4.33	4.75	3.7
X_{5} pocket ($\left.\mathrm{d} t\right)$	0.75	0.66	0.89
X_{2} pocket (dり)	Not Observed	1.97	

Table XIII. Effective mass associated with Fermi surface portions. Refer to Fig. XIV for designations.

TABLE XIV
Interband Optical Conductivity Tensor ($\tau=\infty$)
and the Joint Density of States

Kw (eV)	$\sigma_{x x}\left(10^{15} \sec ^{-1}\right)$	$\sigma_{z z}\left(10^{15} s e^{-1}\right)$	$\sigma_{x y}\left(10^{14} \sec ^{-1}\right)$	$J(\omega)\left(\frac{\text { electrons }}{\text { atom-Ry }}\right)$
0.0408	2.2537	1.9899	-2.3711	0.3414
0.0816	4.7354	5.1174	-11.1349	1.2429
0.1224	3.9798	4.7546	-9.6446	1.7012
0.1633	4.6289	4.8414	-8.5351	2.6104
0.2041	4.2559	4.4975	-6.3714	3.0738
0.2449	4.0836	4.1380	-7.3101	4.0153
0.2857	4.5829	4.6463	-7.3332	6.0053
0.3265	3.9790	3.9935	-8.4532	6.8389
0.3673	3.5278	3.5156	-6.4196	7.2788
0.4081	3.3142	3.2513	-5.8522	7.8564
0.4490	3. 1276	3. 1673	-4.9153	8.5088
0.4898	3.3000	3.2881	-4.5063	9.3547
0.5306	3. 1265	3.1415	-3.2335	10.1667
0.5714	3.2011	3.1181	-3.4648	11.2430
0.6122	3.4887	3.3870	-3.7514	14.1012
0.6530	3.7059	3.6539	-3.4448	17.9035
0.6938	3.8296	3.8454	-2.8521	22.2797
0.7347	4.2822	4.3175	-2.2969	32.5283
0.7755	5.3013	5.3783	0.6616	36.7087
0.8163	7.6532	7.7952	1.9108	181.4664
0.8571	4.3829	4.4612	0.0539	21.4999
0.8979	3.5683	3.5660	-0.4021	16.5715
0.9387	3.4647	3.4196	-0.1400	16.0072
0.9796	3.4643	3.4322	-0.0041	16.2677
1.0204	3.5312	3. 5528	0.1203	17.4664
1.0612	3.8740	3.8372	-0.0625	17.9405
1.1020	4.1484	4.1131	-0.1571	18.4901
1.1428	4.2504	4.2150	0.3799	19.3762
1.1836	4.1631	4.1280	0.5193	20.0248
1.2244	4.0752	4.1056	0.5948	21.1490
1.2653	4.1265	4.0986	0.0886	21.7379
1.3061	4.0709	4.0771	0.5278	22.4225
1.3469	3.9955	3.9815	0.3871	22.8702
1.3877	4.0162	4.0175	0.2342	24.1174
1.4285	4.0641	4.0428	0.0907	25.0759
1.4693	4.0633	4.0259	-0.1182	26.4830
1.5101	4.3316	4.2770	0.1363	28.4940
1.5510	4.1438	4.1066	-0.0739	28.4150
1.5918	4.2070	4.1614	-0.2074	29.943 A
1.0326	4.0669	4.1345	0.2721	27.8842
1.6734	4.0662	4. 2404	0.5568	27.4582

Table XIV (cont'd)

Kw (eV)	$\mathrm{xxx}^{\left(10^{15} \mathrm{sec}^{-1}\right)}$	$\sigma_{z z}\left(10^{15} \sec ^{-1}\right)$	${ }_{x y}\left(1 d^{4} \sec ^{-1}\right)$	$J(\omega)\left(\frac{\text { electrons }}{\text { atom-Ry }}\right)$
1.7142	4.3716	4.3720	0.9243	27.2723
1.7550	4.2671	4.2802	0.7948	27.7195
1.7958	4.2589	4.2394	0.9393	28.9409
1.8367	4.4599	4.4263	0.6959	30.7563
1.8775	4.5780	4.5947	0.6151	31.7540
1.9183	4.6536	4.6571	0.6177	33.0074
1.9591	4.7252	4.8259	0.5865	33.4380
1.9999	4.7430	4.6773	0.6460	33.9664
2.0407	4.3871	4.2097	0.3761	32.8843
2.0815	4.4274	4.81739	0.5209	34.9897
2.1224	4.9052	4.9245	0.7135	36.1732
?.1632	4.8603	4.8450	0.9064	37.5786
2.2040	4.7364	4.8265	1.0126	38.4460
2.2448	4.2935	4.3039	0.6593	34.7219
2.2856	4.1560	4.1779	0.6456	33.8604
2.3264	3.8819	3.9011	0.3808	32.1304
2.3673	3.8071	3.8180	0.3738	32.7620
2.4081	3.8241	3.7689	0.2038	34.3767
2.4489	3.7167	3.7243	0.3939	35.4507
2.4897	3.7892	3.7862	0.5515	36.7933
2.5305	3.6329	3.6449	0.4535	36.6607
2.5713	3.6539	3.6535	0.4566	38.3892
2.6121	3.7284	3.7166	0.6078	40.1800
2.6530	3.7383	3.7476	0.7072	41.5117
2.0938	3.6769	3.6813	0.6340	41.8614
2.7340	3.6140	3.6094	0.6092	41.9760
2.7754	3.5857	3.5917	0.6008	43.2199
2.8162	3.4096	3.4063	0.5960	40.1607
2.8570	3.3197	3. 2999	0.5480	38.8336
2.8976	3.2505	3.2251	0.5724	37.6377
2.9387	3.2441	3.2970	0.3463	37.4590
2.9795	3. 2860	3.2892	0.4203	37.5396
3.020 .3	3.2150	3.2425	0.0470	37.4480
3.0611	3.2139	7.2178	-0.1060	37.1560
3.1019	3.1868	3.1586	0.0035	37.5572
3.1427	3. 2137	3.1990	0.0478	38.7696
3.18 .35	3.1511	3.0957	0.3136	38.4639
3.2244	3.1206	3.0705	0.3797	38.8837
3.265%	3.1185	3.0907	0.2971	40.0209
1. 1000	3.0679	3.0792	0.4024	40.0965
3. 340 O	3.0218	3.0149	0.3709	40.7901

$K w(e V)$

2.9113
2.9180
3.4284
2.8614
2.8650
2.7931
2. 7610
2.7045
2. 6.355
2.6126
2. 5962
2.5281
2.4621
2.4350
2. 3711
2.3271
2. 3123
2.2681
2.2506
2.2299
2. 1916
2. 1568
2. 1297
2. 1169
2.0886
2.0351
1.9992
1.9427
1.9120
1.8754
1.8722
1.8770
1.8575
1.9058
1.9264
2.0652
2. 1480
2.1399
2.3095
2.4485
2.6337
2.6747
3.0562
3.1505
0.3937
40.5959

$J(\omega)\left(\frac{\text { electrans }}{\text { atom-Ry }}\right)$

0.3937	40.5959
0.4114	40.8686
0.3971	40.5713
0.4289	1.7064
0.4407	42.2081
0.4483	1.7068
0.4430	42.5698
0.4369	44.0135
0.4286	43.1315
0.4308	43.3902
0.4263	43.6496
0.4201	43.0997
0.4316	42.3829
0.4493	43.5909
0.4503	42.5486
0.4588	42.6453
0.4782	43.1461
0.4789	42.6006
0.4885	1.3906
0.4876	40.4671
0.5182	41.5194
0.5350	41.5038
0.5055	39.9411
0.5122	39.1976
0.4552	39.0465
0.4417	38.4534
0.4329	36.6313
0.4070	37.2382
0.3909	37.2621
0.3682	35.8148
0.3336	35.3211
0.3366	35.5387
0.3080	34.6421
0.2882	34.0283
0.2751	33.8213
0.3035	34.2403
0.3240	33.7910
0.2697	34.2334
0.2653	33.3648
0.2605	34.5350
0.2006	33.2610
0	
0.	4

Table XIV (cont' ${ }^{\prime}$)

Kw (eV)
5.0610

5.0610	3.3770	3.3605	0.1460	32.5243
5.1018	4.0941	4.0864	0.1825	33.4321
5.1427	4.6287	4.5910	0.1345	34.3460
5.1835	4.7559	4.7905	-0.0794	34.3935
5.2243	4.2909	4.3012	-0.2217	33.7726
5.2651	4.6827	4.6745	-0.7261	34.4385
5.3059	4.5734	4.5838	-0.6189	33.9670
5.3467	4.5101	4.5151	-0.5517	33.4005
5.3875	4.6082	4.5948	-0.6026	33.3439
5.4284	4.7765	4.7782	-0.6014	33.8064
5.4692	4.8602	4.8496	-0.6127	34.6154
5.5100	4.9812	4.9776	-0.5968	35.3434
5.5508	5.1815	5.1828	-0.6189	35.7380
5.5916	5.5112	5.5119	-0.6544	36.5002
5.6324	5.7101	5.7182	-0.6424	36.9517
5.6732	6.4058	6.4050	-0.7145	38.3271
5.7141	5.1021	5.1020	-0.4581	36.2511
5.7549	4.6284	4.6270	-0.3532	35.8680
5.7957	4.2889	4.2885	-0.2839	35.9324
5.8365	4.0348	4.0341	-0.2362	36.1857
5.8773	3.8348	3.8348	-0.1966	35.3147
5.9181	3.6534	3.6533	-0.1638	33.2858
5.9589	3.5053	3.5055	-0.1329	32.2855
5.9998	3.3589	3.3593	-0.1039	31.5007
6.0406	3.2486	3.2487	-0.0823	30.7950
6.0814	3.1255	3.1260	-0.0682	30.0848
6.1222	3.0222	3.0228	-0.0556	29.5603
6.1630	2.9224	2.9217	-0.0476	28.9820
6.2038	2.8265	2.8165	-0.0401	28.4784
6.2446	2.7269	2.7181	-0.0273	27.8997
6.2855	2.6453	2.6438	-0.0149	27.4429
6.3263	2.5589	2.5642	-0.0049	27.0529
6.3671	2.4611	2.4611	0.0062	26.4964
6.4079	2.3926	2.3937	0.0095	26.0890
6.4487	2.3223	2.3205	0.0148	25.6627
6.4895	2.2515	2.2489	0.0701	25.2986

5.0610	3.3770	3.3605	0.1460	32.5243
5.1018	4.0941	4.0864	0.1825	33.4321
5.1427	4.6287	4.5910	0.1345	34.3460
5.1835	4.7559	4.7905	-0.0794	34.3935
5.2243	4.2909	4.3012	-0.2217	33.7726
5.2651	4.6827	4.6745	-0.7261	34.4385
5.3059	4.5734	4.5838	-0.6189	33.9670
5.3467	4.5101	4.5151	-0.5517	33.4005
5.3875	4.6082	4.5948	-0.6026	33.3439
5.4284	4.7765	4.7782	-0.6014	33.8064
5.4692	4.8602	4.8496	-0.6127	34.6154
5.5100	4.9812	4.9776	-0.5968	35.3434
5.5508	5.1815	5.1828	-0.6189	35.7380
5.5916	5.5112	5.5119	-0.6544	36.5002
5.6324	5.7101	5.7182	-0.6424	36.9517
5.6732	6.4058	6.4050	-0.7145	38.3271
5.7141	5.1021	5.1020	-0.4581	36.2511
5.7549	4.6284	4.6270	-0.3532	35.8680
5.7957	4.2889	4.2885	-0.2839	35.9324
5.8365	4.0348	4.0341	-0.2362	36.1857
5.8773	3.8348	3.8348	-0.1966	35.3147
5.9181	3.6534	3.6533	-0.1638	33.2858
5.9589	3.5053	3.5055	-0.1329	32.2855
5.9998	3.3589	3.3593	-0.1039	31.5007
6.0406	3.2486	3.2487	-0.0823	30.7950
6.0814	3.1255	3.1260	-0.0682	30.0848
6.1222	3.0222	3.0228	-0.0556	29.5603
6.1630	2.9224	2.9217	-0.0476	28.9820
6.2038	2.8265	2.8165	-0.0401	28.4784
6.2446	2.7269	2.7181	-0.0273	27.8997
6.2855	2.6453	2.6438	-0.0149	27.4429
6.3263	2.5589	2.5642	-0.0049	27.0529
6.3671	2.4611	2.4611	0.0062	26.4964
6.4079	2.3926	2.3937	0.0095	26.0890
6.4487	2.3223	2.3205	0.0148	25.6627
6.4895	2.2515	2.2489	0.0701	25.2986

$J(\omega)\left(\frac{\text { electrons }}{\text { atom }-R y}\right)$

Figure	I	Coordinates for the evaluation of threecenter integrals.
Figure	II	Band structure for majority-spin states along certain symmetry directions.
Figure	I I I	Band structure for minority-spin states
		along certain symmetric directions.
Eigure	IV	Band structure of nickel along some symmetry
		lines in the Brillouin zone. The effects of
		spin orbit coupling are included. States
		are labelled according to the symmetry of
		the largest spin component. The solid
		lines indicate states of minority spin, the
		dashed lines of majority spin. The hori-
		zontal line at -0.239 Ry . indicates the
		position of the fermi energy.
Fiqure	v	Band electrons ($3 \mathrm{~d}, 4 \mathrm{~s}-\mathrm{p}$) charge density
		along three principle directions. Solid
		lines indicates the [100] direction, long
		dashes, the [110] direction, and dotted
		line, the [111] direction. The spherical
		averase atomic charge density in $3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2}$
		confiquration is shown ass short dashes.
Figur.	\because	comparison of calculated and ohserved mat-
		netic scattering form factor:

Figure VII

Figure VIII

Figure IX

Fiqure X

Spin density in three principle directions. Notation is the same as in Figure V. Compton profile $J_{\hat{k}}(q)$ for nickel. The (-.-.-) line is the core $\left(2 s^{2}, 3 s^{2}, 2 p^{6}, 3 p^{6}\right)$ contribution. The other curves include the occupied band electrons and pertain to the following directions: long dashes, [100]; short dashes [lll]; and solid curve, [110]. Comparison of calculated and observed anisotropy in Compton profile. The solid curves are the present results and the long dashes are the experimental measurements of Eisenberger and Reed.

Comparison of the spherical averaged Compton profile with γ-rays Compton scattering measurements. The solid curves are the present results. The contribution from atomic ls wave function has been included.

Experimental results of Eisenberger and Reed ${ }^{71}$ and Manninen and Paakkari ${ }^{72}$ are shown as closed and open circles respectively. The dashed curve is the contribution from occupied ($3 \mathrm{~d}, 4 \mathrm{~s}-\mathrm{p}$) band states. Corresponding experimental results are shown as 4 , Ref. 71 and 1 Ref. 72. TYpical experimental uncertainties are indicated by the error bars.

Figure XI Projected density of states for majority spin.

Figure XII Projected density of states for minority spin.

Figure XIII Total density of states.
Figure XIV Fermi surface cross sections in the (100) plane. The solid and short dashed curves are our results. A solid line indicates that states are predominately (+) minority spin, the short dashed line indicates majority (\uparrow) spin. The open circles, triangles, and squares are the experimental results of R. W. Stark. ${ }^{81}$ The long dashed lines are obtained from an empirical formula given by Tsui. ${ }^{80}$ The sheet (a) is the X_{5} pocket, (b) is the X_{2}, pocket, (c) is the l-centered $\mathrm{d} \downarrow$ sheet, (d) is the large (spt) square, (e) is the small (spt) square.

Figure $X V$ Fermi surface cross sections in the (1 $\overline{1} 0)$ plane. The notation is the same as in Figure XIV. Note that the s-p ${ }^{\dagger}$ neck at I merges in to the large d. sheet.

Fiqure XVI Joint density of states.
Fidur. XV1 The real part of the x x component of the
conductivity tensor from 0 to 1.2 eV . Lond
dashes indicate the empirical Drude term
(Er. (3.32); solid curve, the interband con-
tribution in "sharp" limit, plus the Drude
contribution, dashed curve, the interband
contribution with $(h / \tau=0.06 \mathrm{eV})$ plus the
Drude contribution. Experimental results
are shown as follows: \square, stoll ${ }^{86} ; \diamond$
Shiga and Pells ${ }^{88} ; \leq$, Lynch et al. ${ }^{87}$;
Johnson and Christy ${ }^{91}$; O, Sasovskaya and
Naskov ${ }^{90}$; •, Kirillora. ${ }^{89}$

Figure XVIII The real part of ${ }^{0}{ }_{x x}$ from 1.0 to 6.0 eV . Notation is the same as in Figure VII.

Figure XIX The imaginary part of "xy from 0 to 6 eV . The solid curve is the interband conductivity in the "sharp" limit; the short dashed curve is the conductivity calculated with $K / \tau=0.06 \mathrm{eV}$. Experimental results are shown as follows: lony dashed line, Erskine and Stern ${ }^{103}$; •, Yoshino and Tanaka ${ }^{99 \text {; } 0, ~}$ Krinchik and Artemjev. 101

Figure I

OCCUPIED BAND STATES CHARGE DENSITY (a.u.)

Figure VI

Figure ViI

Figure VIII

Figure X

Figure XII

Figure XIV

Figure XV

Figure XVII

Figure XVIII

Figure XLX

APPENDIX A

The Fourier Transform of Gaussian Orbitals

In the calculation of Compton profile, it is necessary to evaluate the Fourier transforms of atomic functions

$$
\begin{equation*}
x_{i}(\vec{p})=\frac{1}{\sqrt{\Omega}} \int e^{-i \vec{p} \cdot \vec{r}} u_{i}(\vec{r}) d^{3} r \tag{3.10}
\end{equation*}
$$

where $s i$ is the volume of a unit cell and the atomic functions are expanded in terms of Gaussian orbitals of the type

$$
\frac{1}{\sqrt{4 \pi}} e^{-\alpha r^{2}} ; \sqrt{\frac{3}{4 \pi}} \times e^{-\alpha r^{2}} ; \sqrt{\frac{15}{4 \pi}} x y e^{-\alpha r^{2}} \text {, etc. }
$$

according to different atomic symmetry, s, p, d. Additional normalization constants from the radial part of the wave functions must be included (see Eqs. (2.13) and (2.15)). The Fourier transforms of these functions are tabulated below

$$
\begin{equation*}
N_{s}(\vec{\Gamma}): \frac{1}{\sqrt{4 \pi \Omega}}\left(\frac{\pi}{\alpha}\right)^{3 / 2} e^{-\frac{\mathrm{p}^{2}}{4 \alpha}} \tag{A.la}
\end{equation*}
$$

$$
\begin{gathered}
\text { P-functions } \\
\left|\begin{array}{c}
x_{x}(\vec{p}) \\
x_{y}(\vec{p}) \\
x_{z}(\vec{p})
\end{array}\right|=\frac{-i}{2} \sqrt{\frac{3}{4 \pi \delta}} \frac{1}{\alpha}\left(\frac{\pi}{\alpha}\right)^{3 / 2}
\end{gathered} e^{-\frac{p^{2}}{4 \alpha}}\left|\begin{array}{c}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right|
$$

$$
(A .1 b)
$$

D-functions

$$
(\mathrm{A} .1 \mathrm{C})
$$

$$
\begin{aligned}
& { }^{*}{ }_{x y}(\vec{p}) \quad|\quad| P_{x} P_{Y}
\end{aligned}
$$

APPENDIX B

Ferromagnetic Kerr Effect

In Chapter III, Section E we compared the absorptive part of the off-diagonal elements of the conductivity tensor $\operatorname{Im}\left[{ }^{\prime \prime}{ }_{x y}\left({ }^{(1)}\right)\right]$ with the results obtained from the mag-neto-optical measurements. In this appendix we shall examine the formal relationship between $\hat{\sigma}(\omega)$ and the Kerr rotation angle. 94,95 Consider a time dependent electric field

$$
\begin{equation*}
(t)=\frac{1}{\sqrt{2 h}} \int \vec{E}(\omega) e^{-i \omega t} d \omega \tag{A.2}
\end{equation*}
$$

In the optical and infrared region the wave vector is effectively zero. The induced current takes the following form

$$
\begin{equation*}
\xi(t)=\frac{1}{\sqrt{2 \pi}} \int \hat{\because}\left(t, t^{\prime}\right) \vec{E}\left(t^{\prime}\right) d t^{\prime} \tag{A.3}
\end{equation*}
$$

For a horocgenious medium the conductivity is invariant under displacement of time, $\hat{\Sigma}\left(t, t^{\prime}\right)=\hat{\because}\left(t-t^{\prime}\right)$. The fourier transform of Fr . (A .3) can be written is

$$
\begin{equation*}
\dot{i}(\cdots)=\hat{i}(\omega) E(\omega) \tag{A.4}
\end{equation*}
$$

[^0]quantized along the z-axis the conductivity tensor can be shown to be
\[

\because(\omega)=\left|$$
\begin{array}{ccc}
{ }^{\prime} x \mathrm{x} & { }^{\prime} \mathrm{xy} & 0 \tag{A.5}\\
-{ }^{\prime} \mathrm{xy} & { }^{\prime} \mathrm{xx} & 0 \\
0 & 0 & { }_{0} z z
\end{array}
$$\right|
\]

As a result of hroken symmetry by the spin orbit interaction the off diagonal elements ${ }^{\text {(y }} \mathrm{xy}$ are nonzero. For convenience we shall consider the incident plane wave as superposition of equal amplitude right and left circularly polarized light.

$$
\begin{equation*}
E_{r}=E(\omega)(\hat{x}+\hat{i} \hat{y}) e^{-i \omega t} \tag{A.6}
\end{equation*}
$$

where \hat{x} and \hat{y} are unit vectors along x and y directions respectively. In a similar manner, we define the $R C P$ and LCP currents as

$$
\begin{equation*}
J_{r}=J(i n)(\hat{x} \pm \hat{i y}) e^{-i w t} \tag{A.7}
\end{equation*}
$$

The corrosponding conductivity which satisfies the relation

$$
\begin{equation*}
J_{r}=y_{r} F_{r} \tag{A.8}
\end{equation*}
$$

$$
\begin{equation*}
r_{v}=\sigma_{x} \pm i \sigma_{x y} \tag{A.9}
\end{equation*}
$$

Maxwell's field equations then relate the complex index of refraciion ($n+i k$) for $R C P$ and LCP electric fields to the complex conductivity

$$
\begin{equation*}
\left(n_{\ell}^{r}+i k_{\gamma}^{r}\right)^{2}=1+i 4 \pi \underset{\ell}{\sigma_{\ell}} / \omega \tag{A.10}
\end{equation*}
$$

In the case of light normally incident from vacuum

$$
\begin{equation*}
\frac{e^{\text {reflected }}}{E^{\text {incident }}}=, e^{i t}=\frac{\left(n+i_{k}\right)-1}{\left(n+i_{k}\right)+1} \tag{A.11}
\end{equation*}
$$

where " is the phuse change of the reflected light and the sign convension is that for polarization along the plane of incidence. Denoting

$$
\begin{equation*}
\therefore \theta=\theta_{r}^{-0}, \quad \Delta n=n_{r}-n_{\ell} \quad \Delta k=k_{r}-k_{\ell} \tag{A.12}
\end{equation*}
$$

it can be shown that to the first order in these changes

$$
\begin{equation*}
\therefore=\frac{2 i\left(n+i A_{k}\right)}{\left[(n+i k)^{2}-1\right]} \tag{A.13}
\end{equation*}
$$

Similarly from Eqs. (A.10) and (A.9) one obtains

$$
\begin{equation*}
n+i \therefore \quad \frac{i \quad 2 n n 0}{(n+i+) n} \frac{-4 n i x y}{(n+i k) w} \tag{A.14}
\end{equation*}
$$

Eq. (A.14) was substituted into Eq. (A.13)

$$
\begin{equation*}
\Delta y=\frac{-i 8 \pi \sigma_{x y}}{w(n+i k)\left((n+i k)^{2}-1\right)} \tag{A.15}
\end{equation*}
$$

The major axis of the elliptially polarized reflected light is rotated from the plane of polarization by an angle

$$
\begin{equation*}
\frac{\hat{1}}{2}=\operatorname{Re}\left[\frac{-i 4 \pi x_{y}}{\omega(n+i k)\left((n+i k)^{2}-1\right)}\right] \tag{A.16}
\end{equation*}
$$

Eq. (A.16) is the constant for the Magneto Kerr effect which is positive for rotation from x - to y-axis but it must be kept in mind that the reflected beam is traveling along the -z direction and Eq. (A.16) is valid for small values ot $\therefore ", \therefore n$, and $A k$ only.
APPENDIX C
LIST OF PROGRAMS
Page

1. Fourier coefficients of the Coulomb and exchange potential 144
2. The Coulomb, exchange, kinetic, overlap, and momentum integrals 150
3. The integrals of $\because \cos (\alpha \vec{K} \cdot \vec{R})$ where α generates the $\stackrel{\alpha}{\alpha}$ of \vec{K} 158
4. Sum over direct lattice vectors for Hamiltonian overlap and momentum matrices. 164
5. Bloch basis functions along three principle directions 174
6. Self-consistency. 179
7. The central cell integrals of the spin- orbit coupling ($p-p$ and $d-d$ blocks) 190
8. Energy bands including the effects of spin orbit coupling 197
9. The momentum matrices between band states. 201
10. The density of states 204
11. The interband optical conductivity tensor 211
12. The Compton profile 216

LIST OF SUBROUTINES

Page

1. CONDUC 222
2. COULOM 224
3. DENSIT 225
4. FOURFC 227
5. FUNCT 229
6. GBZPT 230
7. GINDPK 233
8. GINTFC 236
9. GNBDE 238
10. GNBPT 242
11. GNDPUM 246
12. GPERMK 248
13. GWTGAS 250
14. GSICO 252
15. GSIJFC 254
16. HRIN 256
17. READ. 257
18. RDGTO 262
19. RTINH. 264
20. SEXCH 265
21. SPLOTE 263
22. SVKO 270
23. Wrecib 271

PROGRAM 1. FOURIER COEFFICIENTS OF THE COULOME AND EXCHANGE POTENTIAL

```
    CALCULATION OF THF FOURIER COEFFICIENT OF POTENTIALS
    SLATER TYPE WAVE FUNCTIONS ARE USED IN THIS PROGRAM
    SC IOCUR=1. BCC IOCUR=2. FCC IDCUR=&
    A=LATYICE CONSTANT IINN.U.U.)
    IGRLV=O. V(K) IS GENERATEO IN ORDER OF INCREASING K*&2
    IGRLV=1: FOURIER COEFFICIENTS MF THE CHARGE DENSITY FOR GOTH SOINS ARE
    GENERATED IN ORDER OF K VECTORS
    IFIISORT.NE.OIK IS SORTED IN DRDER OF INCREASING MAGNITUDE
    NKPT IS THE DIMENSION OF THE RECIOROCAL LATTICE VFCTORS KKX\II ECT.
    MAXK2=THE SQUARE OF THE MAXIMUN MAGNITUDE OF THE RECIPROCAL LATYICF
    VECTORS GENERATED
    IDIM IS THE DIMENSION OF THE DIRECT LATTICE VFCTORS
    MXR2=THE SQUARE OF THE MAXIMUN MAGNITUDE OF THE DIRECT LATYICE VECTORS
    KPTPRT IS THE NO OF LINES OF RESULTS TO BE PRINTED
    NSTA IS THE NUMAER OF ATOMIC STATES CONSIDERED. MAXIMUN=7
    C(I,J) IS THE J'S COEFFICIENT OF THF I'S WAVE FUNCTION
    EX(I.J) IS THE JOS EXPONENTS OF THE IS WAVE FUNCTION
    NORBIII IS THE NUMBER OF ORBITALS IN THE I S WAVE FUNCTION
    IB(I.J) IS THE ORBITAL IDENTIFICATION OF THE IOS WAVE FUNCTION
    CHARGE (I) IS THE NUMBER OF ELECTRONS IN THE I SS STATE
    EXCH(I) IS DENSITY**O.333 AT POINT RII)
```



```
    IMPLICIT REAL⿻日(A)AF,H,O-Z)
    INTEGER&2 KKX,KKY,KKZ,NB,KX,KY,KZ,NNB
    OIMENSION AX(4OC).AY(400),AZ(400),Y(100)
    OIMENSION KSO(500)
    COMMON/CHARGE/CHARGE(7),CHARUP(7),CHARDN(7)
    COMMON/VKO/C(7.11),EX(7.11).FACTO(10).IB(7.11),NORB(7).NSTA
    COMMON/EXCH/R(O6),W(96).EXCH(96).EXUP(96).EXDN(96)
    COMMON/CONST/A.RO,PI,ONETMO
    COMMON/LCS/KKX(500).KKY(500).KKZ(500).NB(500)
    I=3.14159265358979300
    ONETHO=1.DO/3.DO
    FACTO(1)=1.DO
    DO 11 I=2.10
```

