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BANDIT-BASED RELAY SELECTION IN COOPERATIVE NETWORKS
OVER UNKNOWN STATIONARY CHANNELS

Nikolaos Nomikos, Sadegh Talebi, Risto Wichman, and Themistoklis Charalambous

ABSTRACT

In recent years, wireless node density has increased rapidly,
as more base stations, users, and machines coexist. Exploit-
ing this node density, cooperative relaying has been deployed
to improve connectivity throughout the network. Such a con-
figuration, however, often demands relay scheduling, which
comes with increased channel estimation and signaling over-
heads. To reduce these overheads, in this paper, we propose
low-complexity relay scheduling mechanisms with the aid of
a multi-armed bandit (MAB) framework. More specifically,
this MAB framework is used for relay scheduling, based
only on observing the acknowledgements/negative-acknow-
ledgements (ACK/NACK) of packet transmissions. Hence,
a bandit-based opportunistic relay selection (BB− 0RS)
mechanism is developed, recovering eventually the per-
formance of classical opportunistic relay selection (0RS)
when channel state information (CSI) is available without
requiring any CSI. In addition, a distributed implementation
of BB− 0RS is presented, herein called d− BB− 0RS,
where distributed timers are used at the relays for relay se-
lection, thus reducing the signaling overhead significantly.
BB− 0RS is compared to optimal scheduling with full CSI
and the negligible performance gap is compensated by the
low-complexity low-overhead implementation, while it sur-
passes the performance of 0RS with outdated CSI.

Index Terms— Relay selection, machine learning, multi-
armed bandits, upper confidence bound policies.

1. INTRODUCTION

Fifth generation (5G) networks comprise dense topologies
where users and machines compete for wireless resources. In
such environments, excessive signaling and feedback over-
heads threaten the network’s performance [1], necessitating a
shift towards distributed solutions.
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Recently, machine learning techniques have been pro-
posed for low-complexity coordination in wireless networks
(see, for example, [2–4] and references therein). In [5], The
MAB framework was adopted in several 5G cases. MAB
enables a player (user) to pick an action from a given set of
actions, aiming to maximize her cumulative expected reward.
As MAB takes into account the uncertainties involved in the
problem, it can be of great importance for distributed resource
allocation, involving channels, relays, power, and energy.

Various works have studied user scheduling and channel
access through the MAB framework. In a multi-user network,
relay selection, as a stochastic MAB game, was pioneered by
Maghsudi et al. [6], in which side information on the actions
of other users was not available. Thus, selection and assign-
ment problem was formulated as an adversarial multi-player
MAB game and it was shown that the proposed selection strat-
egy ensured that the empirical frequencies of the game con-
verged to a correlated equilibrium. In the case where side in-
formation is available, the authors in [7] based selection on a
calibrated forecaster, predicting the action of the other users.
Furthermore, the exploration-exploitation trade-off was bal-
anced, obtaining asymptotically, the maximum achievable ac-
cumulated reward.

The work in [8] studied cooperative spectrum sharing
without information on the performance of the secondary
users. The proposed solutions adopted Markovian MAB
and the upper confidence bound (UCB) algorithm, achiev-
ing low-complexity and superior performance compared
to exploration-exploitation ε-greedy algorithm. Then, the
Markovian MAB has been deployed when secondary users
independently access the spectrum [9] and an online learning
policy considering channel quality and interference levels was
developed, showing logarithmic order regret. Finally, MAB
games have been studied for device-to-device (D2D) channel
and mode selection in the seminal papers [10, 11]. Calibrated
forecasting was used, while mode selection was modeled as
a multi-player MAB game, where power consumption and
throughput corresponded to the cost and the reward of each
selection, respectively.

