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Bandit Processes and Dynamic Allocation Indices 

By J. C. GITTINS 
Keble College, Oxford 

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION 
on Wednesday, February 14th, 1979, the Chairman Professor J. F. C. KINGMAN in the Chair] 

SUMMARY 
The paper aims to give a unified account of the central concepts in recent work on 
bandit processes and dynamic allocation indices; to show how these reduce some 
previously intractable problems to the problem of calculating such indices; and to 
describe how these calculations may be carried out. Applications to stochastic 
scheduling, sequential clinical trials and a class of search problems are discussed. 

Keywords: BANDIT PROCESSES; DYNAMIC ALLOCATION INDICES; TWO-ARMED BANDIT PROBLEM; 
MARKOV DECISION PROCESSES; OPTIMAL RESOURCE ALLOCATION; SEQUENTIAL RANDOM 
SAMPLING; CHEMICAL RESEARCH; CLINICAL TRIALS; SEARCH 

1. INTRODUCTION 
A scheduling problem 

There are n jobs to be carried out by a single machine. The times taken to process the 
jobs are independent integer-valued random variables. The jobs must be processed one at a 
time. At the beginning of each time unit any job may be selected for processing, whether or 
not the job processed during the preceding time unit has been completed, and there is no 
penalty or delay involved in switching from one job to another. The probability that t + 1 time 
units are required to complete the processing of job i, conditional on more than t time units 
being needed, is pi(t) (i = 1, 2, ..., n; t e Z). The reward for finishing job i at time s is as Vi 
(O< a <1; ViJ>>0, i = 1,2, ..., n), and there are no other rewards or costs. The problem is to 
decide which job to process next at each stage so as to maximize the total expected reward. 

A multi-armed bandit problem 
There are n arms which may be pulled repeatedly in any order. Each pull takes one time 

unit and only one arm may be pulled at a time. A pull may result in either a success or a 
failure. The sequence of successes and failures which result from pulling arm i forms a 
Bernoulli process with an unknown success probability 6i (i = 1,2, ..., n). A successful pull 
on any arm at time t yields a reward at (O< a < 1), whilst an unsuccessful pull yields a zero 
reward. At time zero O4 has the probability density 

(o?e(O)?+f3(O)+ 1)! (4(0)! Pi(O)!)-l 6ii(O)(l - o 
i.e. a beta distribution with parameters (oci(O), /3i(0)), and these distributions are independent 
for the different arms. The problem is to decide which arm to pull next at each stage so as 
to maximize the total expected reward from an infinite sequence of pulls. 

From Bayes' theorem it follows that at every stage Oi has a beta distribution, but with 
parameters which change at each pull on arm i. If in the first t pulls there are r successes, the 
new values of the parameters, which we denote by (cxi(t), f3i(t)), are (U'i(O) + r, fi(O) + t - r). 
If the (t + 1)st pull on arm i takes place at time s, the expected reward, conditional on the 
record of successes and failures up to then, is as times the expected value of a beta variate with 
parameters (oii(t), pi(t)), which is (oci(t) + l)/(oti(t) + pi(t) + 2). 

Both the problems described above involve a sequence of decisions, each of which is based 
on more information than its predecessors, and thus both problems may be tackled by dynamic 



1979] GirrINS - Bandit Processes and Dynamic Allocation Indices 149 

programming (see Bellman, 1957). This is a computational algorithm based on the principle 
that, "an optimal policy has the property that whatever the initial state and initial decision, 
the remaining decisions must constitute an optimal policy with regard to the state resulting from 
the first decision". This observation means that if the optimal policy from a certain stage (or 
time) onwards is known, then it is relatively easy to extend this policy so as to give an optimal 
policy starting one stage earlier. Repetition of this procedure is the basis of an algorithm for 
solving such problems, which is often described as a process of backwards induction. 

A simpler procedure than backwards induction is at each stage to make that decision 
which maximizes the expected reward before the next decision time. This procedure will be 
termed a one-step look-aheadpolicy, following the terminology used by Ross (1970) for stopping 
problems. The idea is that each decision is based on what may happen in just one further 
time unit or step. 

The notion of a one-step look-ahead policy may be extended in the obvious way to form 
s-step look-ahead policies. In general such policies perform better as s increases and approach 
optimality as s tends to infinity, whilst the algorithms to which they lead become progressively 
more complex as s increases. 