 11 FACTO(I)=FACTO(I-1) \#DFLOAT(I)
 READ(5.3) A,IDCUB,NKPT, MAXK2.IOIM,MAXR2,KPTPRT,NSTA,IGRLV,ISORT,
 EIPUN
 3 FORMAT(F10.5.1015)
$A A A=A * A * A$
$A K R=2 . D O * P I / A$
OMFGA =AAA/OFLOAT(IOCUB)
$A H A L F=A / 2 . D O$

```
    IF(IDCUB.EQ.1) AHALF=A
    DEFINE R ANO WEIGHT FACTOR FOR 96 POINTS GAUSSIAN INTEGOATION IN TME
    |IGNER SEITZ CELL
    RO3=3.00/(4.00*PI)*OMEGA
    RO=RO 3**ONETHD
    CALL GWTGAS(96.Y.R.W)
    CALL54 I=1.96
    54R(1)=RO*(R(1)+1.00)/2.00
            RENORMALIZATION OF THE WAVF FUNCTION
    2 FORMAT(15,2F10.5)
    I FORMAT(3A4,8X.15,2F10.5)
        ELECT=0.DO
        FMAG=0.DO
```



```
        FF8.3.5X.'ELECTRONS DOWN='.F8.3.5X."TOTAL ELECTRONS=.,F8.3./)
            ELEUP=0.DO
            ELEDN=0.DO
            DO 10 I=1,NSTA
    REAO(5.1; 21.22.23.NORB(1),CHARUP(I),CHARDN(I)
    ELEUP =ELEUP + CHARUP(I)
    ELEDN=ELEDN+CHARON(I)
    CHARGE(I)=CHARUP(II + CHARDN(I)
    RITE(6.12) 21.22.Z3.NORB(I),CHARUP(I).CHARON(I).CHARGE(I)
    NN=NORB(I)
    DO 15 J=1.NN
    READ(5,2)IB(1,J), EX(1,J),C(I,J)
    4 FORMAT(IX.'L=:.IS.5X. 'FXPONENTS=, .FIO.5.5X., COEFFICIFNT=.,F10.5)
    WRITE(0.4)IB(I,J).EX(I.J),C(I,J)
    AJ=IB(I;J)
    II=2*[B(I.J)
    wOZ=(2.DO*EX(1.J))**(AJ+0.5)
    15 C([.J)=C(I,J)*T#OZ/DSQRT(FACTO(II))
    10 CONTINUE
    FLECT=ELEUP+FLEON
    ELECT=ELEUP+ELEDN
    GENERATE PERMUTED DIRECT LATTICE VECTORS
IOC=8/10CUB
    IF(IDCUB.EO.1) IOC=1
    CALL GPERMK(KKX,KKY,KKZ,KSO,IDIM,IDC,MAXRZ,O)
    DO 31 II=1.IDIM
```

```
        AX(II)=AHALF*KKX(II)
        AY(II)=AHALF#KKY(II)
    31 AZ(II)=AHALF#KKZ(II)
    CALL SVKO(VKO)
    CO1=ELECT*PI*8.00
    CEXCH=-9.00/RO3*(3.DO/PI)**ONETHO*RO/2.DO
        CEXFE=-9.DO/RO 3*(6.DO/PI) **ONETHD*RO/?.DC
        WRITEIG.50) A,RO.ELECT,EMAG,IDCUB,NKPT,MAXKZ,IDIM,MAXRZ,NSTA,IGRLV
    E.ISORT
        PRINT 51
    INOIPENDENT DIRECTIONS USEN TO CALCULATE THE SPHERICALLY AVERAGED CHARGE
    DENSITY ARE REAO IN SUBROUTINE SEXCH
    CALL SEXCHIAX,AY,AZ,IDIM)
    DUNCH THE DENSITY AS INPUT TO THE SELF-CONSISTECE PROGRAM
    34 FORMAT(5D15.8)
        OO 33 KR=1.96
        IF(IPUN,NE,O) WRITE(7,34) R(KR), V(KR), EXCH(KR), EXUP(KR), EXON(KR)
        EXCH(KR)=EXCH(KR)**ONETHD
        EXUP(KR)=E XUP(KR)**ONETHD
        EXDN(KR)=EXDN(KR) ##ONETHD
    3 CONTINUE
    PRINT 51
    5I FORMAT(IHI)
        IF(IGRLV.EO.O) PRINT }5
```



```
        17X."EXCH DOWN(K)O:N)
        IFIIGRLV.NE.OI PRINT }5
    56 FORMAT( 3X."K2'.5X."COULOUMB(K)*,7X."EXCHANGE(K).,7X,'EXCH UP(K)"。
```



```
    23x.!KZ..2x.'NO../;
    GENERATE INDEPENDENT RECIPROCAL LATTICE VECTORS.
    IF(IGRLV.NE.O) CALL GINDPKIKKX.KKY.KKZ.KSO.NKPT.IDCUR,MAXKZ.NB.I.
    E ISORTI
        KINCM=1
        IF(IGRLV.EQ.O.AND.IDCUB.EQ.2) KINCM=2
        K2=1
    OO 999 NPT=1,NKPT,KINCM
    IF(IGRLV.FQ.O) GO TO 2I
    KX=KKX(NPT)
    KY=KKY(NPT)
```

```
    KZ=KKZ(NOT)
    NNB=NB(NPT)
    IF(KZ.EO.KSO(NPT)) GO TO 99
    K2=KSQ(NPT)
    GO TO 22
    21 K2=NPT-1
    2) CONTINUE
    RK2=OFLOAT(K2)
    RS=RK2*AKR*AKR
    RK=DSORT(RS)
    IF(K2.NE.O\ GO TO 69
C
    CALCULATE THE FOURIER COEFFICIENT V(K=0)
    VKX=0.DO
    VKUP=O.DO
    VKON=0.00
    OO 42 I = 1.96
    VKUD=VKUP+EXUP(I)*W(I)*R(I)**2
    VKON=VKDN+EXDN(I)*W(I)*R(I)**2
    4) VKX=VKXHEXCH(I)*W(I)#R(I)##?
    VEXCH=CEXCH绿冷
    VEXUP=CEXFE*VKUP
    VEXDN=CEXFEFVKON
    GEXCH=VEXCH
    GEXUP=VEXUP
    GEXON=VEXON
    VCOUL=-4.DO*PI FVKO/3.DO/OMEGA
    GCOUR = VCOU
    IF(IGRLV.EO.O) GO TO 25
    GUMUP=ELEEUP/OMEGA
    GUMDN=ELEDN/OMEGA
    IF(NPT,LE.KPTPRT)WRITE(G.7)K2,GCOUL,GFXCH,GEXUP,GEXDN,GUMUP,GUMDN,
    KKX,KY,KZ.NNB
    WRITE(1)KZ,GCOUL.GEXCH,GEXUP,GEXDN,GUMUP,GUMDN,KX,KY,KZ,NNA
    5 CONT 999
    IFINPT &LE,KPTPRT)WRITE(G.7IK2,GCOUL,GEXCH.GEXUP,GEXDN
    WRITE(I) GCOUR GEXCH.GEXUP.GEXON.K2
    GO TO }99
    CALCULATE THE FOURIER COEFFICIENTS OF THF EXCHANGE POTENTIAL BY OG DNINTS
    GAUSSIAN INTEGRATION
69 CONTINUE
VKX=O.DO
```

```
    VKUP=0.DO
    VKDN=0.DO
    41 [IO 44 I=1.96
    VKUP=VKUP*EXUP(I)*R(I)*W(I)*DSIN(RK*R(I))
    VKDN=VKON+EXON(I)#R(I)*W{I)*DSIN(RK*R(I))
    44 VKX=VKX+EXCH(I) #R(I)*W(I)*OSIN(RK*R(II)
    VEXCH=CEXCH*VKX/RK
    VEXUP=CEXFE#VKUP/RK
    VEXDN=CEXFE*VKDN/RK
    GEXCH=VEXCH
    GEXUP-VEXUP
    GEXUP=VEXUP
    GE XON =VEXDN
    IF(IGRLV.NE.O) GO TO 101
    CALCULATE THE FOURIER COEFFICIENTS TF THF COULOMP POTENTIAL
    FACT=8.OOGPI/RS/OMEGA
    SUM=-COI/RS
    CALL COULOM(CHARGE.SUM,RS.FACTI
    GCOUL= SUM
23 IF(NPT.LE.KPTPRT)MRITE(6.7)K2.GCOUL.GEXCH,GEXUP.GFXDN
WRITE(1) GCOUL,GEXCH.GEXUP,GEXDN,K2
GO TO 999
```

CALCULATE THE FOURIER COEFFICIENTS OF THE CHARGE DFNSITIES FOR ROTH SPINS
AS INPUT TO THE SELF-CONSISTENCY PROGRAM
FACT=1.DO/OMEGA
SUMUP=O.DO
SUMDN=0.DO
CALL COULOM(CHARUP, SUMUP,RS ,FACT)
CALL COULOMICHARON:SUMDN,RRS,FACTI
GUMUP=SUMUP
GUMON = SUMDN
GCOUL = (SUMUP*SUMDN) * 8.D)*PI/RS
99 CONTINUE
IF(NPT.LE.KPTPRTIWRITE(6.7)K2,GCOUL.GEXCH,GEYUP,GEXDN.GUMUP,GUMDN,
KX,KY,KZ NNB
MRITE(1) K2,GCOUL,GEXCH,GEXUP,GEXDN,GUMUP,GUMON,KX,KY,KZ,NNB
CONTINUE
FORMAT(\5.6E18.8.5\5)
WRITEI6,50I A,RO,ELECT,EMAG,IDCUB,NXPT.MAXKZ.IDIM,MAXRZ.NSTA.IGRLV
G.ISORT

```

```

 1.,F7.2.3X.*MAG NO=`.F7.4.3X.*NO ATOMS/LATTICE=`.I5.//..1X.,
    ```


STOP
EN?
```

PKOGRAM 2. THE COULOMB. EXCHANGE, KINETIC, JVERLA!. E MDMENTUM INTEGRALS

```


```

 CALCULATE INTFGRALS<G(I,R-A)VV(R)IG(J,RI)
 GAUSSIAN TYPE WAVE FUNCTIONS ARE USED
 A LLATTICE CONSTANT (IN A.U.)
 SCO IDCUR=1. BCCO IDCUB=2.'FCCO IDCUR=4
 EXPCVG= CONVERGENT CRITERIAL DFXP(-FXPCVG)=O.DC
 MXIGND=NO OF SYMMETRIES CONSIDERED =3 FOR S.P,AND D FJNCTIJNS
 K2MAX= THE SQUARE OF THF MAXIMUN MAGNITUDF OF THE RECIPROCAL LATTICE
 VECTORS USED
 MAXA2= THE SQUARE OF THE MAXIMUN MAGNITUDE OF THF DIRFCT LATTICE VECTDRS
 NKDT =MAXIMUN NO OF RECIPROCAL LATTICE VECTORS,DIMENSIDN KKX(NKPT)
 KREAD=NO OF FOURIER COEFFICIENTS READ INN(I)
 OIMENSION FCS(NOROIM.NKOIM,NROIM).FCSI(NORDIM.NKDIM)
 IORNO(L)=ORBITAL NUMBER INCLUDED FOR L.TH SYMMETRY
 ALPHA=GAUSSIAN EXPONENTIAL DARAMETERS
    ```

```

 IMPLICIT REAL *8 (A-F,H,O-Z)
    ```

```

 EIZ(100)
 DIMENSION SCOUL(125).SEXCH(125).SEXUP(125).SEXDN(125).SOVLP(7.7.7)
 OIMENSION ALP(3,14),CN(3,14),CIJ(8,8)
 DIMENSION FCSI(7.100),FCS2(7.100),FCS3(7.100).FCS(7.10C.111)
 DIMENSION SCO(4.14).PCO(3.11).DCO(1.5)
 DIMENSION OV(5.5.5).GC(27),GX(27),GU(27),GD(27)
 DIMENSION GWTSPD(3).IOBNO(3).KSQU(8184).ISOU(IOO)
 COMMON/GFUC/AKR.M.DEIT, OO4,DSTEP.MAXK,MAXR
 COMMON/LCS/GCOUL(4801).GEXCH(480I).GEXUP(4RO1).GEXON(48O1)
 COMMON/LCS/GCOUL(4801):GE
 FORMAT(AB,F10.5,F7.2.10I5)
 READ(5,1) CRYSTL.A.EXPCVG,IOCUB,MXOBNO,NAXA2.IADIM.K2MAXM.
 ENORDIM,NKDIM,NRDIM,NKPT.KREAD
 PI=3.14159265358979300
 AKR=2.DOFPI/A
 AKR2=AKR#AKR
 AHALF=A/2.DO
 IF(IDCUB.EQ.I) AHALF=A
 OMEGA =A ## 3/DFLOAT(IDCUB)
 DEFINE GAUSSIAN FXPONENTS AND NORMALIZATIUN CONSTANTS
4 FORMAT(915)
READ(5.4) (IORNO(1). $1=1 . M \times O B N O)$
DO 10 NOR $=1$.MXOBNO
$I D=10 B N O(N O B)$

```
```

 00 10 J=1.10
 READ(5.15) ALPHA
 ALP(NOB,J)=ALPHA
 A ? = ALPHA*2.00
 AAA=(S.DO*ALPHA/PI)**O.2500/DSJRT(4.DN*PI)
 AO=-0.500
 DO 11 L=1.NOB
 AO=AO+1.DO
 AO=AOFLOATO
 1! AAA=AAA*DSORT(Al*AC/AC)
 CN(NOB,J)=AAA
 10 WRITE(G.12) CRYSTL.J.GWTSPD(NOB), ALDHA,AAA
 12 FORMAT(IX.AB.I4.A2,'FXPONENT='.F16.3.2X.'NORM=.,E15.8)
 15 FORMAT(F8.5.4D16.8)
 DEFINE BIONGMIAL EXPANSION COEFFICIENTS
 CIJ(1,1)=1.00
 CIJ(2.1)=1.00
 CIJ(2,2)=1.DO
 DO }70\quad1=3.
 CIJ(1.1)=1.DO
 CIJ(I:I)=1.00
 IM 1=1-1
 DO70 J=2.IMI
 7CC!J(I.J)=CIJ({MI.J-1)+CIJ(IMI.J)
 generate independent direct lattice vectors
 IOC=1
 IF(IDCUB.NE.1) IDC=8/IDCUB
 CALL GINDPKIIX,IY,IZ.ISOU,IADIM,IDC,MAXAZ,NB,O.II
 OO 60 I=1.[ADIM
 WRITE(6,4) I ,IX(1),IY(I),IZ(I),ISQU(I)
 60
READ IN FOURIOR COEFFICIENTS QF THE COULJMA AND EXCHANGE POTENTIAL
DO 23 J=1.KREAD
23 READ(1.ENO=22) GCOUR(J),GEXCH(J),GEXUP(J),GEXDN(J),K2
>2 CONTINUE
~
GENERATE INDEPENDENT RECIPROCAL LATTICE VFCTORS ANO THE PERVUTATION VUMRFR
CALL GINDPK (KKX,KKY,KKZ,KSQU,NKPT,IOCUB,KZMAXM,NB,1,1)
WRITE 6,21 A, EXPCVG.IDCUR, MXORND.MAXAZ.IADIM.K2MAXM,KREAD.

```
```

 ENOROIM,NKOIM,NROIM,NKPT,IGWISPO(I),IOBNOII),I=I,MXOANOI
 FGORMATIIX.GLATFICE CONST=,,FIO.5.3X.'CONVERGENT FXPO=0,
 IFI1.4.3X.'ATOMS/LATTICE='.12.3X.'MAX N=,.15.3X,'MAX A2=0.15, 3X,
    ```


```

 4 Ex 1./1)
 CALCULATE INTEGERS GETWEEN ORBITALS OF ORIER NOROA AND NONDG WITH DIRECT
 LATTICE VECTORS FROM NRST TO NREND
 NOROA OR NORDB=1 FOR S. 2 FOR P. AND 3 FDR }
 999 READ(5.4.ENO=10001 NORDA.NORDA,NRST.NRENO
31 FOQMAT(1X,//.IX.2A2.3X, 盾=(".2I5,0):,//)
MRITE(6.3i) GWTSPD(NORDA), GWTSPC(NGROBI. NRST, NREND
NORD=NORDA+NORDB-1
NORO2=NORO +2
NOR3=NORD**3
IAOBNO = IOBNO(NORDA)
IBOBNO=IOBNO(NORDE)
M2MAX=IBOBNO
OO 1O1 M1=1.IAOBNO
IF(IAOBNO.EQ.IBOBNOI M2MAX=MI
DO 101 M2=1,M2MAX
ALPI=ALP(NORDA.M1)
ALPZ=ALP(NORDB:M2)
ALP2=ALP(NORD3.M2)
ALAMDA =ALP1*ALP2*W
OELT=OSORT(PI*W)
UI=ALPI*W
U2=ALP2*W
DSTEP=U1*AHALF
mO4=w/4.00
G=EXPPCVG/(AKR2*WO4)
IF(G.GT.K2MAXM) G=K2MAXM
MAXK2=G
MAXK=SQRT(G)+2.0
MAXR=DSORT(EXPCVG/ALAMDA!/AHALF + 2.0
MR = SORT(FLOAT(ISQU(NREND)))+1
IF(MAXR.GT,MR) MAXR=MR
CALL GINTFCCFCS,NORD,NORDIM,NKDIM,NROIMI
OO 10O NRC=NRST, NREND
A =AHALF*IX(NRC)
AY =AHALF I IY(NRC)
AZ =AHALF*IT(NRC)
RABZ =AX*AX+AY*AY+AZ*AZ
EXPA=ALAMDA*RAB2

```
```

 IF(EXPA.GT.EXPCVG) roo TN ICI
 RAB= DSORT(RAR2)
 AZETA=OEXP(-FXPA)
 ADX=-U2#AX
 ADY=-UT*AY
 ADY=-
 ADZ=-U2*AZ
 BDX=U!*AX
 BDY=UI*AY
 BOZ=U1*AZ
 CONST=AZFTA*CN(NORDA,M1)*CN(NORDR.M2)
 DO 124 I=1.NOR 3
 SCOUL(1)=0.DO
 SEXCH(1)=0.DO
 SEXUP(I)=0.DO
 SEXUP(I)=0.DO
 124 CONTINUE
 OO 12: 11=1.NORD2
 DO 121 12=1.NORO2
 DO 12:1 13=1.NORD2
 SOVLP(111.12.131=0.00
 21 CONTINUE
 NRX=I X(NRC)+1
 NRY=IY(NRC)+1
 NRZ=IZ(NRC)+1
 DO 127 I=1.NORD2
 OO 127 K=1,MAXK
 FCSI(I,K)=FCS(I,K.NRX)
 FCS2(I,K)=FCS(I,K,NRY)
 FCS3(I,K)=FCS(I,K.NRZ)
 127 CONTINUE
 C
SUM OVER RECIPROCAL LATTICE VECTORS
OD 105 K=1.NKPT
kS=kSOU(K)
GK2=(EXPCVG-EXPA)/(AXR2*WO4)
IF(KS.GT.MAXK2.OR.KS.GT.GK2) GO TO 106
K1=kKx(k) +1
K2=KKYY(K)+1
K3=KKZZ(K)+1
KK=KS S+1
CO=DFLOAT(N)/6.DO
CO 111 II=1,NORO
OO 1111 II=1,NOR
S1=FCS1(II1,K1)

```

```

 O# 202 1B3=1.NORDB2
 DO 202 182=1.NORDB2
 DO 202 181=1,NOROB2
 IGT=IRI+IB2+IR3-2
 IF(IBT.LT.NORDB-2.OR.IBT.GT.NOLDP2) CO TO 202
 TC=O.DO
 rx=0.00
 ru=0.00
 TO=0.00
 rO=0.DO
 CAI=1.DO
 211 NAI=1.IAI
 ,AI=IAI-NAI+I
 CA2=C1J(IA1.JA1)
 CAZ=C1I NA2I:I.IA2
 JO 212 NA2=1:1
 JA2=IA2-NA2+1
 CA3=C1J(IAR.JA2)
 JA 3=1A3-NA 3+1
 C&1=CIJ(IA3.JA3)
 DO 221 NB1=1,181
 JB1=1B1-NB1+1
 NABI=JAI+JBI-1
 CB2=CIJ(IB1.JB1)
 OO 222 NB2=1.1B2
 JB2=182-NB2+1
 NAB2=JA2+JB2-1
 CB3=C1J(IB2.JB2)
 DO 223 NB3=1.183
 183=183-NB3+1
 NAB3=JA3+JB3-1
 CO=C1J(1B3.JB3)*CA1*CA2*CA3*CB1*CB2*CA3
 IF(IBT.NE.NORDE) GO TO 225
 NI J=((NAB1-1)*NORD +NAB2-1)*NORD +NAB3
 TC=TC+CO*SCOUL(NIJ)
 TX=TX+CO*SEXCH{NIJ)
 TU=TU+CO*SEXUP(NIJ)
 TD=TD+CO*SEXDN(NIJ)
TO=TO+CO*SOVLP(NABI,NAB2,NAB3)
CCNTINUE
CB2=CB2*B
CONTINUE
CSI=CB1*BOX
221 CONTINUF
CA3=CA3*AOZ

```
```

 213 CONTINUE
 CA2=CA2*ADY
 212
 CONTINUE
 CAI=CAI*ADX
 211 CONTINUE
 IF(IBT.NE.NOROBI GO TO 226
 IA!J=IBIJ+1
 IA!J=IBIJ+1
 GC(IBIJ)=TC
 GX(IBIJ)=TX
 GU(IBIJ)=TU
 226 OV(IBI.IB2.IB3I=TO
 2J2
 continue
 CALCULATE KINETIC ENFRGY AND MOMENTUM MATRICFS FQS. (2.49A) AND (?.5?)
 IBIJ=0
 OO 301 1B3=1.NORDB
 |83M1=183-1
 IB 3M2=18 3-2
 DO 301 IB2=1.NOROB
 IB2M1=182-1
 IB2M1=\82-1
 DO 301 IB1=1.NORDB
 IBT=IBI+IB2+IB3-2
 IF(IBT.NE.NORDB) GO TO 301
 IB1M1=IB1-1
 IB1M2=IB1-2
 PX=-Ci#OV(IB1+1,I82,IS3)
 OX=-Cl#OV(IB1+1,IB2,IS3)
 PZ=-CI*OVIIBI:IB2.IB3+1)
 IF(IGIMI.GT.0) PX=PX+DFLOAT{IBIMI)*OV(IBIMI,IB2.IR3)
 IF(IB2M1.GT.O) PY=PY+DFLOAT(IB2MI|FOV(IBI.IB2MI.IR3)
 IF(IB3MI.GT.O)PZ=PZ+DFLOAT(IB3MI)*OV(IBI,IB2,IB3MI)
 AK =CI &OFLOAT(2*IBI-I|&OV(IBI.IB2.IB3I-C2*OV(IBI+2.IB2.IB3)
 1 +CI*DFLOAT(2*IB2-1)*OV(IBI.IB2,IB3I-C2*OV(IBI+2.IB2,IB3)
 1 +CI*DFLOAT(2#IB2-1)*OV(IBI,IB2,IB3)-C2*OV(IBI,IR2+2,IB3)
 IF(IBIM2.GT.O) AK=AK-DFLOAT(IBIMI#IBIM2IFOVIIBIM2.IB2.IB3)
 IF(IB2M2.GT.O) AK=AK-DFLOAT(IB2MI*IB2M2)*OV(IBI.IB2M2.IB3)
 IF(IB3M2.GT.O) AK=AK-DFLOAT(IB 3MI#IB3M2)#OV(IRI.IP2.IB3M2)
 IBIj=IBIjJ+1
 GO=OV(IE1.|B2.|R3)
 GK=AK
 GK=AK
 GPX=PX
 GPY=PY
    ```

WRITE(2) NRC,MI, M2.IJAB,GC(IBIJ).GX(IRIJ).GU(IRIJ).GD(IEIJI.GK.GO* EGPX,GPY,GPZ

WRITE(6.300) M1, M2.NRC.KYOL.IJAB.IAI.IAB.IA3.IRI.IB2.IR3.GC(IRIJI. IGX(IBIJI.GUPIRIJ).GO(IRIJ).GK.GO,GPX.GPY,GPZ
301 CONTINUE
305 FORMAT(3I3.I5.13.1X.311.3I1.9(1X.E11.51)
201 CONTINUE
1OC CONTINUE
101 CONTINUE
GO 10999
STOP
END
```

 PROGRAM 3. THF INTEGRALS OF }\overline{Z}\mathrm{ COS(: K*R) WHERE }x\mathrm{ GENERATES THE STAR IF K
 C

```

```

 CALCULATE<G(I,R-A) COS(K.R):G(J,R)>
 A=LATTICE CONSTANT (IN A. U.)
 SCO IDCUB=1. BCCO IDCUR=2. FCCO IDCUR=4
 EXPCVG= CONVERGENT CRITFRIAL DFXP(-EXPCVGI=0.DO
 MXOBNO=NO OF SYMMETRIES CONSIDERED = 3 FOR S.P.AND D FUNCTIONS
 MAXK2=THE SQUARE OF THE MAXIMUN MAGNITUDE OF THE LECIDROCAL LATTICE
 VECTORS USED
 MAXAZ=THE SQUARE OF THE MAXIMUN MAGNITUDE OF THE DIRFCT LATTICE VECTORS
 NKPT = MAXIMUN NO OF RECIPROCAL LATTICE VECTORS.DIMENSION KKX(NKPT)
 OIMENSION FCSI(NORDIM,NRDIM) ECT.
 # ECT.
 IMPLICIT REAL *B (A-F,H,O-Z)
 INTEGER*2 NRC,M1,M2,IJAB
 INTEGER*2 IX(200),IY(200).IZ(200)
 INTEGER#2 KKX(300),KKY(300),KKZ(300),NB(300)
 OIMENSION SIJ(125)
 OIMENSION ALP(3,14),CN(3,14),C1J(8,8)
 OIMENSION FCS1(7,20),FCS2(7.20),FCS3(7,20)
 OIMENSION SCO(4.14).PCO(3.11),DCO(1.5)
 OIMENSION GWTSPO(3):IOBNO(3)
 OIMENSION KSQU(500). ISOU(200)
 COMMON/GSI JF/W.DELT:WOA.DSTEP,MAXR
 OATA GWTSPO/OS!."P!."O%/
 1 FORMAT(AB,F1O.5,F7.2,1015)
 READ(5,1) CRYSTL.A.,EXPCVG.IDCUR,MXOBNO,MAXAL,IADIM.K2MAXM.
 &,NOROIM.NKPT.NRDIM
 OI=3.14159265358979300
 AKR=2.DO*PI/A
 AKR2=AKR*AKR
 AHALF=A/2.DO
 IF(IDCUB.EO.I) AHALF=A
 OMEGA =A**3 DFFLOAT(IDCUB)
 4
 DEFINE GAUSSIAN EXPONENTS AND NORMALIZATION CONSTANTS
 REAO(5,4) (IOBNO(I),I=1,MXOBNO)
 DO 10 NOB $=1$, MXOBNO
$1 D=10 B N O($ NOB)
DO $10 J=1.10$
READ(5,15) ALPHA
$A L P(N O B, J)=A L P H A$
$A 2=A L P H A * 2 . D O$

```
```

 AAA=(8.OO#ALPHA/PI)**0.2500/OSORT(4.OO*PI)
 AO= -0.5DO
 OO 11 L=1,NOB
 AO=AO+1.DO
 AI=OFLOAT(2*L-1)
 |1 AAA=AAAFOSORT(A1*AC/AO)
 CN(NOB.J)=AAA
 10 WRITE(G.12) CRYSTL.J.GWTSOD(NUR),ALPMA.AAA
 12 FORMAT(IX.AB.I4.A2.'EXPONFNT=, EIG.9.2X.,NORM=.,E16.8)
 15 FORMAT(F8.5.4016.8)
 DEFINE BIONOMIAL EXPANSION COEFFICIENTS
 CIJ(1.1)=1.00
 CIJ(2,1)=1.DO
 CIJ(2.2)=1.DO
 DO 70 1=3,8
 CIJ!I.1!=1.00
 CIJ(1.I)=1.DO
 MM1:--
 OO 70 J=2.IMI
 O CIJII.J)=CiJ(IMI.J-1)+CIJ(IM1,J)
 GENERATE INDEPENDENT DIRFCT LATTICE VECTORS
 IDC=1
 IF(IDCUB.NE, 1) IDC=8/IDCUB
 CALL GINDPK(IX.IY.IZ.ISQU.IADIM.IDC.MAXAC.NB.C.I)
 DO 60 I=1.1ADIM
 WRITE(6.4) I.IX(I),IY(I),IZ(I),ISOU(I)
 60
 continue
 GENERATE INDEPENDENT RECIDROCAL LATTICE VFCTORS ANO THE PERMUTATION NUMBER
 CALL GINDPK(KKX,KKY.KKZ.KSOU.NKPT,IDCUB.KZMAXM,NA.1,1)
 GPITE(6.2) A,EXPCVG,IDCUB.MXORNO,MAXAZ.IADIM,KZMAXM,
 ENORDIM,NROIM.NKPT,(GWTSPO(II,IORNO(II,I=I,MXOQNO)
 2 FORMAT(1X, 'LATTICE CONSTANT=`,F1O.5.3X. 'EXP CONVFRGENT=.,F10.5.
 13X.*ATOMS/LATTICE=',I2.3X.*MAX N=*.IS.3X.*MAX A2=!.IS.3X.
 ?'A DIM='.I4.//.IX.'MAX K2=*.I6.2X.'DIM FCSI'


```
    CALCULATE INTEGERS BETWEEN ORBITALS OF ORDER NORDA AND NORJR WITH DIRECT
    LATTICE VFCTORS FROM NRST TI NRENO
    NORDA OR NORDB=1 FOR S. ? FOR P. ANO 3 FOR D
```

```
799 REAO\5,4,END=1000) NORDA,NORDB,NRST.NRENO
```



```
        WRITE(S,3i) GWTSPD(NORDA), GWTSPD(NOROR), NRST, NRFND
        NORO=NORDA +NORDB-1
        VORO2=NORD +2
        [AOBNO=I OBNO(NORDA)
        IBOBNO = IOBNO(NOROB)
        MZMAX=IBOBNO
122 CONTINUE
    OO 105 K=1.NKPT
    KS=KSQU(K)
    K1=KK\(K)
    K2=KKY(K)
    K3=KKZ(K)
    RKX=AKR#DFLOAT(K1)
    RKY=AKR#DFLOAT(K2)
    RKZ=AKR*DFLOAT(K3)
    RK2=AKR2*DFLOAT(KS)
    KK=KS S 1
    N=NB(K)
    COK=DFLOAT(N)/O.DO
    DO 101 MI=1.IAOBNO
    IF(IAOBNO.EQ.IBOBNOI M2MAX=MI
    DO 101 M2=1,M2MAX
    IF(M1.NE.IAOBNO.OR.M2.NE.M2MAX) GO TO 101
    ALPI=ALP(NORDA,MI)
    ALP2=ALP(NORDB,M2)
    w=1.DO/(ALP1+ALP2)
    m04=|/4.00
    EXPA=-RK2* mO4
    IF(DABS(EXPA).GT.EXPCVG) GO TO 101
    ALAMOA =ALP1*ALPZ*W
    DELT=OSQRT(PI*W)
    U1=ALP1**
    U2=ALD2**
    OSTEP=UI *AHALF
    MAXR=DSORT(EXPCVG/AL AMDA)/AHALF+2.0
    MR = SQRT(FLOAT(ISOU(NRENO)))+1
    IF(MAXR.GT.MR) MAXR=MR
    IF(MAXR.GT.MR) MAXR=MR
CALL GSIJFC(FCSS2,RKY.NORD.NORDIM,NRDIM)
    CALL GSIJFCIFCS3,RKZ,NORD,NORDIM,NROIMI
    OO 100 NRC=NRST.NRENO
    AX=AHALF#IX(NRC)
    AY=AHALF I Y(NRC)
    AZ =AHALF*IZ(NRC)
```

```
        RABZ=AX*AX+AY*AY+AZ*AZ
        EXPA =ALAMDA象RAB2
        IF(EXPA.GT.EXPCVG) GO TO 101
        RAB=OSQRT(RAR2)
        AZETA=DEXP(-EXPA)
        ADX= -U2*AX
        ADY=-U2*AY
        ADY= UR*AZ
        ANZ=-UC*AZ
    HOX=U!&AX
    BDY=U1*AY
    ADZ=UI*AZ
CONST=AZETA*CN(NOROA,M1)*CN(NGRDB,M2)*COK
NRX=IX(NRC) +
NRY=IY(NRC ) + 
NRZ=IZ(NRC)+1
OO 1!1 II=I.NORD
S1=FCSI(11,NRX)
S?=FCS2(11.NRX)
S3=FCS3(11,NRX)
111 [2=1,NORD
S4=FCSI(|2.NRY)
5=FCS2(I2.NRY)
S5*FCSII2.NRY
S6=FCS3(12.NRY)
OO 111 [3=1,NORD
IT=II+I2+13-3
IF(IT.GE.NOROI GO TO 111
S7=FCSI(13.NRZ)
S&=FCS?(13.NRZ)
S9=FCS3(13.NRZ)
S=(S1*S5*S9+S4*S8*S3+S2*S0*S7+S3*S5*S7+S2*S4*S9+S1*S6*S8)*CINST
IF((IT/2)*2.NE.IT)S3&S2*
IJ=((11-1)*NORO+12-1)*NORD+13
SIJ(IJ)=S
    111 CONTINUF
C
SUM OVER BINOMIAL EXPANSIONS IN FO(2.43)
IJAB=0.00
OO 201 IA \(3=1\). NORDA
OO 201 1A2=1.NORDA
OO 201 IAI=1.NORDA
\([A T=I A I+I A 2+I A 3-2\)
IF(IAT.NE.NORDAI GO TO 201
DO 202 183=1. NOROR
OO 202 182=1. NORDB
OO 202 IBI=1, NORDE
```

```
    IBT=IB1+IB2+IB3-2
    IF(IBT.NE.NOROBI GO TO 202
    TIJ=0.00
    CA 1=1.00
    O) 21: NAI=1.IA
    JAI=IAI-NAI+I
    CAP=CIJ(IAI,JAI)
    Oก 212 NA2=1.IAZ
    JA 2=IA 2-NA2+I
    CAB=CIJ(IA2,JA2)
    DO 213 NA3=1.IA3
    JA 3=IA 3-NAB+I
    CRI=CIJJIAB.JA3)
    OO 221 NB1=1,|B1
    JHI=\8I-NBI+1
    NARI=JA1+JB1-1
    CB2=CIJ(IBI, J&1)
    DO 222 NB2=1.IB2
    JB2=IB2-NB2+i
    NAB2=JA2+JB2-1
    CB3=C1J(182.JB2)
    DO 223 NB3=1,183
    JA3=1B3-NB3+1
    NAB3=JA3+JB3-1
    NAB3=JA3+J83-1
    CO=CIJ(183.JB3)*CA1*CA2*CA3*CR1*CB2*CH3
    NIJ=((NABI-1)*NORD+NAB2-1)*NORO+NAB?
    TIJ=TIJ+CO*SIJ(NIJ)
    CB3=CB3*BDZ
223 CONTINUE
CM2=C82*BOY
CONTINUE
CONTINUE
CONTINUE
CA3=CA3*AOZ
CONTINUE
CA2=CA己゙AOY
CONTINUE
CAI=CAI ADX
CAI=CAIFADX
211
CONT INUE 
GIJ=T\J
WRITE(1) NRC.MI.MZ.IJAB.GIJ
IF(K.FO.1)
    -WRITEIG.300) NRC,MI.MZ.IJAR,IAI.IAR,IA3.IBI.IRZ.IR3.TIJJ
202
cONTING*
```


201 CCNTINUE
100 CONT INUE
1OO CONYINUE
101 CONTINUE
105 CONTINUE
1000 STMP
EN?

