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ABSTRACT 

Bandit Problems with Random Discounting 

by Donald A. Berry 
University of Minnesota 

One of k independent stochastic processes with unknown characteristics 

is observed at each of a possibly infinite number of stages. 

th 
stages are discounted: the m-- observation is weighted by 

Future 

a The 
m 

a are random variables. They may be dependent and their distributions 
m 

unknown; in such a case one can learn about the character of the 

discounting as·well as about the processes. The objective is to maximize 

the expected sum of the weighted observations. The decision problem 

is shown to be equivalent to one with nonrandom discounting in some 

versions. Other versions are intrinsically more complicated than the 

nonrandom case. Examples are carried out. 



Bandit Problems with Random Discounting* 

by Donald A. Berry** 

1. Introduction. 

One of k independent stochastic processes is observed at each 

of a possibly infinite number of stages. Selecting a process (or arm) 

to observe is called a pull. The arm pulled at any stage can depend on 

the pulls and resulting observations at·all previous stages. 

A strategy is a function that, for each finite history of pulls 

and observations, assigns an arm to be pulled next. To stress dependence 

on the strategy, T will denote the observation at stage m when 
m 

following strategy T. If L specifies arm j at stage m then 

T = X. 
m Jm 

(For notational convenience it is assumed that all k 

processes are ongoing though only one can be observed at a time.) 

Assume for fixed j that the X. , m = 1, 2, · •.. , 
Jm 

distributed and independent given a common parameter e. 

are identically 

At least 
J 

one of the 8. is unknown, for otherwise the problem would be trivial. 
J 

The parameters are themselves random variables with given "prior" 

probability distributions. So if e. 
J 

is unknown, variables x. , 
Jm 

m = 1, 2, ... , are exchangeable rather than independent -- learning is 

possible. The information available about arm j at any time is 

contained in the current probability distribution on a. • 
J 

Such decision problems. are sometimes called "bandits" in analogy 

with choosing whether or not to play a slot machine -- colloquially 

called a "one-armed bandit." Most of the bandit literature treats one 

* Paper presented at the conference "Mathematical Learning Models -- Theory 
and Algorithms," Bad Honnef, W. Germany, May 3-7, 1982. 

**Research supported by the National Science Foundation under Grant No. 
MCSSl-02477. 
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of two objectives: 

(i) Finite horizon: for some fixed n, the expected sum of the 

first n observations is to be maximized. 

(ii) Geometric discounting: the ~ observation is weighed by 

a factor 
m 

a , 0 < a < 1 , and the expected weighted sum 

over the infinite horizon is to be maximized. 

Historically important papers concerning these objectives are, respectively, 

(Bradt, Johnson and Karlin 1956) and (Bellman 1956) -- both papers deal 

with Bernoulli processes. Very recent papers by participants in this 

conference, again respectively, are (Bather 1981) and (Gittins 1979). 

A general discounting approach, which includes objectives (i) and 

(ii), is taken in (Berry and Fristedt 1979) -- referred to henceforth 

as BF79. The ~ observation is weighed by a factor a and the 
m 

expected weighted sum over the infinite horizon is to be maximized. So 

a strategy is optimal if it maximizes expected payoff: 

(1.1) W(T) 
00 

=EL la .T 
m= m m 

When the discount factors a. are known constants, (1.1) becomes 
m 

(1.2) W(.-r) 
00 

= I: a ET 
~=1 m m 

Assume a > 0 for all m and 
m - -

is called a discount sequence. That (ii) is a special case is obvious; 

for (i) take a
1 

= ••• =a = 1 
n. 

and an+l = ••• = 0. 

Because th~ language is so appealing, the arm specified at the first 

stage by an optimal strategy is called an "optimal arm." 
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An easy example may underscore some critical issues. 

Example:1.1. Suppose A= (1,1,0, ••• ) ; that is, (i) ·applies with n = 2. 

Each {X. : ,,m = l,•2, ••• } is a Bernoulli process with 8 = P(X. = 1) • 
Jm j Jffi ' 

assume the k processes are independent. There are k 3 essentially 

different strategies. This number can be reduced to k2 by applying 

the stay-on-a-winner rule (Berry 1972): If an optimal arm is pulled at 

any stage and yields a success, then it is optimal at the next stage 

as well. Label the arms so that E8
1 
~ ... ~ Eek • We need only 

consider strategies that use arm 1 after a failure on the first pull 

of any arm other than 1. For, by Cauchy-Schwarz, 

< 

Ee. - ES. 2 

J J 

1 - ES. 
J 

ES. (1 - ES.) 
.J J 

1 - Eej 

= E8. < Ee
1 J -

There are two possibilities -- arm 1 and arm 2 -- when arm 1 

is used initially and fails. 

