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ABSTRACT The untunable bandgap is a difficult problem for Bragg structures constructed from 
corrugated metallic waveguides, and becomes a major barrier for applications. Based on the coupled-mode 
theory, this paper presents the principle as well as a corresponding theoretical model of bandgap control of 
two-dimensional coaxial Bragg structures under the condition of a fixed ripple shape. It is shown that such 
control can be achieved by varying the angular deviation between the outer and inner corrugations, which 
can be done by rotating one of the conductors relative to the other. The effects of the proposed method on 
transmission bandgap control of two example structures were investigated by theoretical analysis and 
electromagnetic simulation. The results confirmed the validity of the proposal, and showed that such a 
control method can be used to manipulate the number and location of the working bands under multiple 
bandgap operation. These peculiarities provide potential applications of two-dimensional coaxial Bragg 
structures in constructing tunable passive and active high-power microwave devices. 

INDEX TERMS   Coaxial waveguides, Bragg gratings, bandgap, coupled mode analysis 

I. INTRODUCTION 
In past decades, the use of periodic structures to manipulate 
the propagation of guided waves has been intensively 
investigated [1]–[4]. As a result of these efforts, many 
functional components using periodic structures have been 
proposed and then widely applied in the fields of radio 
frequency (RF) electronics, microwave electronics and 
optoelectronics. They include reflectors [5], filters [6]–[8], 
couplers [9],[10] and resonators [11]. In practice, periodic 
structures are implemented in various forms and materials 
to meet the needs of specific applications, with particular 
operating frequency bands and power capacities. For 
example, the periodic structures used in RF circuits and 
microwave devices are usually realized by etching periodic 
lattice structures on the conductive strip or ground plane of 
transmission lines [12],[13], or realized by waveguides with 
periodically arrayed membranes or nails [14]. In the optical 

systems, these structures are in the form of latticed crystals, 
multilayer films, dielectric materials with periodic 
refractive index [2],[4],[15], etc. Despite the differences of 
these structures, they all rely for their operation on Bragg 
scattering. This means that the periodic boundaries of the 
structures are able to scatter a forward wave coherently into 
a series of backward components, and the constructive 
interference of these scattered components opens up some 
so-called forbidden bands or stopbands in the frequency 
spectrum, where the propagation of the incident wave is 
strongly suppressed. Due to this characteristic, periodic 
structures are usually named Bragg structures [5]–[7],[11], 
electromagnetic bandgap (EBG) structures [8],[13],[16], 
and photonic bandgap (PBG) structures [4],[15], in 
different fields.  

Bandgap parameters, such as the center frequency, 
amplitude and bandwidth, are generally the critical 
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parameters for determining the performance of periodic 
structures, and being able to controlling them is essential for 
many applications including microwave electronics, optics 
and signal processing [16]–[18]. Usually, the bandgap can be 
manipulated by changing the properties of the filling medium 
of the periodic structures. For the PBG structures used in 
optics, many techniques have been proposed to obtain the 
dynamic control of bandgap parameters by introducing 
different active media (for example Kerr-effect materials and 
chiral materials [18]–[20]) whose refractive indices can be 
manipulated by external stimuli such as electric fields or light. 
However, the Bragg structures used in microwave electronics, 
particularly in high-power microwave devices, have 
untunable bandgaps, which is a major drawback. The reason 
lies in the way they are constructed. The Bragg structures are 
planar or cylindrical metallic waveguides [5]–[7], [9],[11], 
where the periodicity is obtained by etching shallow periodic 
ripples on the internal surfaces of the conductor, and the 
filling medium (vacuum or air) is conformal with the ripples. 
The corrugation amplitude and period are fixed, so it is 
unrealistic to control the bandgap by changing the ripple 
shape. In order to improve their applicability, a new approach 
is required to manipulate bandgap parameters for Bragg 
structures with a fixed ripple shape. 

Bragg structures with helical ripples have found increasing 
applications in constructing beam-wave interaction systems 
for gyro devices, and as the effective dispersive medium for 
pulse compressors [21]–[25]. Since the helical ripples have 
periodicities along the azimuthal and axial directions, they 
can be treated as two-dimensional periodic structures realized 
by metallic waveguides. Early investigations of two-
dimensional Bragg structures mostly concentrated on 
structures with cylindrical topology. In recent years, growing 
attention has been paid to Bragg structures in the form of 
coaxial metallic waveguides, due to their merits in improving 
the performance of high-power free-electron devices [26]–
[31]. It should be noted that, although the coupling 
coefficients and reflection characteristics of a two-
dimensional coaxial Bragg structure with one or two 
helically corrugated conductors were investigated in [31], a 
method of manipulating the bandgap parameters of two 
dimensional coaxial Bragg structures is yet to be confirmed. 