```
    PROGRAM 4. SUM OVER DIRECT LATTICE VECTORS FOR H. S, AND P MATRICES
c
    H IS STOREDD FOR INDEPENDENT R OM.Y. THF GROUP OPERATIONS MHICH GENERATE
    THE STAR OF R IS DONE IN THIS PROGRAM
    A LLATTICE CONSTANT
    ALPHA = THE FXCHANGE PARAMETER
    MXOBNO=NO OF SYMMETRIES CONSIDERED = 3 FOR S.P.ANO O FUNCTIONS
    MAXAR=THE SQUARE OF THE MAXIMUN MAGNITUDE OF THE OIRFCT LATTICE VFCTORS
    IBLDIV=DIVISION BETMEEN K=(O.O.O) ANO K=(1.0.O)*2*PI/A
    SC IOCUB=1. BCC IOCUB=2. FCC IOCUB=4
    DIMENSION IXIIADIM).SINEINRDIM.IBZDIVAI),COSN(NROIM,IBZDIV+II
    IEOBNO=GTO NUMBER E=S. D. D
    IEATOM=ATOMIC BASIS NO. IEATOM=C IF INDEPENDENT GTO ARE USFD
    IAEE=NO OF DIRECT LATTICE VECTORS USEO FOR E-E INTEGRALS
    NKIND=NO OF DIFFERENT TYPE OF MATRICES STORED
    NTOL =NO OF TYPE OF MATRICES TO BE CALCULATED
    NCHO(I) DETERMINES THE TYPE OF MATRICES TO BE CALCULATED
    IF(NDIAGONE.O.AND.NCHO(IIOGT.NKIND) HAMILTONAIN IS DIAGONALIAED
    IPRIT=NO OF K POINTS TO BE PRINTED
    THE WAVE VECTORS ARE ARRANGED IN THE FOLLOWING ORDER OF SYMMETRY
    (XY(I),I=1,LDMAX),(YZ(I),I=I,LDMAX),(ZX(I|,I=I,LDAAX),(XZ(I),I=1,LOMAX), (I,
    (Z2(I).I=1,LOMAX).(SII),I=1.LSMAX).(PX(I),PY(I).PZII),I=IOLPMAXI
```



```
    IMPLICIT REAL *8 (A-F,H,O-Z)
    REAL&4 SSA,SSB,PSA,PSB,SDA,SDB,PPA,DPB,PDA,PDE,DDA,DDB
    {NTEGFR*2 IX(100),IY(100),IZ(100),INB(100).KBX(89).K日Y(89).K日Z(89)
    INTEGER*? NPUMPS(3.6), NPUMSD(6.6),NPUMPP(9.6),NPUMPD(18.6).
    ENPUMDD(36,6),NTYPS(3).NTYSD(6),NTYPP(91,NTYPD(18),NTYDO(36)
    f, NOUM(3.3.3.3.3.3)
    OIMENSION SICO(G.8).SINE(12.5).COSN(12.5),H(741).S(741).WT(89)
    OIMENSION X(38.38).GE(7411.GX(38.38).GS(741)
    OIMENSION DASIGN(5,6),CS(4.14).CP(3,11),CD(5,5),GIDEN(:2)
    DIMENSION ISQU(100)
    DIMENSION ALS(14).ALP(11).ALD(5),COS(141.COP(14).COD(14)
    DIMENSION GWTSPD(3)
    COMMON/GTO/CRYSTL.PI ISATOM,IPATOM,IOATOM
    COMMON/LCA/SSA(40.10).PSA(40.36).SDA(40.120),PPA(40.54).PDA(30.270
5).DDA(6.540)
COMMONACB/SSA(1.1).PSB(1.11.SOR(1.1).PPB(1.1), PDR(1.11. DDB(1.1)
            COMMON/LCB/SSB(40.10).PSB(40.36).SDB(40.1201.PPE(40.54).PDB(30.270
    E),DDB(6,540)
    COMMON/OBNO/ALPHA,NKIND.NTOL.NCHO(5).NSYMP
    DATA GIOEN/"COUL*."EXCH***EXUP*."EXDN*."KINE*."OVLP*.*PX*.*PY*.
    &`P\!.'HPA., H UP:, 'HON:/
```


1 FOQMAT(AB,F12.5,F10.8.10I5)
RFAT(5.1) CRYSTL.A.ALPHA, IOCUB, MXOBNO, MAXAZ, IADIM.IETOIV, NRTIM
PI $=3.14159265358979300$
$A K 2 B Z=2 . D O * O I /(A * D F L O A T(I A Z D I V))$
$K B Z P T=18 Z 0 I V+1$
$A H A L F=A / 2 . D O$
$A H A L F=A / 2 . D O$
$I F(I D C U B, E O .1, ~ A H A L F=A$
IF (IDCUB.EO.I' AHALFEA.
OMFGA=A $=3 / D F L O A T I I D C U B I$
4 FOQMAT(16I5)
READ(5.4) IASS.IAPS.IASO. IAPP.IAPD.IAOD
REAO(5.4) NKINO.NTOL (NCHO(J), $\mathbf{~}=1, N T O L)$
WRITE (6.3) ALPHA. NKIND. (GIDEN(NCHO(I)I, I=1. NTOL)

NSYMP = 0
IF (NCHO(1).GT.NKIND-3.AND. NCHO(1). LF. NKIND) NSYMP=1
READ IN THE EXPANSION COEFFICIENTS IN THE ATOMIC RASIS FUNCTIONS
READ(5,4) ISOBNO.ISATOM.IPOANO.IPATOM.IDOBNO.IDATOM
LSMAX $=$ I SOBNO
LDMAX $=$ IOOBNO
LPMAX $=$ IPOBNO
IF (ISATOM.NE.O) LSMAXIISATOM
IF (IDATOM.NE.O) LDMAX=IDATOM
IF (IPATOM.NE •O) LPMAX =IPATOM
CALL ROGTOIALS.ALP.ALD.COS.COP.COD.CS.CP, CD.ISOANT.LSMAX. IPORNO.
ELPMAX. IDOBNO.LDMAX,O)
ISSDIM $=$ LSMAX* (LSMAX+1)/2
IPDDIM $=9$ FLPMAX $=($ LPMAX +1) / 2
IDDDIM $=36$ (LDMAX* (LDMAX+1)/2
IPSDIM = 3
ISDD I M $=6 *$ LSMAX FLDMAX
IPDDIM=18*LPMAX*LDMAX
LDST $=1$
LDEND $=$ LDMAX*5
$L S S T=L D E N D+1$
$L S E N O=L D E N D+L S M A X$
LSENO =LDENO +1
LPST L SFND +1

LPEND = LSEND+LPMAX*3
$N B=L D E N D$
NBTRI=NB*(NB+1)/2
WRITE(6.5) IASS.ISSOIM.IAPS.IDSDIM.IASD.ISODIM.IAPP.IPPDIM.
IIAPO.IPODIM, IADD.IDODIM


```
        IF(IDCUB.NE.I) IDC=8/IDCUB
    GENERATE INDEPENDENT DIRFCT LATTICE VECTORS
    CALL GINDPKIIX,IY,IZ.ISOU.IADIM,IDC,MAXAZ.INB,I.I)
    5310 FORMAT(GI5)
        DO 6O I=1.IADIM
        WRITE(6.5310) I.IX(I),IY(I).IZ(I),INA(I)
    60
        CONTINUF
        GENERATE EQUALLY SPACED POINTS IN THE I/4タTH OF THE INDEPENDENT B. Z.
        CALL GBZPT(KBX,KBY,KBZ,WT,NKPT,IDCUB,KRZPT,SUMW)
            WRITE(6.2) CRYSTL,A,IDCUB,MXOBNO,MAXAZ,IADIM,NKPT,NRDIM,KRZPT
        GWTSPD(1).ISOBNO.ISATOM,GWTSPD(2),IPOBND,IDATOM,GWTSPD(3),IDOBNO,
        2IDATOM
        2 FORMAT(IX,AB, 2X,'LATTICE CONST=',F1O.5.3X.'ATOMS/LATTICE='.IS. 3X.
```



```
        2'DIMENSION SINEI",2I5.,)',3x.//:1x.3(A2.
        3*ORBITAL NO=:.I4.2x.*ATOMIC NO=:.I4.2X).//)
            DEFINF THE EXPANSION COEFFICIENTS FOR THF D FUNCTION WITH CURIC SYMETRY
        DO 90 1=1.5
    00 90 J=1:6
    QO DASIGN(I,J)=0.DO
        DASIGN(1,2)=1.DO
        DASIGN(2,5)=1.DO
        DASIGN(3,4)=1.DO
        DASIGN(4.1)=0.500
    OASIGN(4.3)=-0.500
    C 3 =0.500/DSORT(3.00)
    CASIGN(5.1)=-C3
    DASIGN(5.3)=-C3
    DASIGN(5,6)=2.DO*C3
    MAXR=SQRT(FLOAT(MAXA2)) +2
    RD=0.DO
    DO 70 NR=1.MAXR
    RKSZ=0.00
    DO }71KKB=1.KBZP
    RK=RO#RKBZ
    SINE(NR,KB)=DSIN(RK)
    COSN(NR,KR)=DCOS(RK)
    71 RKAZ=RKBZ+AKRBZ
    RO=RD+AHALF
```

```
    TO cONTINUE
    DFFINE THE GROUP OPERATIONS THAT GENERATE THF STAR OF R
    FINDS THE TERM IN THF EXPANSION OF EXP(I K.R) HIRI WHICH IS AN EVEN
    FUNCTION OF RX. RY. ANO RZ.
    CALL GNOPUM(NPUMPS,NTYPS.NOUM,MXORNO.3.2.1.NSYMP)
    CALL GNOPOUM(NPUMSD.NTYSO,NOUM,MXOBNT,6,1,3.NSYMP)
    CALL GNOPUM(NPUMPP,NTYPP,NOUM,MXOANO.9.2.2.NSYMP)
    CALL GNOPUM(NPUMPD,NTYPD,NOUM,MXORNO.1B,2.3.NSYMP)
    CALL GNOPUM(NPUMDD,NTYDD,NDUM,MXORNO. 36,3,3.NSYMPI
    SUHPJUTINE (READ) READS IN THF INTFGRALS GENERATFD IN PROGRAM 2 OQ 3
    CALL READISSA.PSA,SDA,PDA,PDNA,DDA,SSB,PSH, SOB,PPR,POR,DDB, 
    IIASS,IAPS,IASO,IAPP,IAPD,IADD,ISSOIM,IPSOIM,ISDDIM,IPPDIM.
    IPDDIM,IDDOIM,CS,CP,CD.LSMAX,ISOBNO,LPMAX,IPOBNO,LOMAX,IDORNOI
    99 READ(5.4.END=10000) KPTST,KPTEND.NDIAG.IPRINT,IPUNCH
    PRINT 915
    DO 1000 KPT=KPTST.KPTEND
    DO 80 I=1.NBTRI
    H(I)=0.DO
    S(I)=0.00
    KX=KBX(KPT)
    KY=KBY(KPT)
    KL=KBZ(KPT)
    K I=K X +1
    k2=ky+1
    k3=kZ+1
    DO 900 NRC=1.IADIM
    11={ (N(NRC)+1
    12=IY(NRC)+
    I 3=1Z(NRC)+1
    CALL GSICO(SICO,SINF,COSN,NROIM,KBZDT,K1,K?,K3.11,12.13)
    N=INB(NRC)
    CONST=DFLOAT(N)/6.00
    S-S
    IF(NRC.GT.IASS) GO TO 150
    SCSS=(SICO(1.1)+SICO(2.1)+SICO(3.1)+SICO(4.1)+SICO(5.1)+51CO(6.1)
    &*CONST
    MI=0
    OO 100 ml=LSST.LSEND
    NO 100 M2=LSST:MI
    MI=MI+I
```

```
            IJ=M1*(M1-1)/2 2+M2
            H(IJ)=H(IJ)+SSA(NRC.MI)*SCSS
            IF(NTOL.GT.1)S(IJ)=S(IJ)+SSB(NRC,MI)*SCSS
    100
    150
C
continue
cONTINUE
P-S
IF(NRC.GT.IADS) GO TO 250
Mi=0
OO 2OC MI=1,LPMAX
IP=(M1-1)*3+LSEND
IP=(M1-1)*3+LSEND
MI=MI+1
    IL=(MI-1)*3
    DO 210 NM=1.3
    MP=1P+NM
    IJ=MP*(MP-1)/2+M2
    NT=NTYPS(NM)
    DO 211L L=1.6
    DO 211 L=1.6
    NL=IL +NPUMPS(NM,L)
    H(IJ)=H(IJ)+PSA(NRC,NM)*SICO(L,NT)*CONST
    IF(NTOL.GT&I)S(IJ)=S(IJ)&QSR(NRC.NL)*SICO(L.NT)*CONST
    211 CONTINUE
    210 CONTINUE
    200 CONT INUE
    SSO CONTINUE
c
C
continue
S-!
IF(NRC.GT.IASD) GO TO 35C
MI=0
DO 300 MI=LSST,LSENN
DO 300 M2=1.LDMAX
II=M1*(MI-1;i/2+MZ
MI=MI+I
IL=(MI-1)*6
OO 310 NM=1,6
NT=NTYSD(NM)
NT=NTYSD(NM)
CB=0.00
DO \(311 L=1.6\)
\(N L=I L+N P U M S D(N M, L)\)
\(C A=C A+S D A(N R C . N L) * S I C O(L, N T) * C O N S T\)
IF (NTOL.GT.I) CS=CB+SDB(NRC.NL)*SICD(L.NT) \#CONST
311 CONTINUE
```

```
            no 312 1=1,5
            J=II+(I-1)*LDMAX
            H(IJ)=H(IJ)+CA*DASIGN(I,NM)
            IF(NTOL.GT.1) S(IJ)=S(IJ)+CB#DASIGN(I.NM)
    312 CONTINUE
    312 CONTINUE
    310 CONTINUE
    300 CONTINUE
    350 CONT INUE
    ローD
    IF(NRC.GT.IAPP) GO TO 450
    MI=0
    DO 400 MI=1.LPMAX
    IPI=(M1-1)*3+LSENO
    DO 4DO M2=1.M1
    IP2=(M2-1)*3+LSEND
    MI=MI+1
    IL=(MI-1)*9
    NM=0
    OO 410 NI=1.3
    MPI=1P1+N1
    OO 410 N2=1.3
    MP2=IP2+N2
    NM=NM+!
    IF(MP1.LT.MP2I GO TO A!O
    IJ=MO1 # (MP1-1)/2+MP2
    NT=NTYPP(NM)
    DO 411 L =1.6
    NL=IL+NPUMPP(NM,L)
    H(IJ)=H(IJ)+PPA(NRC,NL)*SICO(L,NT)*CONST
    IF(NTOL.GT.1) S(IJ)=S(IJ)+PPB(NRC.NL)*SICO(L,NT)*CONST
    411 CONTINUE
    410 CONTINUE
    410 CONTINUE
    400 CONTINUE
    450 CONTINUE
C
*
P-D
IF (NRC.GT.IAPD) GO TO 550
MI =0
DO \(500 \mathrm{MI}=1\). LPMAX
\(1 P=(M 1-1) * 3+L\) SEND
DO \(500 \mathrm{~m} 2=1\) LLDMAX
\(M I=M I+1\)
\(\mathrm{IL}=(\mathrm{MI}-1) \neq 1 \mathrm{~B}\)
```

```
NM=0
NO 510 NI=1.3
NO=IP+N\
11=NP*(NP-1)/2+M2
DO 510 N2=1.6
NM=NM+1
NT=NTYPD(NM)
CA=0.OO
CB=0.DO
DO 511 L=1.6
NL=IL +NPUMPD(NM,L)
CA=CA+POA(NRC.NL)*SICO(L,NT)*CONST
IF(NTOL.GT.1)CB=CB+PDB(NRC,NL)*S!CO(L.NT)*CONST
    511 CONTINUE
OO 512 I=1.5
1J=11+(1-1)#LDMAX
H(IJ)=H(IJ)+CA*DASIGN(I,N2)
IF(NTOL.GT.1) S(IJ)=S(IJ)+CB*DASIT,N(1.N2)
    512 CONTINUE
    510 CONTINUE
    500 CONTINUE
    550 CONTINUE
C
    D-D
    IF(NRC.GT.IADO) GO TO 650
    DO 600 Ml=1.LDMAX
    DO 600 m2=1.LDMAX
    IF(M1.GE.M2) MI=M1*(MI-1)/2+M2
    IF(MI,LT,M2) MI=M2*(M2-1)/2+MI
    IL=(MI-1)*36
    DO 610 Nl=1,0
    00 610 N2=1.6
    F(M1.GE.M2) NM=(N1-1)*6+N2
    IF(M1\bulletGE.ML) NM=(N1-1)*O+N2
    IF(M1&LT,M2) NM=(N2-1)*6+N1
    NT=NTYDD(NM)
    CA=0.DO
    CB=0.DO
    DO 611 L=1.6
    NL =IL +NPUMDD(NM,L)
    CA=CA +DOA(NRC.NL) #SICO(L,NT) #CONST
    IF(NTOL.GT.1) CB=CB+DDE(NRC.NL)#SICO(L.NT)*CONST
    611 CONTINUE
613 CONTINUE
    DO 612 1 1=1.5
    ND 1=M1+(11-i) &LDMAX
```

```
    DO 612 12=1,5
    ND2=M2+(12-1)*LOMAX
    IF(ND1.LT.ND2) GO TO 612
    IJ=ND1*(NO1-1)/2+ND2
    H(IJ)=H(IJ)+CA*OASIGN(II,NI)*OASIGN(I2,N2)
    IF(NTOL.GT.1) S(IJ)=S(IJ)+CR*OAGIGN(II,N1)*DASIGN(I?.N2)
    612 CONTINUE
    G10 CONTINUE
    GOO CONTINUE
    G5O CONTINUE
    OOO CONTINUE
    GT=WT(KDT)
    820
```



```
    WRITE(6,820) KPT,KX,KY,KZ,GT
    NOPT=0
    810 CONTINUE
    NOPT=NOPT+1
    DO 950 I=1.NBTRI
    GE(1)=H(1)
    IF(NTOL.GT.1) GS(I)=S(I)
    950
    CONTINUE
    WRITE(2) KX,KY,KZ,GT.GF
    IF(NTOL.GT.I) WRITE(B) KX.KY.KZ.GT.GS
    IJ=0
    0O 800 I=1,NB
    OO 800 J=1,1
    IJ=\J+1
    IF(NOPT.EQ.2) GO TO 801
    X(I,J)=H(IJ)
    x(J,I)=H(IJ)
    GO TO 800
    8O1 CONTINUE
    x(I,J)=S(IJ)
    x(J.I)=S(IJ)
    800 CONTINUE
    IF(NDIAG.EQ.O) GO TO 1001
    IF(NCHD(NOPT).LE.NKIND) GO TO 1002
    calculate the energy eigenvalues (ge) and eigenvectors (gx)
    HXX=S XE
    THE OVERLAP MATRIX (S) IS EXPRESSED AS THE PRODUCT OF A UPPFR TRIANGULAR
    MATRIX (R) AND ITS TRANSPOSE (R**T)
    H' X' = X' E . WHERF H
        SUGROUTINES DMTDS ANO OMFSO ARE IN ITRM SCIENITFIC SUBROUTINE PACKAGE.
    DIGEN IS THE DOUBLE PRECISION VFRSION OF SUBROUTINF EIGEN IN IRM S.S.P:
```

```
    A=10.**(-9)
    CALL OMFSO(S.M,A,IEI)
    CALL DMTOS(X,NB,NB,S,-1,IF?)
    CALL DMTOS(X,NA.NB,S,2,IF3)
    ON 7150 I=1,NB
    00 7150 J=1.1
    IJ={*(1-1)/2+J
7150 H(IJ)=x(I.J)
    CALL OIGEN(H,X,NB,O)
    CALL OMTDS(X,NB,NR.S.1.IF4)
944 FORMAT(1HO.2X,'IER=..4IS)
    IF(IFI.NE.O.OR.IF2.NE.O.OR.IF3.NE.O.OR.IE4.NE.O) WRITE(G.844) IEI.
    EIE2.IE3,IE4
    NO 356, I=1.NB
        IJ=I*(1-1)/2+I
        GE(I)=H(IJ)
        nO 3561 J=1,NR
3561 GX(1,J)=X(I,J)
    918 FORMAT(1x.//.1X.1OF13.5.//)
    916 FORMAT(110.9113)
    URITE(20) KX,KY.KZ.GT,(GF(I),(GX(J,I),J=1,NB),I=1,NE)
    235 FORMAT(IX,IOF13.6)
        WRITE(6.235) (GE(J),J=1,NB)
        ORINT 8II
    152 FORMAT(GF11.7.313.15)
        NSPIN=NCHO(1)-NKINO
        IF(IPUNCH.NE.O)WRITE(7.152) (GE(I).I=NRST,NBFNDI,KX,KY,KZ.NSNIN
        GO TO 100:
    GONTINUE
        CALL DIGEN(H,X,NB,O)
        OO 2561 l=1,NB
        IJ=1*(I-1)/2+I
        GE(I)=H(IJ)
        OO 2561 J=1.NB
2561 GX(I,J)=x(I,J)
1001 IF(KPT.GT.IPRINT) GO TO 1000
    PRINT BII
811 FORMAT(1HO)
12=0
            I1=12+1
            12=12+10
    IF(I2.GT.NB) I2=NB
    WRITE(6.916) (I,I=11.I2)
    WRITEES:9
    IF(NOIAG.NE.O) WRITE(6.918) (GE(I).I=11.12)
```


ORINT 8!1

OO 913 I=1。NB
913 WRITE(6.914) (X(I.J), J=11, 12)
PRINT 915
IF(I2.LT•NB) GO TO 912
IF (NOPT.LE.NTOL.AND.NOIAG.EO.C) GO TO 910
$\rightarrow 14$ FORMAT(IX,IOF13.5)
Q15 FORMAT(1HI)
1000 CONTINUE
10000 CONTINUE
STOP
STOP
END

```
C PFOGRAM 5. BLOCH BASIS FUNCTION ALONG THREE PRINCIPLE DIRECTIONS.
```



```
    ACONST=LATTICE CONSTANT (IN A. U.)
    FXPCVG=CONVERGENT CRITERIAL EXP(-EXPCVG)=0.0
    FIOPCVG=CONVERGENF CRMITERIRAL LATTICE
    IDCUB=NUMBER OF ATOMS PER LATTICE
    MAXA2=THE SQUARF OF THE MAXIMUN MAGNITUDE OF THE DIRECT LATTICF VFCTOQS
    DIMENSION IAX(IAOIM) ECT.
    IBZDIV=OIVISION BETWEFN K=(0.0.0) ANO K=(1.O.C)*2*PI/A
    I&OBNO=GTO NUMBER E=S, P. O
    IEATOM=ATOMIC BASIS NO. IEATOM=O IF INDEDENDENT GTO ARE USED
    NPGAUS=NO OF POINTS USED IN THE GAUSSIAN INTEGRATION OVER THF WIGNFR-SEITY
    SPHERE (CALCULATING THE FOURIER COEFFICIENTS OF THE FXCHANGF POTENTIALI,
```



```
    IMPLICIT REAL *8 (A-F.H,O-Z)
    COMPLEX*16 BASF(38),SC.COSC
    COMPLEX*8 GRASF(38)
    INTEGER*2 IAX(500),IAY(500),IAZ(500),ISQU(500)
    INTEGER#2 KBX(89).KRY(89).KBZ(89)
    DIMENSION WT(89)
    DIMENSION R(96),W(96),Y(100)
    DIMENSION AX(500),AY(500),AZ(500),PRMX(4R), PRMY(48), PRMZ(48)
    OIMENSION ALSIIA),ALP(11),ALD(5),COS(14),COP(11),COD(5),CS(4,14),
        &CP(3,11),CD(5.5)
            COMMON/GTO/CRYSTL,PI,ISATOM,IPATOM,IDATOM
            PI=3.141592653589793
    51 FORMAT(2X,AB,2F10.5,10I5)
    READ(5.51) CQYSTL.ACONST.EXPCVG,IDCUB,I BZOIV,IAOIM,MAXAZ,NPGAUS
    READ(5.51) CQYSTL BACONST,EXPCVG
    DIV=OFLOAT(IBZDIV)
    WGSZRO=(0.75DO*OMEGA/P1)**0.333333300
c
    DEFIVE GAUSSIAN EXPONENTS AND EXPANSION COEFFICIFNTS
    4 FORMAT(815)
    READ(5.4) ISOBND, ISATOM,IPOBNO, IPATOM,IDOENO,IOATOM
    LSMAX=I SOBNO
    LDMAX = IDORNO
    LPMAX = IPOBNO
    IF(ISATOM.NE.O) LSMAXI=ISATOM
    [F(IOATOM.NE.O) LDMAX=IDATOM
    IF(IPATOM.NE.O) LPMAX=IPATIM
    CALL ROGTOIALS,ALP,ALD,COS,COP,COO,CS.CP.CD.ISORND,LSMAX,IDORNO.
    ELPMAX.IOOBNO.LOMAX.1I
    LOST=1
    LDENO=LOMAX*5
```

```
    LSST=LDENO+1
    LSENO=LDEND+LSMAX
    LPST=L SENO +1
    LPST=L SENO+1
    LOENOSLS
    59 FORMAT(IH1)
    GENEQATE EQUALLY SPACED POINTS IN THE I/ABTH SF THF INDFPENTFNT R. Z.
    IRZOT=IBZOIV+1
    CALL GBZPT(KBX.KRY,KBZ.WT.NKPT.IOCUG.IEZPT.SUMW)
    IDC=8/IDCUB
    IF(IDCUB.EQ.1) IDC=1
    CALL GPERMKIIAX,IAY.IAZ,ISQU,IAOIM,IDC,MAXAZ,I)
    IF(IDCUB.EO.1) AHALF=ACONST
    IF(IDCUR.NE.I) AHALF=ACINST/2.DC
    DO 70 1=1.IADIM
    AX(I)=AHALF*IAX(I)
    AY(I)=AHALFF#IAY(I)
    AZ(I)=AHALF*IAY(I)
    7 0
    CONTINUE
    WRITE(6.52) ACONST.IOCUB,IRZOIV,IADIM,MAXAZ,NPGAUS.LSMAX,
    E ISOBNO.LPMAX,IPOBNO.LOMAX, IDORNO.EXPCVG
    52 FORMAT(IX, 'LATTICE CONST=*.F10.5.2X."ATOMS/LATTICE=*.
```



```
    3.*)'.5X, EXP MAX=`,F10.?./1)
    DEFINE R AND WEIGHT FACTOR FOR GAUSSIAN INTEGRATION OVER THE WIGNER-SFITZ
    SPHERE
    CALL GWTGAS(NPGAUS,Y,R.W)
    DO 54 I=1.NPGAUS
    54 R(I)=WGSZRO*(R(I)+1.00)/2.00
    READ IN PERMUTEO VECTORS ALONG THREE PRINCIPLE DIRECTIONS
    NPTDL=OERMUTATION NUMBER FOR EACH DIRFCTION
90 FORMAT( 3F10.4)
    I=0
    91 READ(5,4,ENO=999) NPTOL
    DO 92j=1.NDTOL
    I= I+1
    REAO(5,90) PRMX(1),PRRMY(I), PRMT(I)
    RNORM=OSORT(PRMX(I)**2+PRMY(I)**2+PRMZ(I)**2)
    PRMX(1)=PRMX(I)/RNORM
```