Here, the MAB framework is also adopted for low-
overhead relay scheduling. The setup is similar to that of [7].
However, contrary to [7] in which the relays were always
able to forward the data, in our case both hops are prone to
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Fi g. 1 . T h e t w o- h o p r el a y- assist e d t o p ol o g y w h er e a s o ur c e
S c o m m u ni c at es wit h a si n gl e d esti n ati o n D vi a a cl ust er C
of h alf- d u pl e x d e c o d e- a n d-f or w ar d r el a ys R k , k ∈ C .

o ut a g es. O ur c o ntri b uti o ns ar e as f oll o ws:
• A b a n dit- b as e d o p p ort u nisti c r el a y s el e cti o n ( B B − 0 R S )

is pr o p os e d, b as e d o n A C K/ N A C K o bs er v ati o ns s u c h t h at
t h e n o d es i n t h e n et w or k (s o ur c e a n d r el a ys) d o n ot n e e d
t o esti m at e t h e f or w ar d c h a n n els.

• N et w or k c o or di n ati o n t hr o u g h distri b ut e d ti m ers at t h e r e-
l a ys is i nt e gr at e d i nt o t h e M A B fr a m e w or k, r e d u ci n g t h e
c o m pl e xit y, c o m p ar e d t o [ 6, 7], i n w hi c h e a c h s o ur c e h as
k n o wl e d g e of t h e a cti o n s et;

• C o m p aris o ns of B B − 0 R S b as e d o n diff er e nt U C B
p oli ci es a n d t h e o pti m al 0 R S ar e pr es e nt e d, s h o wi n g
a pr o misi n g p erf or m a n c e- c o m pl e xit y tr a d e- off.
T h e r e m ai n d er of t his p a p er is or g a ni z e d as f oll o ws. I n

S e cti o n 2, w e i ntr o d u c e t h e s yst e m m o d el. I n S e cti o n 3, w e
pr o vi d e i n d et ail t h e M A B m o d eli n g of t h e s el e cti o n pr o-
c ess. T h e pr o p os e d b a n dit- b as e d r el a y s el e cti o n m e c h a nis m,
B B − 0 R S , is d es cri b e d i n S e cti o n 4, w hil e p erf or m a n c e
e v al u ati o n is pr o vi d e d i n S e cti o n 5. Fi n all y, c o n cl usi o ns a n d
f ut ur e dir e cti o ns ar e gi v e n i n S e cti o n 6.

2. S Y S T E M M O D E L

We c o nsi d er a r el a y- assist e d t w o- h o p n et w or k c o nsisti n g of a
s o ur c e, S , a d esti n ati o n, D , a n d a cl ust er C of K h alf- d u pl e x
( H D) d e c o d e- a n d-f or w ar d ( D F) r el a ys R k ∈ C (1 ≤ k ≤ K ),
as d e pi ct e d i n Fi g. 1. D u e t o s e v er e f a di n g, t h e dir e ct s o ur c e-
d esti n ati o n ( { S → D } ) li n k d o es n ot e xist a n d c o m m u ni c ati o n
is o nl y est a blis h e d vi a r el a yi n g.

F or m o d eli n g t h e e v ol uti o n of t h e r a di o c h a n n els o v er
ti m e, w e c o nsi d er a ti m e sl ott e d s yst e m, w h er e t h e d ur ati o n
of a sl ot c orr es p o n ds t o t h e tr a ns missi o n of a si n gl e p a c k et
d ur ati o n ( e. g., fi x e d-si z e p a c k ets). A ti m e-sl ot c a n, i n g e n er al,
s p a n m or e t h a n o n e p a c k et. At a n y ar bitr ar y ti m e-sl ot t, t h e
wir el ess c h a n n el q u alit y is d e gr a d e d b y a d diti v e w hit e G a us-

si a n n ois e ( A W G N) a n d fr e q u e n c y n o n-s el e cti v e R a yl ei g h
bl o c k f a di n g, a c c or di n g t o a c o m pl e x G a ussi a n distri b uti o n
wit h z er o m e a n a n d v ari a n c e σ 2

i j f or t h e { i→ j } li n k. A W G N
is ass u m e d t o b e n or m ali z e d wit h z er o m e a n a n d u nit v ari-
a n c e, t h e c o m pl e x c h a n n el c o ef fi ci e nt f or t h e { i→ j } li n k is
d e n ot e d b y h i j , a n d t h e c h a n n el g ai n, g i j |h i j |