As a further extension of an s-step look-ahead policy we may allow the number of steps T 

which we look ahead at each stage to depend in an arbitrary manner on what happens whilst 
those steps are taking place, so that -r is a random variable. Given any rule for taking our 
sequence of decisions, r may be chosen so as in some sense to maximize the expected rate of 
reward per step for the next r steps. A second maximization with respect to decision rules 
selects a decision rule. Our extended look-ahead policy starts by following the decision rule 
just described for the random number of steps r. The process of finding a decision rule, and 
a corresponding random number of further steps r', is then repeated with respect to the state 
reached after the first r steps. The new rule is followed for the next r' steps, and the process 
may be repeated indefinitely. In this way a rule is defined which specifies the decision to be 
made at every stage. Such a rule will be termed aforwards induction policy, in contrast with the 
backwards induction of dynamic programming. A formal definition is given in Section 3. 

Forwards induction policies are optimal for a class of problems, which includes the two 
problems described above, in which effort is allocated in a sequential manner between a number 
of competing candidates for that effort, a result which will be described as the forwards 
induction theorem. These candidates will be described as alternative bandit processes. From 
the optimality of forwards induction policies it follows that a dynamic allocation index (DAI) 
may be defined on the state space of each bandit process, with the property that an optimal 
policy must at each stage allocate effort to one of those bandit processes with the largest DAI 
value. This result will be described as the DAI theorem and the policy as a DAI policy. The 
proofs of these results will be published separately (Gittins, 1979). 

The existence of a function with this property, and the fact that it may be written in the 
form used here, were proved in earlier papers (Gittins and Jones, 1 974a; Gittins and Glazebrook, 
1977) without using the concept of a forwards induction policy, and the particular cases 
discussed in the present paper depend only on these results. The approach via the forwards 
induction theorem has the advantage that it is intuitively plausible that such a result should 
hold, and it leads naturally, as we shall see, to the general functional form of the dynamic 
allocation index. Moreover, the forwards induction theorem continues to hold under appro- 
priate conditions, and essentially the same proof works, if bandit processes arrive in a random 
manner, or are subject to precedence constraints. This leads to results analogous to the DAI 
theorem in the theories of priority queues and of more complex stochastic scheduling situations. 
Some of these applications have been described by Nash (1973) and Glazebrook (1976a, b), 
respectively. A more complete account, using the simplifying concept of a forwards induction 
policy, will be published in due course. Sometimes, too, as shown by Glazebrook (1978a), a 
decision problem may be simplified by expressing just part of the problem in terms of bandit 
processes. 
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In the present paper these extensions are mentioned only in passing. The aims are: (i) to 
give a unified account, in the context of Markov decision processes and without detailed 
proofs, of the central concepts in recent work on bandit processes and DAIS; (ii) to show how 
these concepts reduce some previously intractable problems to the problem of calculating 
DAIS; and (iii) to describe how these calculations may be carried out. 

A bandit process is defined in Section 2, and the main theorems are formally stated and 
discussed in Section 3. In Section 4 the general functional form of the DAI is examined more 
closely, and Section 5 shows how this simplifies under certain conditions. Formulae for the 
DAI function for the scheduling problem are derived in Section 6. Possible applications include 
the scheduling of jobs on a computer and the allocation of effort between competing research 
projects. A method of calculating, and the general form of, the DAI function for the multi- 
armed bandit are described in Section 7. Section 8 describes a method of calculating 
the DAI function for any bandit process. The main possibility of applying the results of Section 7 
is in clinical trials. DAI functions for similar, and sometimes more realistic, problems for which 
the result of each trial is a normally distributed random variable are discussed in Section 9. 
In Section 10 a variant of the multi-armed bandit problem is considered in which the object is 
to minimize the expected number of trials up to the first success, rather than to maximize the 
expected value of an infinite stream of successes and failures. Once again a version of the 
problem for which the distribution of scores on each trial is normally distributed is of interest, 
as well as the Bernoulli trials version. This problem has possibilities of application to the 
screening of chemicals in pharmaceutical research. 

For the sake of simplicity attention is restricted to discrete-time bandit processes. Every 
result mentioned here also has a continuous-time counterpart, which may be obtained by 
letting the discrete-time quantum tend to zero in an appropriate fashion. For example, Nash 
and Gittins (1977) establish the continuous-time version of the optimal policy for the scheduling 
problem, though using a different method. 

2. BANDIT PROCESSES 

All the processes considered are indexed by a time variable whose value set is the non- 
negative integers, which we denote by Z. They are also stationary, i.e. their properties 
involve no explicit time-dependence, and are particular types of Markov decision process. 
It may be noted that the assumption of stationarity rules out versions of the allocation problems 
considered with finite time horizons. The reason for the restriction (see Gittins, 1975, and 
Gittins and Nash, 1977) is that DAI policies are not in general optimal in such cases. 

