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Band transition and topological 
interface modes in 1D elastic 
phononic crystals
Jianfei Yin  1, Massimo Ruzzene2,3, Jihong Wen1, Dianlong Yu1, Li Cai1 & Linfeng Yue1

In this report, we design a one-dimensional elastic phononic crystal (PC) comprised of an Aluminum 

beam with periodically arranged cross-sections to study the inversion of bulk bands due to the change 

of topological phases. As the geometric parameters of the unit cell varies, the second bulk band closes 

and reopens forming a topological transition point. This phenomenon is confirmed for both longitudinal 
waves and bending waves. By constructing a structural system formed by two PCs with different 
topological phases, for the first time, we experimentally demonstrate the existence of interface mode 
within the bulk band gap as a result of topological transition for both longitudinal and bending modes 

in elastic systems, although for bending modes, additional conditions have to be met in order to have 

the interface mode due to the dispersive nature of the bending waves in uniform media compared to the 

longitudinal waves.

Phononic crystals (PCs) and acoustic metamaterials are intensively studied as means to manipulate sound or elas-
tic waves1–13. Within this �eld, recent attention has been devoted to acoustic analogues of topological concepts in 
condensed matter physics such as quantum spin Hall e�ect14–17 and topological phases18–22. Properties of particu-
lar interest include the existence of topologically protected edge states23–28, which could be bene�cial for a variety 
of applications including acoustic focusing, energy harvesting and vibration/noise control29–33.

�e topological properties of the band structure of a material can be described in terms of topological invari-
ants such as the Berry phase34,35, or the Zak phase for one-dimensional media36,37. Recent studies show that edge 
modes within the band gap exist at the interface between two PCs with di�erent topological properties28,31,38. �is 
phenomenon has been con�rmed for several one-dimensional (1D) PC systems such as discrete spring-mass 
lattices39, acoustic systems40 and surface-water-wave system41. �e extension of these investigations to elastic 
systems remains an open challenge due to more complicated dispersion nature of waves propagating in elastic 
structures. While previous work mainly focuses on longitudinal wave motion, this report describes theoretical 
studies and experimental demonstration of the existence of interface modes induced by topological transitions 
for both longitudinal and bending waves in 1D elastic wave guides.

Model
Inspired by previous works on acoustic systems40–42, we consider a simple 1D elastic phononic crystal (PC) corre-
sponding to a beam structure with periodically varying, step-wise cross-section as shown Fig. 1. �e unit cell con-
sists of two thinner beam components of equal length a1 sandwiching a thicker beam of length a2, thus the lattice 
constant of the PC is a = 2a1 + a2. In this work, a is set to be 0.15 m. �e cross-section of the beam is rectangular 
and the material and geometrical parameters are listed in Table 1. For a structural PC, it can support propagation 
of both longitudinal waves and bending waves.

For longitudinal waves in uniform media, the wave vector k follows the dispersion relation ω2 = k2E/ρ thus it 
is non-dispersive. In contrast, for bending waves in beam structures, the Timoshenko model yields the dispersive 
relation expressed as (See Methods), which in contrast to the linear dispersion relation of longitudinal waves, is 
non-linear for dispersion.

1Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 
Changsha, Hunan, 410073, P.R. China. 2School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, 
GA, 30332, USA. 3School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA. 
Correspondence and requests for materials should be addressed to J.Y. (email: nmhsyjf@nudt.edu.cn)

Received: 1 November 2017

Accepted: 12 April 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-6131-9881
mailto:nmhsyjf@nudt.edu.cn


www.nature.com/scientificreports/

2SCIENTIFIC REPORTS |  (2018) 8:6806  | DOI:10.1038/s41598-018-24952-5

ω
ρ ρ

ω
ρ

+





+
−





+ =

Gk E
k

SGk

I EGk
k

4

4
0

(1)

t t

t

4 2 2
2

4

Normally in elastic structures, longitudinal and bending waves co-exist and couple with each other at struc-
tural junctions. In order to study the two wave types separately, a symmetric arrangement of the PC with respect 
to the neutral x-y plane is used to ensure the decoupling of longitudinal and transverse (bending) waves43,44. �e 
transfer matrix (TM) method in conjunction with the Bloch theorem for periodic structures is used to calculate 
the dispersion relations of the PC (See Methods). Physical experiments along with numerical simulations with 
�nite element method (FEM) are used to study the forced response of �nite PC systems and demonstrate the 
existence of interface modes.