2 , is e x p o-
n e nti all y n o n-i d e nti c all y distri b ut e d, r e fl e cti n g a n as y m m etri c
t o p ol o g y. T h er m al n ois e v ari a n c e at r e c ei v er j is d e n ot e d b y
η j , a n d it is ass u m e d t o b e A W G N a n d t h e s a m e at all n o d es.
We ass u m e t h at n o c h a n n el k n o wl e d g e is a v ail a bl e a n d t h e
c h a n n el c o n diti o ns e v ol v e o v er ti m e a c c or di n g t o a n i n d e-
p e n d e nt n ot n e c ess aril y i d e nti c all y distri b ut e d pr o c ess w h os e
a v er a g e is i niti all y u n k n o w n. T his c orr es p o n ds t o s c e n ar-
i os w h er e t h e a v er a g e c h a n n el c o n diti o ns e v ol v e r el ati v el y
sl o wl y, i n t h e s e ns e t h at t h e li n k all o c ati o n c a n b e u p d at e d
s e v er al ti m es b ef or e t his a v er a g e e x hi bits si g ni fi c a nt c h a n g es.

M or e o v er, t h e s o ur c e is ass u m e d t o b e s at ur at e d a n d tr a ns-
mits wit h a fi x e d r at e r 0 . I n g e n er al, a s u c c essf ul tr a ns missi o n
fr o m a tr a ns mitt er i t o its c orr es p o n di n g r e c ei v er j t a k es pl a c e
w h e n t h e si g n al-t o- n ois e r ati o ( S N R) at t h e r e c e pti o n, d e n ot e d
b y Γ j , is gr e at er t h a n or e q u al t o t h e c a pt ur e r ati o γ j . T h er e-
f or e, w e r e q uir e t h at

Γ j (P i )
g i j P i

η j
≥ γ j . ( 1)

Li n k { i→ j } is i n o ut a g e if Γ j (P ) < γ j , i. e.,
g i j P i

η j
< γ j , a n d

t h e pr o b a bilit y of o ut a g e is gi v e n b y

p̄ i j = P g i j <
γ j η j

P i
. ( 2)

T his fr a m e w or k is e q ui v al e nt t o t h e c a pt ur e m o d el . H e n c e,
t h e i nst a nt a n e o us S N R fr o m S t o R j w h e n r el a y R j is s e-
l e ct e d f or r e c e pti o n is e x pr ess e d as

Γ R j (P S ) =
g S R j

P S

η R j

≥ γ R j , ( 3)

a n d, e q ui v al e ntl y, t h e i nst a nt a n e o us S N R fr o m R j t o D w h e n
r el a y R j is s el e ct e d f or tr a ns missi o n is gi v e n b y

Γ D (P R j
) =

g R j D P R j

η D
≥ γ D . ( 4)

R e-tr a ns missi o ns r el y o n A C Ks/ N A C Ks wit h s h ort-l e n gt h
err or-fr e e p a c k ets o v er a s e p ar at e n arr o w- b a n d c h a n n el.

3. M A B M O D E LI N G

3. 1. T h e M A B P r o bl e m

M A B r ef ers t o a cl ass of s e q u e nti al d e cisi o n pr o bl e ms of
r es o ur c e all o c ati o n a m o n g s e v er al c o m p eti n g e ntiti es i n u n-
k n o w n e n vir o n m e nts wit h a n e x pl or ati o n- e x pl oit ati o n tr a d e-
off, i. e., s e ar c hi n g f or a b al a n c e b et w e e n e x pl ori n g all p ossi-
bl e d e cisi o ns t o l e ar n t h eir r e w ar d distri b uti o ns w hil e c h o os-
i n g t h e b est d e cisi o n m or e oft e n t o g ai n m or e r e w ar d. F or a



thorough discussion on the topic, see, for example, [12, 13].
In the classical stochastic MAB problem, introduced by Rob-
bins [14], a player has access to a finite set of arms, and to
each arm a probability distribution with an initially unknown
mean qj is associated. At each round t, the player chooses
an arm j and receives a random reward Uj,t. In our setup,
each arm corresponds to one of the 2K available links ` ∈ L,
|L| = 2K, in our network setup.