A Markov decision process is defined on a state-space ?, together with a a-algebra . 
of subsets of ? which includes every subset consisting of just one element of E). When the 
process is in state x the set of controls which may be applied is Q(x). P(A I x, u) is the probability 
that the state y of the process at time t+ 1 belongs to A (eq), given that at time t the process 
is in state x and control u (e Q(x)) is applied. Application of control u at time t with the 
process in state x yields a reward adR(x, u) (0< a < 1). The functions P(A ,u) and R( , u) 
are I-measurable. 

A policy for a Markov decision process is any rule, including randomized rules, which for 
all t specifies the control to be applied at time t as a function of t, the states at times 0, 1, 2, ..., t, 
and the controls applied at times 0,1,2, ..., t -1; we shall describe this by saying that the 
control at time t is sequentially determined. Deterministic policies are those which involve no 
randomization. Stationary policies are those which involve no explicit time-dependence. 
Markov policies are those for which the control chosen at time t is independent of the states 
and the controls applied at times 0, 1, 2, ..., t -1. 

Blackwell (1965) has shown that if the control set Q(x) is finite and the same for all x then 
there is a deterministic stationary Markov policy for which, for any initial state, the total 
expected reward is the supremum of the total expected rewards for the class of all policies. 
We shall refer to this result as Blackwell's theorem, and to a policy which achieves the supremum 
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just mentioned as an optimal policy. It is assumed throughout the paper that Q(x) is finite 
for all x and that the supremum of the total expected reward is finite. To a large extent, 
therefore, attention may be restricted to deterministic stationary Markov policies. Such a 
policy is defined by an .-measurable function g on E) such that g(x) eQ(x), V x. 

A bandit process is a Markov decision process for which Q(x) = {O, 1}, V x. The control 0 
freezes the process in the sense that P({x} I x, 0) = 1 and R(x, 0) = 0, V x. Control I is termed 
the continuation control. No restriction is placed on the transition probabilities and rewards 
if control I is applied. The number of times control 1 has been applied to a bandit process is 
termed the process time. The state at process time t is denoted by x(t). The reward between 
times t and t + I if control 1 is applied at each stage, so that process time coincides with real 
time, is daR(x(t), 1), which we abbreviate to aR(t). A standard bandit process is a bandit 
process for which, for some A, R(x, 1) = A, V x. 

An arbitrary policy for a bandit process is termed a freezing rule. Given any freezing rule 
f the random variables f(t), t e Z, are sequentially determined, where f(t) (>f.(t- 1)) is the 
number of times control 0 is applied before the (t + l)st application of control 1. Deterministic 
stationary Markov policies divide the state space ? into a stopping set, on which control 0 is 
applied, and a continuation set, on which control I is applied. They are clearly such that 
f(t) = 0, V t < 'r, and f.(r) = oo, for some sequentially determined random variable r, which 
may take the value infinity with positive probability. These properties define a stopping rule, 
and r is the associated stopping time. Stopping rules have been extensively studied, for the 
most part in the context of stopping problems (e.g. see Chow et al., 1971), which may be 
regarded as being defined by bandit processes for which R(x,0)# 0. Frequent reference will 
be made to stopping times. It should be noted that the definition is as above, and there is no 
implication that the process concerned actually does stop at such a time. 

The following notation will be used in conjunction with an arbitrary bandit process D. 
R1(D) denotes the expected total reward under the freezing rulef. Thus 

Rf(D) = E , a*+I(i) R(t), R'(D) = sup R1(D). 
1=0 

Also 
co 

WI(D) = E I+f v (D) = RI(D)/W1(D), and v'(D) sup v1(D). 
t~=O {I:fiO)=O) 

Similarly, for stopping rules, 
ir-1 7-1 

R7(D) = E, JtR(t), R(D) = sup R,(D), W(D) = E at, 
t=(} T t=O 

v7(D) = R7(D)/W7(D) and v(D) = sup vr(D). 
T:>0 

From Blackwell's theorem it follows that R'(D) = R(D), that v(D) = v(D) (though this is less 
obvious) and is an f-measurable function of x, and that stopping times exist for which the 
respective suprema are attained. All these quantities naturally depend on the initial state x(O) 
of the bandit process D. When necessary Rf(D, x) and Wf(D, x), for example, will be used to 
indicate the values of R1(D) and Wf(D) when x(O) = x. 

The quantities v1(D) and v,(D) are thus expected rewards per unit of discounted time 
underf and T respectively. The conditions f(O) = 0 and r> 0 in the definitions of v'(D) and 
v(D) mean that the policies considered are all such that at time zero control 1 is applied. This 
restriction is required to rule out zero denominators Wf(D) or W7(D). In the case of v'(D) it 
also has the effect of removing a common factor from the numerator and denominator of 
v1(D) for those f for which f.(O) 0, and otherwise implies no loss of generality. The class of 
stopping times {T-> 0} is stationary from time I onwards, rather than from time 0. 
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For reasons which will become apparent in the next section, in which the forwards 
induction theorem and the DAI theorem are formally stated, v(D,x) is defined to be the 
dynamic allocation index for the bandit process D when it is in state x. 