In this paper, the possibility of controlling the bandgap of 
two-dimensional coaxial Bragg structures with unchanged 
ripple shape is discussed as follows. In section II, the 
principle as well as the theoretical model of the bandgap 
control of two-dimensional coaxial Bragg structures is 
provided. Formulas are given for calculating the bandgap 
parameters and the means to manipulate the bandgap is 
provided. Control of the transmission bandgap of sample 
structures is demonstrated in section III. Finally, conclusions 
are drawn in section IV. 

II. THEORETICAL MODEL AND PRINCIPLE OF 
BANDGAP CONTROL 

A periodic function can be expanded to the superposition of 
different harmonics of sine/cosine functions. If the 
corrugation amplitude of periodic ripples is sufficiently small 
(less than 15% of the mean radius of the waveguide [25]), by 
neglecting the higher-order harmonics components, shallow 
periodic ripples with different shapes can be approximately 
expressed as sinusoidal/cosinusoidal ripples with certain 
amplitude [26]. In this section, we discuss bandgap control 
for two-dimensional coaxial Bragg structures with basic 
cosinusoidal ripples, where the principle and method are still 
applicable for two-dimensional coaxial Bragg structures 
corrugated with shallow periodic ripples of other shapes.  

Fig. 1 shows the schematic and sectional views of a two-
dimensional coaxial Bragg structure, constructed by inserting 
an outer corrugated inner rod into an inner corrugated hollow 
tube. The outer and inner conductors are corrugated 
cosinusoidally with the same length L, ripple period pb, fold 
number mb and initial corrugation phase φ=0; the ripples on 
the surface of the outer and inner conductor have mean 
radius of a0 and b0, and constant amplitude lo and li, 
respectively. As shown in Fig.2, supposing that the outer-
wall ripples have an angular deviation of ∆ϕ with respect to 
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FIGURE 1.  Schematic diagram (a) of a two-dimensional coaxial Bragg 
structure (mb=1) with helically corrugated conductors, where (b) is the 
longitudinal cross-section view and (c) is the transversal cross-
section view at z=0. 
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the inner-rod ripples, the dependence of the outer-wall radius 
ro and the inner-rod radius ri on the longitudinal position z 
can be expressed by 

( ) ( )o 0 o b b, cosr z a l m k zϕ ϕ ϕ= +  + ∆ +   ,         (1) 

( ) ( )i 0 i b b, cosr z b l m k zϕ ϕ= + + ,                         (2) 
where kb=2π/pb. 

To highlight the theme of bandgap control, consider a two-
dimensional coaxial Bragg structure with sufficiently large 
eigen-mode spectra intervals so that bandgaps associated 
with different coupled-mode combinations do not overlap 
with each other. Under this assumption, the incident wave of 
mode i will be strongly coupled with the backward wave of 
another mode k in the vicinity of Bragg resonance frequency, 
and the interaction of these two partial waves can be 
described by a pair of differential equations termed coupled-
mode equations as [5],[11],[21],[22] 

( )i
i i i ik k

df
j f jG f

dz
α

+
+ −= − + ∆ + ,              (3) 

( ) *k
k k k ik i

df
j f jG f

dz
α

−
− += + ∆ − ,                (4) 

where 
b /2jk z

i if A e+ += ,                           (5) 
b /2jk z

k kf A e−− −= .                           (6) 

iA+ , iα , ( )b 2i i kb∆ = − and ib are the complex amplitude, 
the attenuation constant, the Bragg mismatch parameter and 
the axial wave number of the incident wave of mode i, 
respectively, while the subscript k represents the 
corresponding variation associated with the backward wave 
of mode k;  Gik and its complex conjugate *

ikG denote the 
coupling coefficient between these two partial waves. The 
Bragg resonance frequency, i.e. the center frequency of the 
stopband, where the coherently coupling takes place, is 
determined by the following Bragg conditions: 

bi k kb b+ ≈ ,                                  (7) 

bk im m m− = .                                 (8) 

The general solution of coupled-wave equations (3) and (4) 
can be expressed as 

( ) ( ) ( )

( ) ( )
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2 2 2

j z j zik
i i k
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i k
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f z f f e e
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f f e e
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 ∆  = + −  G G  
 ∆  − +  G G  