Results
We start by considering the band structure of longitudinal waves for three PCs con�gurations de�ned by a 
geometric parameter δ = (2a1 − a2)/a, namely LC1: δ = −1/3 (a1 = 0.025 m), LC2: δ = 0 (a1 = 0.0375 m) and LC3: 
δ = 1/3 (a1 = 0.05 m) as shown in Fig. 1(a–c). It is observed that the band structure for the �rst three modes of 
LC1 and LC3 appear identical and feature two band gaps. Here we focus on the second band gap bounded by the 
second and third eigenmodes. As for LC2, the second and third eigenmodes become degenerate at k = 0 which 
closes the second band gap.

From the perspective of wave propagation, the band gaps are induced by wave scattering due to impedance 
mismatch at the structural junctions of the PC. In this report, a topological concept is used to study the band 
behavior of the PC. �e topological property of a Bloch band can be de�ned by certain invariants, which, for 1D 
systems, can be expressed in terms of Zak phase37. Non-trivial Zak phase indicates the existence of edge states45, 
which was initially discussed in quantum theory37 and then found in condensed matter physics described by the 
Su-Schrie�er-Heeger (SSH) model46 and in acoustic systems40. �e Zak phase quanti�es the change in polari-
zation for wave vectors across the Brillouin zone, identi�ed a�er �xing an appropriate gauge. �e Zak phase is 
numerically calculated using COMSOL for a 1D �nite element model using beam element (see Methods), follow-
ing the procedure described by Xiao et al.40,47. For a unit cell with symmetric geometry with respect to the central 
cross-section plane, they can acquire a Zak phase of either 0 or π depending on the value of δ of the PC. �e Zak 
phase is closely related to the wave propagation in the PC by indicating the advance (Zak phase being π) or delay 
(Zak phase being 0) of the phase of the re�ected wave.

It is marked in Fig. 2(a,c) that the Zak phase of the second band for LC1 is 0, while for LC3 it is π. �erefore, 
LC1 and LC3 are topologically distinct despite of their apparently identical band structures. �is change in Zak 
phase is investigated further by tracking the bounding eigenfrequencies for the second band gap at k = 0 by vary-
ing geometric parameter δ. To this end, the following expression for the dispersion relations of the PC is employed 
(derivation see Methods):
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where C E/L ρ=  is the longitudinal wave speed, while and S1, S2 respectively denote the cross-section areas of a1 
and a2. �e two bounding frequencies are associated with two wave modes whose variation in terms of parameter 
δ are shown in Fig. 2(d). �e blue curve corresponds to the eigenmode that is symmetric with respect of the center 
cross-section plane while the red curve represents unsymmetric mode. �e shape of the two modes are shown in 
the insets of Fig. 2(d). With the increase of δ from −1 to 1, the second band gap closes at LC2 where an accidental 
degeneracy occurs. �en the band gap reopens, with a switch of mode polarization: for LC1, the lower bounding 
mode is unsymmetric while the upper bounding mode is symmetric. �e opposite phenomenon is observed for 

Figure 1. 3D view of the PC and its unit cell.

b (mm) h1 (mm) h2 (mm) Young’s modulus E (Pa) Density ρ (kg/m3) Poisson’s ratio

10 20 10 70 × 109 2700 0.33

Table 1. Material and geometric properties of the PC.
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LC3. �e inversion of the mode types occurs at LC2, which corresponds to the transition of Zak phase from 0 to 
π for the second band. �e degeneracy condition yields that δ = 0 resulting in the inversion frequency follows 

ω π=a c/ 2L  s.t. 33,945 Hz.
Figure 2(a,c) also show the mode shape of the second eigenmode at the edge of the Brillouin zone (black dots) 

for LC1 and LC3 in the insets and it is observed that they have the same type of mode polarization (both unsym-
metric) thus no inversion occurs in contrast to the modes at the center of the Brillouin zone. By comparing the 
mode shapes at the center and edge of the Brillouin zone, it is found that when the second eigenmode of the same 
geometric con�guration at center and edge of the Brillouin zone have the same type of mode polarization, the Zak 
phase of this band is 0, otherwise it is π. �is conclusion is also con�rmed in ref.40.