3. THE MAIN THEOREMS 
We begin with some further terminology and notation. 
Given any Markov decision process .,, together with a deterministic stationary Markov 

policy g, a bandit process may be defined by introducing the freeze control 0 with the usual 
properties, and requiring that at each time t either the control 0 or the control given by g be 
applied. This bandit process is termed the superprocess (4, g). Thus application of the 
continuation control 1 to (A',g), when X4' is in state x, is equivalent to applying control g(x) 
to X&. The idea of a superprocess is due to Nash (1973), who used it to show that the DAI 
theorem may be extended to cover the case when new bandit processes arrive in a Poisson 
process. 

The following notation extends that already set up for a bandit process: 

Rgr )- = R((df',g)), Wg4r(#) = WIV((d(,g)),vgr(A = Rgr(A/Wgr(A 

vg(.G) = sup Vg2(J), V(X4f) = sup vg(). 
7>0 9 

Since for an arbitrary bandit process D there is a stopping time r for which the supremum is 
attained in the definition of v(D) it follows that the same is true of vg(.). Also if the control 
set Q(x) is finite for all x then Blackwell's theorem may be extended to show that, for some 
g, vg(d) = v(), and v(X) is unaltered if g is allowed to range over the entire set of policies 
for 4,. As for bandit processes, v(.4', x), for example, denotes the value of v(X4') when X4' 
is initially in state x. 

With this notation we are now in a position to give a formal definition of a forwards 
induction policy for the Markov decision process X4', whose state at time zero we denote by xO. 
The first step is to find a policy Yi and a stopping time a1 such that the discounted average 
reward per unit time of the superprocess (.', g) up to the stopping time T ( > 0) is maximized 
over all g and r by setting (g, r) = (yr, o1). Thus vy,, (X) = v(X) (= v(-A', XO)). 

Let xl be the (random) state of the superprocess ( y,Yi) at time a,. We now define the 
policy Y2 and the stopping time ur2 to be such that v 72(1G4, xl) = v(.4', xl). In general Y2 and 
u2 depend on xl, and are such that the discounted average reward per unit time of (AI,g) up 
to r ( > 0) is maximized when (g, T) = (Y2, cr2) if X4' is initially in state x1. 

A forwards induction policy for X4' starts by applying policy y, up to time ur,, and then 
applies policy Y2 up to time al + r2. Let x2 be the state of X at this stage, and define y3 and ar3 
to be such that v,, 7(0X, x2) = v(G1, x2). A forwards induction policy continues by applying 
policy y3 between times a1 + r2 and o1 + a2 + c3. Let x3 be the state of /X' at this stage, and 
define y4 and a4 to be such that vY4(4(-s x3) = v(, x3). A forwards induction polcy applies 
y4 between times rl + a2 + a3 and a1 + a2 + a3 + ar4. 

This process may obviously be continued indefinitely, thus defining the class of forwards 
induction policies for the Markov decision process J4'. There may be more than one such 
policy for the same xo since there may, for example, be more than one y, and a1 such that 
v>,C (Xf) = v(.X'). 

The term forwards induction policy is in contrast to a backwards induction policy derived 
from the dynamic programming optimality principle quoted in Section 1. This principle leads 
to a recurrence relation which goes backwards in time (equations (13), (14) and (16) are 
examples), from which an optimal policy may be determined by backwards induction. With a 
forwards induction policy, at each successive stopping time the expected reward per unit of 
discounted time up to the next stopping time is maximized, so the policy is defined by a 
sequence of steps proceeding forwards in time. The step length is the sequentially determined 
tim or 

_ 
r = 1, 2, - 
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Forwards induction policies are often easier to determine than backwards induction 
policies. However, unless suitable restrictions are put on ./X they are not optimal. Fortunately 
there is one quite large class of Markov decision processes for which forwards induction 
policies are optimal, as well as being relatively simple to determine. These are the processes 
which may be regarded as simple families of alternative bandit processes. 

A family of alternative bandit processes is formed by bringing together a set of n bandit 
processes, with the constraint that control 1 must be applied to just one bandit process at a 
time, so that control 0 is applied to the other n- 1 bandit processes. The reward at time t is 
the reward yielded by the bandit process to which control 1 is applied at time t. Thus at each 
stage the bandit processes are alternative candidates for continuation. We shall suppose that 
there are no constraints restricting the set of bandit processes which may be chosen for 
continuation at any time. In the absence of such constraints a family of alternative bandit 
processes will be described as simple. 