,   (9) 

( ) ( ) ( )

( ) ( )

*

*
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1               0 0
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k k i

j z j zik
k i

G
f z f f e e

G
f f e e

γ
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 ∆ = − +  G G  
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,   (10) 

where 

jγ δ α∆ = −  ( ( )
=

2
i k bkb b

δ
+ −

, =
2

i kα α
α

+
),     (11) 

jγ b α= ∆ − ∆  (
2

i kb b
b

−
∆ = ,

2
i kα α

α
−

∆ = ),   (12) 

22
ikGγG = ∆ − .                           (13) 

( )0if
+  and ( )0kf

− denote the amplitudes of if
+  and kf

−  at 
z=0, respectively. Suppose that the incident wave of mode i 
is injected into the structure at z= −L with a unit amplitude, 
and the output port of the structure at z=0 is well matched to 
eliminate reflection, which can be expressed as   

( ) 1if L+ − = , ( )0 0kf
− = .                  (14) 

By substituting (14) into the general solutions in (9), (10) and 
neglecting the loss of the corrugated surfaces, the reflectivity 
R and the transmission T of the structure in the vicinity of the 
Bragg resonance frequency can be obtained, which can be 
expressed as 

( ) ( )
( )

2
2

*

2 2
2 2

sinh

cosh + sinh

ik

k k

i

G
L

f L f L

f L L Lδ

− −

+

 
 

− ⋅ −  = =
 −
 
 

G
G

R

G G
G

,   (15) 
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(a) ∆ϕ=0                                                               (b) ∆ϕ=π/2                                                               (c) ∆ϕ=π 

FIGURE 2.  Transversal cross-section views of the entrance (z=0) of a two-dimensional coaxial Bragg structure (mb=1) with the angular deviation 
∆ϕ between the outer and inner corrugations equals to (a) 0, (b) π/2, and (c) π, respectively. 
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( )

*
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2
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cosh + sinh

i i

i

f f

f L L Lδ

+ +

+

⋅
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−
T
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where 
2 2

ikG δ= −G , (17) 
sinhx and coshx are the hyperbolic sine and the hyperbolic 
cosine functions respectively. When the operating frequency 
f equals the Bragg resonance frequency f0 that is determined 
by (7) and (8), there is 0δ =  and ikG=G , and the 
corresponding reflectivity R0 and transmission T0 can be 
rewritten as 

0

2
0 tanh ikf f

G L
=

=R , (18) 

0

2
0 sech ikf f

G L
=

=T . (19) 

Since the reflectivity/transmission at the Bragg resonance 
frequency is the key parameter that determines the width and 
amplitude of a bandgap, one can get a hint from (18) and (19) 
that bandgap control may be achieved if the coupling 
coefficient is tunable. According to the coupled-mode 
analytical model for two-dimensional coaxial Bragg 
structures established in [31], the coupling coefficient for the 
helical corrugations described by (1) and (2) can be denoted 
as 

( )o i4
bjm

ik ik ikG l e p l qϕω − ∆= − ,       (20) 

where ω is the angular frequency; pik and qik are variables 
dependent on the types of mode i and mode k as well as the 
structure parameters, and their explicit formulas are given in 
[31]. Once the outer and inner conductors and their 
corrugated surfaces are processed, the corrugation amplitude 
lo, li and the variables pik, qik are fixed with a constant value. 
However, from (20), one can find a special variable to 
manipulate the coupling coefficient Gik, that is, the relative 
angular deviation ∆ϕ, which is independent of the 
corrugation shape and the size of the outer and inner 
conductors. In particular, for a given combination of coupled 
modes, by properly setting the ratio b0/a0 and the corrugation 
amplitudes lo and li, pik may be equal to qik in (20), then the 
coupling coefficient can be simplified as 

( )0 1 bjm
ikG e ϕ∆= − , (21) 

where 

0 o4
bjm

ikl p e ϕω − ∆= . (22) 

Then, substitute (21) into (18) and (19), which yields 

0

2 b
0 0tanh 2 sin

2f f

m
Lϕ

=

  = ∆  
  

R ,    (23) 

0

2 b
0 0sech 2 sin

2f f

m
Lϕ

=

  = ∆  
  

T .    (24) 

Evidently, (15)–(24) demonstrate the possibility of 
controlling the reflection/transmission bandgap of two-
dimensional coaxial Bragg structures by varying the relative 

angular shift ∆ϕ between the outer and inner corrugations. In 
practice, this control method can be realized by rotating one 
of the outer or inner conductors along the azimuthal direction 
while keeping the other conductor fixed, thus avoiding any 
need to reprocess the corrugated conductors. 