```
            ORMY(I)=PRMY(I I/RNORM
            ORMZ(II=PRMZ(I)/RNORM
        92
            CONTINUE
            GO TO 91
            CONTINUE
            ITOL=I
        62 FORMAT(I5.3F10.1)
            CK=2.OO*PI/ACONST/OIV
            OO 100 KPT=1 NKPT
            RKX=CK#KBX(KPT)
            RKY=CK*KBY(KPT)
            RKZ =CK*KBZ(KPT)
            DO 200 10=1.NPGAUS
            OO 300 NPNO=1.ITOL
            RX=R(IO|FPRMX(NPNO)
            RY=R(IQ)*PRMY(NPNO)
            RZ=R(IO) FORMZ (NPNO)
            RZ=R(10) FORMZ(NPN
    S10 BASF(1)=(0.DO,0.00)
C
    SUM OVER PERMUTED DIRECT LATTICE VECTORS
    OO 500 NRC=1.NRTOL
    PX=RX+AX(NRC)
    PY=RY +AY(NRC)
    PZ=RZ+AZ(NRC)
    OP=PX*PX+PY*PY+PZ&PZ
    QK=RKX*AX(NRC) +RKY*AY(NRC) +RKZ*AZ(NRC)
    SINE=OSIN(RK)
    COSINE=OCOS(RK)
    SC=DCMPLX(COSINE.SINE)
C
    S-MAVE FUNCTIONS
    OO 520 NS=1.I SOBNO
    OEL=PP&ALS(NS
    IF(DEL.GT.EXPCVG) GO TO 520
    CONST=DEXP(-DEL)
    DO 2I IS=1.LSMAX
    IO 2I IS=I LSSMAX
    II=IS+LOEND
        BASF(III=8ASF(II)+SC*CO
    CONTINUE
    520 CONTINUE
C
P-WAVE FUNCTIONS
```

DO $530 \mathrm{NP}=1$. 1 POBNO
$D E L=P D * A L P(N P)$
IF (DEL.GT.EXPCVG) GO TO 530
CONST=OEXP(-OEL)
DO 31 IP 1 1.LPMAX
II $=3 *(10-1)$
$1 x=11+L$ SEND +1
$i Y=1 i+L S E N D+2$
IY $=11+$ LSEND +2
$17=11+$ LSEND +3
$I Z=1 I+L S E N O+3$
$C O=C O N S T * C P(I P . N P)$
COSC=CO $\# S C=(0 . D 0,-1 . D 0)$

HASF (IY)=BASF(IY)+COSC*PY RASF $(I Z)=B A S F(I Z)+\operatorname{COSC}$ (PZ

CONTINUE

D-wAVE FUNCTIONS
PXY $=P X \neq P Y$
PYZ $=$ PY*PZ

PX2 $=(P X \neq P X-P Y * P Y) / 2$.DO

DO 540 ND $=1$. IDOBNO
OEL $=P P * A L O(N D)$
IF (DFL.GT.EXPCVG) GO TO 540
CONST = DEXP(-DEL)
DO 41 ID =1, LDMAX
NDXY = 10
NOYZ $=$ NDXY + LDMAX
ND $Z X=$ NDY $Z+L O M A X$
NOX2 $=$ NOZ $Z+$ LOMAX
NOL2 $=$ ND 2 2+LOMAX
CO=CONST*CO(ID,NO)
$\operatorname{cosc}=\mathrm{SC} \# \mathrm{CO}$
RASF (NOXY) = BASF (NOXY) +COSC \ddagger PXY
BASF (NOYZ) =BASF (NOYZ) + COSC\#PYZ
BASF (NOZX) = BASF (NOZX) + COSC*PZX
BASF $(N O X 2)=$ BASF $(N O X 2)+C$ CSC 1 P $\times 2$
BASF(NDZ2) $=$ RASF (NDZ2) $+\operatorname{COSC} \# P Z 2$
41 CONTINUF.
54C CONTINUE
500 CONTINUE
CONTINUE
DO 700 I $=1$ LPEND

700 GAASF(I)=8ASF(I)
WRITE(1) GBASF
3^O CISNTINUE
WRITE (6.750) RX.RY,RZ.(RASF(I),I=1,LPFNO)
PRINT 7 Síl 2
750 FORMAT(9E14.6)
751 FORMAT(IHO)
?OO CONTINUE
1 DO CONTINUE
400 CONTINUE
COO CONTINUF
STOP
ENO

```
    PROGRAM 6. SELF-CONSISTENCY
C
    ACINST=LATTICE CONSTANT (IN A. U.)
    ALPHA = THE EXCHANGE PARAMETER
    FACT=PARAMETER USFD TO SPEED UP THE SELF-CDNSISTENT PROCEDURE
    ELECT=NUMBER OF ELFCTRONS PER ATOM
    DEN=ENERGY GRIDE SIZE USED IN CALCULATING THE DFNSITY OF STATES.
    IOCUR=NUMBER OF ATOMS OER LATTICE
    KNMAX=NO. OF RFCIPROCAL LATTICE VECTORS CONSIDERED.
    NEN=NO OF POINTS USED IN CALCULATING THE DENSITY OF STATES
    IBZOIV=DIVISION BETWEEN K=(0.0.0) AND K=(1.0.0)#2*PI/A
    NB=NO. OF BASIS FUNCTIDNS.
    NPGAUS=NO OF POINTS USED IN THE NUMERICAL GAUSSIAN INTEGRATION OVER
    THE IGNER-SEITZ SPHERE. (THE EXCHANGE POTENTIAL)
    IF{IPUN.NE.OI PUNCH THE CHARGE DENSITY AND THEIR FOURIER COEFFICIENTS
```



```
    COMPLEX*8 BAS(38),SS.TT
    REML & XUP, XDN,X1,X2,T,OV,HUP,HON,TN,ON,AA,BR,CC,S,W,R,AC,OO.WT
    E.ROK.SUMW
    INTEGER#2 KX(89) .KY(89),KZ(89).IX(51),IY(51).1Z(51).NN
    DIMENSION W(96).R(96).DUP(96).DDN(96).DENUP(96).DFNON(96).RK(51)
    DIMENSION SIJ(741)
    DIMENSION COUP(288).CODN(288),VAUP(288).VAON(2BR)
    DIMENSION VUPR(96),VDNR(96).VMSUP(51),VMSDN(5I)
    OIMENSION XUP(38).XDN(38).X1(38.38).X2(38,381.T(741).0V(741).
    2VMUP(51),VMDN(51), DKUP(51),DKDN(51),EXUP(51), S(741),
    7EXDN(51),DK(51),VK(51),VXUP(51),VXDN(511,RKK(51),VK0(51).CON(51).
    4VXOUP(51),VXODN(51), CKUP(51),CKDN(51),VKUP(51),VKON(51)
    DIMFNSION WTOIP(3).NPUM(3)
    DIMENSION HUP(38.38). MDN(38.38)
    COMMON/LCS/TSM(3000).EN(3000).SW(3000)
    COMMON/LCS/HUP.HON.T.S
    COMMON WT(89)
    DATA NPUM/6.12.8/.WTOIR/C.28571419.0.45714266.0.25714275/
    DI=3.141592653589793
    1 FORMAT(6F12.8)
    READ(5:1) ACONST, ALPHA,FACT,ELECT,DEN
    REAO(5,2) IOCUB.KNMAX.NEN.IBZDIV.NB.NPGAUS.IPUN
    2 FORMAT(2OI5)
        OMEGA=ACONST**3/DFLOAT(IDCUB)
        KBZPT=IBZDIV+I
        AKR=2.00*PI/ACONST
        AKR2=AKR*AKR
        GNETHD=1.DO/3.DO
        SIXPI= - 6.O#(3.0/4.0/P1)**:33333333
```

```
RO={3.J*OMEGA/4.O/PI \**.3333333
COOK1=-16.OC*P\*P\/(3.0O*OMEGA)
NBST=NB-14
NBENO=NB-9
NCST=NBENO+
DO 383 IRLV=I.KNMAX
VK(IRLV)=0.0
VXUP(IRLV)=0.0
    383
C
c
READ THE FOURIER COEFFICIENTS OF THE COULOMB, AND EXCHANGE OOTENTIALS AND
THE CHARGE DENSITY. (OUT PUT OF DROGRAM 1)
OO 3712 J=1.KNMAX
READ(8) KS,VKO(J),VX,VXCUP(J),VXODN(J),VMUP(J),VMON(J),IX(J), IY(J)
    \varepsilon,IZ(J),NN
    CON(J)=NN
    AA=AKR2*FLOAT(KS)
    RK(J)=OSQRT(AA)
    RKK(J)=-AA/8.0/PI
    VMSUP(J)=VMUP(J)
    VMSUP(J)}=\VMUP(J
    VMSDN(J)
3712
C
C
    READ THE INITIAL CHARGE DENSITY CALCURATED IN PROGRAM 1.
    DO 41111 I=1.NPGAUS
41111 RFAD(5.4089) R(I).W(I).DUP(I).ONN(I)
    40.99 FORMAT(4FI4.8)
C
GENERATE EQUALLY SPACFD POINTS ANO THE CORRESPONDING WEIGHT FACTORS IN
1/48TH OF THE INDEPENDENT BRILLIOUIN ZONE
CALL GBZPT(KX,KY,KZ,WT,NKPT,IDCUB,KBZPT,SUMW)
WRITE{6,3) ACONST,ALPHA,FACT,ELECT,DEN.NKPT,KNMAX,IDCUB,NEN
    E. IBZDIV.NB.NPGAUS
    3 FORMATIIX, LATTICE CONST=, FIO. 5.2X.*EXCH PARA='.FIO.5.2X.,
```



```
    2.,I5.2X, R.L.V.NO='.I5.2X.,ATOMS/LATTICF=, IS.2X.,DF NO=.,IS.2X.
```



```
1206
C
    FORMAT(3!5)
    PERFORM ITERATION NUMBFR ITEROO+I T~ ITFRNW.
    IF(NPART.NE.O) THE FIRST HALF OF THE CALCULATION HAS BFFN DONF.
    REAO(5.1206) ITEROO.ITERNV.NPART
```

```
        IF(NPART.NE.O) READ(5,1207) FERMIE
    1207
        FORMAT(F12.8)
        IF(ITEROD.EQ.O) GO TO 23510
    READ THE CORECTIONS DUE TO SELF-CONSISTANCY IN THF PREVIOUS ITFRATIONS.
C
C
35610 READ5610 ITER=1.ITEROD
23510 CONTINUE
    ITERST = ITEROD +1
    DO 32323 ITER=ITERST,ITERNW
    IF(NPART.NE.OAAND.ITER.EO.ITERST) GO TO 38I
    OO 2011 I=1.NEN
        SW(I)=0.0
    2011 CONTINUE
    DO 12000 NM=1,NKPT
    WRITE(6.222) KX(NM),KY(NM),KZ(NM),NM,WT(NM)
    222 FORMAT&/.30X.3HK=(.3I4.1HI.5X.'NM=•.I5.5X..WT=..FB.5./)
    9905 FORMAT(SA4)
C
    READ THE ORIGINAL COULOMB, KINETIC. EXCHANGE, AND OVERLAP MATRICFS.
    DO 370 I=1.NB
    DO 370 J=1.I
    IJ=J+([&{-I)/2
    READ(4.9905) PD,EK.UP.DN.OVLP
    HUP(I,J)=PO+EK+UP*ALPHA
        HDN(1,J)=PO+FK+DN+ALPHA
        OV(IJ)=OVLP
    370 CONTINUE
    FFORMAT(A4)
        DO 300 [RLV=1.KNMAX
    CAlculate the hamilltonian obtained from last iteration by thf gFnfralizfod
    OVERLAP MATRICES.
    READ(1) SIJ
    AA = VK(IRLV)+VXUP(IRLV)#ALPHA
    BB=VK(IRLV)+VXDN(IRLV)*ALPHA
    OO 300 I= I,NB
    DO 300 J=1:I
    IJ={*(I-1)/2+J
    MON(I,J)=HDN(I,J)+BB*SIJ(IJ)
    MUP(J,I)=\operatorname{MUP}(I,J)
    MON(J,I)=HON(I,J)
```

```
    300 CONTINUE
C
C
    calculate the energy eigenvalues ano wave vectors.
    A=1.0-9
    CALL DMFSD(OV,NB,A,IEI)
    CALL OMTOS(HUP,NB,NA,OV,-1,IE2)
    CALL DMTOS(HUP,NB,NR,OV,2,IE3)
    CALL OMTDS(HON,NB,NB,OV,-i,IEA)
    CALL DMTDS(HON,NB,NB,OV.2.IES)
    DO }7150\quadI=1.N
    DO 7150 J=1.1
    IJ=I*(I-1)/2+J
    T(IJ)=HUP(I,J)
    7150 S(IJ)=HON(1:J)
        CALL DIGEN(अं,X1.NB,O)
        CALL OIGEN(S,X2,NB,O
        CALL DMTDS(X1,NB,NB,OV,1,IE6)
        CALL DMTDS(X2,NB,NB.OV,I,IET)
        IFIIEI.EQ.O.AND.IEZ.EQ.O.AND.IES.EQ.O.AND.IEA.EO.J.AND.IES.EO.O.
    AND.IEG.EO.O.AND.IET.EO.O) GO TO 5890
    WRITE(6.5891) IEI.IE2.IE3.IFA.IES.IEG.IET
    5891 FORMAT(IX..IER=..7I5)
    STOP6
    580 CONTINUE
        DO 7151 I=1,NB
        IJ=1*(1-1)/2+I
        xUP(I)=T(1J)
    7151 XON(I)=S(IJ)
    24 FORMAT()
    35 FORMAT(I 2F 11.5)
        WRITE(6,235) (XUP(J),J=NEST,NB)
        PRINT 245
        WRITE(6,235) (XDN(J),J=NBST.NB)
        DO 357 II I=1,NB
        WRITF(2) XUP(II):(X1(JJ.II),JJ=1,NB)
    357 WRITE(2) XON(II):(X2(JJ,II):JJ=1:NB)
C
C
calculate the density of states.
IF (NM.NE. 1 ) GO TO 6532
\(A A=D M I N I(X U P(N B E N D), X D N(N B E N O))\)
\(\mathrm{XQ}=\mathrm{AA}-0.00\)
DO 20:01=1. NEN
EN(I) \(=\times 0\)
```

6532 CONTINUE
WZ=WT(NM)/SUMM
DO 36 KK=NBST.NBENO
DO 34 j=2.NEN
M=J-1
IF(XUP(KK).GT.EN(M).APD.XUP(KKI.LE.FN(J)) GO TO 35
4 CONTINUE
35 SW(J)=SW(J)+WZ
3 6 ~ C O N T I N U E ~
OO 336KK=NBST.NBEND
DO 336 KK=NBSY
M=s-1
IF(XON(KK),GT.EN(M).AND.XDN(KK).LE.FN(J))GG TO 335
334 CONTINUE
335 SW(J)=SW(J)+W2
36 CONT INUE
2000 CONT INUE
C
C
DETERMINE THE FERMI FNERGY
RHO=ELECT-18.DO
A=0.0
OO 39 J=1.NEN
A=A+S:(J)
39 TSW(J)=A
NENO=NEN-2
OO 41 J=2.NENO
K=J-1
IF{TSW(K),LT.RHO.AND.TSWIJ).GE.RHOIGOTC4O
41 CONTINUE
WRITE(6.36741)
36741 FORMAT(1X. FFERMIE IS NOT CORRECT:)
g0 TO 9990
40 A=RHO-TSW{K)
R=TS*(J)-RHO
IF(A.LT.B) FERMIE=EN(K)
IF(A*GE*B) FERMIE=EN(J
K1=K-20
IF(K2.GT.NEN) K2=NEN
DO 156 IOO=K1,K2
156 WRITE(6,157) EN(IDO),SW(IDOI.TSWIIDD)
57 FORMAT(1X,4(10X,F13.7))
WRITE(6.158) FERMIE
158 FORMAT(IX."FERMIE ENERGY=',F14.08.1/1)
REVINO I

```

DO 382 IRLV=1, KNMAX
CKUP (IRLV) \(=0.00\)
CKDN(IRLV)=0.DO \(\forall K \cup P(I R L V)=0.00\)
VKDN(IRLV) \(=0.00\)
NP 3=NPGAUS \(\% 3\)
\(0045 \quad I=1\). NP 3
COUP (I) \(=0.00\)
CODN(I) \(=0\) •DO
\(\operatorname{VAUP}(I)=0.00\)
VADN(I) \(=0.00\)
45
DO 89998 NM \(=1\), NKPT
DO 358 II 1 , NB
DO 358 II 1 , NB
358
C
C
C
READ(2) XON(II): \((\times 2(J J: I I): J J=1\),NB \()\)
CALCULATE FOURIER TRANSFGRM OF CHARGE OFNSITY
DO 121 IRLV=1.KNMAX
READ(1) SIJ
\(A A=0.0\)
\(C C=0.0\)
DO 125 IN=NBST. NBENO
IF (XDN(INI.GT.FERMIE) GO TO 7125
\(1 J=0\)
DO 7122 11=1.NB
DO \(7122 \quad 12=1.11\)
\(I J=I J+1\)
\(A C=x 2(11, I N) * S I J(1 J) * \times 2(I 2 . I N)\)
IF (11.NE.I2) AC=AC*2.DO
\(7122 C C=C C+A C\)
7125 CONTINUE
IF (XUP(IN).GT.FERMIEI GO TO 125
I \(J=0\)
DO \(122 \quad 11=1\). NB
DO 122 I \(2=1.11\)
\(1 J=1 J+1\)
\(A C=x 1(11, I N) * S T J(I J) * \times 1(12, I N)\)
[F(11.NE.12) AC=AC \(\ddagger 2.00\)
\(122 A A=A A+A C\)
\(1 \geqslant 5\) CONTINUE
VKUP(IRLV) \(=V K\) UP (IRLV) + WT(NM) *AA
\(\forall K D N(I R L V)=V K D N(I R L V)+W T(N M) * C C\)
\(A A=0 . D O\)
```

 BB=0.DO
 DO 6125 IN=NCST.NB
 l J=0
 OO 6122 I 1=1. NB
 DO 6122 12=1.11
 IJ=1J+1
 AC=xI(II.IN)*SIJ(IJ)*xI(I2.IN)
 BC=x2(II,IN)*SIJ(IJ)*x2(I2.IN)
 IF(II.EQ.IZ) GO TO 6124
 AC=AC*2.DO
 BC=BC*2.00
 6124 AA =AA+AC
 6122 BB=88+BC
 6125 CONTINUE
 CKUP(IRLV)=CKUP(IRLV)+MT(NM) #AA
 CKDN(IRLV)=CKON(IRLV)+MT(NM)*BB
 121 CONTINUE
 C
C
CALCULATE SPHERICALLY AVERAGED CHARGE DENSITY
THE BASIS FUNCTION (BAS) IS CALCULATEO IN PROGRAM 5.
PCONST=WT(NM)/SUMW
IO=0
OO 831 IR=1,NPGAUS
DO \$32 LDIR=1,3
IO=10+1
SUPCO=O.DO
SDNCO=0.DO
SURVA=O.DO
SONVA=0.DO
SONVA=O.DO
NPTOL =NPUM(LOIR)
PCON=PCONST/FLOAT(NPTOL)
DO 833 LP=1.NPTOL
READ(17) BAS
OO 81:1=NCST,NP
SS=(0.DO.O.00)
TT=(0.00.0.00)
DO 812 J=1.NB
SS=SS+xi(J,I)\#\#AS(J)
TT=TT+X2(J.I)*\&BAS(J)
812 CONT INU
SUPCO=SUPCO+CABS(SS)**2
811 CONT INUE
CONKINUE =NBST, NBEND
DO 805 I=NBST.NBEND (HESM, GO TO 821

```
```

 SS=(0.00.0.00)
 OO 806 J=1.NE
 806 SS=SS+X1(J,I)*BAS(J)
 SUPVA=SUPVA+CABS(SS)**2
 R21 IF(XDNII\OGT FFERMIE) GO TO 805
 T}=(0.00.0.00
 DO 807 J=1.N8
 807 TT=TT+X2(J.I)*BAS(J)
 SDNVA=SONVA+CABS(TT) #*2
 805 CONTINUE
 83 CONT INUE
 COUP(IO)=COUP(IO)+SUPCO&PCON
 CODN(IO)=CODN(IO)+SONCO&PCON
 VAUP(IO!=VAUP({O)+SUPVA*PCON
 VADN(IQ)=VADN(IO)+SDNVA*PCON
 832 CONTINUE
 831 CONT INUE
 89998 CONTINUE
WRITE(6.223)
C
THE SPHERICALLY AVERAGED CHARGE DENSITY IS APPROXIMATEO AS THE ZEROTH
ORDER TERM IN A SIX ORDER KUBIC HARMONIC EXPANSION.
$10=0$
DO 837 IR=1.NPGAUS
DENUP(IR)=0.0
DENDN(IR)=0.0
DO 838 LDIR=1.3
IO=IO+1
OENUP(IR)=DENUP(IR)+(COUP(IQ)+VAUP(IQ))*WTDIR(LDIR)
DENDN(IR)= DENDN(IR)+(CODN(IO)+VADN(IO))*WTDIR(LDIR)
834
IF(IPUN.NE.O\ MRITE{7.834) R(IR).COUP(IO).VAUP(IO).CODN(IQI.VADN(I
EOILLDIR
838 CONTINUE
II=(IR-1)*3
WRITE(6.B39) R(IR),DENUP(IR),DENDNIIR), (COUP(IITJ).CODN(IITJ),VAUP
E(II+J),VAON(II+J).J=1.3
837 CONTINUE
839 FORMAT($1 \times$ F5.2.14F9.3)
$A A=(C K U P(1)+V K U P(1)-C K D N(1)-V K O N(1)) / S U M W$
RHO = (CKUP(i)+VKUP(i)+CKDN(1)+VKDN(i))/SUMW
WRITE (6.1780) AA,RHO

```

```

C
C
MODIFIEO THE SELF-CONSISTENT CORRFCTIONS TO IMPROVE CONVERGENCE.

```

DO \(378 \mathrm{KN}=1\). KNMAX
CAOS =1.O/CON(KN)/OMEGA/SUMW
CKUP \((K N)=C K U P(K N) \not C A D S\)
CKDN(KN) \(=\) CKON \((K N) \neq C A D S\)
VKUP \((K N)=V K U P(K N) \neq C A D S\)
VKDN(KN) \(=V K D N(K N) * C A D S\)
OKUP \((K N)=C K U P(K N)+\forall K U P(K N)\)
OKON \(K K N)=C K D N(K N)+V K D N(K N)\)
OKUP(KN) \(=\mathrm{OK}\) OP \((K N) \neq F A C T+(1 . O-F A C T) \neq V M S U P(K N)\)
DKON(KN)=DKDN(KN) \#FACT+(1•O-FACT) \#VMSDN(KN)
IFIIPUN.NE ©O) GRITE(7.5643) IX(KN),IY(KN),IZ(KNI,CKUP(KN),CKDN(KN)
E. VKUP (KN), VKDN (KN)

5643 FORMAT(313.4015.8)
89437 FORMAT(3I3.4F15.8)
WRITE (6.89437) IX(KN),IY(KN),IZ(KN),CKUP(KN),CKDN(KN),VKUP(KN),
EVKDN(KN)
\(\forall M S U P(K N)=\) OKUP \((K N)\)
\(V M S O N(K N)=D K D N(K N)\)
DK \((K N)=D K U P(K N)+D K D N(K N)\)
CONTINUE
WRITE(6.223)
WRITE 6.89413) ITER,FACT

\(A A=0 . D O\)
\(R O 2=R O * R O\)
RO3=RO*RO2
DO \(451 \quad J=2, K\) NMAX
RK1 =RK(J)
RK2 2 RK 1 FRK 1
RK \(2=R K 1\) *RK 1
RK 3 =RK 1 FRK 2
RK \(4=\) RK 1 FRKR 2 RK 2
RK = RK 2 \&RK
ROK = RO
ROK=ROもRKI
 CK) + (6.DOFRO/RK 3-RO3/RKI) \#OCOS(ROKII*CONP 1
CONTINUE
DK(1)=CODK I \(\ddagger\) A
CALCULATE THE CORRECTION TO THE EXCHANGE POTENTIAL BY NUMERICAL GAUSSIAN INTEGRATION.

DO \(011=1\). NPGAUS
VUPR(I)=(DENUP(I)**ONETHD-DUP(I)**ONFTHD)*SIXPI
```

 4C1
 VDNR(I)=(DENDN(I)**ONETHO-DON(I)**ONETHO)*SIXPI
 CONTINUE
 EXUP(1)=0.0
 EXON(1)=0.0
 CC=2.0%PI #RO/OMEGA
 DO 403 I=1,NPGAUS
 EXUP(1)=EXUP(1)&G(I)*VUPR(I)*R(I)*R(I)
 403 FXDN(1)=EXDN(1)+W(i)*VONR(I)*R(I)*R(I)
 FXUP(1)=CC*EXUP(1)
 FXDN(1)=CC*EXDN(1)
 DO }404 J=2.KNMAX
 EXUP(J)=0.0
 EXDN(J)=0.0
 BB=CC/RK(J)
 DO 409 I=1.NPGAUS
 AA=RK(J)#R(I)
 EXUP(J)=EXUP(J)+W(I)*VUPR(I)*R(I)*DSIN(AA)
 EXDN(J)=EXON(J)+W(I)*VONR(I)*R(I)*DSIN(AA
 EXUP(J)=EXUP(J)*BB
 EXON(J)=EXDN(J)*BR
 4 0 4
 CONTINUE
 URITE(6.32211)
    ```


```

 ANUCLE=0.0
 DO 397 J=1.KNMAX
 [F(J.EQ.1) GO TO 33397
 DK(J)=-DK(J)/RKK(J)-VKO(J)
 ANUCLE=ELLECT/RKK(J)/OMEGA
 33397 WRITE(6.100) IX(J).IY(J).IZ(J).ANUCLE,VXOUP(J),VXOON(J),VMUP(J),
IVMDN(J),VKO(J),VK(J),DK(J),VXUP(J), EXUP(J),VXDN(J), EXDNIJ)
56802 FORMAT(SE14.8)
50100 FORMAT(5A4)
VXUP(J)=EXUP(J)
\veeXON(J)=EXON{J)
VK(J)=DK(J)
397 CONTINUE
100 FORMAT(1X.12.211.12(1x,F9.5))
MRITE(IGI'(OK(I),DKUP(I),OKDN(I), EXUP(I), EXDN(I),I=1,KNMAX)
WRITE (6,223)
223 FORMAT(1H1)
9998 CONTINUE
REIIND 1
REEIND 1
REWIND 2
REWIND 4

```

32323 CONTINUE
9999 STOP
```

 PROGRAMS 7. THE CENTRAL CELL INTEGRALS OF THE SPINGOREIT CTUPLING.
 (P-P ANO D-D BLOCKS)
    ```

```

 A=L.ATTICE CONSTANT (IN A. U.)
 SCO IDCUB=1. BCCO IDCUB=2. FCCO IDCUR=4
 EXPCVG= CONVERGENT CRITERIAL DEXP(-EXPCVS)=O.DC
 ELECT=NUMBER OF ELECTRONS PER ATOM
 KZMAX=THE SQUARE OF THE MAXIMUN MAGNITUDE OF THE RECIPROCAL LATTICE
 VECTORS USED
 KREAD=NO OF FOURIER COEFFICIENTS READ IN (I)
 NKPT=DIMENSION OF KKX ECT. MUST BE GREATEQ THAN NO OF R.L.V. GENFRATFD
 NKPT=DIMENSION JF KKX ECT. MUST
 IGATOM=ATOMIC BASIS NUMRER =O IF INDEPENDENT GTO IS FMPLOYED
    ```

```

 IMPLICIT REAL *B (A-F.H.O-Z)
 DIMENSION PP(3.3),VCO(1920),RK2(1920),CDC(3.3).GCOUL(4GO1)
 COMPLEX*16 AO.A1.A2.A3.A4
 DIMENSION R(96).M(96).Y(98)
 DIMENSION SA(25.25.3)
 OIMENSION H(10.10).X:(10.10),T(55).XUP(10).OD(5)
 COMMON/GTO/CRYATL.DI.ISATOM.IPATOM.IDATOM
 COMMON/LCS/KKX,KKY,KKZ,NB,KSQU
 INTEGERF2 KKX(8184).KKY(8184).KKZ(8184),N@(8184)
 DIMENSIDN ALS(14),ALP(11),ALD(5),CS(14),CP(11),CO(5),SCO(4,14).
 SPCO(3.11), DCO(5.5)
 OIMENSION KSQU(8184)
 1 FORMAT(AB, 3FII,5.8I5)
 READ(5,1) CRYSTL,A,ELECT,EXPCVG,IDCUB,NKPT,K2MAX,KREAD
 READ(5.4) ISOBNO,ISATOM,IPOBNO,IPATOM,IDOBNO.IDATOM
 WRITE(6.3) CRYSTL.A.ELECT.EXPCVG.IDCUB,NKPT,KZMAX,KREAD,ISDBNO,ISA
 ETOM,IPOBNO.IPATOM,IDOBNO.IDATOM
 3 FORMATIIX.AB, 2X. 'LATTICE CONST=*,F1O.5.2X, EELECTRON NO=*.F10.5.2X.
    ```



```

 LSMAX = I SOBNO
 LDMAX=10OBNO
 LPMAX=IPOBNO
 IF{ISATOM.NE.O} LSMAX=I SATOM
 IF(IDATOM.NE.OI LDMAX=IDATOM
 IF(IOATOM.NE.O) LOMAX=IDATOM
 4 FORMAT(915)
 PI=3.14159265358979300
 AKR=2.DO#PI/A
 AKR2=AKR*AKR
    ```
```

 AHALF=A/2.DO
 OMEGA=A**3/DFLOAT(IDCUR)
 IDATOM=1
 DEFINES THE GAUSSIAN EXPONENTS, NORMALIZATION CONSTANTS, AND EXOAVSION
COEFFICIENTS
CALL ROGTOIALS.ALP.ALD.CS.CP,CD.SCO.PCO.DCO.ISORNO.LSMAX.
CIDOGNO.LPMAX.IDOBNO.LDMAX,O)
CALL GINOPK(KKX,KKY,KKZ,KSOU.NKPY.1)CUB.KZMAX.NR,1,1)
OO 23 J=1.KREAD
23 PEAD(1,END=22) GCOUL(J),GEX.GFXUP.GEXDN.K2
2 CONTINUE
GCOUL(1)=-0.160746960+01
C
D-D
CDCO1=1.DO
CDCD2=CDCD1/2.DO
CDCD3=CDCD2/DSORT(3.DO)
LDEND=5*LOMAX
DO 534 L=1.3
DO 534 1=1.LDENO
DO 534 J=1.LOEND
SB(I,J,L)=0.DO
DO 25 I=1.10
DO 25 J=1.10
25 H(1,J)=0.00
ODA=0.DO
DDB=0.DO
DO 45 KI=1. IOOBNO
DO 45 K2=1.10OBNO
u=1.DO/(ALD(K1)+ALD(K2))
ALAMDA=ALD(KI)*ALD(K2)*U
ALAMDA=ALD(KI)*AL
UI=ALD(KI)*U
U2=ALO(K2;*U
CONST=U*DELTA*CD(K1)*CD(K2)/(8.00*ALD(K1)*ALD(K2))/3.00
CONST=CONST/274.074DO**2
COI=CONST*UI*U2
CO2=-2.DO*ALAMDA*CONST
CO3=COI\#U2
CO4=COI*U2 00*U1-U2)
CO5=2.00*CO2
UOv4=U/4.DO
A=0.00

```