We may now state the following theorem. 

The Forwards Induction Theorem. For a simple family of alternative bandit processes a 
policy is optimal if and only if it coincides almost always with a forwards induction policy. 

In order to gain some feeling for why it is that a forwards induction policy is optimal for 
simple families of alternative processes, but not for all Markov decision processes, consider 
the problem of choosing a route for a journey by car. Suppose there are several different 
possible routes all of the same length which intersect at various points, and the object is to 
choose that route which minimizes the time taken. The problem may be modelled as a Markov 
decision process by interpreting the distance so far covered as the "time" variable, the time 
taken to cover each successive mile as minus the reward, position as the state, and choosing a 
value just less than one for the discount factor a. The control set Q(x) has more than one 
element when the state x corresponds to a cross-roads, the different controls representing 
the various possible exits. 

For this problem the first stage in a forwards induction policy is to find a route Yl, and a 
distance o1 along Yi from the starting point, such that the average speed in travelling the 
distance o1 along Yi is maximized. Thus a forwards induction policy might very well start with 
a short stretch of motorway, which then must be followed by a very slow section, in preference 
to a trunk road which permits a good steady average speed. The trouble is that irrevocable 
decisions have to be taken at each cross-roads in the sense that those exits which are not chosen 
are not available later on. 

The distinctive property of a simple family of alternative bandit processes is that decisions 
are not in this sense irrevocable, since any bandit process which is available for continuation 
at some stage, and which is not then chosen, may be continued at any later stage, and with 
exactly the same resulting sequence of rewards, apart from the discount factor. This means 
there is no later advantage to compensate for the initial disadvantage of not choosing a forwards 
induction policy. 

The first stage of a forwards induction policy is such that the expected reward per unit of 
discounted time up to an arbitrary stopping time is maximized. For a simple family of alterna- 
tive bandit processes it is intuitively plausible, and it can be rigorously shown, that this 
maximum is attainable by a policy under which just one of the alternative bandit processes is 
continued up to the stopping time in question. The reason is that if more than one bandit 
process were to be continued during the first stage, then the expected reward per unit of 
discounted time during the first stage would be a weighted average of the expected rewards 
per unit of discounted time for each of the bandit processes to be continued. Since a weighted 
average is never larger than the largest of the quantities averaged it follows that there is no 
point in averaging over more than one quantity, i.e. no point in continuing more than one 
bandit process during the first stage. This observation may be developed as a formal proof. 
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Now for any single bandit process D in state x the maximum expected reward per unit of 

discounted time up to an arbitrary stopping time is by definition the DAI, v(D, x). In the light 
of the previous paragraph it thus follows that at time zero one of the bandit processes whose 
DAI is then maximal should be continued. This leads to 

The DAI Theorem. For a simple family of alternative bandit processes a policy is optimal if 
and only if at each stage the bandit process selected for continuation is almost always one of 
those whose dynamic allocation index is then maximal. 

4. A MoRE PRcIsE CHARACTERIZATION oF THE DAI 
The final result of this section leads to the algorithm described in Section 7 for calculating 

the DAI for the multi-armed bandit problem. The proofs indicate the kind of argument 
required in proving the two main theorems. 

As mentioned in Section 2, the DAI for a bandit process D in state x may be written as 

v(D, x) = sup [Efa2+f') R(x(t), 1)1 x(O) = x /E( at+(t' Ix(O) = x}] (1) (f. y(0 =0) t=o t=o 

= sup v,(D, x) = sup E[2 dR(x(t), 1)1 x(O) = xlfEE at I x(O) = xfl (2) 
T>0 T> t=O t=o 

The expression (2) uses the fact that the set of freezing rules over which the supremum is 
taken in (1) may be restricted to those which, from process time 1 onwards, are determined 
by a stopping set 00 and a complementary continuation set 0O. We now proceed to prove 
the following lemma. 

Lemma. The supremum in (2) is attained by setting 
0) = {y EQ: v(D, y) < v(D, x)}. 