III. BANDGAP CONTROL IN TWO EXAMPLE
STRUCTURES 
To illustrate the feasibility of the bandgap control method, 
the transmission characteristics of two example structures 
with single bandgap and dual bandgap operation were 
investigated.  

A. SINGLE BANDGAP OPERATION 
First, consider a two-dimensional coaxial Bragg structure 
denoted as structure A. This structure had a mean outer-wall 
radius a0=11 mm, a mean inner-rod radius b0=9 mm and a 
total length L=80.2 mm, and amplitude of the outer-wall and 
inner-rod ripples of lo=0.15 mm and li=0.12 mm, respectively. 
The structure was injected with a basic TEM wave. Due to 
the cut-off of high-order modes, this incident wave can be 
coupled with the backward wave of only the TE1,1 mode to 
form the required transmission bandgap within the Ka band. 
To ensure good synchronization of these two partial waves at 
the desired Bragg resonance frequency of 37.5 GHz, the axial 
period pb and the fold number mb of the structure were set to 
4.01 mm and 1, respectively.  

Based on the above structural configuration, the 
dependence of the magnitude of coupling coefficient GTEM-

TE1,1 between incident and scattered waves on the angular 
deviation ∆ϕ was calculated and normalized by wave number 
k0( 0 0ω µ ε= ), where µ0 and ε0 are the permeability and 
permittivity of vacuum, respectively, and the results are 
shown in Fig.3. It is clear that, when the angular 
deviation ∆ϕ is 0 and 180o, the coupling coefficient reaches 
the minimum and maximum value respectively. Considering 
this feature, the transmission characteristics of structure A 
were further studied by varying the angular deviation ∆ϕ  
within the range of 0 to 180o. Fig. 4 shows the transmission 
rates of the incident wave at Bragg resonance frequency 
(37.5 GHz) versus angular deviation ∆ϕ,  where the solid 
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FIGURE 3.   Dependence of the normalized magnitude of coupling 
coefficient between the incident TEM wave and the scattered TE1,1 wave 
on the angular deviation ∆ϕ of structure A. 
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lines denote the results calculated by using (24). For 
comparison, the S parameters of structure A were simulated 
by HFSS with an angular deviation step of 5o, where lambda 
refinement and surface approximation factors were set to 
0.05 and 7 respectively to ensure high accuracy and 
convergence. The simulation model of structure A contained 
about 10 wavelengths of the incident TEM wave at 37.5 GHz 
in axial direction. These simulation results are shown in Fig.4 
with a dashed line. Clearly, both the theoretical analysis and 
simulation results indicate the importance of the relative 
angular position between the outer and inner conductors for 
transmission at the Bragg resonance frequency, i.e., the 
center frequency of the bandgap.  

Next, in order to illustrate the effect of angular deviation 
∆ϕ on bandgap parameters, the frequency responses of 
transmission of structure A were analyzed using (16) as well 
as the frequency sweep tool of the HFSS. The results 
obtained by these two approaches are shown in Fig. 5 with 
solid lines and dashed lines respectively, where the angular 
deviation ∆ϕ  is (a) 180o, (b) 90o, and (c) 0. It can be seen 
that, when the angular deviation ∆ϕ is 180o, owing to the 
maximum coupling coefficient, a sharp transmission bandgap 
appears in the vicinity of 37.5 GHz. The amplitude and width 
of this dominant transmission bandgap shrink with the 
reduction of ∆ϕ while the center frequency remains 
unchanged. Interestingly, as the outer and inner conductors 
had the same azimuthal position (∆ϕ=0), the transmission 
bandgap almost disappeared in the operating frequency band. 
It should be pointed out that, since the ohmic loss of the 
corrugated surfaces was considered in the simulation, the 
transmission rates at the Bragg frequency obtained by HFSS 
were lower than those of theoretical analysis; meanwhile, the 
existence of ohmic loss reduced the frequency where the 
constructive interference between the incident wave and the 
scattered wave takes place, resulting in a downward shift of 
about 0.13 GHz of the transmission bandgap obtained by 
HFSS compared with theoretical results. However, principal 