```

 H(1.4)=DDE
 H(1,7)=ODA
 H(1:8)=-DOA
 H(2,3)=00A
 H(2.6) =-DOA
 H(2.9)=-008/2.00
 H(2.10)=-DSORT(3.DO)/2.DC#DOB
 H(3.6)=-DOA
 H(3.9)=H(2.9)
 H(3.10)=-H(2.10)
 H(4,7)=H(2,9)
 H(4.8)=-H(2.9)
 H(5,7)=H(2,10)
 H(5,8)=H(2,10)
 H(6,9)=-DDB
 H(6.9)=-DOB
 H(7.8)=-ODA
 OO 125 I= 1:10
 O0 l2S J=1:I
 125 T(IJ)=H(J.I)
 CALL DIGEN(T,X1.10.0)
 DO 7151 I=1.10
 J=I*(I-1)/2+1
 J=I*(I-1/2
 7151 CONTINUE
M=10
FORMAT(1H1)
89 FORMAT(1X.I2.9(2X.E12.6)s
86 FORMAT(1X.//)
89 FORMAT(3X.9F14.6)
I1=1
71 I2=11+8
IF(I2,GT.M)I2=4
VRITE(6.85)
WRITE(6.89) (XUP(J),J={1.\2!
MRITE(6.86)
DOITE(6.86)
72 WRITE(6.189) I.(x1(1,J).J=I1.12)
IL=I2+1
IF(I2.LT.M) GO TO 71
$P-P$
FINDS THE ASYMPOTIC FXPRFSSION FOR THE FOURIER COEFFICIENTS OF THF COULOMB
POTENTIAL

```
```

 VKCO=-8.DO*DI*ELECT/OMEGA
 K1=KSQU(NKPT)
 K2=K1-100
 K3=K1-50
 GK1=FLOAT(K1)*AKR2
 GK2=FLOAT(K2)&AKR2
 GK3=FLOAT(K3)*AKR2
 AA=GK1*GCOUL (K1+1)-VKCO
 BR=GK2*GCOUR (K2+1)-VKCO
 AA=OSORT(AA)
 BB=OSQRT (BB)
 VKC2=AA*(GK1-GK2)/(BB-AA)-GK?
 VKCI=(AA*(GK1+VKC2))**2
 VTEST =VKCO/GK3 +VKCI/(GK3*(GK3+VKC2)**2)
 VRITE(6.50) VKC1,VKC2.K3.GCOUL(K3+1),VTEST
    ```


```

 C1=VKC1/AKR2**3
 C2=VKC2/AKR2
 C3=VKCO/AKRR2
 WITE(6.58210) CI.C2.C3
 58210 FORMAT (3F20.5)
DEFINE CONSTANTS TO PERFORM 96 POINTS GAUSSIAN INTEGRATION FOR LARGE VALUE
OF THE RECIPROCAL LATTICE VECTORS
CALL GUTGAS(96.Y.R.W)
STN=DSORT(AKR2*DFLOAT(KSOU(NKPT)))
DEN=50.DO*AKR
M=0
DO 901 I=1.20
00 902 J=1.96
M=M+1
RK=DEN*R(J)/2.DO+(2.DO*STN+DEN)/2.DO
RKS=RK \#RK
VCO(M)=VKCO/RKS+VKC1/(RKS*(RKS+VKC2)**2)
VCO(M)=VCO(M)*RK**4*W(J)
RK2(M)=RKS
902
CONTINUE
STN=STN+DEN
901 CONTINUE
DO 533 N = 1. LPMAX
OO $533 \mathrm{M}=1$. LPMAX
$533 \operatorname{PP}\left(N_{2} M\right)=0.00$
OO $40 \mathrm{KI}=1$. IPOBNO
OO $40 \mathrm{~K} 2=1$.IPOENO

```
```

 U=1.DO/(ALP(K1)+ALP(KK2))
 ALAMDA=ALP(K1)#ALP(K2)*U
 DELTA=(PI#U)##1.5
 COVST:=U/2.DO*DELTA/(274.07400**2)*CP(K1)*CD(K2)
 CONST2=CONST1*DEN/2.DO*OMEGA/(6.DO*OI*PI)
 OO 201 I=1.LPMAX
 OO 201 j=1.LPMAX
 01 CDC(I:J)=PCO(I,K1)*PCO(J.K2)
 UOV4=U/4.DO
 CENT1=0.DO
 c
SUM OVER THE R.L.V. UP TO NKPT
OO 500 J=1.NKPT
EXPB=UOV\&*AKRZ*KSQU(J)
IF(EXPB.GT.EXPCVG) GO TO 400
KK=KSQU(J)+1
ADEL=DEXP(-EXPB)
CENT1=CENT1 +ADEL*GCOUL(KKI*AKR2\#DFLOAT(KSOJ(J))*NB(J)/3.DO
500
CONTINUE
4 0 0
CONTINUE
CENTI=CENTI*CONST
INTEGRATE FORM NKPT TO CONIVERGFNT
A=0.DO
00 801 I=1.1920
EXPB=RK2(II\#U/4.00
IF(EXPB.GT.EXPCVG) GO TO 801
ADEL =DEXP(-EXPA)
A=A+ADEL*VCO{1)
8O1 CONTINUE
CENT2=CONST2*A
OO 408 I=1.LPMAX
OO 408 J=1.LPMAX
4 0 8
PP(1,J)=PP(1,J)+(CENT1+CENT2)*CDC(1,J)
CENT3=CENTI+CENT2
WRITE(6.9) K1,K2,CENT1,CENT2,CENT3
FORMATIIX.215:3!2x,E14:8)!
40 CDNTINUE
PRINT 54802
FORMAT(IHI
LPST=LDMAX*5+LSMAX
OO 300 I=1.LPMAX
OO 300 j=1.LOMAX
II=LPST+3*(I-1)

```
```

JJ=LPST+3*(J-1)
IX=II I + I
IY=II + 2
12=11+3
JX=JJ+1
JY=ju+2
JZ=jJ+3
AB=PD(1.J
AO=(0.00.0.00)
AI =OCMPLX(BE.O.DO)
A2 = - A 1
A3=DCMPLX(0.OO.BB)
A4=-A3
\#RITE(6.1023) IX.JY.A3.A0
WRITE(7.1023) X.JY.A3.AO
WRITE (7,1023) IX,JY,A3,AO
WRITE(6.1023) IX,JZ.AO,A2
WRITE(7.1023) IX,JZ.A0.A2
WRITE(6.1023) IY.JX.A4.AO
WRITE{7.1023) IY,IX.A4.AO
WRITE(7.1023) IY.IX,A4.AO
WRITE(6.1023) IY.JZ.AO.A3
WRITE(7,1023) IY,JZ.AO,A3
WRITE(6.1023) IZ.JX.AO.AI
WRITE(6.1O23)
WRITE(7.1023) IZ.JX.AO.AI
WRITE(6,1023) IZ.JY.AO.A4
300 CONTINUE
O?3 FORMAT(2I5.4EI5.8
STOP
END

```
```

 PROGRAM 8. ENERGY BANDS INCLUDING THE EFFECTS OF SPIN-ORBIT COUPLING
    ```

```

 CALCULATE THE ENERGY EIGENVALUES (E) AND EIGENVECTORS (X)
 HX}=SX
 THE OVERLAP MATRIX ISY IS EXPRESSED AS THE PRODUCT OF A UPPER TQIANGULAR
 MATRIX (R) AND ITS TRANSPOSE (R&*T)
    ```


```

 COMPLEX*16 H.X.DCONJG
 COMPLEX#8 Y(76.761.GN.CMPLX,CONJG
 REAL B E(76),FUP(36).W(76),OV.EPS
 DIMENSION GUP(741),GDN(741).GOV(741).FIG(76).DUP(36)
 DIMENSION INDEX(76)
 COMMON/LCS/GN(38.38).GMI(38.38)
 COMMON/A/H(76.76)
 COMMON/E/X(76.76)
 COMMON/C/OV(2926)
 EQUIVALENCE(H(1.1).V(1.1)).(H(1.39).FUP(1))
 EQUIVALENCE(H(1.1):Y(1.1)),(H(1.391,FUP(1))
 78210
FORMAT(2I5)
C
FIND E AND X FOR K=KST TO KEND
IF(IPRINT.NE.O) RESULTS ARE PRINTED
READ(5.78210) KST.KEND.IPRINT
DO 2 I=1.38
DD 2 J=1:38
GMI(I.J)=0.DO
GN(1.J)=(O.EO,O.EO)
CONTINUE
FORMAT(2I5.4E15.8)
READ IN SPIN-OREIT MATRIX (OUTPUT OF PROGRAM 7)
DO 1 N=1.706
READ(5.10,ENO=9) I,J.GA,GB,GC,GD
GMI(I.J)=GB
GN(I,J)=CMPLX(GC,GD
1 CONTINUE
9 CONTINUE
M=76
KK=KST-1
DO 74239 KPT =1.KK
READ(1) GX,GY,GZ.WEIGT,(EIG(I).I=1,M).(DUP(J).J=1.36)
OO 74239 I=1.M

```
```

74239 READ(1) (Y(J.I).J=1.M)
C
RFAD(2) GX,GY,GZ.WEIGT.(GUP(I).GDN(I).I=1.741)
READ(3) GX,GY.GZ.WEIGT,(GOV(I),I=1.741)
IF(KPT.LT.KST) GO TO 56940
DO 15 I=1.38
IL=I+3S
DO 15 J=I.38
JJ=j+38
IJ=j*(J-1)/2+1
H(I.J)=CMPLX(GUP(IJ).GMI(I.J)
G=-GMI(I,J)
H(II.JJ)=CMPLX(GDN(IJ),G)
OV(IJ)=DBLE(GOV(IJ))
15
C
DMFSD REPL ACE OV BY AN UPPER TRIANGULAR MATRIX R WHERF OV=(R**YI P
OMFSO IS IN IEM SCIENTIFIC SUPROUTINE PACKAGE
CALL DMFSO(OV.38.1.O-7.IFR)
IFIIER NE.O) GO TO 720O
GO TO 300
7200
C
digen diagonalized matrix ov
DIGEN IS THE DOUBLE PRECISION VERSION OF SUBROUTINE EIGEN IN IRM S.S.D.
CALL DIGEN(OV.GMI, 38.0)
OO 55 I=1.38
J=!+(I-1)*1/2
WRITE(6.57) OV(J)
55 CONTINUE
57 FORMAT(1X.11(F10.7.1X))
STOP 5
300
CONTINUE
DO 11 I=1.38
DO 19 J=1.!
IJ=I*(I-1)/2+J
!!JJ=(!+38)*(I+37)/2+J+38
OV(I【JJ)=OV(IJ)
9 CONTINUE
DO 1i J=39.76
IJ=J+(J-1)/2+1

```
```

 JJ=J-38
 H(I.J)=GN(I.JJ)
 OV(IJ)=0.DO
 11 CONTINUE
 DO 12 I=1.70
 DO 12 J=i.I
 H(1,J)=DCONJG(H(J.1))
 12 CONTINUE
 C
SUBROUTINE HRIN TRANSFOFM H INTO H (R**-1)
SUBROUTINE RTINH TRANSFORM MINTO ((R**TI**-I) H
CALL HRIN(M)
CALL RTINH(M)
C
C
OO 800 I = 1.36
8OO FUP(I)=0.0
DO B10 I=1.36
DO 810 K=1.38
8:O FUP(I)=FUP(I)+CDABS(X(K,I))**2
DO820 I=1,36
C
OUP(I)=FUP(1)
SUBROUTINE FUNCT TRANSFORM EIGENVECTORS X INTO (R**-1)
CALL FUNCT(M)
DO 76581 I=1.M
EIG(I)=E(I)
OO 76581 J=1.M
Y(1,J)=x(1,J)
76581 CONTINUE
5608: CONTINUE

```

```

 'NM=.IS.5X.VEIGHT=.,FIO.4!
 M=76
 WRITE(I) GX,GY,GZ,WEIGT,(EIG(I),I=1,M),(DUP(J),J=1.36)
 DO 76539 1=1,M
    ```

\section*{WRITE(1) (Y(J.I), J=1, M)}

75539
WRITE 6,53405 ) GX,GY,GZ.ITER.IND.KPT.WEIGT
IFIIPRINT.EQ.O) GO TO 56940
R5 FORMAT (IHI)
96 FORMATIIX.//1
\(12=0\)
71 CONTINUE
\(\begin{array}{ll}11=12+1 \\ 12=1 & 2+5\end{array}\)
IF(12.GT.M) 12=M
88 FORMAT(5(8x, I 10.8 x\()\) )
MRITE 6.86 )
WRITE(6.8B) (I.I=II,I2)
WRITE\{6.86)
WRITE (6.89) (E(I).I=I1.I2)
WRITE(6.86)
IF(I2.LE.36) WRITE(6.89) (DUP(I).I =IL.I?I WRITE(6.86)

189 FORMAT (1X.I2,10(1X,E12.6) ) \(0072 \quad I=1 . M\)

WRITE(6.85)
IF(12.LT.46) GO TO 7 !
56940 CONTINUE
STOP
STOP
END
```

PROGRAM 9. THE MOMENTUM MATRICES BETWEFN BAND STATES.
C

```

```

 SUM CONJG(X(I,N,K))*O(I,J,K)*X(J,M,K) OVER ALL STATES I E J.
 YHERE X IS EIGENVECTOR AT K IN B. Z.
 P IS THE MOMENTUM MATRIX BETWEFN BASIS BLOCH STATES. (PROGRAMS 2 E 4)
    ```


```

 COMPLEX&B F(76,76),SBX(78),SBY(78),SBZ(78)
 OIMENSION E(76),PX(74il, PY(74Il,PZ(741)
 DIMENSION FUP(36)
 COMMON/LCS/F
 4 FORMAT(4IS)
 C
CALCUHATE FOR K FROM NKST TO NKEND
RESULTS ARE PRINTEO IF (IPRIT.NF.OI
READ(5.4) NKST.NKEND, IPRIT
DO 999 NMK=1. NKENO
READ IN ENERGY ADN WAVE VECTOR. IOUT PUT OF PROGRAM RI
READ(I) KK,YK,ZK,WT,(E(I),I=1,76),(FUP(I),I=1.36)
DO 10 I=1.76
10 READ(1)(F)(J.I).J=1.76)
199 CONTINUE
C
REAO IN MOMENTUM MATRIX BETWEEN BASIS BLOCH STATESE (PROGRAMS 2 E AI
REAO\&2) KL.YL.ZL.(PX(I),I=1.741)
REAO(2) KL,YL,ZL,(PY(I),I=1,741)
READ(2) XL,YL,2L.(PZIII:I=1:741)
IF\XK.NE,XL.OR,YK.NE,YL.OR.ZK.NE.ZLI GO TO 199
IF(NMK.LT.NKSTIGO TO }99
OO 40 I=1.76
00 40 J=1.12
x(I-J) =F(I,j+18)
40 Cx(I,J)=DCONJG(x(I,J))
OO 20 I=1.78
BX(I)=(0.DO.0.00)
BY{I)=(0.D0.0.DO)
BZ(I)=(0.00.0.00)
20 CONTINUF
DO 6i I=2.38
II=I+38

```


152 FORMAT ( \(1 \times .215 .8(2 \times \cdot F 13 \cdot 7)\)
PRINT 56194

\section*{56194 FORMAT(1H1)}

999 CONTINUE
19999 STOP
END
```

PROGRAM 10. THE OENSITY OF STATES
C
CALCULATE THE DENSITV OF STATES BY THE HYBRIDE METHOD
ENERGY BANDS AND MOMENTUM MATRICES INCLUDING THE FFFECTS OF SPIN-ORAIT
COUPLING ARE USED
KL=DIVISION BETWEEN K=(0.0.0) AND K=2*OI/A(1.0.0)
NB=NUMBER OF STATES CONSIDERED
A=LATTICE CONSTANT
EMIN=MINIMUN OF ENERGV
NEMAX=TOTAL NUMBER DF POINTS GHERE DENSITY OF STATES NFED TJ BE CALCJLATED
DE=STEP SIZE IN ENPEGY
VALEL =NUMEER OF BANO ELECTRONS
DEGCRT=DEGENERATE CRITERIAL USEO IN K.P PFRTUREATION THEORY
NKPT=NUMBER OF POINTS IN THE BRILLIOUIN ZONE
IOCUE=NUMEER OF ATOMS PER LATTICE
OIMENSION OEKX(NKSUM,NB), ECT

```

```

 COMPLEXG8 PX(12.12).PY(12.12),PZ(12.12),SPLJ.SPNJ.SPJM
 COMPLEX*8 HD(5,5),UX(5.5) ,FX(12)
 INTEGER*2 NP(18.18.18)
 DIMENSION X(6),DDE(3.3).NPN(6)
 DIMENSION EIG(5).WK(5).E(12).IND(5).NABP(9)
 DIMENSION SWUP(1003).SHON(1003), EN{1003), FLECT(1003)
 DIMENSION FUP(12).EEV(12)
 DIMENSION DEKZ(2083,12)
 COMMON/LCS/DEKX(2083.12).DEKYi2083.12)
 COMMON/AR/ENG.GOKX,GOKY,GDKZ,GOKM,G2.BDIV.CONUP.CONDN
 CALL IDENT(EIIOS 4OI4Q SHIE)
 10 FORMAT(215,5F10.5.415)
 READ{5,10) KL,NB,A,EMIN,DE,VALEL,DEGCRT,NFMAX,NKPT,NKSUM,IDCUB
 EPERC=DFLOAT(IDCUB)
 NABPMX=1
 MAXBP贾2NABPMX+1
 DO 111 N=1.MAXBP
 111 NABP(N)=M-NABPMX-1
 WRITE(G,II)KL,NB,A,EMIN,DE,VALEL,DEGCRT,NEMAX,NKPT, MAXBP
 11 FORMATIIH, KXGLENGTH= IT,SX, NNO.OF BANDS=O.IZ.SX, LATTICE CONSTA
    ```


```

 3|V=0.15.//1)
 PI=3.141592653589793
 PIKL=PI/KL
 DIVNO=FLOAT(MAXBP)
 VNORM=(A/(2.*PI))**3/4.
 B=PIKL/A
    ```
```

 BDIV=8/DIVNO
 KLDIV=KL#MAXBP
 KLD2=KL/2
 TwOB=8*2.0
 8?=80IV*BOIV
 KLDMAX=KLDIV*3/2
 C
READ MOMENTUM MATRICES AND DEFINE POINTS IN THE R. Z.
DO 1 NPT =1,NKPT
READ(1) XK,YK,ZK,((PX(I,J),PY(I,J),PZ(I,J),J=1,II,I=1,NR)
IF(KL.NE.8) GO TO 2351
XK=XK/2.0
YK=YK/2.0
ZK=ZK/2.0
2351 CONTINUE
I=IFI X(XK) +1
J=IFIX(YK)+1
K=IFIX(ZK)+1
NP(J,I,K)=NP!
NP(I,J,K)=NOT
NO 2,L:K)=NB
DO 2 L=1.NB
DEKX(NPT,L)=2.O\#REAL (PX(L.L))
OEKY(NPT,L)=2.O*REAL(PY(L.L))
DEKZ(NPT.L)=2.0*REAL(PZ(L.L))
2 CONTINUE
CONTINUE
REWIND
KLP2=KL+2
C
GENERATE ENERGY DERIVATIVES IN THF NEIGHBORING POINTS OF THE 1/1GTH OF THE
BRILLIOUIN ZONE
CALL GNBDE(DEKX,DEKY,DEKZ,NKSUM,NB,NP,KLP?,NKPT)
DO 299 NE=1. NEMAX
SvUP(NE) =0.0
SYDN(NE) =0.0
EN(NE)=EMIN+DE*(NE-1)
299 CONTINUE
EMAX=EN(NEMAX)
SUMWT =0.0
NMPT=0
DO 310 NPT=1.NKPT
READ ENERGY AND PROJECTION OPERATOR FOR UP SPIN

```
```

 REAO(1O)XK,YK,ZK.WTT.(E(L),FUP(LI,L=1,NB)
 KX=IFIX(XK)
 KY=IFIX(YK)
 KZ =1FIX(ZK)
 IF(KL.NE.8) GOTO 319
 KX=KX/2
 KY=KY/2
 KZ=KZ/2
 319
 READ(1) XK,YK,ZK,((PX(I,J),PY(I, J),PZ(I,J!,J=1,I),I=1.NH
 IF(KZ.NE.O.AND.KX.NE.KY.AND.KZ.NE.KL) GO TO 310
 DO 35 I= 1.NB
 DO 35 J=I.NB
 PX(I,J)=CONJG(PX(J,1))
 PY(1,J)=CONJG{PY(J,I);
 PZ(I,J)=CONJGPPZ(J,I):
 35
subdivide each cube in the b. z. into 2t minicells
NTEST=0
OO 400 IDZ=1.MAXBP
KOZ=MAXBP*KZ +NABP(IDZ)
IF(KOZ.LT.O.OR,KDZ.GT.KLDIVIGO TO 4OO
KNZ=KZ+NABP(IDZ)+1
SKZ=FLOAT(NABP(IDZ))*PDIV*2.0
DO 401 IDY=1,MAXBP
KDY=MAXBP*KY+NABP(IDY)
KDY=MAXBPFKY\&NABPYIDY'KLOIV) GO TO 40I
IF(KDY LT,O\&OR,KDY
KNY=KY+NABP(IDY)+1
SKY=FLOATINABPIIDY
KDX=MAXBP*KX+NABP(IDX)
IF(KOX.LT.KDY.OR.KOX.GT.KLOIV) GO TO 402
KNX=KX+NABP(IDX)+1
KNX=KX+NABP(IDX)+1
SKX=FLOAT(NABP(IDX))*BDIV*2.0
315 CONTINUE
KTOL=KDX +KDY+KDZ
IF(KTOL.GT.KLDMAX) GO TD 402
NBKPT=NP(KNX,KNY,KNZ)
NMPT =NMPT + 1
CALL WFCC1GIKDX,KDY,KDZ.KLDIV.WTI
SUMUT=SUM:T+WT
SSQ=SKX*SKX+SKY*SKY+SKZ*SKZ
LST=0
AA=WT*VNORM*16.0

```
```

 DO 320L=1,NB
 GOKX=DEKX(NPT.L
 GDKY=DEKY(NPT,L)
 GOKZ=DEKZ(NPT.L)
 ENG=E(L)
 NDEG=1
 IFRSSO.EQ.O.O1 GO TO 32
 LP1=L+1
 DELE=ABS(E(LPI)-E(L))
 3 3 6
 IF(L.NE.NB.AND.DELE.LT.DEGCRY) GO TO }33
 C
CALCULATE ENERGY BY SECOND ORDER K.P DERTURBATION THEORY
ENG=ENG+SKX*GDKX SKYY*GDKY + SKZ ZGOKZ SSO
DO 30 J=1,NB
IF(L.EQ.J) GO TO }3
OELE=E(L)-E(J)
SPLJ=SKX*PX(L,J)+SKY*PY(L,J)+SKZ*PZ(L,J)
ENG=ENG+4.O*CABS(SPLJ)**2MDELE
30 CONTINUE
GDKX=DEKX(NPT,L) + (DEKX(NBKPT,L)-DEKX(NPT,L))/OIVNO
GDKY=DEKY(NPT,L) + (DEKY(NBKPT.L) -DEKY(NPT.L))/DIVNO
GDKZ=OEKZ(NPT.L) +(DEKZ(NBKPT.L) -DEKZ(NPT.L))/DIVNO
32 CONTINUE
FEM(L)=ENG
IF(ENG.GT\&EMAX)
CONON=AA-CONUP
93 FORMAT(1H.3F12.5.2110.215,F14.6.15.2(2X.F14.8).15)
GDKX=ABS(GOKX)
GDKY=ABS(GOKY)
GDKZ=ABS(GOKZ)
GDKZ=ABS(GOKZ)
GDKM=SORT(GDKX*GDKX +GDKY*GDKY +GOKZ *GDKZ)
IF(GOKM \<: 1.E-06) GO TO SOO
CALL DENSITISYUP. SWON.EN.NEMAX)
GO TO 320
330 CONTINUE
CALCuLATE ENERGY BY DEGENERATE SECONO ORDER K.P PERTURBATION THEGRY
DO 331 N=LP1.NB
IF(ABS(E(L)-E(N)).LT.OEGCRT) NDEG=NDEG+1
OO 332 N=1.NDEG
NN=N+L-1

```
```

 OO 332 M=1.N
 MM=M+L-1
 HD(N,M)=2.O#(SKX*PX(NN,MM) + SKY*PY(NN,MM)+SKZ#PZ(NN,MM))
 IF(N.NE.M) GO TO }33
 HD(N,M)=HD(N.M)+E(NN)+SSO
 333
 OO 334 J=1,NB
 IF(J.GE.L.AND.J.LT.L+NDEG) GO TO }33
 DELE = (E(NN)+E(MM))/2.0-E(J)
 SPNJ=SKX*PX(NN.J) +SKY#PY(NN.J) +SKZ*PZ(NN.J)
 SPJM=SKX*PX(J,MM)+SKY*PY(J,MM) +SKZ*PZ(J,MM)
 HO(N,M)=HD(N,M)+4.O*SPNJ*SPSM/DELE
 CONTINUE
 HD(M,N)=CONJG(HD(N,M))
 332 CONTINUE
 IUD=2
 C
CEIG DIAGONALI2ES A COMPLEX MATRIX (HOI WITH EIGFN VALUF (FIG)
SUGROUTINE CEIG IS NOT INCLUDED IN THIS THESIS
CALL CEIGIHD.UX.EIG.NDEG.I.E-7.9000.ITER.IUD.WK.IND.5)
ST=L +NDEG
DO 329 N=1.NDEG
ENG=EIG(N)
LN=L+N-1
GDKX=DEKX(NPT,LN) +(DEKX(NBKPT,LN)-DEKX(NPT,LN))/DIVNO
GDKY= DEKY(NPT.LN) +(OEKY(NBKPT.LN)-DEKY(NPT, LN))/DIVNO
GDKZ=DEKZ(NPT,LN)+(DEKZ(NBKPT,LN)-DEKZ(NPT,LN)I/DIVNO
EEW(LN)=ENG
IF(ENG.GT.EMAX) GO TO }32
CONUPP =AAFFUP(LN)
CONDN=AA-CONUP
GDKX=ABS{GDKX)
GOKY=ABS(GOKY)
GOKZ =ABS(GDKZ)
GDKM=SQRT(GOKX*GOKX+GDKY*GDKY*GOKZ*GOKZ)
GDKM=SQRT(GOKX*GDKX+GDKY*GDKY*GO
CALL DENSITISWUP.SWDN.EN,NEMAX)
329
CONTINUE
GO TO 320
500 CONTINUE
CONTRIBUTION FROM CRITICAL POINTS ARF NEGLECTED
WRITE(6.84) GDKX,GOKY,GOKZ.NPT, KDX,KDY,KDZ, ENG,L.AA, CUP. NDEG
FORMAT(1H.3F12.5.2I10.215.F14.6.I5.2(2X.F14.8).15,2X.1HC)

```
```

 IFINDEG.NE.1.AND.N.NE.NDEGIGG TO 329
 320 CONTINUE
 88 FORMAT(3I3.F7.4.2X.12F9.5)
 WRITE(3) KDX,KDY,KDZ,WT,(EEW(L),L=1,NB)
 WRITE(6.88) KDX,KOY,KDZ,WT,(EFW(L),L=1.NA)
 4O2 CONTINUE
 4OI CONTINUE
 4OO CONTINUE
 IF(KX+KY+KZ.NE.KL*3/2-2.OR.NTEST.NE.O1 GO TO 310
 NTEST=l
 KDZ二KZ#MAX8P+2
 IF\KDZ.LT.O.OR.KDZ.GT.KLOIVI GO TO 310
 KDY=KY&MAXBP+2
 IF(KDY.LT.O.OR.KDY.GT.KLDIV) GO TO 310
 KDX=KX*MAXBP+2
 IF(KDX,LT.KDY,OR.KOX.GT.KLOIV) GO TO 310
 SKZ=2.0*8OIV*2.0
 SKX=SKZ
 WRITE(6.312) KDX.KDY.KDZ
 312 FORMAT(3110)
 GO TO 315
 310 CONTINUE
 WRITE(6.45)SUMET, VNORM,R,NMDT
 45 FORMAT(IHO.5X.'SUM OF WEIGHT=`,EI2.5.10X."VNORM=.,FI2.3.10X.
 = 'B=`.F12.5.10X,*NO POINT=`,IIOI
 76 FORMAT(IHI. 3X.'ENERGY*.5X."N(E) UP`.5X.'ELEC UP*.4X.*N(E) DN*.
 66x.'ELEC ON.,4X.'N(E)U+D..4X. ELEC U+D.)
 44 FORMATIIH.FIO.S.IIFII.4)
 998 WRITEI6.76i
DENHU=0.0
DENHO=0.0
DENC=0.0
DO 296 NE=1. NEMAX
DENHU=DENHU+S WUP (NE) \#DE
OENHD=DENHD +SYDN(NE) कDE
DENHD=ODENHD \&SYDN (NE) \&O
SWT=SWUP(NE) +SWDN (NE)
ELECT(NE)=DENHU+D
WRITE(6.4A) EN{NE).SWUP(NEI,DENHU.SWON(NF).DENHD.SMT.ELECT(NE).
EDMAG
CONTINUE
OO 11000 I=2. NEMAX
K=I-1
IF(ELECT(KIOLT.VALEL.AND.ELECT(I).GT.VALELIFERMIE=EN(I)-
= OE*(ELECT(I)-VALEL)/(ELECT(I)-ELECT(K))

```

11000 CONTINUE
WRITE(6.12351) FERMIE
12351 FQRMAT(1X./1, IX, FERMIE ENERGY = .F10. 5) NEMAX2 =NEMAX+2
CALL SPLOTE SWDN, SWUP. FN. NEMAX, EMIN, DE, FERMIE, NEMAXZ) STOP END
PROGRAM 11 THE INTERBAND OPTICAL CONOUCTIVITY TENSOR