Proof. Dropping the condition x(O) = x from the notation, we have, for any non-random 
se Z+ and for any stopping time r, 

V,(D, x) = [E 2 R(x(t). 1) +E(Ez a R(x(t), 1)I X(s)}] / [E Z at+E{E2 all x(s)}j. (3) 

where a = min (s, r), and the inner expectations in both numerator and denominator are 
conditional on the value taken by the random variable x(s). Now if r >s then 

E{ ad R(x(t), l) 1 x(s)}/E{ at|I x(s)} = V T8(D, x(s)) < v(D, x(s)). (4) 

From (3) and (4) it follows that if the probability of the event E8 = {T- > s n v(D, x(s)) < v,(D, x)} 
is positive, and the random integer p is defined to take the value s when Es occurs and otherwise 
to equal r, then vp(D, x) > v,(D, x). Thus if X is such that the supremum is attained in (2) we 
must have P(UL=1 Es) = 0. This is equivalent to saying that the probability that, starting in 
state x, the bandit process D passes through a state which belongs to the set defined in the 
statement of the lemma before process time r is zero. Thus the stopping set ?0 which defines T 
must include the given set, except perhaps for a subset which is reached before r with 
probability zero. 

A similar argument shows that P{v(D, x(Tr)) > v(D, x) I x(O) = x} = 0, since otherwise 
v,(D, x) could be increased by increasing -r in an appropriate fashion for those realizations of 
D for which v(D, x(r)) > v(D, x). A further similar argument shows that vT(D, x) is unaffected 
by the inclusion or exclusion from ?0 of states belonging to the set {y e- : v(D,y) = v(D, x)}. 
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From the three preceding observations and since (i) for some r, v7(D, x) = v(D, x), (ii) v7(D, x) 
is unchanged by changes in 00 on sets which are reached by time r with probability zero, and 
(iii) v(D, *) is an 8-measurable function, it follows that 00 may be chosen as the lemma states. 
This completes the proof. 

A point to be noted in the proof is that, unlike r, the random time p is not necessarily 
defined by a freezing rule which is stationary or Markov from time 1 onwards. However, 
this does not invalidate the proof, since p is defined by some freezing rule, and the freezing 
rules in (1) are not restricted to be stationary or Markov. 

For the purposes of the algorithm described in Section 7 we need to consider what happens 
when the set of stopping times {r > O} is modified by allowing the stopping set 00 to depend 
on the process time t, and by imposing the restriction r S M, where M is a non-random integer. 
This new set of stopping times will be denoted by {O < X < M} and we define 

vM(D,x) = sup vr(D, x). (5) 
o<M 

The lemma leads to the following corollaries. 
Corollary 1. The supremum in (5) is attained by setting 

00(t) = {ye0: vM4(D,y)<vM(D,x)}, t-=1,2, ...,M-1. 

Corollary 2. The right-hand side of (5) is unaltered if the stopping sets 00(t) defining the 
stopping times -r are restricted to be of the form 00(t) = {ye 0: vM4(D,y) <,u, 
t = 1, 2, ..., M- 1, for some non-random p. 

Proof. Define the bandit process D* as follows. The state y(t) of D* at process time t 
is (x(t), t). The rewards from D* are identical to those from D up to process time M, after 
which they take very large negative values. It is easy to show that vm4(D, x(t)) = v(D*,y(t)) 
for all x(t) cE) and for 0 < t < M. Corollary 1 then follows by applying the lemma to D*. 
Corollary 2 is an immediate consequence. 

5. IMPROvING AND DETERIORATTNG DAIs 
In this section we describe two cases for which the definition of the DAI leads directly to an 

expression from which particular values may be determined in a straightforward manner. 
Consider first any bandit process D, an arbitrary state of which is denoted by x. Dropping D 
from the notation, we have 

V(X) = SUP VT(X) = SUPRW) = sR = R(x, 1) +aE{RW(x(l)) I x(0) = x( 
,r>O r>O Wr(x) a> 1 + aE{Wc,(x(1)) I x(0) = (6) 

where i and a are stopping times, and 'r is restricted to be positive. 

Case I (the deteriorating case): P{v(x(1)) < v(x(O)) I x(O) = x} 1 
Since v(x(l)) = supr>O{Rc,(x(1))/W,(x(l))} it follows immediately from (6) that v(x) = R(x, 1). 
For Case 1 our conclusion, then, is particularly simple. The process for which R(x, 1) is 

largest at any particular time is the process which yields the largest immediate reward if it is 
continued, and the DAI theorem tells us that this is the process which should be continued. 
Thus the one-step look-ahead policy is optimal. Since Case I covers a situation in which the 
future prospects of gain from a process are bound to deteriorate when it is continued, such a 
conclusion is not unexpected. 

The deteriorating case may be compared with the monotone case in the study of stopping 
problems, which is discussed by Chow et al. (1971). Here too, and for similar reasons, the 
solution is particularly simple. 
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It is easy to see that a sufficient condition for P{v(x(l)) < v(x(O)) I x(O) = x) 1 is that 
P{R(x(t+ 1), 1) < R(x(t), 1)1 x(t) = y} 1, for all states y which may be reached from x in 
any number of steps. 