The goal of the learner is to maximize the expected ac-
cumulated reward in the course of her interaction. If the re-
ward distributions were known, this goal would have been
achieved by always selecting the arm with highest mean re-
ward. To identify the optimal arm, the learner has to play vari-
ous arms so as to learn their reward distributions (exploration)
while ensuring that the gathered knowledge on reward distri-
butions is exploited so that arms with higher expected rewards
are preferred (exploitation). The performance of the learner
in implementing such an exploration-exploitation trade-off is
measured through the notion of regret, which compares the
cumulative reward of the learner to that achieved by always
selecting the optimal arm. It is defined as the difference be-
tween the reward achieved when the best arm is pulled and
the player’s choice. For our setup, the objective is to iden-
tify a policy over a finite time horizon T that maximizes the
expected number of packets successfully transmitted or sim-
ply what we call the throughput. Equivalently, we aim at de-
signing a sequential relay selection policy that minimizes the
regret. The regret of a policy π ∈ Π (Π being the set of all
feasible policies) is defined by the performance loss and it is
found by comparing the performance achieved under policy
π to that of the best static policy, i.e.,

Rπ(T ) = max
`∈L

E

{
T∑
t=1

U`,t

}
− E

{
T∑
t=1

UIπt ,t

}
, (5)

where U`,t denotes the instantaneous utility obtained from
choosing link ` at time-slot t under feasible configuration ` ∈
L. Moreover, UIπt ,t denotes the instantaneous utility obtained
from the link Iπt chosen under policy π at time-slot t.

In their seminal paper, Lai and Robbins [15] characterize
a problem-dependent lower bound on the regret of any adap-
tive policy, indicating that the lower bound grows logarithmi-
cally with time horizon T . More precisely, they show that for
any uniformly good adaptive learning algorithm π1,

lim inf
T→∞

Rπ(T )

log(T )
≥ c(µ) , (6)

where µ denotes the vector of mean rewards of various arms,
and c : [0, 1]|L| → R is a deterministic and explicit function.

1An algorithm π is uniformly good if for any sub-optimal arm i, the num-
ber of times arm i is selected up to round t, ni(t), satisfies: E[ni(t)] =
o(tα), for all α > 0.

3.2. Upper Confidence Bound Policies

A big class of policies for MAB problems, whose regret
grows logarithmically with time horizon, are based on the
optimism in the face of uncertainty principle (or for short, the
optimistic principle) proposed by Lai and Robbins [15]. The
underlying idea of an optimistic algorithm is to replace the
unknown mean rewards of each arm with a high-probability
Upper Confidence Bound (UCB) on it. To further specify the
generic form of an optimistic algorithm, let us first introduce
some notations. In what follows, when the choice of the
algorithm is clear from the context, we let It denote the arm
selected at time t. Furthermore, we let nj,t denote the number
of plays of arm j up to round t, i.e., nj,t :=

∑t
s=1 1{Is=j},

where 1A denotes the indicator function of the event A. We
let q̂j,t represent the empirical average reward of arm j built
using the observations from j up to t:

q̂j,t =
1

nj,t

t∑
s=1

rj,s1{Is=j} , (7)

where rj,t is the reward of arm j at round t.
An optimistic algorithm π maintains an index function q̄j

for each arm j, which depends only on the past observations
of j only (e.g., q̂j,t, nj,t, etc.), and that q̄j,t ≥ qj with high
probability for all t ≥ 1. Then, π simply consists in selecting
the arm with the largest index q̄j,t at each round t:

It = arg max
j∈L

q̄j,t. (8)

In the sequel, we briefly introduce some popular index
policies for stochastic MABs. In the rest of this section, we
assume that the reward realizations of arm j belong to the
interval [0, 1] almost surely.