There are k + 1 strategies to consider: 0 1 k 
1' ,-r , ••• ,-r • 

evident notation, and using· independence, 

W('t~) = 2Ee
1 

, 

W(-rl) = Ee
1 

+ Ea/ + (1 - Ee
1

)E8
2 

, 

W(ij) = ES. + ES. 2 + (1 - E0j)E8
1 

, 
J J 

for j = 2, ••• , k. And Tj is optimal if its expected payoff 
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To illustrate , if the 8, 
J 

all have uniform densities on (O,l) 

= W(Tk) = 13/12 . D 

The case k = 2 is considered in BF79; the characteristics of 

one a rm, say a rm 1 for definiteness , are unknown and those of arm 2 

are known. So the information concerning arm 1 changes as it i s 

pulled, but that of arm 2 does not. It i s well-known i n this case 

for bo th discount sequences (i) and (ii) that there exis ts an opt imal 

strategy with the following characteristic: once arm 2 is selected it 

is thenceforth used exclus i vely and indefinitely . Such problems a re 

stopping problems: one need only decide when to stop experimenting 

with arm 1. BF79 shows there are a l ways op timal stra tegies with this 

characteristic if the discount sequence (assumed to be monotonic) is 

regular. Conversely, if it is not regular then there is a distribution 

on 0
1 

for which no optima l strategies have this characteristic (cf . 

Example 1. 2) . 

Definition 1. 1. A discount · sequence A = (a
1 

,a
2

, •• . ) is ·regular 

if, for each m , 

00 

where yr= E. ct . 
i= r i 
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The following are examples. 

Regular: 

(iii) (l, ••• ,l,a,a2 , ••• ) , 0 <a< 1 

(iy) (4,4,3,3,2,2,1,1,0, ••• ) 

(v) (2,1,1,0, ••. ) 

Not regular: 

(vi) (2,1,1,1,0, ••• ) 

(vii) (4,1,1,0, .•• ) 

m m 
(viii) (1/2,5/16, ••. ,(1/2)(3/4) + (1/2)(1/4) , ••• ) 

That sequence (v) is regular follows from the regularity of (iv); it is 

listed for easy comparison with (vi). 

Sequence (viii) is_the·average of two geometrics, which, of course, are 

themselves regular. But geometrics are barely regular: 

for all m. So the slightest tampering destroys regularity. In 

particular, means of nondegenerate mixtures of geometrics are never regular, 

as the following calculation shows. Consider the sequence (EV,EV2 ,Ev3 , ••• ) 

where V is a random variable on [0,1]. Then, for m = 1,2, ••• , 

We have 

2 E2( v2
) v2 v2 

Yz - Y1Y3 = 1-V - E(l-V + V)E(l-V - V) 

= E(VEV
2 

- v2
EV) 

1-V 

The function (xEV2 - x2EV)/(l-x) is concave .in x on [0,1] -- strictly 

concave unless V=O or V=l with probability one. Therefore, Jensen's 
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inequality applies to show that 

with strict inequality provided V is not concentrated at one point. 

Example 1.2. Suppose k=2. As in Example 1.1, the. processes are. 

Bernoulli with, for j =1,2, 8. = P(X. = 1) • 
J Jm . 

Suppose is known 

and ~l is either O or 1 with probabilities 1/2 each. This 

assumption makes the problem relatively easy because a single observation 

on· arm 1 reveals 8
1

• If the discount sequence is regular then the 

problem is trivial because only two strategies need be considered. 

Namely, T
1

: pull arm 1, if T
1

1 
= 1 (success) pull arm 1 forever and 

if T
1

1 = 0 (failure) pull arm 2 forever; and -r" pull arm 2 forever. 

Consider discount sequence (viii). Since it is not regular we must 

allow for switches to arm 1 from arm 2. The optimal strategy 

depends on e
2

; a complete list is given in the Table 1. The notation 

112221, 11 for example, means arm 2 is pulled at the first three stages 

and arm 1 at the fourth stage -- naturally, arm 1 is continued if 

it is successful and dropped otherwise. 