Case 2 (the improving case): P{v(x(s)) > v(x(s- 1)) > ... , v(x(l)) > v(x(O)) I x(O) = x} = 1, for 
some non-random integer s 

From (6) it follows that for this case 

s-I 
v(x) = sup Et a' R(x(t), 1)I x(O) = xJ + al E{R,(x(s)) I x(O) = x} 

f>0 t=O 
x [1+a+...+as-1+asE{W,,(x(s))Ix(O) =x}]-l], 

which simplifies if the defining condition holds for all s and if we set s = Co. This will, for 
example, be so if the defining condition holds for s = 1 and for all x. 

Cases 1 and 2 are illustrated by the scheduling problem. 

6. THE SCHEDULING PROBLEM 

Let D be a bandit process such that E = {C} u Z, P({C} C, 1) , P({C} It, 1) =p(t) 
P({t+ 1}t , 1) = 1 -p(t), R(C, 1) = 0 and R(t, 1) p(t) V, V t0. A bandit process with these 
properties corresponds to one of the jobs in the scheduling problem described in Section 1. 
If the bandit process is in state C this signifies that the job has been completed. Thus unless 
the job has reached state C its state coincides with the process time if x(O) = 0. Also, it is 
true generally that at R(x, 1) may be taken to be the expected reward if control 1 is applied 
at time t with the process in state x, and this device has been used here. It may be noted that, 
unlike the multi-armed bandit problem, the scheduling problem does not involve probability 
distributions with unknown parameters. However, it is a simple matter (see Gittins and 
Glazebrook, 1977) to extend the discussion which follows to include this possibility. 

If p(t) is a non-increasing function of t then D is a deteriorating bandit process, since the 
sufficient condition for Case 1 holds for all x. Thus with jobs of the above type the job to be 
continued at any time is one of those for which pi(ti) Vi is largest, where i runs over the set of 
uncompleted jobs. 

A job for which p(t) is a non-decreasing function of t provides an example of a modification 
of Case 2. We now have 

P{v(x(s)) > v(x(s-1)) > ... > v(x(l)) > v(x(O)) > ? 1x(O) = x, x(s)+ C} = 1, s E Z, 

and v(C) = 0. It thus follows from (6) that 

v(x) = E{ a'R(x(t), l) I x(O) = x) /E{l + a+ ... + a T- I 
x(0) x}, (7) 

where r = min {s: x(s) = C}. Equation (7) may be rewritten in the form 

v(x) = V(1 - a) E(aT1 I x(0) = x)/{l - E(ar I x(O) = x)}. 
For an arbitrary job, with no restriction on the function p(t), it is easy to see that the r 

for which the supremum in (6) is attained is no greater than the time taken to complete the job. 
For uncompleted jobs the state coincides with process time, so that the stopping set which 
defines T must be reached at some non-random (and possibly infinite) time r. Thus X is of 
the form min {r, min [s: x(s) = C]}. It follows that v(C) = 0, and 

v(x)=sup V(1- a) {EaP-1- P' p > r) E(aP1 I p > r)} (8) v)= 1-EaP+P(p>r){E(aP| p>r)-ar} ( 
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where p = min {s: x(s) = C} and the expectations and probability are all conditioned by the 
event x(O) = x# C. 

It is interesting to see what happens to a problem involving jobs of this type as a tends to 
one. The reward Val on completion of the job at time t may be expressed as 

V{1 -t(1 -a)}+o(1 -a). 

Thus, if 1-a is small, the largest contribution to the reward which depends on t, and thereby 
on the policy for allocating effort to the job, is given by the term - Vt(l -a). Not surprisingly, 
therefore, given a set of jobs for which the penalties for delays in completion are proportional 
to the extent of the delays, the DAI policies defined by letting a tend to one in (8), and setting 
V equal to the cost c of unit delay for the particular job, are optimal. The limit of (8) as a 
tends to one may be written 

r-1 Ir-1 
V(X) = sup CZ p(X+i)/ ZP(p>x+iIx(O) = X) (9) 

r>O i=O /0J 

The optimality of the DAI policy based on this expression for the scheduling problem 
with penalties proportional to the delays was first demonstrated, using a different method, 
by Sevcik (1972), whose primary interest was the scheduling of jobs on a computer. Models 
of this type are also applicable to the planning of industrial chemical research (e.g. see Gittins, 
1973). Nash (1973) has shown that the DAT policy remains optimal for the case with random 
arrivals. This result is an important contribution to the theory of priority queues, as is made 
clear by Simonovits (1973), and is perhaps the most striking consequence of the DAI theorem 
which has so far been obtained. 