consistency between the simulation results and theoretical 
calculations clearly confirms the validity of controlling the 
bandgap by changing the relative angular position of the 
inner and outer conductors.  
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FIGURE 4.  The transmission rates of the incident TEM wave at the 
Bragg frequency (37.5 GHz) versus the angular deviation ∆ϕ of 
structure A, where the solid line denotes theoretical results and the 
dashed line denotes the simulation results obtained by HFSS. 
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FIGURE 5.  Transmission responses of structure A with an injection 
of TEM wave from 30GHz to 45GHz for the cases of the angular 
deviation ∆ϕ  equals (a)180o, (b) 90o, and (c) 0, respectively, where the 
solid lines denote theoretical calculations by (16) and the dash lines 
denote the simulation results obtained by HFSS. 
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B. DUAL BANDGAP OPERATION 
The previous example demonstrates the bandgap control 
effect of angular deviation for a structure with single 
bandgap operation. By introducing additional backward 
coupling waves for an incident wave within the working 
frequency band, the proposed control method can achieve 
switching between single bandgap and dual bandgap 
operation for two dimensional coaxial Bragg structures. 
Consider another two-dimensional coaxial Bragg structure 
denoted as structure B, where the outer conductor had the 
same corrugation parameters as those of structure A, but for 
the inner conductor the mean radius was reduced to 5.5 mm 
and the amplitude set to 0.09 mm. Both the outer and inner 
conductors were corrugated with the same axial period 
pb=4.02 mm, fold number mb=1 and length L=201 mm.  

Supposing that this structure was injected with a TEM 
wave, due to the reduction of the inner-rod radius, then 
besides the backward wave of TE1,1 mode, the other two 
partial waves of higher-order modes TE1,2 and TM1,1 become 
traveling waves within the operating frequency range of 30 
GHz–45 GHz and can be coupled with the incident wave. 
The dependence of normalized magnitude of coupling 
coefficients associated with coupled-mode combinations of 
TEM-TE1,1, TEM-TM1,1 and TEM-TE1,2 on the angular 
deviation ∆ϕ are shown in Fig. 6. Evidently, the trend of 
changes in coupling coefficient GTEM-TE1,1 with variation 
of ∆ϕ  is opposite to those of changes in coupling 
coefficients GTEM-TM1,1 and GTEM-TE1,1. Thus it is possible to 
exert opposite control effects on the bandgaps associated 
with different coupled-mode combinations through varying 
the angular deviation ∆ϕ. 

Fig.7 shows the transmission responses of structure B 
within frequency of 30GHz–45GHz, obtained by multimode 
coupling analysis (solid lines) [31] and the frequency sweep 
tool of the HFSS (short dashed lines), where the angular 

deviation ∆ϕ  equals (a) 0, (b) 180o, and (c) 117o. The 
simulation model of structure B was 2.5 times as long as that 
of structure A, which contained about 25 wavelengths of the 
incident TEM wave at 37.5 GHz in axial direction. As can be 
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FIGURE 6.  Dependence of the normalized magnitude of coupling 
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TE1,1 (solid line), TEM-TM1,1 (dashed line) and TEM-TE1,2 (dot line) on 
the angular deviation ∆ϕ of structure B. 
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FIGURE 7.  Transmission responses of structure B obtained by 
multimode coupling analysis (solid lines) and frequency sweep tool of 
HFSS (short dashed lines), where the incident wave is TEM from 30 
GHz to 45 GHz, and the angular deviation ∆ϕ equals (a) 0, (b) 180o, and 
(c) 117o, respectively. 
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seen in Fig. 7, when ∆ϕ =0, there is one dominant 
transmission bandgap centered at 42.48 GHz; when 
∆ϕ =180o, there is also one dominant transmission bandgap, 
but its center frequency is shifted to 37.52 GHz; 
when ∆ϕ =117o, two dominant transmission bandgaps appear 
with center frequencies of 37.52 GHz and 42.48 GHz, 
respectively. It is clear that, by changing the angular 
deviation, the number and location of the transmission 
bandgaps of a two dimensional coaxial Bragg structure can 
be manipulated.  

It is worthwhile to further discuss the physical mechanism 
behind the phenomena shown in Fig.7. According to the 
Bragg condition in (7) and (8), the Bragg resonance 
frequencies of coupled-mode combinations of TEM-TE1,1, 
TEM-TM1,1 and TEM-TE1,2 are 37.52 GHz, 42.44 GHz and 
42.72 GHz, respectively. Here, the latter two combinations 
have almost identical Bragg frequencies since the cutoff 
wave numbers of TE1,2 and TM1,1 are closed in structure B.  