3.2.1. UCB1 [16]

UCB1 is an index policy designed based on Hoeffding’s
concentration inequality for bounded random variables. The
UCB1 index (or for short, UCB) is defined as follows:

q̄UCBj,t = q̂j,t +

√
3 log(t)

2nj,t
. (9)

3.2.2. KL-UCB [17]

KL-UCB is an index policy designed based on a novel con-
centration inequality for bounded random variables, and relies
on the following index:

qKL-UCBj,t =

sup

{
λ ∈ [q̂j,t, 1] : kl (q̂j,t, λ) ≤ log(t) + 3 log(log(t))

nj,t

}
,



where kl (x, y) is the Kullback-Leibler divergence between
two Bernoulli distributions with means x and y: kl (x, y) :=
x log

(
x
y

)
+ (1 − x) log

(
1−x
1−y

)
. When the reward distribu-

tion of arms are Bernoulli distributions, KL-UCB achieves the
problem-dependent lower bound (6), and is hence said to be
asymptotically optimal2. We remark that computing qKL-UCBj,t

amounts to finding the roots of a strictly convex and increas-
ing function3. Therefore, qKL-UCBj,t can be computed using sim-
ple line search methods, such as bisection.

3.2.3. KL-UCB++ [18]

KL-UCB++ is a modified variant of KL-UCB, which enjoys
both asymptotic and minimax optimality in stochastic MABs
simultaneously. It relies on the following index:

qKL-UCB
++

j,t = sup {λ ∈ [q̂j,t, 1] : kl (q̂j,t, λ) ≤ g(nj,t)/nj,t} ,
(10)

where

g(nj,t) = log+

(
t

Mnj,t

(
log2

+

(
t

Mnj,t

)
+ 1

))
,

with log+(x) = max(log(x), 0).

4. ONLINE LEARNING FOR CHANNEL
ALLOCATION

4.1. Online Learning Model

We now turn to model the channel allocation problem as a
MAB. Each channel corresponds to an arm, and pulling an
arm corresponds to a packet transmission over the selected
channel. More formally, if channel j is selected in time slot t,
a reward rj,t is obtained, where

rj,t =

{
1, if packet received successfully,
0, otherwise.

(11)

Hence, the sequence (rj,t)t≥1 of rewards of channel j fol-
lows a Bernoulli distribution, whose mean corresponds to the
probability of successful transmission over j. The rewards are
assumed to be independent across time and channels.

We consider a scenario with stationary success probabil-
ities. In this case, success probabilities of various channels
are assumed to be fixed but unknown. Hence, for each j,
(rj,t)t≥1 is a sequence of i.i.d. Bernoulli random variables
with E[rj,t|Ft−1] = qj for all t, where Ft−1 denotes the set
of channels chosen by the algorithm before round t, and their
realized rewards.

2Indeed KL-UCB is shown to be asymptotically optimal for a wider class
of MABs whose reward distributions are taken within one-parameter expo-
nential families, provided that one replaces the Kullback-Leibler divergence
of Bernoulli distributions with an appropriate divergence.

3Note that v 7→ kl(u, v) is strictly convex and increasing for v ≥ u.

4.2. Online Learning Algorithm

We are now ready to describe our learning algorithm. After
the initial exploration phase, the channel with the best quality
is exploited for minimizing the regret. Herein, the relay se-
lection problem differs from the classical channel allocation
problem, as explained next.

If the success probability of various channels qj were
known, one could use the timer-based mechanism introduced
in [19], which provides a distributed solution to the relay
selection problem. In this mechanism each relay Rj sets its
local timer as

τj,t =
λ

qj
, (12)

where λ is a constant shared among all relays.
When success probabilities are unknown, one cannot im-

plement the aforementioned time-based mechanism. To ac-
commodate this situation, one may use the empirical estimate
of qj . This approach may however fail to balance exploration-
exploitation trade-off, and a sub-optimal channel may thus be
played most of the time. As a result, the regret will grow
linearly with time. In order to come up with a solution with
sublinear regret, we propose the following estimate for the
timer:

τj,t =
λ

qj,t
, (13)

where qj,t denotes a UCB for qj .
Second, the relay selection yields a random reward from

an unknown joint probability distribution, which corresponds
to the links of the selected relay (i.e., links {S→Rj} and
{Rj→D}). In other words, pulling arm j at round t corre-
sponds to an end-to-end packet transmission via relay Rj . If
the packet is successfully received by D, a reward ri,t of 1 is
obtained. If an outage occurs, no reward is obtained.