For bending waves, the topological transition point also exists as seen in Fig. 3(d), where the bounding fre-
quencies of the second band gap are again shown as function of the geometric parameter δ. Four con�gurations 
of the PC are chosen for analysis, namely TC1: δ = −11/15 (a1 = 0.01 m), TC2: δ = −0.5173 (a1 = 0.0181 m), TC3: 
δ = −0.2 (a1 = 0.03 m), TC4: δ = −0.8933 (a1 = 0.004 m) and TC5: δ = 0.2 (a1 = 0.045 m). �e band structures of 
TC1-TC3 along with their Zak phase of the second band are shown in Fig. 3(a–c) where the Zak phase for TC1 is 
0 and for TC3 is π. With the increase of δ, the second band closes at TC2 and reopens with the Zak phase chang-
ing from 0 to π.

In contrast to the longitudinal results in Fig. 2(d), it is observed that for the unsymmetric mode (red line in 
Fig. 3(d)), the eigenfrequency monotone decreases with the increase of δ while the symmetric mode (blue line) 
doesn’t have such monotone behavior. As a result, one can still observe the band closing and reopening at the 
transition point, which however does not occur at δ = 0 as the longitudinal model. �is behavior is related to the 
fact that the dispersion relations of bending waves in uniform beam is non-linear as described by eq. (1).

Next, we construct a �nite system by connecting two PCs with di�erent topological properties, with the objec-
tive of demonstrating the occurrence of an interface mode resulting from the topological transition. For the 
longitudinal wave case, a system comprising 5 cells of LC1 connecting 5 cells of LC3 is used as shown in Fig. 4(d). 
�e Frequency Response Function (FRF) of the system is obtained for both experimental measurements and 
numerical simulations (See Methods). In the experiments, the system is excited at one end (right) of the PC 

Figure 2. Band structure of the PC with di�erent geometric con�gurations and topological transition for 
longitudinal waves. (a–c) Band structure of the longitudinal modes for LC1, LC2 and LC3. �e Zak phase of 
the second band for LC1 is 0 and LC3 is π. �e second band gap closes at LC2 at the center of the Brillouin zone 
as the two modes become degenerate. (d) Bounding frequencies of the second band gap at the center of the 
Brillouin zone with variation of the geometric parameter δ. �e blue curve corresponds to symmetric mode 
with the respect of the center cross-section of the unit cell and the red curve corresponds to unsymmetric mode. 
�e mode shapes of two bounding modes for LC1 and LC3 are shown where an inversion of mode polarization 
is observed at δ = 0. (a,c) the mode shape of the second eigenfrequency at the edge of the Brillouin zone for 
LC1 and LC3 are shown in the insets to demonstrate that when the mode shapes at the center and edge of the 
Brillouin zone have the same symmetry to the central cross-section plane as LC1 (bothe unsymmetric), the Zak 
phase is 0, otherwise is π as LC3.
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using a PZT patch with single frequency sinusoidal signal and sweeping over the frequency range of interest for 
each measurement and the response in terms of velocity is picked up at the other end of the PC(le�). As shown 
in Fig. 4(a), a transmission peak at 33,100 Hz (0.4% error compared with theory) in the FRF is clearly observed 
within the second band gap for the two PCs. �e mode associated with this peak is localized at the interface. In 
order to further con�rm this, the corresponding normalized velocity �eld along the �nite beam is plotted for both 
simulation and measured data as in Fig. 4(b,c), respectively. It is shown that the longitudinal motion is concen-
trated at the interface and decays rapidly away from it in both directions.