Interval for e
2 

(rounded to four decimals) 

(0, o. 7273) 
(o. 7273, ·o. 7692) 
(0.7692, 0.7887) 
(0.7887, 0.7961) 
(0.7961, 0.7987) 
(0.7987, 0.7996) 
(0. 7996, o. 7999) 
(0.7999, 1) 

TABLE 1 
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1 (or -r') 

21 
221 
2221 
22221 
222221 
2222221 
222. • • (or T ") 



Even though the structure is otherwise simple, the fact that the 

discount sequence is not regular makes the solution complicated. o 

The possibility that the discount factors are unknown is intro

duced in the next section. Allowing for randomness in the discount 

s.equence is natural enough, but it seems not to be considered 

in the literature -- not in the bandit literature anyway. 

Two versions are considered depending on whether the discount factors 

are observable. When they are not, or when they must be ·ignored, the 

problem i.s. shown to be equivalent to one with nonrandom discounting. 

When they are, it sometimes reduces to a nonrandom problem and sometimes 

does not. 
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2. Preliminaries. 

Suppose the discount sequence is not completely known. In 

economics, for example, the inflation rates in future years would 

not be known. In a medical trial the size of the patient pool may 

itself be random. Or, a new arm may be discovered -- one that is 

obviously better than the arms in the trial. This would likely end 

the trial prematurely; the discount factors become O from some 

stage on, and that stage is random. 

One way to allow a discount sequence to be random is to place 

a measure on the space of nonrandom sequences. A random discount 

sequence is the corresponding mixture of nonrandom ones. However, 

specifying a measure with a large support is difficult. The bulk 

of this article takes a narrower approach, but one that is natural 

and seems easy to apply. Mixtures will be discussed again in Section 

5. 

Let u
1

,u
2

, •.• be nonnegative random variables. Set a
1 

= u
1 

and for m = 2,3, ••• , recursively define 

a = a U • 
m m-1 m 

The distribution measures of u
1

,u
2

, ••. , call them F
1

,F
2

, ••• , 

may themselves be unknown. Given variables 

are assumed to be independent. However, if the Fi are dependent 

random distributions then the U. are not generally independent. 
l. 

It will be assumed throughout that the Ui are independent of 

the X. 
Jm 
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., 

There is now some ambiguity in the use ·of the term "strategy." 

This will be resolved momentarily. In any case definition (1.1) of 

expected payoff of a strategy T continues to apply with 

The expectation in (1.1) is now with respect to the distribution of the 

Ui as well as that of the T 
m 

We shall consider two sets of ground rules: 

Version 1. The random variables Ui are not observable. So 

while the T are observed, the discounted payoff at stage m, a T , 
m mm 

is not. The set of available strategies in this version, call it 

T
1

, is as defined in Section 1 for the nonrandom case. 

Version 2. The random variables U. are observable. The 
l. 

decision at stage m + 1 can depend on (U
1

, .•• ,Um) as well as on 

T and (-r
1

, .•• ,-rm). Let T
2 

denote the corresponding set of 

available strategies. 

A third possibility -- one not considered here -- is that the 

product a T is observed at st_age m ; but not 
mm 

individually. 

a and 
m 

T 
m 

Version 2 seems more realistic than Version 1. But one can 

imagine circumstances in which a strategy.can be programmed to depend 

only on the results of the pulls. Strategies in T
1 

are simpler 

than typical strategies in T
2 

• Actually, each -r E T
1 

has a version 

in T
2

: there is a strategy in r
2 

which duplicates the decisions 

specified by any T e r
1 

• Therefore, Version 1 provides a bound for 

Version 2: The maximal expected payoff in Version 2 is no smaller 
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than in Version,!. Typically, it is greater. But, as will be seen, 

there are numerous circumstances in which they are equal, when the 

ability to observe the Ui provides no advantage. 

3. Version 1: Nonobservable Discount Factors. 

For all -r E T
1

, (-r
1

,-r
2

, ••• ) is independent of (U
1

,u
2
,. .. ) • 

Therefore, (1.1) becomes 

(3.1) W(-r) 
00 

= I:
1 

Ea. Et 
m m 

for all -r E T 
1 

, where 

(3.2) Ea. 
m 

So (1.2) applies with a. 
m 

replaced by Ea 
m 

And the problem considered 

here is no more general than that considered in BF79 (except that the 

number of arms is now arbitrary and the possibility 

not ruled out). 