BB− 0RS based on distributed channel access is given in
Algorithm 1.

Remark 1. Note that K − 1 relays that were not selected
can enter to discontinuous reception (DRX) mode during the
two time slots when the transmission over the selected links
{S→Rj} and {Rj→D} takes place. After the transmission
has completed, all relays start their timers and wake up to
listen to the control channel to select the relay for the next
round. Discontinuous reception is an important energy saving
feature in long-term evolution (LTE) mobile networks [20].

5. PERFORMANCE EVALUATION

Here, comparisons are presented in terms of average through-
put and relay selection over time. Two BB− 0RS versions
are included, based on UCB1 [16] and kl-UCB++ [18]. As
a performance upper bound, the best relay selection (BRS)
with full CSI is considered [19]. Also, BRS with outdated
CSI (oCSI) with accuracy, characterized by ρ = 0.5 [21]



Algorithm 1 Timer-based channel access mechanism at relay j

Input: constant value for timer setup λ.
for t = 1, 2, . . . do

compute q̂j,t (7) and then q̄j,t according to UCB used
start timer τj,t (13)
if τj,t �= 0 and timer is running then

listen for signals
if signal is received then

freeze τj,t and back off
end

else if τj,t = 0 then
send flag (so that other relays i freeze τi,t)

receive packet from S and transmit it to D
nj,t+1 ← nj,t + {It=j} for all j
if transmission is successful then

rj,t = 1
end

end
end

and random selection are examined. For BB− 0RS the hori-
zon over which the relays are evaluated on their average re-
ward is equal to 105 time-slots for each transmit SNR value.
Moreover, a fixed transmission rate r0 = 3 bps/Hz is con-
sidered in a topology with K = 3 relays. Regarding the
wireless environment, a scenario corresponding to stationary
stochastic bandits where channel statistics remain the same
for the whole transmission duration is considered. Further-
more, the two-hop relay-assisted topology is assumed to be
highly asymmetric with one relay providing links with sig-
nificantly higher channel gain compared to the other K − 1
relays.

Fig. 2 includes average throughput results for the station-
ary case. It can be observed that random relay scheduling of-
fers the worst performance as often the relays providing weak
channels are selected. After, BRS with outdated CSI provides
reduced throughput, since it performs similarly to single re-
laying, as the transmit SNR increases [21]. More importantly,
the two BB− 0RS policies exhibit a small performance gap
with respect to BRS, with the kl-UCB++ version slightly pro-
viding improved throughput, as it adapts better to erroneous
decisions.

Next, Fig. 3 shows the relay selection process over the
transmission duration for the two BB− 0RS versions for a
transmit SNR of 20 dB. It can be seen that both UCB policies
converge in selecting R1 providing the highest channel gain.
It is noteworthy that kl-UCB++ admits less relay switchings,
occurring mostly in the initial time-slots. As a result, kl-
UCB++ is suitable for scenarios with significantly smaller
game horizon, thus having higher practical interest.
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Fig. 3. Relay selection over time for the stationary case.

6. CONCLUSIONS AND FUTURE DIRECTIONS

6.1. Conclusions

Relay selection is an important problem in dense wireless
networks, introducing significant coordination overheads.
Aiming to facilitate this process, we have adopted the MAB
framework on a stochastic setting where the channel condi-
tions are stationary and developed relevant centralized and
distributed algorithms. The learning process relied only
on ACK/NACK observations, determining the best relay
to establish end-to-end connectivity. Performance evalua-
tion showed that the proposed algorithms follow closely the
scheduling with full channel state information knowledge for
different wireless environments.



6.2. Future Directions

Part of ongoing research includes adversarial scenarios where
no assumptions are made regarding the evolution of channel
conditions.

As a future direction, cases where channels have memory
and, hence, the state of the machines advances to a new one,
according to a Markov chain with rewards depending on the
current state will be investigated. Such a framework can be
studied using restless bandits, in which the the states of non-
played arms can also evolve over time; see, e.g., [22].
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