For bending waves, a system with 5 cells of TC1 connecting 5 cells of TC3 is constructed as shown in Fig. 4(h). 
In contrast with the longitudinal test, the PC is now excited using a shaker by a white noise. �e transmission 
peak within the common band gap region is observed in Fig. 4(e) and the displacement �eld plots in Fig. 4(f,g) 
again con�rm the existence of the interface mode. Since the frequency of the interface mode corresponds to the 
mode transition frequency (6,162 Hz for bending model), to observe the interface mode, the two PCs with di�er-
ent topological properties must ensure that the mode transition frequency is within the frequency range of both 
their second band gap as the model with TC1 + TC3. As for longitudinal model, this requirement is always satis-
�ed as long as the two PCs have di�erent topological properties. Based on this, the inset of Fig. 3(d) marks out the 
region for the interface mode to be created by the hybridization of two PCs. �e examples shown in Fig. 5 illus-
trate numerically that without meeting the conditions that 1) two PCs are topologically distinct; 2) the topological 
transition frequency falls within the overlap band gap of the two PCs, the interface mode cannot be achieved.

It is to be noted that the interface mode observed in Fig. 4(a) di�ers from that have been previously studied as 
‘boundary mode’48,49 which is attributed to boundary conditions, the coupling of local resonances or the position 
of excitation, therefore, such interface mode is robust against geometric boundary conditions or the direction of 
wave transmission. To demonstrate the robustness of the interface state, Fig. 6 shows the FRFs for the LC1 + LC3 
model which is excited at the two ends respectively and in both cases, the interface mode is observed at the same 
frequency represented by the transmission peak despite of the di�erence in FRF at some other frequencies.

In addition, we consider the same longitudinal model in time domain to demonstration the e�ect of the 
interface mode on wave propagation. A harmonic prescribed in-plane displacement with an amplitude of 10–4 m 

Figure 3. Band structure of the PC with di�erent geometric con�gurations and topological transition for 
bending waves. (a–c) Band structure of the bending modes for TC1-TC3. �e Zak phase of the second band 
for TC1 is 0, TC3 is π. �e second band gap closes at TC2 at the center of the Brillouin zone as the two modes 
become degenerate. (d) Bounding frequencies of the second band gap at the center of the Brillouin zone with 
variation of the geometric parameter δ. �e blue curve corresponds to symmetric mode with the respect of the 
center cross-section of the unit cell and the red curve corresponds to unsymmetric mode. �e mode shapes of 
two bounding modes for TC1(TC4) and TC3(TC5) are shown where an inversion of modes can be observed 
at TC2(δ = −0.5173). �e yellow regions in the enlarged �gure indicate the condition on geometric range 
for constructing interface mode with two PCs with di�erent Zak phases. (a,c) �e mode shape of the second 
eigenfrequency at the edge of the Brillouin zone for TC1 and TC3 are shown in the insets to demonstrate that 
when the mode shapes at the center and edge of the Brillouin zone have the same symmetry to the center cross-
section plane as TC1, the Zak phase is 0, otherwise is π as TC3.
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Figure 4. Forced response of the �nite system comprised of two PCs with di�erent topological properties 
obtained from measurements in comparison with numerical simulations using FEM. (a) FRF of (d) LC1 + LC3 
where the beam is excited at the right end and velocity response picked up at the other end (the dashed blue 
lines represent simulated results using FEM and the solid red lines are measured results). A transmission peak 
at 33,100 Hz is observed within band gap region (colored area) indicating the existence of the interface mode. 
(b,c) the longitudinal normalized velocity �eld obtained from simulations (b) and measurements (c) at the 
peak frequency, respectively. (e) FRF of (h) TC1 + TC3 where the beam is excited at the right end and velocity 
response picked up at the other end (the dashed blue lines represent simulated results using FEM and the solid 
red lines are measured results). Transmission peak at 6,162 Hz occurs within the common band gap region 
(overlapped colored area). (f,g) �e bending normalized velocity �eld at the peak frequency obtained from 
simulation(f) and measurements(g) demonstrating the interface mode.