Ea. l > Ea. is 
m+ m 

In the special case in which the 

becomes 

U. are independent, 
1 

(3.3) Ea. 
m 

Example 3 .1. Suppose the U. are independent with 
l. 

= 0 

(3.2) 

(Fn+l concentrates its mass at 0 and the F. 
l. 

for i > n+l are 

immaterial). Then the discount sequence relevant for choosing a 

strategy is (i), finite horizon: EA= (1,1, ••• ,1,0, ••• ) • This 
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is not to say the choice is easy. But backward induction is available 

for finding optimal strategies just as in the usual, nonrandom finite 

horizon setting. c 

Example 3.2. Suppose the Ui are independent with EU.= a 
l. 

for 

i = 1,2, ••• ; a is known and O <a< 1. It may be,· for example, that 

the trial terminates at stage m with conditional probability 1 - U 
m 

Then Ea 
m 

m 
= a and the problem is the same as (ii), geometric discounting. 

In particular, the results of (Gittins 1979) apply. c 

The nonrandom discount sequences in the previous two examples are 

regular. The resultant sequence in the next example is not regular. It 

will be referred to again in Example 4.1. 

Example 3.3. Discount sequence (viii) considered in Example 1.2 

is (1/2,5/16,7/32, ••• ). This can arise as the mean of A=· {a} in 
m 

a number of ways. 

applies) with 

For example, the U. may be independent (so (3.3) 
l. 

1 3i + 1 
EUi = 4 3:i.-l + 1 

for i = 2,3, ••.• Or, P(F
1 

= F
2 

= ••. = F) = 1 where F is an equal 

mixture of two one-point distr~butions; one at 3/4 and one at 1/4. 

In the latter interpretation ·p<J\ = u
2 

= = 3/4) = ·P(U = U - -1 . 2 - ••• -

= 1/2. This is consistent with viewing A as the average of two 

geometrics. Regardless of how the sequence arises, an optimal strategy 

1/.4) 

is as given in a nonrandom setting with discount sequence EA= (1/2,5/16, 

7/32, ••• ); for a special case see Example 1.2. c 
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Example 3.4. Suppose F
1 

= F
2 

= ••• F where F({l}) = q = 1 - F({O}); 

q is unknown and has a uniform distribution on (0,1). This seems to 

be a harmless assumption. However, 

So 

= U = 1) 
m 

f
l m 1 

= q dq = --
0 m + 1 • 

LEa = 00 and EA is not a discount sequence. 
m 

(If EEa = 00 were 
m 

allowed then EA would not be regular. For such a sequence one would 

ignore immediate gain and sample only to obtain information that might 

help in the long run. Optimal strategies would be similar to Kelly's 

(1981) "least-failures rule.") a 

4. Version 2: Observable Discount Factors. 

Strategies in T
1 

do not depend on the 

depend on the as well as the observed 

the latter possibility. 

u .• 
]. 

Strategies in T
2 

This section treats 

There is an important distinction in Version 2 between independent 

and dependent Ui. These cases are considered separately. 

4.1 Independent u. . 
1 

Suppose for i = 1,2, ••• that Fi is a random distribution with 

measure on the space of distributions. F. 
]. 

is known if 

one-point measure. For the purposes of this section assume the 

is a 

F. 
]. 

are 

independent. Then so are the U .• 
l. 

In making a decision at stage m+l, 
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Since the U are independent the conditional 
i 

distribution of Um+l given u
1

, ••• ,Um is the same as the unconditional. 

Therefore, (3.1) and (3.3) apply. The mean of Ui can be expressed as 

EU.= fE(U. IF.)µ.(dF.) • 
1 1 1 1 1 

The above argument is complete but brief. The following discussion 

may be helpful. The initial selection depends on later possibilities. 

Consider stage j+l assuming u
1 

= u
1

, ••. , Uj = uj • 

decision problem is to maximize 

(4.1) 

The current 

But two problems with proportional discount sequences are equivalent -

(4.1) can be written 

co m 
= Kr "+l(Ili 1EU.)ET , 

m=J = 1 m 

where 

Therefore an optimal selection at stage j+l can be made without 

observing the Ui; equivalently, each u. 
1 

aan be assumed equal to its mean. 