Then, if ∆ϕ =0, the coupling coefficients GTEM-TM1,1 and 
GTEM-TE1,2 reach their maximum value. The incident TEM 
wave will be strongly scattered to the backward waves of 
TM1,1 and TE1,2 in the vicinity of the corresponding Bragg 
frequencies. The coupling of TEM-TM1,1 and TEM-TE1,2  
will open only one transmission bandgap centered at 42.48 
GHz due to the close Bragg frequencies of these two 
coupled-mode combinations. 

By contrast, if ∆ϕ =180o, the minimum occurs for the 
coupling coefficients GTEM-TM1,1 and GTEM-TE1,2, thus the 
incident TEM wave will no longer be effectively coupled 
with the backward waves of TM1,1 and TE1,2, resulting in the 
closure of the original transmission bandgap located at 42.48 
GHz. However, simultaneously, the coupling coefficient 
GTEM-TE1,1 will reach its maximum value, coherently 
scattering from the incident TEM wave to backward TE1,1 
generates another dominant bandgap centered at 37.52 GHz. 

When ∆ϕ changes between 0 and 180o, the bandgaps 
centered at 37.52 GHz and 42.48 GHz display a dynamic 
tendency: as one falls, another rises. Specifically, as the ∆ϕ is 
set to a certain value, for example 117o in Fig. 5(c), two 
dominant bandgaps with nearly equal amplitude will be 
obtained.  

Essentially, the change of coupling coefficients with the 
angular deviation ∆ϕ reflects the influence of boundary on 
mode coupling. Due to the synthesized effect of the outer and 
inner inhomogeneous boundaries, different coupled modes 
require different matched relative angular position of the 
outer and inner conductors to enhance coupling strength, thus 
the bandgaps at different positions in Fig.7 show different 
trends with variation of ∆ϕ.  On the other hand, according to 
(20), the coupling coefficient of a given coupled-mode 
combination is bound to get either a maximum or minimum 
value when mb∆ϕ = 0 or π . This property may be related to 
the symmetry order of the periodic structures investigated in 
[32], that is, the structure possesses a higher symmetry if the 
relative phase between the outer and inner corrugations is 

equal to 0 or π. As demonstrated in [32], a higher symmetry 
is directly related to the absence of bandgap, resulting in the 
phenomena as shown in Fig. 7(a) and (b). 

Finally, it should be noted that, although the above 
discussion of structure B focuses on control and switching 
between single bandgap and dual bandgaps, in fact, more 
bandgaps can be created if more partial waves of higher-
order modes are introduced to be coupled with the incident 
wave under the conditions of reasonable structural 
parameters and higher upper operating frequency. Since the 
coupling coefficients associated with different coupled-mode 
combinations show different trends with the variation of 
angular deviation between the outer and inner corrugations, 
the proposed method of varying the angular position between 
the outer and inner conductors is still applicable for the 
manipulation of multiple bandgaps.  

IV. CONCLUSION
The possibility of bandgap control of two-dimensional 
coaxial Bragg structures has been studied. Starting from 
coupled-mode equations, the principle as well as a theoretical 
model of bandgap control by varying the relative angular 
position between the outer and inner conductors was derived. 
Using coupled-mode theory and HFSS electromagnetic 
simulation software, the transmission characteristics of two 
example structures with a set of values of angular deviation 
between the outer and inner corrugations were investigated. 
By comparing the results, the following conclusions can be 
drawn: 

1) Achieving bandgap control was based on the variable
coupling coefficients, which were adjusted by varying the 
relative angular position between the inner and outer 
conductors. The other corrugation parameters of the inner 
and outer conductors did not need to be changed. 

2) If only one backward wave could be coupled with the
incident wave within the operating frequency range, a single 
transmission bandgap appeared and its amplitude and width 
could be controlled while its location remained fixed. 
Multiple transmission bandgaps could be generated by 
introducing additional coupled waves of higher-order modes 
for the incident wave, their number and location could be 
manipulated, and thus control and switching of the operating 
frequency band was achieved. 

In summary, the bandgap of a two-dimensional coaxial 
Bragg structure can be manipulated with a fixed ripple shape 
of the inner and outer conductors. It facilitates the frequency 
switching of output radiation for microwave sources, and it 
also enables control and switching between single band and 
dual bands or even multi-band operation for other passive 
devices. The proposed bandgap control method therefore 
provides potential applications for two-dimensional coaxial 
Bragg structure in applications such as frequency-selective 
components of high-power microwave sources, and mode 
converters, filters or couplers for high-power microwave 
systems. 
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