    CALCULATE THE INTERAANO OPTICAL CONDUCTIVITY BY THE HYRRIDF METHOD
    CALCULATE THE INTERAANO OPTICAL CONDUCTIVITY BY THE HYRRIDF METHOD
    KL=OIVISION BETWEEN K=(0.0.O) ANO K=2#PI/A\1.0.O)
    KL=OIVISION BETWEEN K=(0.0.O) ANO K=2#PI/A\1.0.O)
    NB=NUMBER OF STATES STOREO FOR THE MOMENTUM MATRICFS
    NB=NUMBER OF STATES STOREO FOR THE MOMENTUM MATRICFS
    A=LATTICE CONSTANT
    A=LATTICE CONSTANT
    MIN=MINIMUN OF ENFRGY
    MIN=MINIMUN OF ENFRGY
    NEMAX=TOTAL NUMRER OF POINTS WHERE JENSITY OF STATES NEEO TY QE CALCULATED
    NEMAX=TOTAL NUMRER OF POINTS WHERE JENSITY OF STATES NEEO TY QE CALCULATED
    DE=STEP SIZE IN ENREGY
    DE=STEP SIZE IN ENREGY
    DEGCRT=DEGENERATE CRITERIAL USED IN K.P PFRTUREATION THEORY
    DEGCRT=DEGENERATE CRITERIAL USED IN K.P PFRTUREATION THEORY
    NKPT =NUMBER OF POINTS IN THE BRILLIOUIN ZONE
    NKPT =NUMBER OF POINTS IN THE BRILLIOUIN ZONE
    EPERC=NUMBER OF ATOMS PER LATTICF
    EPERC=NUMBER OF ATOMS PER LATTICF
    OIMENSION PXPX(NKDUM.NB). ECT
    OIMENSION PXPX(NKDUM.NB). ECT
    PX(70)
    PX(70)
    INTEGFR*2 NP(18,18,18),KXX(1357),KYY(1357),KZ2(1357)
    INTEGFR*2 NP(18,18,18),KXX(1357),KYY(1357),KZ2(1357)
    OIMENSION SWXX(352).SWXY(352).SWZZ(352).EN(352).SWJON(352)
    OIMENSION SWXX(352).SWXY(352).SWZZ(352).EN(352).SWJON(352)
    OIMENSION EE(12).DEX(12).DEY(12).DEZ(12)
    OIMENSION EE(12).DEX(12).DEY(12).DEZ(12)
    DIMENSION NARP(3)
    DIMENSION NARP(3)
    IMENSION PZPZ(2078.12)
    IMENSION PZPZ(2078.12)
    COMMON/LCS/PXPX(2078.12).PXPY(2078.12)
    COMMON/LCS/PXPX(2078.12).PXPY(2078.12)
    COMMON/AR/FNG,GOKX,GDKY,GDKZ,GOKM,B2,BDIV,CONXX,CONXY,CONZT,CONST
    COMMON/AR/FNG,GOKX,GDKY,GDKZ,GOKM,B2,BDIV,CONXX,CONXY,CONZT,CONST
    READ(5,10) KL,NE.A.EMIN,DE,FERMIE,OEGCRT,NEMAX,NKPT,NKSUM
    READ(5,10) KL,NE.A.EMIN,DE,FERMIE,OEGCRT,NEMAX,NKPT,NKSUM
    1C FORMAT(2I5.5FIO.5.4I51
    1C FORMAT(2I5.5FIO.5.4I51
    NABPMX=1
    NABPMX=1
    MAXBP=2 %NABPMX+1
    MAXBP=2 %NABPMX+1
    111 N=1,MAXBP
    111 N=1,MAXBP
    NABP(N)=N-NABPMX-1
    NABP(N)=N-NABPMX-1
    KLDIV=KI MAXAF
    KLDIV=KI MAXAF
    MAXBP=1
    MAXBP=1
    WRITE(G,11) KL.NB.A.EMIN,DE.FERMIE,DEGCRT,NEMAX,NKPT,MAXBP,NKSUM
    WRITE(G,11) KL.NB.A.EMIN,DE.FERMIE,DEGCRT,NEMAX,NKPT,MAXBP,NKSUM
11FORMAT\IH, *KX-LENGTH=, II?.5X."NO.OF BANDS=`.I2. 5X. 'LATTICF CONSTA
11FORMAT\IH, *KX-LENGTH=, II?.5X."NO.OF BANDS=`.I2. 5X. 'LATTICF CONSTA


    ?/1X.'DEG CRT=`,F7.5.5X.'NO OF OE=',I5.5X.'NO OF PT=*.IS.5X.'SUR D
    ?/1X.'DEG CRT=`,F7.5.5X.'NO OF OE=',I5.5X.'NO OF PT=*.IS.5X.'SUR D
    3IV=`.I5.5x.'DIM K PTS=1.I5.//1
    3IV=`.I5.5x.'DIM K PTS=1.I5.//1
    PI = 3.141592053589793
    PI = 3.141592053589793
    OIKL=PI/KL
    OIKL=PI/KL
    DIVNO=FLOAT(MAXAP)
    DIVNO=FLOAT(MAXAP)
    VNORM=(A/(2.*PI))**3/4.
    VNORM=(A/(2.*PI))**3/4.
    B=PIKL/A
    B=PIKL/A
    BDIV=B/DIVNO
    BDIV=B/DIVNO
    KLD2=KL/2
    KLD2=KL/2
    T*OB=B*2.0
    T*OB=B*2.0
    B2=80IV*80IV
    B2=80IV*80IV
    KLDMAX=KLDIV*3/2
    KLDMAX=KLDIV*3/2
    READ MOMENTUM MATRICES AND ORDER POINTS IN THE B. Z.
        DO 1 NPT \(=1\), NKPT
        REAO(I) XK:YK, ZK, (PX(I),PY(I),PZ(I), \(1=1, ? 8)\)
        IFRKL.NE.8i GO TO 2351
        \(X K=x K / 2.0\)
        YK=YK/2.0
        てKニアK/て.0
    2351 CONTINUE
    \(I=I F(X(X K)+1\)
        \(J=\{F I X(Y K)+1\)
        \(K=I F I X(Z K)+1\)
        \(K \times X(N P T)=I-1\)
        KYY(NPT) \(=\mathrm{J}-1\)
        \(K Z Z(N P T)=K-1\)
        NP(I,J,K)=NPT
        NP \(N(J, J, K)=N P T\)
        CONTINUE
        CONTINUE
        REWIND 1
        OO 299 NE =1, NEMAX
        \(S W \times x(N E)=0.0\)
        \(S \boxtimes X Y(N E)=0.0\)
        \(5 W Z Z(N E)=0.0\)
        SWJON (NE) \(=0.0\)
        SN(NE)=EMIN+DE*(NE-1)
    299
        CONTINUE
EMAX ENE (NEMAX)
        EMAX =EN(NEMAX)
        MAXBP \(=3\)
        DO 311LG=1.NB
        0030 NPT=1, NKPT
        READ(1) XK,YK,ZK, (PX(I), PY(I), PZ(I), \(1=1.78)\)
        DO 30 LL \(=1.1 G\)
        DO 30 LL \(=1\) ILG
IJ=LG*(LG-I) \(2+L L\)
        PXPX(NPT•LL)=REAL (PX(IJ) \(=\operatorname{CONJG}(P X(I J))+P Y(I J) \neq C O N J G(P Y(I J))) * 8.0\)
        PZPZ(NPT:LL)=REAL(PZ(IJ)*CONJG(PZ(IJ))+PZ(IJ)*CONJG(PZ(IJ)))*8.0
        PXPY(NPT,LL)=AIMAG(PX(IJ)*CONJG(PY(IJ)))*16.0
    30 CONTINUE
DEFINE NEIGHBORING POINTS FOR K LIES ON THE SURFACE OF \(1 / 16 T H\) OF THE \(R\). \(Z\).
\(K L P 2=K L+2\)
CALL GNRPT(PXPX,PXPY,PZPZ,NKSUM,NB,NP,KLPZ,NKPT,LG)
SUMET \(=0.0\)
NMPT \(=0\)
NCRIT \(=0\)
```

 DO 310 NPT=1.NKPT
 KX=KXX(NPT)
 KY=KYY(NPT)
 KZ=KZZ(NPT)
 NTEST=0
 C
SUBDIVIDE EACM CUBE IN THE B. Z.INTO ?7 MINICELLS
OO 400 IDZ=1.MAXBP
KDZ=MAXBP*KZ+NABP(IDZ)
IF(KOZ.LT.O.OR.KDZ.GT.KLDIV) GO TO 400
KNZ=KZ+NABP(IOZ)+1

```

```

 DO 401 IDY=1,MAXBP
 KDY=MAXBP&KY+NABP(IOY)
 IF(KDY.LT.O.OR.KDY.GT.KLDIV) GO TO 4OI
 KNY=KY+NABP(IDY)+1
 SKY=FLOAT(NABP(IOY))*BOIV*2.O
 OO 402 10X=1. MAXBP
 KOX=MAXBP&KX+NABP(IOX)
 IF(KDX.LT.KDY,OR.KDX.GT.KLDIV) GO TO 402
 KNX=KX+NABP(IDX)+1
 SKX=FLOAT(NABP(IDX))*BOIV*2.0
 315 CONTINUE
 KTOL =KDX+KOY+KOZ
IF(KTOL.GT.KLDMAX) GO TO 402
NBKPT =NP(KNX,KNY,KNZ)
NMPT=NMPT +1
uvu
READ IN ENERGIES AND ENERGY DERIVATIVES CALCULATED IN PROGRAM IO.
REAO(2) NOX,NDY,NDZ,NT,(EE(I),DEX(I),DEY(I),DEZ(I),I=1.NB
SUMWT = SUMETHWT
SSQ=SKX*SKX+SKY*SKY+SKZ*SKZ
CONST=16.O\#\#T\&YNORM
CONST=16;OF\#T\&VNORM
GOKM=SQRT(DEX(I)*DEXII)HDEY(I)*
IF(SSO.NE.O.O) GO TO 402
OO 320 LL=1.LG
IF(EE(LG).LT.FERMIE.OR.EE(LLI.GT.FERM1E) GO TO 320
ENG=EE(LG)-EE(LL)
[F(ENG.GT.EMAX) GO TO 320
IF(ENG.GT.EMAX) GOTO 320
GOKX=ABS(DEX(LG)-DEX(LL))
GOKY=ABS(OEY(LG)-DEY(LL))
CONXX=PXPXPNPT,LL\#GT

```
```

 CONXY=PXPY(NPT,LL)*WT
 CONZZ=PZPZ(NPT.LL)*WT
 IF(SSO.EO.O.O) GO TO }3
 CONXX=CONXX+(PXPX(NBKPT.LL)-PXPX(NPT.LL))*WT/DIVNO
 CONXY=CONXY+(PXPY(NBKPT,LL)-PXPY(NPT,LL))*WT/DIVNO
 CONZZ=CONZZ+(PZPZ(NBKPT.LL)-PZPZ(NPT.LL))*WT/DIVNO
 32 CONTINUE
 83 FORMAT(1H , 3F12.5.2I10.215,F14.6.15.2(2X.F14.8),15)
 GOKM=SORT(GDKX*GOKX*GDKY*GOKY+GDKZ &GDKZ)
 IF(GOKM LLT. I.EF-05) GO TO 500
 CALL CONOUCISWXX,SWXY,SWZZ,SWJON,EN.NEMAX)
 GO TO 320
 500 CONTINUE
 CONTRIBUTION FROM CRITICAL POINTS ARE NEGLECTFD
 WRITE(6.84) GDKX,GDKY,GOKZ,NPT,KDX,KDY.KDZ,ENG.LG.LL.WT
 FORMAT(1H .3F12.5.2110.2IS.F14.K.2I5.FI2.5.2X.OC')
 CONTINUE
 402 CONTINUE
 401 CONTINUE
 IF(KXHKY&KZ.NE.KL*3/2-2.OR.NTEST.NF.O) GO TO 310
 NTEST=1
 KDZ=KZ&MAXBP4?
 IF(KOZ.LT.O.OR.KOZ.GT.KLOIV) GO TO 310
 KOY=KY#MAXBP+2
 IF(KDY.LT.O.OR.KOY.GT.KLDIV) GO TO }31
 KX=KXFMAXBP+2
 (F(KOX.LT.KDY.OR.KDX.GT.KLDIV) GO TO 310
 SKZ=2.0*BDIV*2.C
 SKX=SKZ
 SKY=SKZ
 GO TO 315
 310 CONTINU
 REYIND
 REWINO
 31: CONTINUE
 WRITE(6.45)SUMET,VNORM,B,NMPT,NCRIT
 45 FORMATIIX. SUM OF MEIGHT=',E12.5.5X, 'VNORM='.FI2.3.5X., B=, F12.5.


```
        RYTOW=13.6049*1.602191D-19*2.0*P1/6.6261960-34
        CONST=3.010/(PI*PI*274.074*5.29170-9)
        DO 701 NE=1, NEMAX
        CC=CONST/EN(NE)
    SWXX(NE)=SWXX(NE)*CC
```

```
SWXY(NE) =SWXY(NE)*CC \(S W Z Z(N E)=S W Z Z(N E) \neq C C\)
```


EA=EN(NE)

```
EN(NE) \(=E N(N E) \neq 13.6049\)
WRITE(6.702) EA,EN(NE), SYXX(NE), SWXY(NE), SWZZ(NE),SWJON(NE)
WRITE(7.703) EN(NE). SWXX(NE), SWXY(NE). SWZZ(NE), SWJON(NE)
701 CONTINUE
702 FORMAT (2F7.3.9(1X.E10.41.2F9.4)
703 FORMAT(S(E14.8.1X))
STOP
END
```

```
    PROGFAM 12. COMPTON PROFILE.
C
```



```
    IMPLICIT REAL *B (A-F,H,O-Z)
    REAL*4 EUP(38),EDN(38)
    INTEGER*2 KKX(3000), KKY(3000),KKZ(3000)
    DIMENSION XUP(38,38).XDN(38.38), UP(38),GX(38.38)
    DIMENSION KSQU(3000)
    DIMENSION XK(89).YK(89).ZK(89)
    OIMENSION ALS(14).ALP(11),ALD(5), COS(14), COP(11).COD(5).CS(4.14).
    \varepsilonCP(3,11),COT5,5)
        COMMON/GTO/CRYSTL.PI.ISATOM.IPATOM,IDATOM
        COMMON/LCS/KSOU
        COMMON/COMP/PX.PY.PZ,OMFGA.EXPCVG,LSST.LSEND.LPST.LPEND.LDST,LDEND
        PI=3.141592653589793
    51 FORMAT(2X,AB. 3F10.5.8I5)
        READ(5.51) CRYSTL.ACOMST,FERMIE.EXPCVG,IDCUB.IRZDIV.NKPT,KSTOL.,
        GKSINC.KSSTEP.K2MAX.INCIS
        MRITE(6,52) ACONST,FERMIE,IDCUB,IRZDIV,NKPT,K2MAX,KSTOL
        OMEGA=ACONST**3/DFLOAT(IDCUB)
        DIV=DFLOAT(IBZDIV)
    DEFINF GAUSSIAN EXPONENTS AND EXPANSION COEFFICIENTS
    4 FORMAT(BI5)
            READ(5.4) ISOBNO.ISATOM.IPOBNO.IPATOM.IDOBNO.IDATON
            LSMAX =I SOBNO
            LDMAX =IDOBNO
            LPMAX = IPOBNO
            IF(ISATOM.NF.O) LSMAX=ISATOM
            IF(IDATOM.NE.O) LDMAX=IDATOM
            IFIIPATOM.NE.O) LPMAX=IPATOM
            CALL ROGTO\ALS,ALP,ALD,COS.COP,COD,CS,CP,CO,ISTBNO,LSMAX.IPOBNO.
    ELPMAX.IDOBNO.LDMAX:1)
```

```
    LDST=1
    LDEND=LOMAX*S
    LSST=LDEND+1
    LSENT=LDEND+LSMAX
    LSST=LSEND+1
    LPST=LSEND + 
        LPEND=L SENO+LPMAX*3
        PRINT 59
    59 FORMAT{1H1)
C
gENERATE PERMUTED RECIPROCAL LATTICF VECTNRS
    CALL GPERMK(KKX,KKY,KKZ,KSOU.KSTOL.,IDCUR.K2MAX,1)
    NCEND=LPEND
    NCST=NCEND-8
    NBENO=NCST-1
    NBST=NBEND-S
    IF(INCIS.EQ.OI NCENS=NCEND-I
    NB=LPEND
    WRITE(6.52) ACONST,FERMIE.IDCUB,IBZOIV,NKPT,KZMAX,KSTOL,LSMAX
    E.ISOBNO,LPMAX.IPOBNO,LOMAX.IOORNO.EXPCVG.NBST.NBEND.NCST.NCEND
    2.INC1S
    52 FORMAT(1X. 'LATTICE CONST=.,FIO.5.2X.'FERMI E=*.FIO.5.2X.*ATOMS/LAT
```



```
    4.?X.:INCLUDE IS=..I5.1/)
    62 FORMAT(I5,3F10.1)
        ID 100=100
        10110=110
        ID111=111
        AKR=2.DO*PI/ACONST
        CK=AKR/DIV
    QROERR=CK*0.001
    CONE IS INVERSELY PROPGRTIONAL TO THE CROSS SECTIONAL AREA OF EACH CJAF ON
    CONE IS INVERSELY PROPGRTIONAL TO THE CROSS SECTIONAL AREA OF EACH CJAF ON
    CONX=OMEGA*4.DO/(PI*(ACONST*DIV)**2)
    CONN=CONX/OSQRT(2.DO)
    COM =CONX*O.75DOFDSORT (3.DO)
    COM =CDNX*O.75DOFDSORT(3.DO)
    IF(IDCUB.NE.I) CO=DFLOA
    TW=(2.OO*DIV)**3*CO/48.DO
90
    *)
FORMAT(F10.5.15)
    O IS A INTEGER mULTIPLF OF THE STEP SEIZE ALLOWED BY THE DIVISION
```

```
C IN THF BRILLIOUIN ZONE: 
    91 CONTINUE
            READ(5.90.END=1000) O.IPUNCH
            Q=Q*CK
            IO=IO+1
            COMPXV =0.00
            COMPXC=0.DO
            COMPXC=0.DO
            COMPNC = 0.DO
            COMPNV =0.DO
            COMPLV =O.DO
                    SUM OVER R.L.V.IN SEVERAL STEPS TO CHECK CONVEMGFNCF.
    KSST=1
    DO 900 KSJUM=1.KSSTEP
    KSEND=KSST +KSINC
    SUMW=0.OO
    DO 100 KPT=1.NKPT
n\capnn
    READ K. WEIGHT FACTORS. ENERGIES. AND WAVF FUNCTIONS NEGLECTING THF FFFFCT
    OF SPIN-ORBIT COUPLING.
    READ(1)KX,KY,KZ,GT,(EUP(III), (GXIJJ,II),JJ=I,NR),II=I,NB)
    OO 173 II=1.NB
    DO 173 JJ=1,NB
    173 XUP(II,JJ)=GX(II|JJ)
    READ(2)KX,KY,KZ.GT.(EDN(II),(GX(JJ,II\,JJ=1,NB),II=I,NB)
    DO 174 II=1.NB
    OO 174 jJ=1.NB
    174 KDN(II,JJ)=GX(II.JJ)
    XK(KPT) = DFLOAT(KX)呂CK
    YK(KPT)=DFLOAT(KY)*CK
    ZK(KPT)=DFLDAT(KZ)*CK
    MT=GT
    SUMW=SUMW+WT
    170 CONTINUE
DO 200 KS=KSST.KSENO
    PX=XK(KPT) +AKR&KKX(KS)
    PY=YK(KPT) +AKR&KKY(KS)
    PZ=ZK(KDT)+AKR*KKZ(KS)
C
    SFLECT K POINTS THAT SATISFY THE MOMENTUM CONSERVATION RELATIONE
```

＋
－ncti＝o

$$
\begin{aligned}
& =1 P 1 \\
& =1 P 1 \\
& =1 P Q \\
& =1 P 1 \\
& 0.0
\end{aligned}
$$

$P N+1$
$P N+1$ Kog

$\underset{\alpha}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\omega}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha} \underset{\sim}{\alpha}$ $\alpha \propto \alpha \alpha \bar{\alpha}$ $\alpha \propto \alpha \alpha \alpha \alpha$
 $\alpha \alpha \alpha \alpha \alpha \alpha$

\qquad
 －ーーー～ 100000 $x>N \times>N$ oanaga らうらいうに
 －くくくくく゚ ＂000000＂

$$
\underset{\sim}{a n}
$$

CALLL FOURFC（UP．ALSS：ALP．ALD．CS．CP，CD，ISOBNO．LSMAX．IPOBNO．

$\underset{\sim}{\sim}$

901 CONTINUE
IF (IPUNCH.EO.O) GO TO 999
WRITE(7.911) O.PFX.PROFXC.PROFXV.IDIOC WRITE(7.911) 0110 . PF N.PROFNC.PROFNV.IOI10 WRITE(7.911) OII1.PFL.PROFLC.PROFLV.IDIII
911 FORMAT(AE16.8.10X.16)
499 CONTINUE
GO TO 91
1000 CONTINUE
IF(DABS(TW-SUMW).GT.0.1D-5) GRITE(6.5314) TW.SUMW
5314 FORMAT (//. $1 \times \cdot$ SUMW=: 2F10.6)
STOP
END

SUBROUTINE CONDUC(SWXX,SWXY,SWZZ,SWJON,EN, NEMAX)

THE CONTRIRUTION OF EACH MINICELL TO THE CONDUCTIVITY TENSOR
THE CONTRIRUTION OF EACH MINICELL TOTHE CONOUCTIVITYYENSOR TH

1SWJON(NEMAX)
COMMON/AR/ENG.GOKX,GDKY,GOKZ.GOKM, B?.B.CONXX, CONXY.CONZZ.CONST
$A L X=G D K X / G D K M$
$A L Y=G D K Y / G O K M$
$A L Z=G D K Z / G O K M$

```
NOW ARRANGE SUCH THAT ALX .GE. ALY •GF. ALZ
```

$A D D=A L Y$
$A L Y=A L Z$
$A L Z=A D D$
$A L Z=A D D$
IF ALX .GE. ALY) GO TO 352
$A D D=A L X$
$A L X=A L Y$
$A L Y=A D D$
IF (ALY •LT•ALZ) GO TO 353
352
CONTINUE
$\forall 1=B * A R S(A L X-A L Y-A L Z)$
$w 2=B *(A L X-A L Y+A L Z)$
$w 3=B *(A L X+A L Y-A L Z)$
$w 4=8 *\{A L X+A L Y+A L Z\}$
$A A X X=C O N X X / G O K M$
$A A X Y=C O N X Y / G D K M$
$\triangle A Z Z=C O N Z Z / G D K M$
$\triangle A J O N=C O N S T / G D K M$
SMAX $=6.5 * 82$
$D E M A X=(A L X+A L Y+A L Z) * B * G O K M$
OO 303 NE $=1$. NEMAX
$E E=E N(N E)$
CALCULATES AREA OF PLANE OF ENERGY •E IN A GIVEN CUBF.
MAX VALUE OF AREA CAN BE SORT(3.)*A.*日*B=6.5* H*B.IF S.SMAX,FRROM DOINTET
DEW=ABS(EE-ENG)
IF (DEW GT. DEMAX) GO TO 300
$W=O E W / G O K M$
IF (W .GT. W4) GO TO 300
IF(W .GT. 11 GO TO 360
IF(ALX •LT•ALYHALZ) GO TO 365
S=4.*日2/al x

```
365 GO TO 395 (2-(ALX*(ALY+ALZ)+ALY*ALZ)-1.)*B2-W*W)/(ALX*ALY*ALZ)
        GO TO 395
360 CONTINUE
        IF(W.GT.W2) GO TO 370
        S=(B2*(ALX*(ALY+ALZ)+3.*ALY*ALZ)-8***(ALY+ALZ-ALX)-(w*W+B2)/2.)
        1/(ALX*ALY*ALZ)
        GO TO 395
370
        CONTINUE
        IF(W .GT.W3) GO TO 375
        S=2.*(B2*(ALX+ALY)-R*W)/(ALX*ALY)
        GO TO 395
        CONTINUE
        S=((w4-M)**2)/(2**ALX*ALY*ALZ
        cONTINUE
        IF(S ILT. SMAX) GO TO }89
        WRITE(6.75C)ALX,ALY,ALZ.W1,W2.W3,W4,W,S.NF,NPT
750 FORMAT(IH.9E12.3.215)
    899 CONTINUF
SWXX(NE) =SWXX(NE) +S*AAXX
SWXY(NE)=SWXY(NE) +S*AAXY
SWXY(NE)=SWXY(NE) +S*AAXY
    SWZZ(NE)=SYZZ(NE)+S*AAZZ
    CONTINUE
    RETURN
    END
```

SUBROUTINE CTULOM(CHARGE, SUM,RS,FACT)
C**** CALCALCULATE THE FDURIER CDEFFICIENTS OF THE CHARGE DENSITY

SUBROUTINE DENSITISWUP. SWDN.EN. NEMAXI


```
    DIMENSION SUUP(NEMAX) SWON(NEMAX) E EN(NEMAX)
    COMMON/AR/ENG.GDKX,GOKY,GDKZ,GDKM, RZ,B,CONUP,CONDN
    ALK=GDKX/GDKM
    ALY =GDKY/GDKM
    A!Z =GDKZ/GOKM
C NOY ARRANGE SUCH THAT ALX .GE. ALY .GE. ALZ
IF(ALY GE.GLZI GO TO 351
353 ADO=ALY
    ALY=ALZ
    ALY=ALZ
    IF&A!X
    ADO=ALX
    AL X=AL}
    ALY=ADO
    IF(ALY -LT. ALZI GO TO 353
352 CONTINUE
        | = B%ABS(ALX-ALY-ALZ)
        V2=B*(ALX-ALY+ALZ)
        w 3=B* (ALX+ALY-ALZ)
        W4=8*(ALX+ALY+ALZ)
        AAUP=CONUP/GDKM
        AADN = CONDN/GDKM
        SMAX=6.5%82
        DEMAX=(ALX+ALY+ALZ)#R#GOKM
C
    CALCULATES AREA OF PLANE OF ENERGY *E. IN A GIVEN CURE.
    MAX VALUE OF AREA CAN BE SQRT(3.I*4.*B*B=6.5*B#B.IF S.SMAX.FRROR POINTED
    DO 300 NE=1. NEMAX
    EE=EN(NE)
    OEW=ABS(EE-ENG)
    IF(DEW ,GT. DEMAXI GO TO 300
    W=DEW/GDKM
    IF(WH.GT.WA) GO TO 300
    IF(WHGGT•WA) GO TO 300
    IFIWGGT:WITGOGOMSGO
    S=4.FB2/4LX
    GO TO 395
365 S=((2.*(ALX*(ALY*ALZ)+ALY*ALZ)-1.)*B2-W*W)/(ALX*ALY*ALZ)
    GO TO 395
360 CONTINUE
    IF(W,GT.W2) GO TO 370
```

```
        S=(92*(ALX*(ALY+ALZ)+3.*ALY*ALZ)-B*w*(ALY+ALZ-ALX)-(w*w+B2)/2.)
        1/(ALX*ALY*ALZ)
        GO TO 395
        CONTINUE
        IF(W.GT.W3) GO TO 375
        S=2.*(B2*(ALX+ALY)-B*W)/(ALX*ALY)
        SO2**(B2*
        GOTTO 395
        CONTINUE
        S=((#A-V)**2)/(2.*ALX*ALY*ALZ)
        CONTINUE
        IF(S .LT. SMAX) GO TO 899
        WRITEC6.750IALX,ALY,ALZ.W1.W2.W3.WA.W,S.NF.NPT
750 FORMAT(1H.9E12.3.215)
    899 CONTINUE
SWUP(NE)=S⿴UP(NF) +S*AAUP
    SWUP(NE)=SWUP(NE) +S*AAUP
    CONTINUE
    RE TURN
    END
```

SUBROUTINE FOURFCIUP.ALS.ALP.ALD.CS.CP.CD.ISORNO, LSMAX.IPOBNO.
ILPMAX, IDOBNO, LDMAXI

CALCULATE THE FOURIER TRANSFORM OF THE LOCALIZED BASIS FUNCTIUN.

IMPLICIT REAL *8 (A-F.H, O-Z)
DIMENSION UP\{1).ALS(1).ALP(1).ALD(1).
ECS(LSMAX,ISOBNO),CP(LPMAX,IPOBNO), CD (LDMAX,IDOBNO)
COMMON/COMP/PX,PY.PZ. OMEGA, EXPCVG.LSST.LSEND.LPST.LDFND.LDST,LDFND
$P I=3.141592653589793$
DO $10 \quad I=1$,LPEND
10 UP(I) $=0.00$
$C C=1.00 / D S Q R T(O M E G A)$
$P P=P X \neq P X+P Y * P Y+P Z * P Z$
S-FUNCTIONS
OO 20 NS=1.ISOBNO
OEL=PP/(4.DO*ALS(NS))
IF (DEL.GT.EXPCVG) GO TO 20
$O E L=D E X P(-D E L)$
SL AM=PI/ALS(NS)
CONST $=C C * S L A M * D S O R T(S L A M) * D E L$
0021 IS =1 L SMAX
$I I=I S+L D E N D$
21 IPP(II)=UP(II)+CONST*CS(IS.NS)
20 CONTINUE
P-FUNCTIONS
OO 30 NP $=1$ - IPOBNO
DEL=PP/(4.DO*ALP(NP))
IF(DEL•GT.EXPCVG) GO TO 30
DEL =DEXP(-DEL)
SLAM=PI/ALP(NP)
CONST $=-C C * S L A M * D S O R T(S L A M) * D E L /(2 . O * A L P(N P))$
DO 31 IP 1 I LPMAX
$P C D=C O N S T * C P(I P, N P)$
II=3*(IP-1)
$I X=I+L S E N D+1$
$I X=1 I+L S E N D+1$
$I Y=11+L S E N D+2$
$1 Y=11+L S E N D+2$
$1 Z=11+L S E N D+3$
UP $(I X)=U P(I X)+P C O * P X$
UP (IY)=UP(IY)+PCO*PY
UP $(1 Z)=U P(1 Z)+P C Q * P Z$
31 CONTINUE

30 continue
D-FUNCTIONS
$P X Y=P X \neq P Y$
$P Y Z=P Y \notin P Z$
PYZ $=P Y \neq P Z$
$P Z X=P Z \neq P X$
$P X Z=(P X \neq P X-P Y \neq P Y) / 2.00$
PZ2=(3.DOFPZ*PZ-PD) ($2.0 C * D S Q R T(3.00))$
DO 40 NO =1. IDOBNO
DEL=PP/(4.DO\#ALD(NDI)
IF (DEL.GT.EXPCVG) GO TO 40
DEL = DEXP (-DEL)
SLAM=PI/ALD(ND)
CONST=-CC*SLAM*DSQRT(SLAM)*DEL/(4.0O*ALD(NO)*ALD(NO)) DO 41 ID $=1 \cdot \operatorname{LDMAX}$
OCO=CONST*CD(ID,ND)
NOXY=10
NDYZ $=$ NDXY + LDMAX
NDZX=NDYZ+LDMAX
NDX $2=$ NOZ $Z+$ LDMAX
NDZ $2=$ NDX $2+L D M A X$
UP $($ NOXY $)=U P(N D X Y)+O C O \# P X Y$ UP $(N D Y Z)=U P(N D Y Z)+D C O \# P Y Z$ UP(NOZX) $=$ UP (NOZX) + OCO*PZX UP (ND×2) $=$ UP (NOX2) + OCO*P 2 UP $(N D Z 2)=U P(N D Z 2)+D C O \& P Z 2$
41 CONTINUE
40 CONTINUE
RE TURN
END

SUBROUTINE FUNCT（M）

C Y IS REPLACED BY（OV＊＊－1）Y
$\begin{array}{lll}C & Y S \\ C & (K K, I, J)=2 * M *(J-1)+2 *(I-1)+K K\end{array}$
$\begin{array}{ll}C & (K K, 1, J)=2 * M *(J-1)+2 *(I-1)+K K \\ C & (K K, N, J) \\ C\end{array}$

REAL \＆ 8 YOV
COMMON／B／Y（11552）
COMMON／C／OV（2926）
M2 $=M+2$
DO $100 I=1 . M$
$I I=M+I-I$
LL＝I I＋（I！＋1）／2
II2＝2事（II－1）
DO $100 \quad J=1 \cdot M$
DO $100 \mathrm{KK}=1.2$
$J K K=M 2 *(J-1)+K K$
KKIIJ＝JKK＋II2
IF（II．EO．M）GO TO 102
$11=1 I+1$
DO $101 \mathrm{~N}=11 . \mathrm{M}$
$I N=N+(N-1) / 2+11$
$K K N J=J K K+2=(N-1)$
Y（KK【【J）$=Y(K K 【 I J)-O V(I N) * Y(K K N J)$
O1 CONTINUE
102 CONTINUE
Y（KKIIJ）$=\mathrm{Y}(\mathrm{KKIIJ)/OV(LL)}$
100 CONTINUE
RETURN
ENO

SUBROUTINE GBZPT (KBX,KAY,KRZ,WT,KPT,IOCUB,KBZPT,TW)