So when the F. are independent the problem is the same whether 
1 

or not the discount factors are observable. And in tum both random 

discounting versions are equivalent to nonrandom discounting. 
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Moreover, the expected payoff of any strategy is the same in all three 

cases. Of course, the expected payoff of the continuation of a strategy 

changes depending on the u. • 
l. 

Examples 3.1, 3.2 and 3.3 apply also for the case considered here. 

Take Example 3.1. The mean of the discount sequence relevant at stage 2, 

given u
1 

= u
1

, is u
1 

times the (n-1)-horizon: (1,1, ••• ,1,0, ••• ) • 

Each new stage gives a problem identical with the corresponding one in 

Example 3.1. 

4.2. Dependent u
1

• 

Some additional notation is helpful for this case. The ideas apply 

generally but for convenience the development is restricted to the 

Bernoulli case: every pull results in a 

gives I with probability 8. • 
J 

0 or a 

The {initial) random di.scount sequence is 

1 . The 
.th 
J- arm 

At stage 2, after observing u
1 

, the relevant discount s·equence is 

(A(l) lu
1

) = 1·u u lu u u u lu ) 
~ 1 2 1' 1 2 3 1'··· 

= u1<u2lu1,u2u3lu1,···} ; 

this and subsequent notation is consistent with BF79. 

Let G denote the initial joint distribution of (8
1

, .•• ,ek) • 

If arm j is pulled and results in success·, then G is 

changed via Bayes theorem to cr.G , say. 
J 

Similarly, a failure on arm j 
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changes G to 

Let V. denote the expected payoff of pulling arm j initially 
J 

and then following an optimal strategy (in T
2

) • Define 

The relevant standard functional equations are 

(4. 2) 

for j = l, ••• ,k. The problem can be solved, or at least the solution 

approximated, by repeated application.of (4.2). But the calculations 

can be forbidding. In particular, the posterior distribution of 

(Um+l'um+
2

, ••• ) given u
1

, ••• ,Um can be arbitrarily difficult unless 

a simple structure is imposed •. 

To make the calculations manageable, assume the unknown F. have 
l. 

·a special kind of dependence: for all i ~- = F which is a random 
l. 

distribution with measure µ. When a discount factor a. -- and 
m 

therefore U -- is observed, the current measure of F is updated. 
m 

Updating is easiest if F is known up to some real-valued parameter n. 

For then Bayes theorem applies to modify a prior distribution on n. 

A useful alternate approach due to Ferguson (197~) is to give 

F a "Dirichlet process prior." For each real u, F(u) has a 

beta distribution with parameters MF
0

(u) ·and M(l - F0(u)); F0 

is the prior mean of F and M is a measure of prior precision. 

After observing u
1 

= u
1

, ••• ,um = um, the posterior of. F is also a 

- 15 -



Dirichlet process. The new M is M+m· and MF
0 

becomes MF
0 

+ I:m I 
· 1 u. 

l. 

here, I (u) = 1 if u < x and O otherwise . This approach has 
X 

promise for two reasons: (1) As is clear from the above comments, 

calculations a re manageable . (2) The support of a Dirichlet process 

(in the topology of pointwise convergence) contains all probability 

measures absolutely continuous with respect to F
0 

(Ferguson 1973) . 

Nei ther of the above- mentioned possibilities f or updating the 

distribution of F are carried forward in the present paper. (I 

plan more work on this problem.) Instead, an example i s given in 

which updating is quite s imple. 

Example 4 . 1 . Consider the setting of Example 1.2: there are 

two Bernoulli arms , e
2 

is known, and e
1 

is either O or 1 , 

with equal probabilities under G . Distribution F is unknown; it i s 

one of t wo one- point di stributions with equal p~obabili t i es , one point i s 

3/4 and the other i s 1/4. Therefore the U. are e i ther all 3/4 or 
l. 

all 1/4 ; which one will be revealed at the first stage. 