Figure 5. FRFs for �nite PC systems for which the bending interface mode cannot be observed. (a) TC3 + TC4: 
two PCs have overlapping band gap region but the topological transition frequency (marked by the red dash line) 
is not in the overlapping band gap region. (b,c) TC5 + TC4 and TC5 + TC1: two PCs don’t have overlapping band 
gap. For all cases, the two PCs are topological distinct (red band gap region corresponds 0 Zak phase for the lower 
bulk band and blue region π). �e transmission peak induced by interface mode cannot be observed in all cases.
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is applied at the geometric interface of LC1 + LC3 model. �ree frequencies are chosen for analysis at 25 kHz (in 
the second band), 32 Hz (in the second band gap) and 33.1 kHz (at the interface mode frequency in the second 
band gap). �e velocity �elds at di�erent time instances are plotted as shown in Fig. 7(a–c). It is shown that when 
the excitation frequency is not in the band gap, the wave can propagate along the beam thus response peaks are 
spread across the beam as in Fig. 7(a) while when the excitation is within the band gap, the wave cannot propagate 
in the beam freely thus the response peak is mainly concentrated at the excitation position as in Fig. 7(b) and (c). 
Compared with normal band gap frequency, when the excitation is at the interface mode frequency, the response 
seems to be more concentrated with less energy leakage although the di�erence can be hardly seen when the time 
is long enough where the response reaches steady state.

Conclusions
In summary, this report illustrates both theoretically and experimentally the topological transition for a 1D elastic 
periodic beam as a waveguide. We have evaluated the topological properties of the 1D system for both longitudi-
nal and bending waves which are quanti�ed by the Zak phase estimation. A band inversion for variations of a rel-
evant geometric property is observed as de�ned by a corresponding change in Zak phase. Based on this �nding, 
we have further demonstrated the existence of interface mode within the bulk band gap by constructing a �nite 
system with two PCs of di�erent topological phases for both longitudinal and bending waves. It is also noted that 
the dispersive nature of the bending wave in uniform media leads to di�erent band inversion characteristics com-
pared to the longitudinal waves. Speci�cally, the numerical examples in this report show that for bending waves 
the interface mode exists only when the band inversion frequency is within the overlapping band gap region for 
the two PCs connected in series. �e interface mode is robust against excitation and exhibited higher energy 
concentration at the interface compared to normal bandgap frequency when excitation is applied at the interface.

�is report extends the study of topological concept to elastic systems that are characterized by both dispersive 
and non-dispersive wave properties. �e analysis and results presented herein may be applied to other 1D or 2D 
periodic structural systems whereby topological interfaces are strategically placed to achieve wave localization 
and isolation, with potential application to vibration control and energy harvesting.

Figure 6. FRFs for LC1 + LC3 systems where excitation is applied at LC1 and LC3 end respectively and the 
response is picked up at the other end. �e interface mode at 33.1 kHz is observed in both cases.

Figure 7. Forced response of LC1 + LC3 system in time domain at di�erent time instances where the frequency 
of excitation is at (a) 25 kHz, (b) 32 kHz and (c) 33.1 kHz.
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Methods
Theories. We have implemented the transfer matrix method for the analysis of dispersion for longitudinal 
and bending modes. �e wave �elds for the nth unit cell in terms of displacement can be written as u x t( , )nm  for 
axial direction and w x t( , )nm  for lateral direction where m = 1, 2, 3 representing the three components of the unit 
cell. �e propagation of longitudinal waves follows eq. (3):
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the Timoshenko beam model is employed leading to the following characteristic equation48
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In eq. (4), I, G and kt = 1/1.2 denote second moment of area, shear modulus and shear correction for a rectangular 
cross section.