```
    WT= THE FRACTION OF EACH CUAE CENTERED AT FACH (KRX,KRY,KRT) THAT LIFS
    ITHIN THE INDEPENDENT 1/QBTH OF THE B. }7
    WITHIN THE INDEPENDENT I/48TH OF THE B OT ZOE INE I/4BTH OF THE ZONF
    KPT=TOTAL NO OF POINTS GENERATED
    REAL*8 W.SUMW,WT(i),TW
    INTEGFR*2 KBX(1),KBY(1),KRZ(1)
    KPT=O
    KL=KBZPT-1
    SUMW=0.OO
    IF(IDCUB.NE.4) GO TO 110
    OO 100 II=1.KBZPT
    00 100 ,J=1.1I
    OO 100 KK=1,JJ
    KX=1 1-1
    KY=JJ-1
    KZ=KK-1
    KT=KX+KY+KZ
    KM=KL 3/2
    IF(KT.GT.KM) GO TO 1CO
    KPT=XPT+1
    W=1.DO
    IF(KT,EQ.KM) W=W*C.5DO
    IF(KX.EO.KL) W=W*O.500
    IF(KX,EQ.O) W=W*0.5DO
    IF(KY.EQ.O) U=W*0.500
    IF(KZ.EQ.O) W=%W%O.500
    IF(KX,EO.KY.OR,KY,EO.KZ) W=W*O.5DO
    IF(KX,EO.KZ)W=W/3.DO
    KBX(KPT)=KX
    KBY(KPT)=KY
    KBYZ(KPYT)=KZ
    KBZ(KPT)=K
    6 FORMAT(4I5.F10.5)
        #RITE(6.6) KPT,KX,KY,KZ.W
        SUMW=SUMW+W
100 CONTINUE
GO TO 310
110 IF(IDCUB.NE.2) GO TO 210
\(K P T=0\)
DO \(200 \quad I I=1 . K B Z P T\)
\(00200 \quad J J=1,11\)
DO \(200 \mathrm{kK}=1 \cdot \mathrm{JJ}\)
```

```
KX=II I-1
KY=JJ-1
KZ=KK-1
KT=KX+KY+KZ
KM=KL*3/2
IF(KT.GT.KM) GO TO 200
KXY=KX+KY
KXY=KXYKY'.KLI GO TO 200
IF(KXY&GT.KL\ GO TO 200
KPT=KPPT+1
W=1.DO
IF(KX.EQ.KL) W=W*0.500
IF(KX.EQ.O) W=w*0.500
IF(KY.EO.O\ W=w*0.500
IF(KZ.EO.O) W=W*O.500
IF(KX,EQ,KY,OR,KY,EQ.KZ) W=W#O.500
IF(KX,EQ,KY,OR,KY,EQ:K
IF(KX,EQ.K
IF(KXY.EO.KL.AND.KYZ.EQ.KL.ANO.KY.NE.KL/2I W=W/3.DC
KBX(KPT)}=K
KBY(KPT) =KY
K日Z(KPT) =KZ
MT(KPT)=W
MT(KPT)=W
SUMM= SUM
GO TO 310
10 IF(IDCUB.NE.I) STOP 3
KPT=0
OO 300 II=1.KBZPT
DO 300 JJ=1.II
DO 300 KK=1.jJ
KX=II-I
KY=JJ-1
KZ=KK-1
KPT =KPT +1
W=1.DO
IF(KX.EO.KL) m=W*O.500
IF(KX.EO.KL) W=W*O.500
IF(KY.EO.KL) W=W*0.500
IF(KZ,EQ.KL) W=W*O.500
IF(KY,EO.O) W=w⿻O.SDO
IF(KZ.EO,O) W=w=O:SOO
IF(KX,EO.KY,GR,KY,EQ.KZ) W=W*O.5DO
IF(KX.EO.KZ) W=W/3.DO
KBX(KPT)=KX
KBX(KPT)}=K
KBY(KPT)=KY
KBZ(KPT)=KZ
```

WT(KPT) $=W$
SUMWI SUMW+
300
CONTINUE
IF(IOCUB.NE. 1) CO=DFLOAT(IDCURI/8.OC
IF (IDCUB-EO.1) CD=1.DO

400
IF (TW.EQ.SUMW) RFTURN
 WRITE 6.400) IDCUB.SUMW.TW
RETURN
END

SUBROUTINE GINOPK (KKX,KKY,KKZ,KSQ, NKPT, IDCUB,K2MAX,NB,NBCAL,ISOPT)


```
    GENERATE INDEPENDENT RECIPROCAL LATTICE VECTORS WITH MAGNITUDE SOUARE
    THAN K2MAX
    IFIISORT.NE.C) THE RECIPRDCAL LATTICE VECTORS ARF SORTED IN ORDFR OF
    INCREASING MAGNITUDE
    IF(NBCAL.NE.O) NO OF PFRMUTATION FOR EACH VECTOF (NB) ARF GFNERATED
        SC IDCUB=1. BCC IDCUR=2. FCC IOCUS=4
```



```
    INTEGER*2 KKX(1).KKY(1),KKZ(1),NB(1),N
    DIMENSION KSQ(1)
    G=K2MAX
    MAXKX=SQRT(G)+2
    KPT=O
    IF(IDCUB.NE.4) GO TO 200
    DO IOO III=I,MAXKX,2
    00 100 JJJ=1.1II.2
    OO 100 KKK=1.JJJ.2
    KX=III-1
    KY=jJJ-1
    KZ=KKK-i
    DO 100 MMM=1.2
    K2=KX*KX+KY*KY+KZ耪K
    IF(K2.GT.K2MAX) GO TO 101
    KPT=KPT+1
    IF(KPT.GT.NKPT) STOP
    IPT=KPT
    IF(KPT.EO.I.OR.ISORT.EO.OI GO TO 103
    1M=KPT-1
    IF(K2.GE.KSO(IM)| GO TO 103
    II=KPT
    O2 KKX(II)=KKX(IM)
    KKY(II)=KKY(IM)
    KKY(II)=KKY(IM)
    KKZ(II)=KKZ(IM)
    KSO(II)
    IM=II-1
    F(K2.LT.KSO(IM)) GO TO 1O2
    IPT=II
    103 KKX(IPT)=KX
    KKX(IPT)=KX
    KKX(IPT)}=K
    KSO(IPTI=K2
    101 CONTINUE
    KX=KX+1
    KY=KY+1
```

$k Z=k z+1$
100 CONTINUE
GO TO 300
200 CONTINUE
Do 201 1II＝1．maxKX
oo $201 \mathrm{JJJ=1.11I}$
Do $201 \mathrm{kKk}=1, \mathrm{JJJ}$
$1 T O L=1 I I+J J J+K K K-3$
IF（ITOL．NE．（ITOL／2）＊2．AND．IDCUB．EQ．？G G TO 2CI
K $\mathrm{x}=\mathrm{III-1}$
KY＝」」」－1
$K Z=K K K-1$
$k 2=k X * K X+K Y * K Y+K Z * K Z$
IF（K2．GT．K2mAX）GO TO 201
$K P T=K P T+1$
IF（KPT．GT．NKPT）STOP 1
IPT＝KPT
IF（KPT．EQ．B．OR．ISORT．EQ．O）GO TO 203
$I M=K P T-1$
IF（K2．GE．KSO（IM））GO TO 203
II＝KロT
KKX（II）$=K K \times(I M)$
KKY（II）$=$ KKY（IM）
KKZ（II）＝KKZ（IM）
KSOIIII＝KSQ（IM）
$I I=I I-1$
$I M=I I-1$
IF（K2．LT．KSO（IM）GO TO 202
IPT＝II
203 KKX（IPT）$=K X$
KKY（IPT）$=K Y$
$K K Z(I P T)=K Z$
$K S Q(I P T)=K 2$
201 CONTINUE
300 CONTINUE
NKPT $=K P T$
IF（NBCAL．EO．OI PETURN
OO $5001=1$ ．NKPT
$K X=K K X(1)$
$K Y=K K Y(1)$
$K X=K K Y(1)$
$K Z=K K Z(1)$
$N=48$
IF（KX．EO．O）$N=N / 2$
IF（KY．EQ．O）$N=N / 2$
IF（KZ．EO．O）$N=N / 2$
$I F(K X, E Q, K Y, O R, K Y, E O \cdot K Z) N=N / 2$
$I F(K X, E O \cdot K Z) \quad N=N / 3$
NB(I)=N
CONTINUE
RETURN
END

SUBROUTINE GINTFC(FCS,NORD.NOROIM,NKDIM.NRDIM)

```
C************************)
```



```
    IMPLICIT REAL FB (A-F.H,O-Z)
    DIMENSION FCS(NORDIM.NKDIM,NROIM)
    DIMENSION H(10),F(10)
    COMMON/GFUC/AKR.W.DELT,WOA.DSTEP.MAXK,MAKR
    NOOD=(NORO/2)*2
    IF(NOOD.EQ.NORO) NEVEN=NORD-1
    IF(NOOD.NE.NORDI NEVEN=NORD
    NODDM1=NOOD-1
    H(1)=1.00
    RK = O.DO
    OO 200 K=1.MAXK
    EXPA=-RKFRK&WO4
    EXPA=-RK*RK*VO4
    CONST =OELT*ADEL
    IF(NEVEN.LT.3) GO TO 101
    H(2)=RK**
    DO 100 N=3.NEVEN
    NM1=N-1
    NM 2=N-2
    H(N)=RK*#*H(NM1)-2.DO*W*OFLOAT(NM2)*H(NM2)
    100 CONTINUE
    101 CONTINUE
    RD=0.00
    DO 205 NR=1.MAXR
    CODK=RD*RK
    CO=1.DO
    DO 20I L=1. NEVEN, 2
    DO 20I L=I,NEVEN, 2
    FCS(LGK.NR)=C
    CONTINUE
205
    CONTINUE
    IF(NORD.EQ.1J GO TO 220
    F(1)=ADEL
    F(3)=(1.DO+2.DO/3.DO#EXPA)*ADEL
    IF(NOOD.LT.6) GO TO 202
    OO 203 N=5.NODDML .2
    AN=DFLOAT(N)
    F(N)=2.DO*(AN+EXPA-1.5DO)*F(N-2)/AN-(1.DO-3.DO/AN)*F(N-4)
    203 CONTINUE
    202 CONTINUE
    2O2 CONTINU
    RD=O.DO
```

DO 211 NR=1. MAXR
CODK = RD FRK
$C O=1 . D 0$
OO 210 L $=2 . N O O D .2$
$N=L-1$

FCS(L.K.NR)=RK*F(N)*DELT*CO*OSIN(COIKI
CONTINUE
CO $=$ QD LDSTEP
211 CONTINUE
220 RK=RK + AKR
200 CONTINUE
$\mathrm{N}_{1}=\mathrm{NOOO}+2$
$N 2=N E \vee E N+2$
FINT=DELT
DO $300 \mathrm{~L}=3 . \mathrm{N} 2 \cdot 2$
309 FINT=FINT*W*OFLOAT(L-?)/2.DO
DO 311 NR=1, MAXR
FCS(N1. 1.NR) $=0$.DO
311 FCS(N2.1.NR)=FINT
RETURN
END

SUBROUTINE GNBDE (DEKX, DEKY。DEKZ, NKSUM, NB,NP, KLD, NKPT)


```
    BRILLIOUIN ZONE
    FOR F.C. C.LATTICE ONLY
```



```
    INTEGER*2 NP(KLD.KLD.KLD)
    DIMENSION DEKX(NKSUM,NB).DEKY(NKSUM.NB).DFKZ(NKSUM,NB)
    NPT =NKPY
    KL =KLD-2
    KA=KL+1
    KM=3*KL/2
    OO 5 K=1.KA
    DO 5 I=1.KA
    OO 5 J=1.
    KT=I+J+K-3
    IF(KT NE, KM) GO TO 5
    KXP=IABS(I-KL)
    KYP=IABS(J-KL)
    KZP={ABS(K-KL)
    II=I+1
    jl=j+1
    K 1=K +1
    KXP1=KXP+1
    KYPI=KYP+1
    KZP1=KZP+1
    KYPI =KZPP+1
    K
    KZPZ=KZP+2
    IF(I .GT.KLI GO TO 4
    IF(K.GT.KL) GO TO 14
    DO 20 NM=1.6
    NPT=NPT+1
    GO TO (21.22.23.24.25.26).NM
    2) NP{I1, J,K)=NPT
        NOD=NP(KXP1,KYPZ.KZP2)
        IF(KXPI.GE,KYP2) GO TO 28
        GO TO 29
    22 NP( I.JI.K)=NPT
        NOD=NP(KXPZ,KYPI,KZPZ)
        NOO=NP(KXP2:KYPI,KKZPZ1) GO TD 28
        GO TO 29
    23 NP( I, J.K1)=NPT
        NOD=NP(KXP2.KYPZ.KZP1)
        IF(KXP2.GE.KYP2) GO TO 2P
        GO TO 29
```

24 NP(I1, J1, K) =NPT
NOD =NP(KXP1,KYP1.KZP2)
IF (KXPI•GE•KYP1) GO TN 28
GO TO 29
25 NP(II, J,KI)=NPT
NOD $=$ NP (KXPI,KYP2,KZP1)
IF(KXP1.GE•KYP2) GO TO 28
GO TO 29
?6 NP(I.J1.K1) =NPT
NOD =NP(KXP2,KYP1,KZP1)
IF (KXP2.GE.KYPI) GO TO 28
29 DO 30 L $=1$, NB
DEKX(NPT,LI = OEEKY (NOO.L) DEKY(NPT:L) $=-$ DEKX (NOD.L) OEKZ(NPT.L) $=-$ DEKZ (NOD.L)
CONTINUE
GO TO 20
28 DO 31 L=1. NB
DEKX(NPT.L) =-DEKX(NOD.L) DEKY(NPT, L) $=-$ OEKY (NOD L DEKZ(NPT,L)=-DEKZ (NOD.L)
31 CONTINUE
20 CONTINUE
GC TO 5
4 CONTINUE
OO 40 NM=1.3
NPT $=N P T+1$
GO TO (41.42.43).NM
41 NP(I•JI,K)=NPT
NOD $=N P(K X P, K Y P 1, K Z P Z)$
IF (KXP GE.KYPII GO TO 48 GOTO 49
42 NP (1•J.K1) =NPT
NOD $=$ NP(KXP,KYP2,KZP1)
IF (KXP -GE•KYP2) GO TO 48 GOTO 49
43 NP (I.JI.K1)=NPT
NOD=NP(KXP,KYPI K ZPI)
IF (KKP GE,KYPİ GO TO 48
49 DO $45 L=1$. NB
DEKX(NPT,L) =-DEKY(NOD,L) OEKY(NPT:L) $=-$ DEKX (NOD.L DEKZ(NPT.L)=-DEKZ (NOD.L)
CONTINUE
$\begin{array}{lll}\text { GO } & \text { TO } & 40 \\ \text { DO } & 46 & L=1 . N B\end{array}$
u

| | n | 0 | 0 | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| - | 0 | 0 | α | n | 0 | ω | n | 0 | 0 | 0 |

10 CONTINUE
GRITE (6.99) NPT
99 FORMAT(I10)
RETURN
END

SUBROUTINE GNBPY(PXPX,PXPY,PZPZ, NKSUM,NB,NP, KLD, NKPT,LG)


```
C
GENERATES THE PRODUCT OF MOMENTUM MATRICES IN THE NEIGHBORING POINTS OF
1/16TH OF THE INDEPENDENT B. Z.
```



```
    INTEGER*2 NP(KLD,KLD,KLD)
    DIMENSION PXPX(NKSUM,NB),PXPY(NKSUM,NR),P7DZ(NKSUM,NR)
    NPT = NKPT +1
    KL=KLO-2
    KM=KL +1
    KM=3*KL/2
    DO 5 K=1.KA
    OO 5 I=1.KA
    OO 5 J=1,I
    KT=I+1+K-3
    IF(KT NE, KM) GO TO 5
    KXP=tABS(I-KL)
    KYP=IABS(J-KL)
    KZP=IABS(K-KL)
    II=I+I
    J 1=J+1
    K1 =K+1
    KXP1=KXPP+1
    KXP1=KXPP+1
    KZP1=KZPP+1
    KXP2=KXP+2
    KYPZ =KYP+2
    KZP2=KZP+2
    IF(I GT. KL) GO TO 4
    IF(K.GT.KL) GO TO 14
    NP(II. J.K)=NP(KXPI.KYPZ.KZP2)
    NP( 1,J:,K)=NP(KXPZ,KYP1,KZPZ)
    NP{ I: J.K1)=NP{KXP2,KYP2,KZP1)
    NP(II,J1,K)=NP(KXPI,KYP1,KZP2)
    NP(I1, J.K1)=NP(KXP1.KYP2.KZP1)
    NP( I,J1,K11=NP(KXP2.KYPI,KZP1)
    OO 28 NM=1.6
    GO 28 NM=1.6
    21 CONTINUE 
        IF(KXPI.GE.KYP2) GO TO 28
        NP(II, J,K)=NPT
        NOD=NP(KXP1,KYP2.KZP2)
        GO TO 29
22 CONTINUE
IF(KXP2.GF.KYPI) GO TO 28
ND( I.Ji:K)=NDT
```

NOD $=$ NP (KXP2.KYP1,KZP2)
23 GO TO 29
IF (KXP2.GE.KYP2) GO TO 28 $I F(K X P 2 \cdot G E \cdot K Y P 2)$
$N P(1, J O K 1)=N P T$ NPI I \quad J.K1) =NPT
NOD $=N P(K \times P 2, K Y P 2, K Z P 1)$ GO ro 29
24 CONTINUE
IF (KXPI GE.KYPI) GO TO 28
NP(I1.J1.K)=NPT
NOD $=N P(K \times P 1, K Y P 1, K Z P 2)$
GO TO 29
25 CONTINUE
IF (KXPI,GE KYP2) GO TO 28 NP(II, J,KII=NPT NOD =NP (KXPI,KYPZ,KZPI) 601029
26 CONTINUE
IF(KXP2.GE.KYPI) GO TO 28
NP(I, JI,KI) =NPT
NOD =NP(KXP2.KYPI,KZP11
$290030 \mathrm{~L}=1 . \mathrm{LG}$
PXPX(NPT,L) $=P \times P \times(N O D, L)$
PXPY(NPT,L)=-PXPY(NOO.L) PZPZ (NPT:L) $=P Z P Z(N O D, L)$
30 CONTINUE NPT=NPT*
28 CONTINUE
GO TO 5
4 CONTINUE
NP(I,J1,K)=NP(KXP,KYP1,KZP2)
$N P(I, J, K 1)=N P(K X P, K Y P 2, K Z P 1)$
NP(1,JI.K1)=NP(KXP,KYPI.KZPI)
DO $48 \quad N M=1.3$
GO TO (41.42.43).NM
41 CONTINUE
IF (KXP •GE GKYPI) GO TO 48
NP(I.JI.KI =NPT
NOD $=N P(K X P, K Y P 1, K Z P 2)$
GO TO 49

42 CONTINUE
CONTINUE
$I F(K X P, G E \quad K Y P$
$N P(I, J, K I)=N P T$
NOD $=$ NP $\{K \times P, K Y P Z, K Z P 1$)
GO TO 49
43 CONTINUE

IF(KXP -GE.KYPI) GO TO 4R
NP(1, J1:K1)=NPT
NOD=NP(KXP,KYPI,KZP1)
49 DO 45 L $=1 . L G$
PXPX(NPT,L)=PXPX(NOD,L)
PXPY(NPT.L) =-PXPY(NOD.L)
PZPZ(NPT.L) =PZPZ(NOD.L)
45 CONTINUE
NPT $=N P T+1$
48 CONTINUE
GO TO 5
14 CONTINUF
NP(I, J1,K) $=N P(K \times P 2, K Y P 1, K 7 P)$ $N P(11, j, K)=N P(K \times P 1, K Y P 2, K Z P)$ $N P(11, J 1, K)=N P(K X P 1, K Y P 1, K Z P)$
DO $58 \mathrm{NM}=1.3$
SI CONTINUE
IF (KXPZ.GE.KYPI) GO TO 58 NP(I,JI,K)=NPT
NOD $=N P(K X P 2 . K Y P 1, K Z P)$
GO TO 59
52 CONTINUE
IF (KXP1.GE,KYP2) GO TO 58
NP ($11, J, K)=N P T$
NOD=NP(KXP1,KYP2,KZP)
GO TO 59
5.3 CONTINUE

1F(KXPI.GE.KYPI) GO TO 58
NP(I1,JI.K)=NPT
$N O O=N P(K \times P 1, K Y P 1, K Z P)$
$590055 L=1, L G$
PXPX(NPT,L)=PXPX(NOO,L)
PXPY(NPT:L) $=-$ PXPY (NOD,L) PZPZ(NPT.L) =PZPZ(NOD.L)
55 CONTINUE
$N P T=N P T+1$
CONT INUE

CONTINUE

CONTINUE
DO $10 \quad 1=1 . \mathrm{KL}$

DO $10 \mathrm{~K}=: 1 \mathrm{KA}$
$K T=I+I+j-3$
IF(KT.GT.KM) GO TO 10
NP(I, $1+1, K)=N P T$
NOD $=\operatorname{NP}(1+1, I, K)$
OO $11 L=1 . i G$

OXPX(NPT,L)=PXPX(NOO,L) POPY (NPT.L) $=-P \times P Y$ (NOD.L PXPY(NPT,L) $=-P X P Y(N O D: L$
$P Z P Z(N P T, L)=P Z P Z(N O D, L)$
11 CONTINUE
NPT=NPT+1
CONTINUE
WRITE(6.99) NPT
99 FORMAT(I10)
RETURN
END

SUBROUTINE GNOPUM(NPUM, NTYP,N,ND.NAGTOL, NORDA, NORDE, NSYMP)

```
NPUM DEFINES THE GRDUP OPERATIONS THAT GENERATES THE STAR OF R
NTYP OEFINES THE TERM IN THE FXPANSION OF FXP\I K.RI H(RI WHICH IS AN EVEN
FUNCTION OF RX, RY. ANO RZ.
```



```
    INTFGER*2 N(NO,NO,ND,ND,ND.ND),NPUM(NABTOL.GI,NTYP(NARTOL)
    NM=0
    OO 201 IA3=1.NORDA
    OO 201 IA2=1,NORDA
    OO 201 \A1=1.NOROA
    IAT=IAI+IA2+IA 3-2
    IF(IAT.NE.NOROA) GO TO 20
    DO 202 IB3=1*NOROB
    OO 202 IB2=1.NOROB
    DO 202 181=1.NOROB
    IBT=IBI+IB2+IB3-2
    IF(IBT.NE.NOROBI GO TO 202
    NM=NM+1
    N(IAI,IA2,IA3.IHI,IB2.IR3)=NM
    2O2 CONTINUE
    201 CONTINUE
    NM =0
    DO 101 IA 3=1,NORDA
    OO 101 IA2=1.NOROA
    OO 101 IAI=1.NORDA
    IAT=IAI+IA2+IAB-2
    IF(IAT.NE.NORDA) GO TO 101
    DO 102 t83=1.NORDE
    OO 102 1B2=1.NORDE
    OO 102 1B1=1.NOROB
    |BT=|BI+1B2+IB3-2
    IF(IBT.NE.NORDE) GO TO 102
    NM=NM+1
    NPUM(NM,1)=N{1A1,IA2,IA3,IB1,IB2,I日3)
    NPUM(NM,2)=N(1A3,IA1,1A2.1B3.181,182)
    NPUM(NM, 3)=N(1A2,IA3,1A1,1B2,|83,IB1
```



```
    A(A2.1B1.183.1B2
    NPUM(NM,5)=N(1A3.1N2.1N1.183.182.1B1
    NPUM(NM,G)=N(1A2,IA1,IA3,IB2.181,IB3)
    |ABI=|A|+IRI
    IAB2=IA2+IB2
    IAB3=1A3+1B
    IF(NSYMO.EQ.OI GO TO 103
    \| A B I = \ A B I + 1
    IAB2=IAB2+
```


IAB3=1AB3+1

CONTINUE

$N T=1$
IF((IABI/2)*2.NE.IABI) NT=NT+:
IF(IIAB2/2I*2.NE:IAB2) NT=NT+2
IF ((IAB3/2)*2.NE, IAB3) $N T=N T+$ NTYP(NM) =NT

WRITE(6.99) NM.IAI.IAR.IA3.IRI,IR2.IR3.NTYP(NM), (NDUM(NM,II,I=1, KI
102 CONTINUE
IOI CONTINUE
RETURN
END

SUBROUTINE GPERMK KKX,KKY, KKZ,KSQ, NKPT, I OCUB, KZMAX, ISORTI


```
    GENERATE PERMUTED RECIPROCAL LATTICE VECTORS WITH MAGNITUDE SOUARE LFSS
    THAN K2MAX
    IF(ISORT.NE.OI THE RECIPROCAL LATYICE VECTORS ARE SORTED IN ORDER DF
    INCREASING MAGNITUDE
            SC IDCUB=1. BCC IDCUB=2. FCC IDCUB=4
```



```
    ###################*****###############
    DIMENSION KSOINKPT)
    G=K2MAX
    MAX=SORT(G)+1
    MAXKX=2*MAX+1
    KPT=O
    IF(IDCUB.NE.4) GO TO 200
    OO 100 III=1,MAXKX.2
    DO 100 JJJ=1, MAXKX:2
    DO 100 KKK=1. MAXKX,?
    KX=IIII- 1-MAX
    KY=JJJ-1-MAX
    KZ=KKK-1-mAX
    OO 100 MMM=1.2
    K2=KX*KX+KY*KY +KZ #KZ
    IF(K2.GT.K2MAX) GO TO 101
    KPT=KPT+1
    IF(KPT.GT.NKPT) STOP 2
    IPT=KPT
    IF(KPT.EO.1.OR.ISORT.EO.C) GO TO 1C3
    IM=KPT-1
    IF(K2.GE.KSO(IM))GO TO 103
    II=KPT
102 KKX(II)=KKX(IM)
    KKY(III)=KKY(IM)
    KKZ(II)=KKZ(IM)
    KSO(II)=KSO(IM)
    II=1I-1
    IM=II-I
    IF(11.GT.I.ANO.K2.LT.KSQ(IM))GO TO 10?
    IPT=II
\(K K Y(I P T)=K Y\)
\(K K Z(I P T)=K Z\)
KSO(IPT)=K2
101 CONTINUE
\(K X=K X+1\)
\(K Y=K Y+1\)
```

$k Z=k z+1$
100 CONTINUE
GO TO 300
CONTINUE
DO 201 IIII=1.MAXKX
DO 201 JJJ=1. MAXKX
DO 201 KKK $=1$, MAXKX
$K X=I 【 I-1-M_{A X}$
$K Y=j J J-1-$ MAX
$K Z=K K K-1-M A X$
ITOL $=K X+K V+K Z$
IF (ITOL.NE•(ITOL/2)*2.AND.IDCUB.EO.2) GO TO 2C1
K $2=K \times \neq K X+K Y \neq K Y+K Z * K Z$
[F(K2.GT.K2MAX) GO TO 201
$K P T=K P T+1$
IF(KPT.GT.NKPT) STOP 2
$I P T=K P T$
IF (XPT.EO.1.OR.ISORT.EQ.O) GO TO 2C?
$I M=K P T-1$
(F(K2.GE.KSQ(IM)) GO TO 203
It $\ddagger=K P T$
202 KKX(II) =KKX(IM)
$K K Y(I I)=K K Y(I M)$
$K K Z(I I)=K K Z(I M)$
KSO\{II $=$ KSORIM)
$\boldsymbol{I}=\mathbf{I} \mathbf{I}-\mathbf{I}$
$I M=11-1$
IF(K2.LT•KSQ(IM).AND.II.GT.1) GO TO 202
$I P T=I I$
$203 \mathrm{KKX(1PT)}=K X$
$K K Y(I P T)=K Y$
$K K Z(I P T)=K Z$
KSOIIPTI $=K 2$
201 CONTINUE
300 CONTINUE
NKPT=KPT
RETURN
END

SUBROUTINE GWTGAS(N.Y:XR, MR)


```
    WEIGHT FACTORS FOR THE GAUSSIAN INTEGRATION USING THE DEFINITION
    W(I)=2/((OP(N,X)/OX)*&2 (1-x*X)) AT X=X(1) WHERE P(N,X|=0 AND
    OP(N.X)/DX=N*P(N-1,X)/(1-X*X)
    OP(N,X)/OX = N*P(N-1, X)/(1-X*X)
    Y IS AN IORKING FUNCTION DIMENSIONFD N+I
```



```
    IMPLICIT REAL*& (A-H.O-Z)
    DIMENSION Y(1).XR(1).WR(1)
    NHAF=N/2
    MC=2.DO/DFLOAT(N*N)
    NR=0
    DX=2.DO/DFLOAT(N)
    IF\N.EO. 2#(N/2)) GO TO 100
C
    IF ORDER IS ODD, ONE OF THE ZEROES IS }x=
    XR(1)=0.00
    CALL OLEP(Y.O.DO.N)
    WR(1)=WC/(Y(N)*&2)
    WRI (
    NR=1 
    CONTINUE 
    MOLD=0.10-5
C SUBROUTINE DLEP
    AND ORDERS O UP TO
    CALL DLEP(Y.XOLD.N)
    YOLD=Y(N+1)
    NR=NR+1
    XNEV=XOLD + DX
    CALL DLEP(Y.XNEW.N)
    YNW=Y(N+1)
    IF(DX &LT. 1.D-16 .OR. OABS(YNEW).LT. I.D-1G1 GO TO 130
    YSGN=YNEY/YOLD
    IF (YSGN.GT.O.I GO TO 120
    CLJSE-IN ON THE ZERO -- SIGN OF THE POLYNOMIAL HAS CHANGFD.
\(0 x=0 x / 2.00\)
GO TO :10
120
XOLD =XNE
YOLD = YNE
YOLD=YNEY
GO TO 110
```