In Version 1 (see Example 3.3) the rel evant discount sequence, 

EA= (1/2,5/16,7/32, ..• ), is not regul ar. When F is unknown regul arity 

of EA is not a consideration. However, F becomes known after stage 

1. And, for u = 3/4 or u = 1/4 , 

with probab ility one. Since both these seq uences a re geometric, 

and theref ore r egular, the number of s tra t egies in T
2 

that must be 

consi dered is shar ply r educed. 
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A further reduction is possible. Example 4.4 of BF79 shows that 

the "break-even value" of 62 when u
1 

= 3/4 is 0 = 4/5· 
2 ' 

when u
1 

= 1/4 it is 4/7. We need consider only three strategies 

T' : pull arm 1, pulling it indefinitely if it is successful and 

switching to arm 2 (permanently) otherwise; -r": pull arm 2 indefinit_ely; 

-r"': pull arm 2, then follow ~T' if u
1 

= 3/4 and -r" if u
1 

= 1/4. 

Easy calculations show: 

W(-r') 
7 +~ 

= 12 82 6 

W(-r") 
5 

= 1 6
2 

W(T"') = 185 + 9 
192 

8
2 16 

So Vl (A,G) = W('r') and v
2 

(A,G) = max{W(T") ,W(-r"')} and V(A,G) = 

max{W(-r'), W(-r"}, W(-r'"')} - All optimal strategies are given as follows: 

-r' for 02 ,::. 52/73 ~ O. 7123, -r"1 for 52/73 ,::. 0
2 

,::. 4/5, and -r'·' 

for 0
2 
~ 4/5 • 

This solution should be compared with Table 1. The interested reader 

can check that 

sup W(-r),::. sup W(-r) 

VlTl TET2 

with strict inequality if and only if 52/73 < 0
2 

< 4/5 . 

In this example, not only is Version 2 an improvement over Version 1, 

but the analysis is simpler. c 

5 • Mixtures. 

As indicated in Section 2, a more general way of introducing random 

discount sequences is to mix nonrandom sequences. In Version 1, 
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nonobservable discount factors, the problem reduces to one with a 

nonrandom discount sequence. The reasons given in Section 3 also 

apply for mixtures. The corresponding nonrandom sequence is simply 

the mean of the random sequence. 

Consider Version 2, observable discount factors. After stage m 

the mixing distribution is updated via Bayes theorem in a very simple 

way. Suppose ' ' 0'i, ... ,a.m are known to be the first m discount 

factors. The total posterior probability of those sequences which 

disagree with (a.~, ••• ,a.~) in at least one of the first m positions 

is O. And the posterior measure of those not ruled ·out is proportional 

to the initial measure. 

For example, suppose all the sequences in the support ·of the initial 

distribution have distinct first factors. Then the true discount 

sequence will be revealed at stage 1~ Learning takes place quickly, 

but this brings out a difficulty in applying the mixture approach. 

If one has not been sufficiently careful assigning the initial distri

bution then every discount sequence may soon be ruled out! And it is 

difficult to assign a measure rich enough to avoid this problem. In the 

approach of previous sections, one worries about randomness in a 

discount sequence on a day-to-day, or stage-to-stage, basis. With 

mixtures one continually worries about an eternity of randomness. 

Example 5.1. Suppose every sequence in the support of the ini.tial 

measure is of the form (i), finite horizon: (1,1, ••• 1,0, ••• ), 

differing only in the length of the horizon. In this rather special 
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circumstance, observations of the discount factors can be ignored: 

Version 2 = Version 1. For, the decision maker can always act as though. 

the discount factor ""l" was just observed; if~it really was a "O" 

then-. ~he remaining actions are of no consequence. 

Every nonrandom discount sequence can be expressed as the mean 

of a mixture of finite horizons. Suppose, for example, the initial 

probability of (0,0, ••• ) is 1 - a, where a is known and O <a< 1, 

of (1,0, ••• ) is (1 - a)a of (1,1,0, ••• ). is (1 - a)a2 , etc. 

Then the mean of this mixture is the geometric sequence, (ii): (a~a2 , ••• )~ 

So in this setting, optimal strategies in Version 1 are also optimal 

in Version 2. Moreover, they can be found from the nonrandom geometric 

discounting case. a 

6. Conclusion. 

When discount factors nu. are random but cannot be observed, the 
]. 

problem is identical with a .,particular nonrandom problem. 

When such discount factors can be observed and the ·U are 
i 

independent random variables, then again the problem reduces to one 

that is nonrandom.· But this is not the case when the U. are dependent 
]. 

and learning about the future u. 
l. 

is possible.· The set of available 

strategies is larger in this version. However, the task of finding 

an optimal strategy can be easier. 
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