Considering the nth unit cell, at the boundaries and junctions within the unit cell at x = na + a1, x = na + a1 + a2 
and x = (n − 1)a, we apply the continuity conditions to obtain the �eld transfer matrix between nth and (n − 1)th 
unit cell:

Ψ Ψ= −T (5)n n( 1)

Due to the periodicity of the infinite structure in the x direction, the vector Ψn must satisfy the Bloch 
theorem

Ψ Ψ= −e (6)n
ika

n( 1)

where k is the Bloch wave vector written in scalar form for the 1D system. It follows that the eigenvalues of the 
in�nite periodic structures are the roots of the determinant:

− =eT I 0 (7)
ika

Eq. (7) is a standard eigenvalue problem from which the dispersion relations between k and ω can be 
obtained.

For longitudinal wave, a closed-form of dispersion relations can be further derived by taking = +ωu x t A e( , )nm
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Since a = 2a1 + a2, eq. (8) can be simpli�ed to eq. (2).
We use �nite element method in conjunction with transfer matrix method to calculate the forced response of 

the �nite PC system. We consider each unit cell to be governed by the following dynamic sti�ness formulation:

=Dq f (9)

where ω= −D K M2  is the dynamic sti�ness matrix, q and f are the vectors of nodal dofs and forces, K and M 
are the sti�ness and mass matrices.

Eq. (9) can be rearranged in matrix form as:
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where the subscript L and R represent the le� and right hand sides of the element. For uniform waveguides, we 
have
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Using the transfer matrix to describe the continuity of displacement and force equilibrium of adjacent seg-

ments gives
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�e transfer matrix T can be thus found in the terms of the elements of the dynamic sti�ness matrix by:
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For a �nite system with N unit cells in a chain, the global dynamic sti�ness can be obtained from assembling 
the elementary sti�ness from cells 1 to N.

Numerical calculation of the Zak phase. �is work follows the method proposed by by Xiao et al.40,45 to 
calculate the Zak phase for bulk bands of the PC. For the nth Bloch band of a 1D PC, its Zak phase n

Zakθ  is given by:
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 is the cell-periodic Bloch eigenfunction for a given wavenumber k. For the nth band and the longitu-

dinal/bending wave �eld ξ=U x W x x ikx( )/ ( ) ( )exp( )n k n k n k, , ,
. �e factor ρc1/(2 )2  is the weight function for elastic 

systems.
�e eigenfunction of the cell-periodic is numerically calculated using COMSOL with meshes of beam ele-

ments. �e Zak phase is then calculated using a discretized form of eq. (15) a�er extracting the eigenfunctions 
from COMSOL.
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Experimental set-up. �e periodic beam used for testing is machine cut out of one piece of Aluminum material 
to ensure geometric accuracy. �e beams are suspended using bungee ropes to simulate free boundary conditions.

For the longitudinal wave test, the beam is excited using a PZT patch (Type: E-SOUND PZT-5; Dimensions: 
20 mm × 10 mm × 2 mm) with one side attached onto one end of the beam and the other side mounted onto the 
wall as shown in Fig. 8(a). �e other end of the beam is free. A single frequency sinusoidal signal is used in one 
measurement and the FRF is obtained through multiple measurements by sweeping excitation frequency over the 
interested frequency range. For the bending wave test, the beam is excited using a mode shaker at one end of the 
beam as shown in Fig. 8(b). �e FRF can be obtained in single measurement using a white noise signal as excita-
tion. �e vibration response along the beam is measured using a Polytec 3D scanning laser Doppler vibrometer 

Figure 8. Experimental set-up schematic and photo. (a) Longitudinal wave testing set-up; (b) bending wave 
testing set-up. �e insets show the photos of experimental set-up.
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which provides accurate 3D dynamic motion vectors. For longitudinal wave measurement, we employ three laser 
heads to measure the instantaneous vibratory velocity in the axial direction, while for bending waves (Fig. 8(a)), 
we use only one laser head to measure the transverse motion of the beam (Fig. 8(b)). �e measured results gen-
erally are in good agreement with the FEM results, and typically capture all band gaps and response peaks except 
for those within the band gap ranges where a higher FRF than FEM results is measured. �is error is attributed to 
the background vibration level of the structural system.

Data availability. �e data that support the �ndings of this study are available from the corresponding 
author upon reasonable request.
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