```
130 XR(NR)=XNEW
            WR(NR)=WC*(1.DO-XNEW**2)/(Y(N)**2)
            XOLD=0.1D-5+ XNEW
            OX=2.DO/OFLOAT(N)
SINCE THE ZEROES ARE MORE CROWDEO NFAR X=1. DECREASF THE STFO
            SIZE AS WE GET CLOSER TO THIS FND.
    IF(NR .GT. 1) DX=(XR(NR)-XR(NR-11)/2.00
    CONTINUE
            OO 249 I=1.NR
            II =NR+1
            XR(II)=XR(I)
            MR(II)=WR(I)
    249 CONTINUE
            DO 250 I=1,NR
            II=2*NR-I+1
            XR(I)=-XR(II)
            MR(I)=-XR(II)
            MRII=GR(
            CONTINU
            END
```


 $\underset{\sim}{X X X X X X Y X}$ NーMmーN～ーM こここここにーにー
 そこそうこまてきる
 ＊＊＊＊＊＊＊＊＊ へ̃へ̃へ̃へへへべ $\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$
 のーロールーローの こーここールーこ

 ※\＃\＃\＃\＃\＃\＃\＃\＃
 －MNージーMN

 がいごできで
 とưのひひひのが ＂1＂1＂＂1＂＂＂ ミスヘめைかめのか ががべからも

 ーッールールーッール゙ ののののひのひのいa゙

SURROUTINE GSI JFC(FCS.RK,NORD,NORDIM,NRDIM)

```
GENERATE FUNCTION G(N,RK,R) IN EOIB.44) FOR A GIVFN VALUE OF RK
```



```
    IMPLICIT REAL *8 (ALF.H.O-Z)
    DIMENSION FCS(NORDIM.NRDIM)
    OIMENSION H(IO).F(1O)
    COMMON/GSIJF/E.DELT.VO4.DSTEP.MAXR
    NOOD=(NORD/2)*2
    IF(NOOD.EO.NORO) NEVEN=NORD-1
    IF(NOOD.NE.NORD) NEVEN=NORD
    NOODM1=NOOO-1
    H(1)=1.00
    EXPA=-RK*RK*WOA
    ADEL = OEXP(EXPA)
    CONST=OELT*ADEL
    IF(NEVEN.LT.3I GO TO 1O
    H(2)=RK*W
    O 100 N=3.NEVEN
    NM1=N-1
    NM2=N-2
    H(N)=RK*W*H(NM1)-2.DO*W*חFLOAT(NM2)*H(NM2)
    100 CONTINUE
1OI CONTINUE
    RD=0.DO
    DO 205 NR=1.MAXR
    CODK=RD*RK
    CO=1.00
    OO 201 L=1, NEVEN,2
    FCS(L.NR)=CONST*H(L)*CO*OCOS(COOK)
    CO=-CO*O.2500
    201 CONTINUE
    RD=RO +DSTEP
    205 CONTINUE
        IF (NORD.EO.I) RFTURN
    F(1)=ADEL
    F(3)=(1.DO+2.DO/3.DO*EXPA)*ADEL
    IF(NOOD.LT.6) GO TO 202
    OO 203 N=5.NODDM1.?
    AN=DFLOAT(N)
F(N)=2.0O#(AN+EXPA-1.5DO)*F(N-2)/AN-(1.DO-3.DO/AN)*F(N-4)
203 CONTINUE
25? CONTINUE
QD=0.DO
OO 2:1 NR=1.MAXR
CODK=RO*RK
```

$C O=1.00$
DO $210 \mathrm{~L}=2, \mathrm{NOOD}, 2$
$\mathrm{N}=\mathrm{L}-1$
CO=CO* $\begin{gathered}\text { FDFLDAT }(N) * 0.500 ~\end{gathered}$
FCS(L.NR) $=$ RK*F(N)*DELT*CO*DSIN(CODK)
CONTINUE
QD=RD +DSTED
CONTINUE
RETURN
END

SUBROUTINE HRIN(M)

```
    T IS REPLACED BY T (OV**-1)
    (KK,I,J)=2*M*(J-1)+2*(I-1)+KK
    (KK.I.N)=2*M*(N-1)+2*(I-1)+KK
```



```
    REAL*8 T.OV
    COMMON/A/T(11552)
    COMMON/C/OV(2926)
    M2=M*2
    OO 100 J=1.M
    J=J*(J+1)/2
    MJ=M2*(J-1)
    OO 100 KK=1.2
    OO 100 I=1.M
    IKK=2*(I-1i+kK
    KKIJ=MJ +IKK
    IF(J.EO.1) GO TO 102
    JK=J-1
    OO 101 N=1.JK
    NJ=J*(J-1)/2+N
    KKIN=M2*(N-1)+IKK
    T(KKIJ)=T(KKIJ)-T(KKIN)*CV(NJ)
    101 CONTINUE
    102 CONTINUE
    (KKIJ)=T(KKIJ)/OV(JJ)
    CONTINUE
    DF TURN
    ENO
```

```
        SUBROUTINE READISSA,PSA,SDA,PPPA,POA,DDA,SSB,PSR,SDB,PPB,PDR,DDR,
    IAASS,IAPS,IASO,IAPP.IAPD,IADD,ISSOIM,IPSOIM,ISODIM,IPPDIM,
    2IPDDIM,IDDDIM,CS.CP,CD.LSMAX.I SOBNO.LPMAX,IPOBNO,LOMAX, IDOBNOI
    ,10OBNO)
        READ IN THE INTEGRALS GENERATFD IN PROGRAM 2 OR 3.
        NCHO(I)=1 COUROMB, 2 PARAMAGNETIC EXCH, 3 UO EXCH. & DOWN FXCH, 5 XINETIC.
        G IVERLAP, 7 PX, & OY, 9PZ, 1OH PARAMAGNETIC, 11HUP, 12 H DOWN.
    REAL#S ALPHA,CS(LSMAX,ISOBNO), CP(LPMAX,IPOBNDI, CD(LDMAX,IDOBNOI.
    8x(360),CO,CM
        INTEGER*2 NRC.M1,M2,NSYM
        OIMENSION SSA(IASS.ISSDIM).SSB(IASS.ISSOIMI,PSARIAPS.IPSDIMI.
    PSB(IAPS,IPSDIM), SDA(IASO.ISODIM),SOR(IASO,ISOOIM),
    2PPAIIIAPD.IPPDIM), PPB (IAPD.IPPDIM), PDA(IADO, (PDOIM),
    3PDB(IAPD, IPDDIM),DDA(IADO,IDDOIMM,ODA(IADO,IDDOIM)
        DIMENSION AX(1O)
        COMMON/OBNO/ALPHA.NKINO.NTOL.NCHO(5).ISYMP
    OO 111 NRC=1.IASS
    OO 1IIIJ=1.ISSOIM
    SSA(NRC.IJ)=0.00
    IF(NTOL.GT.I) SSB(NRC.IJ)=0.DO
    111 CONTINUE
    ilo READ(1:, END=200) NRC,M1,M2,NSYM,(AX(NM),NM=1,NKIND)
        IF(NRC.GT.IASS) GO TO 110
        OO 103 N=1.NTOL
        VTYP=NCHO(N)
        IF(NTYP.LE.NKIND) BX(N)=AX(NTYP)
        F(NTYP.EQ.NKIND+1) 8X(N)=AX(1)+ALPHA*AX(2)+AX(5)
        IF(NTYP.EO.NKIND+2) BX(N)=AX(1)+ALPHA*AX(3)+AX(5)
        IF(NTYP.EQ.NKIND+3) BX(N)=AX(I)+ALPHA*AX(A)+AX(S)
    103 CONTINUE
    IJ=O
    DO 104 11=1.LSMAX
    DO 104 12=1.11
    I J=1 J+1
    CO=CS(11.M1)*CS(12.M2)
    IF(M1.NE.M2) CO=CO+CS(II.M2)*CS(I?.M1)
    SSA(NRC,IJ)=SSA(NRC.IJ)+BX(1)*CO
    IF(NTOL.GT.1) SSB(NRC.IJ)=SSB(NRC,IJ)+EX(2)*CO}
    104 CONTINUE
        GO TO IlO
        CONTINUE
    DO 211 NRC=1.IAPS
    OO 21! IJ=1,IPSDIM
    OSA(NRC.IJ)=0.DO
    IF(NTOL.GT.I)PSB(NRC.IJ)=0.DO
```

211 CONTINUE
210 READ(12.END=300) NRC.M1.M2.NSYM.(AX(NM),NM=1.NKIND) IF(NRC.GT.IAPS) GO TO 210
DO $203 \mathrm{~N}=1 . \mathrm{NTOL}$
$N \mathrm{~N}=(\mathrm{N}-1) * 3+\mathrm{NSYM}$
NTYP=NCHO(N)
IF (NTYP.LE.NKIND) $\quad 8 \times(N N)=A X(N T Y P)$
IF (NTYP.EQ.NKINO+1) $B \times(N N)=A X(1)+A L P H A * A X(2)+A X(5)$ IF (NTYP.EO.NKIND+2) BX(NN)=AX(1) +ALPHA*AX(3)+AX(5) IF(NTYP.EQ.NKIND+3) BX(NN)=AX(1)+ALPHA*AX(A)+AX(S) IF(ISYMP.NE.O) BX(NN)=-丹X(NN)
203
IF (NSYM.LT.3) GO TO 210
IJ=0
OO $204 \quad 11=1$ LLPMAX
DO 204 I $2=1, L$ SMAX
CO=CP(II.M1) \#CS(12,M2)
DO $204 \mathrm{NM}=1.3$
$1 \mathrm{~J}=\mathrm{I} \mathrm{J}+\mathrm{I}$
PSA(NRC, $1 J)=P S A(N R C, I J)+B \times(N M) * C O$
IF(NTOL.GT.1)PSB(NRC. $1 J)=P S B(N R C . I J)+B \times(N M+3) * C O$
204
CONTINUE
GOTIO 210
DC 311 NRC=1, IASO
OO 311 IJ=1. ISDOIm
$\operatorname{SDA}(N R C, I J)=0 . D O$
IF(NTOL.GT.I) SDR(NRC.IJ) $=0.00$
311 CONTINUE
310 REAO (13 . ENO $=400$) NRC.M1.M2. NSYM. (AX(NM), NM = 1. NKINO) IF (NRC.GT.IASD) GO TO 31 C
DO $303 \mathrm{~N}=1$.NTOL
NTYP=NCHO(N)
IF(NTYP.LE.NKIND) BX(NN)=AX(NTYP)
IF (NTYP.EO.NKIND+1) $\quad 8 \times(N N)=A X(1)+A L P H A \# A X(2)+A X(5)$ IF (NTYP.EQ.NK(ND+2) $\quad B \times(N N)=A \times(1)+A L P H A * A X(3)+A X(5)$ IF (NTYP.EQ.NKINO+3) BX(NN) =AX(1) +ALPHA*AX(4) +AX(5)
3 C3 CONTINUE
IF(NSYM.LT.6) GO TO 310
$I J=0$
DO $304 \quad 11=1 . L S M A X$
$\begin{array}{lll}10 & 304 & 11 \\ 00 & 304 & 12=1 . L \text { LDMAX }\end{array}$
CO=CS(11.M1i*CD(12.M2)
DO $304 \mathrm{NM}=1.6$
$1 J=1 J+1$

SDA(NRC.IJ) $=$ SDA(NRC.IJ) $+B \times(N M) \neq C O$
IF(NTOL.GT.I) SOB(NRC.IJ)=SDR(NRC.IJ)+BX(NM+G)*CO
304 CONTINUE
GOTO 310
400 CONTINUE
DO 411 NRC $=1$. 1 APP
OO 411 IJ=I:IPPOIm
PPA(NRC.IJ)=0.00
IF(NTOL.GT.I) PPB(NRC.IJ)=0.OC
411 CONTINUE
410 READ(14.END=500) NRC.MI.M2.NSYM, (AX (NM), NM=I, NKIND)
IF (NRC.GT.IAPP) GO TO 410
DO $403 \mathrm{~N}=1$.NTOL
$N N=(N-1) * 9+N S Y M$
NTYP=NCHO(N)
IF (NTYP.LE.NKIND) BX(NN) =AX(NTYD)
IF (NTYP.EQ.NKIND+1) RX(NN) $=A \times(1)+A L P H A * A X(3)+A X(5)$
IFINTYP.EO.NKIND+?) BXINN: =AX(1)+ALPHA*AX(3)+AX(5)
IF(NTYP.EO.NKIND+3) RX(NN) =AX(1) +ALPHA*AX(4)+AX(5)
403 CONTINUE
(FINSYM.LT.9) GO TO 410
IJ=0
DO $404 \quad 11=1$. LPMAX
10404 I $2=1.11$
CO $=C P(11, M 1)=C P(I 二, M 2)$
$C M=C P(12, M 11$ CP(I1,M2)
DO $405 \mathrm{~L} 1=1.3$
$00405 L 2=1 \cdot 3$
$N M=(L 1-1) * 3+L 2$
$I J=I J+!$
OPA(NRC.IJ)=PDA(NRC.IJ)+B×(NM)*CO
IF (NTOL.GT:I) PPG(NRC,IJ)=PR日(NRC.IJ)+RX(NM+Q)*CO
IF(M1.EO.M2) GO TO 405
$N M=(L 2-1) * 3+L 1$
PPA(NRC.IJ)=PPA(NRC.IJ) $+B X(N M) * C M$
IF (NTOL.GTe1) PPB(NRC.IJ)=PPB(NRC.IJ)+8X(NM+9)*CM
405 CONTINUE
404 CONTINUE
GO TO 410
POA(NRC.IJ)=0.DO
IF(NTOL.GT.1) PDR(NRC.IJ) $=0 . D 0$
511 CONTINUF

IJ=IJ+1
ODA(NRC,IJ)=DDA(NRC,IJI+BX(NM)*CO
IF (NTOL:GT:I) DOR(NRC,IJ)=ODR(NRC.IJ)+BX(NM+36)*CO
IF (MI.EQ.M2) GO TO 605
$N M=(L 2-1) * 6+L 1$
DOA(NRC. IJ)=DOA(NRC. $J J+R \times(N M) * C M$
IF (NTOL.GT.1) DOB(NRC.IJ)=DOB(NRC.IJ)+9X(NM+36)*CM
CONTINUE
GONTINUE
GO TO 610

END

SUBROUTINE RDGTOIALS.ALP,ALO.CS.CP,CD,SCO.PCO.DCO.ISORNO.LSMAX.
E IPOBNO. LPMAX. IDOBNO. LDMAX, ICOMBI

```
    DEFINE GTO E=S. P. AND D', SMMETRY
        IEATOM=ATOMIC BASIS NUMBER =O IF INDEPFNDFNT GTN IS EMPLOYED
        CE=NORMALIZATION CONSTANTS. ADDITIONAL ANGULAR FACTOR IS NECESSARY
        FOR X**2-Y**2 (0.5), ANO 3*Z**2-R**? (0.5/SQRT(3.0)1.
        ALE =GAUSSIAN EXPONENTIAL PARAMENTERS FOR E SYMMFTQY
        G.CO=EXPANSION COEFFICIENTS FOR THE ATOMIC E-GTO=DELTA FUNCTION IF IG,ATOM=S
        IFI=EXPANSION,COENO=RCONCR
    IF(ICOMB.NE.O) &CO=&CO*CE
```



```
    IMPLICIT REAL *8 (A-F.H.O-Z)
        OIMENSION ALS(1).ALP(1),ALD(1),CS(1).CP(1),CD(1),SCO(LSMAX.I SORNO)
    G.PCO(LPMAX,IPOBNO).DCO(LDMAX.IDORNO)
        COMMON/GTO/CRYSTL,PI.ISATOM,IPATOM,IDATOM
        DATA GWTS.GWTP.GWTD/:S*."P!.*D*/
        OO 10 J=1.ISOBNO
        RFAO(5,11;ALS(J),(SCO(L.J),L=1,ISATOM)
        AAA=2.OO*(&.DO*ALS(J)**3/OI;**.250C
        CS(J)=AAA/OSORT(4.0O#R1)
    10WRITE(6,15) CRYSTL.J.ALS(J),CS(J).(L,GWTS,SCO(L.J),L=1,ISATOM)
    IF(ISATOM.GT.O) GO TO 24
    nO 22 N=1.ISOBNO
    DO 23 J=1.ISOENO
    3 SCO(N,J)=0.00
    22 SCO(N,N)=1.00
    24 IF(ICOMB.EQ.O) GO TO ?l
        DO 25 N=1.LSMAX
        DO 25 J=1.ISORNO
    25 SCO(N,J)=SCO(N.J)*CS(J)
    21 CONTINUE
    DO 12 J=1.IPOBNO
    PEAD(5,11; ALP(J), (PCO(L,J),L=1. (PATOM)
    AAA=DSQRT(8.00/3.DO)*(32.DO*ALP(J)**5/P1)**.2500
    CP(J)=AAA*OSORT(3.00/(4.0O*PI))
    I2 WRITF(6.15) CRYSTL.J.ALP(J),CP(J),(L,GWTP,PCO(L,J),L=1,IPATOM)
    IF(IPATOM.GT.O) GO TO 34
    DO 32 N=1.IPORND
    OO 33 J=1. IPOENO
\(33 P C O(N, J)=0 . D 0\)
34 IF(ICOMB.EQ.O) GO TO 31
DO \(35 \mathrm{~N}=1\). LPMAX
OO \(35 \mathrm{~J}=1\). IPOBNO
35 PCO(N,J) \(=\) PCO(N, J)*CP(J)
```

31 CONTINUE
OO $13 \mathrm{~J}=1$. 1 DOBNO
READ (5.1i) ALD(J), (DCORL, J), L=1. IDATOM)
$A A A=16.00 / O S O R T(15 . D 01 *(A L D(J) * * 7 /(? .00 * P 1)) * * 0.2500$
CD(J)=AAAFOSQRT(15.DO/A.DO/PI)
13 WRITE(6.15) CRYSTL,J, ALD(J),CD(J). (L.GWTD.DCO(L.J).L=1.IDATJM)
IF(IDATOM.GT.O) GO TO 44
OO $42 N=1$. IDORNO
OO $43 \mathrm{~J}=1$. IDOBNO
$43 \mathrm{DCO}(\mathrm{N}, \mathrm{J})=0.00$
$42 \operatorname{DCO}(N, N)=1.00$
$\triangle 4$ IF (ICOMB.EQ.O) GO TO 41
DO $45 \mathrm{~N}=1$. LOMAX
DO $45 J=1$. IDOBNO
$45 \operatorname{DCO}(N, J)=O C O(N, J) * C D(J)$
41 CONTINUE
11 FORMAT(F8.5.4016.8)

-8)!
RETURN
END

SUGROUTINE RTINH(M)


```
    T IS REPLAC.EO BY ((OV**T)**-1) T
    (KK,I,J)=2*M*(J-1)+2*(I-1)+KK
(KK,N,J)=2*M*(J-1)+2*(N-1)+KK
```



```
REAL#B T.OV
COMMON/A/T(11552)
COMMON/C/OVI2926)
M2=M*2
OO 10C I=1.M
I2=2*(1-1)
II=1*(1+1)/2
DO 100 KK=1.2
DO 100 J=1.M
JKK=M2*(J-1)+KK
KKIJ=JKK+12
IF(I.EO.1) GO TO 1O2
IK=I-1
OO 101 N=1.1K
NI=1*(1-1)/2+N
KKNJ=JKK+2*(N-1)
T(KKIJ)=T(KKIJ)-OV(NI)*T(KKNJ)
101 CONTINUE
IO? CONTINUE
r(KKIJ)=r(KKIJ)/OV(II)
100 CONTINUE
RF TURN
RFT
```


SUBROUTINE SEXCH(AX.AY,AZ.IDIM)

```
    THIS SUBROUTINE CALCULATES THE ZEROTH ORDFR TERM IN THE KURIC HARMONIC
    EXPANSION OF DENSITY
    (RX(I),RYII),RZ(I)) ARE FOUR DIRECTITNS CHOOSFN TO CALCULATF THF ANGULAR
    AVERAGE OF DENSITY
    C4I(I). CGI(I).AND CRIRI) ARF KUAIC HARMONICS WITHLL=4.G. ANO B
```



```
    IMPLICIT REAL*R(A-F.H.O-Z)
    OIMENSION AXIIDIM),AY(IOIM),AZ(IOIM)
    DIMENSION RX(4),RY(4),RZ(4),WT(4).C41(4),C61(4).C81(4)
    COMMON/VKO/C(7.11).EX(7.11),FACTO(10), IG(7,111,NORQ\7).NSTA
    COMMGN/EXCH/R(96).W(96):EXCH(96).EXUP(96).EXDN(9G)
    COMMON/CHARGE/CHARGE(7),CHARUP(7),CHARDN(7)
    COMMON/CONST/AA.RO.PI .ONETHD
    2 FOPMAT(12F6.3)
    READ(5.2) (RX(1),RY(1),R2(1),1=1.4)
C
    CALCULATE THE WEIGHT FACTOR ALONG EXCH DIPECTION
```

 CONST \(=1.00 /(4.00 * 01)\)
 SOAPI = DSQRT(CONST)
 OO \(3 \quad I=1.4\)
 \(R Q=R \times(I) \neq R \times(I)+R Y(I) * R Y(I)+R Z(I) * R Z(I)\)
 \(R A=D S Q R T(R R)\)
 \(R \times(I)=R \times(I) / R A\)
 RY(I) \(=\) RY (I)/RRA
 \(R Z(I)=R Z(I) / R A\)
 \(X 2=R X(I) \neq R X(I)\)
 \(Y Z=R Y(I) \neq R Y(I)\)
 Z2=RZ(I)*RZ(I)
 K4 \(=\times 2 * \times 2\)
 Y4 = Y 2* Y
 て \(4=72 * 2 ?\)
 C41(I) \(=1.2500 *\) DSQRT(21.00)*(X4+Y4+74-0.600)

E.)

f.5.DO-210.DO\#C41(1)/143.00-1.DO/E.DO)
C41(I)=C41(I)*SD4PI
C61(1)=C61(I)*SD4PI
C81(1)=C81(I)*SD4PI
3 CONTINUE

($641(2) * C 61(4)) * C 81(3)+(C 41(3) *(61(4)-C 41(4) *(61(3)) \neq C \cdot 1(2)$
$w_{2}=(C 41(3) \neq(61(4)-C 41(4) * C 61(3)) *(81(1)+(C 4:(4) \neq C 61(1)-$

```
        G C41(1)*C61(4))*C81(3)+(C41(1)*C61(3)-C41(3)*C61(1)):C81(4)
            w3=(C41(2)*C61(4)-C41(4)*C61(2))*C81(1)*(C41(4)*C61(1)-
    E C41(1)*C61(4))*C81(2)+(C41(1)*C61(2)-C41(2)*C61(1))*C81(4)
    w4=(C41(2)*C61(3)-C41(3)*C61(2))*C81(1)*(C41(3)*C*1(1)-
上 \(\quad C 41(1) * C 61(3)) \neq C 81(2)+(C 41(1) \neq C 61(2)-C 41(2) \neq C 61(1)) * C 81(1)\)
        m=w1+w2+w3+w4
        wT(1)=w1/ww
        wr(2)=w2/ww
        T( 3)=w3/w
        T(4)=w4/ww
        OO a I =1.a
    4WRITE(6.5) RX(I).RY(I),RZ(I).WY(I).C41(I).CGI(I).C81(I)
        PRINT 6
```



```
    F,='.F10.5.3X.'K81=`.F15.51
    6 FOPMAT(1H)
        CALCULATF THE DFNSITY ALONG FOUR JIRFCTIONG (RXPIV.QY(I),FZ(I)I AND TAKF
        THF MVERAGE
        PRINT 233
```



```
    &'OENSITY OOWN',/)
        OO 200 KR=1.96
        DFNS=0.DO
        DENSUP =0.DO
        DENSDN =0.DO
        DO 201 NO=1.
        X=R(KR)*RX(ND)
        Y=R(KR) #RY(ND)
        Z=R(KR)*RZ(ND)
        DO 72 I=1.NSTA
        SUM=0.00
        N=NORB(I)
        DO 10 JJ=1.IDIM
        PSI=O.DO
        QA=DSORT((AX(JJ)-X)**2+(AY(JJ)-Y)**?+(AZ(JJ)-2)##?)
        DO 20 J=1.N
        EAX=RA*EX(1, 1)
        IF(EAX.GT.40.DOIGO TO 10I
        IBB=IB(I,j)-i
        RFX=C(I,j)*RA**IBA*DEXD(-EAX)
        GO TO 20
101 REX=0.0
20 PSI=PSI+REX
    10 SUM=SUM+PSI#PSI
```

65 DENS = DENS + SUM*CHARGE (I)*CONST*WT(NOI
DENSUP \Rightarrow DENSUP + SUM \& CHARUP(Il FCONST*WT (ND)
DENSDN =DENSON + SUM*CHARDN(I)*CONST*WT(ND)
72 CONTINUE
201 CONTINUE
WRITE(6.231) KR.R(KR),W(KR). DENS.DFNSUP.DENSDN
21 FORMAT(1X.IS.2F11.5.6F1B.B)
EXCH K KR) $=$ DENS
EXUP (KR) $=$ DENSUP
EXDN(KR) $=$ DENSON
2,9 CONTINUE
RE TURN
END

SUPRTUTINE SPLOTERS.F.E.NEPTS.EMIN.DE,FERMIE, NEMAXI

 PLOT THE DENSITY OF STATES

DIMENSION S(NEMAX) OF (NEMAX) EE (NEMAX)
I = NEPTS
$J=1+1$
$k=1+2$
CALL PLOT(05., -11, $0-3$)
CALL PLOTRO..2..-3i
F(J)=EMIN
$E(K)=D E *(I-1) / 10$.
FERM=(FFRMIE-E(J))/E(K)
$W R T=F E R M-0.32$
CALL PLOT(FERM.0.0.3)
CALL PLOT(FERM, 7.0.2)
CALL SYMBOL (WRT.7.5.0.21.4HF.E..O..4)
CALL SCALF(F.8..1.1)
CALL AXIS(O..O..11HENFRGY (RY).-11.10..0..F(J J.F(K
CALL AXISTO..O. 3 THDENSITY OF STATES (FLFCTRONS/ATOM-RYI.37.9.
$590 \ldots F(J), F(K))$
CALL SYMBOL(1.0.7.5.0.21.13HMAJORITY SOIN.O..131)
CALL LINE(E,F. I : $1.0,0$)
CALL PLOT(15..-11:-3)
CALL PLOT(O..2..-3)
CONTINUE
CALL PLOT(FERM.O.0.3)
CALL PLOT(FERM.7.0.2)
CALL SYMBOL (ART.7.5.0.21.4HF.E..O..4)
CALL SCALE(S.8.i.II

CALL AXIS(O.O.O.37HDENSITY OF STATFS (ELECTRONS/ATOM-RY). 37. $2 .$. .
690..S(J).S(K))

CALL SYMBOL(1.0.7.5.0.21.13HMINORITY SPIN.0..13)
CALL LINEIE.S. $1,1.0,0$)
CALL PLOT(15.,-11:-3)
CALL PLOT(O.2....3)
IFINSPINO EO. 21 GO TO 152
CALL PLOT(FERM.C.O.3)
CALL PLOT(FERM,7.0.2)
OO 153 II=1. I
S(II)=S(II)+F(II)
CALL SCALE(S.8..1.1)

CALL AXISTO. O.. 3 THDENSITY JF STATES (ELFCTRONS/ATOM-RY).37.9..

ع90..S(J).S(K))
CALL SYMBOLI 1.0.7.5.0.21.9HBOTH SPIN.O..9)
CALL L INEIE,S. I .1.C.OI
CALL PLOT(15..-11..3i
CONT INUE
CALL PLOT(0.0.0..999)
RETURN
END

```
        SUBROUTINE SVKO(VKO)
```



```
    CALCULATION OF THF COULOMB POTENTIAL AT K=(O,C.O)
    IMPLICIT REAL*B(A-F.H.O-Z
    COMMON/VKO/C(7.11),FX(7.11),FACTOC1O1,IA(7.11),NORR(T),NSTA
    COMMON/CHARGE/CHARGE(T),CHARUP(7),CHARDN(7)
    VKO=C.DC
    DO 23 L=1,NSTA
    SUM=0.00
    CON=1.DO
    N=NORAIL
    OO 20 J=1.N
    OO 20 J=1,N
    OO 21 K=J,N
    COL=C(L,J)*C(L,K)#CON
    JA=IB(L,J)+IB(L,K)+2
    EAX=EX(L,J)+EX(L.K)
    IR=JA+1
    SUM=SUM+FACTO(JA)*COL/(EAX**IR)
    21 CON=2.0
    20 CON=1.00
    23VKO=VKO+SUM*CHARGE(L)
        RE TURN
        END
```

SUBROUTINE WFCCIG(KX,KY,KZ,KL,WT)

 C I/IGTH OF THE INDEPENDENT B. 7 . (F. C. C.)

$K M=3 * K L / 2$
$W T=1.0$
$K T=K x+K Y+K Z$
IF(KT •EO.KM) $\quad T=W T * 0.5$
IF (KX •EQ. KL) WT=WT*0.5
$\left.\left.\begin{array}{ll}I F(K X & \bullet E Q \\ I F(K Y & E Q\end{array}\right) K L\right) \quad W T=W T * O .5$
$I F(K Y \quad \bullet E O \cdot K L) \quad W T=W T * 0.5$
$I F(K Z \quad \bullet Q \bullet K L) \quad W T=W T * 0.5$

$I F(K Y \cdot E Q \cdot O) \quad T=W T * 0.5$
IF(KX E EQ. C) WT=WT*0.5
IF (KX •FO. KY) $W T=W T * 0.5$
RETURN
END

Ching-ping Shih Wang was born on February 16, 1947 in Shang-hai, China. In 1949 she and her family moved to Taiwan, Republic of China. She graduated from Taipei First Girls' High School in 1965. She received the degree of Bachelor of Science in Physics from Tunghai University, Taichung, Taiwan, in 1969. In September 1969, she came to the United States for post-graduate studies and received the degree of Master of Science from Louisiana State University, Baton Rouge, Louisiana, in January 1971. She is now a candidate for the degree of Doctor of Philosophy in the Department of Physics and Astronomy at Louisiana State University.

She is a member of the American Physical Society and of the National Honor Society Phi-Kappa-Phi.

EXAMINATION AND THESIS REPORT

Candidate: WANG, Ching Ping Shin

Mar ir field: Physics

HAle of the ri: Band Structure $\cap f$ Nickel: Spin Orbit Coupling, the Fermi Surface, and the Optical Conductivity

Apposed:

EXAMINING COMMITTEE

[^0]: "u the case of a culic crystul with electron spin