7. THE MULTI-ARMED BANDIT PROBLEM 

Let D be a bandit process whose states are a class of probability distributions for a random 
variable 0 defined on [0, 1]. Continuation of D at process time t is defined as observing the 
(t+ l)st member of a sequence of independently distributed random variables Xl, X2, ..., each 
of which is equal to 1 with probability 0 and equal to 0 with probability 1-0. If x(t) has a 
continuous density IT(O), then x(t+ 1) has a density proportional to fr(0) Oxt+i(l - 0)1-Xt+ll 
as follows from Bayes' theorem. If Xi-, = 1 a reward as accrues, where s is the time at which 
X,+, is observed, and a zero reward if Xt1 = 0. As in Case 1, a8 R(x, 1) is taken to be the 
expected reward which accrues at time s if D is then in state x and is continued. Thus 

R(x, 1) = E(E0XsJ) = E(0) = J'07(0)d0. (10) 

Clearly the multi-armed bandit problem described in Section 1 amounts to finding an optimal 
policy for a simple family of alternative bandit processes of this type. 

This problem owes its picturesque name to its resemblance to the situation facing a gambler 
with a choice between several one-armed bandits (or just one multi-armed bandit). It is an 
intriguing problem, on which a considerable number of papers have been written, recent 
examples being those by Wahrenberger et al. (1977) and Rodman (1978). This is probably 
because it is the simplest worthwhile problem in the sequential design of experiments. Its 
chief practical significance is in the context of clinical trials. Bellman (1956) gave the first 
Bayesian formulation and obtained some properties of the optimal policy and maximum 
expected reward for the case when there are two "arms" (i.e. bandit processes), one of them a 
standard process. 

As in Section 1 we shall suppose that x(O), and therefore x(t), t e Z+, is a beta distribution. 
As pointed out by Raiffa and Schlaifer (1961), this greatly simplifies any calculations, whilst 
the two parameters ox(O) and ,B(O) allow an arbitrary specification of the mean and variance 
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of the prior distribution, which for many purposes is quite adequate. Thus an arbitrary state 
of D may be represented by the corresponding parameter values (oX, /). 

Applying Corollary 2 of Section 4 (and using the notation of that section), we have, if 
a, /3 and N are non-negative integers with N> a+/3, 

N-ac-fl-1 m 
R(cx,/3; 1)+ E am2E Q(r, oz,P,m,p )R(cx+r,/3+m-r; 1) 

= r=O 
vN a l(, /3) = sup mN-c-fl-1 

r= (11) 
1+ E amE Q(r, x,/3,m,p4). 

m=1 r=O 
Here 

Q(r, a,, /3, m, p) = P{(a(m), /3(m)) = (, + r, P + m- r) n vN-t-flM(O((t), /3(t)) > p, 
1 < t m1.(c(O), /(0)) = ((X, /)}. 

The expression (11) leads to the following algorithm for calculating the function vN-ofl(o, /8) 
for a given value of N. 

(1) If cx+/3 = N-1, the stopping time T in the definition of vNO-fl(cx,/3) must be equal to 
one. Thus, using equation (10), 

v29-afl(cx,/3 = R(cx,/; 1) = (cx+ 1)/(cx+/3+2). (12) 
(2) Equation (12) enables us to calculate the function Q(r, oc,/3, m,, ) for cx+ =N-2, 

m = I and r = 0,1. We have 
It i'f v V-4fli1(a + 1, /3) > IL, 

Ii if VN-m-f+4(01,/3+ 1) > p 
Q(O, cx,s /3,1 S) = P{X1 =01l (x(0), /(0)) = (as ,/3)} x 0l if vy *4 (a/3+ 1) <p, 

and 
P{X1 = 1 J(a(O),/3(0)) = (a../3)} = (ax+ 1)/(cx+/3+2). 

Values of vN-1 - /(3, B) for a +/3 = N-2 may now be calculated from equation (I1) by substi- 
tuting the above quantities and using equation (12). 

(3) Now knowing the function vV-1fl(c8a, /) for ac+ =N-1 and a+/= N-2, calcu- 
lations similar to those described in stage (2) of the algorithm give values of Q(r, cx, /, m, ,u) 
for ax+/3 = N- 3, m = 1, 2 and r = 0, 1, ..., m. These may now be substituted into equation (11) 
to give values of vN-a-fl(oL,/3) for ox+/3 = N-3, again using equation (12). 

(4) Similar calculations give in turn values of vN--fl(x, /3) for X+/3 = N-4, N- 5, and 
so on, the final quantity to be calculated being vN(O, 0). 

Now clearly vT(a, /) is increasing in T and tends to v(cx, /) as T tends to infinity, so for 
any integer-valued a and P the above algorithm provides arbitrarily close approximations to 
v(a, /3) by increasing the value of N. Some calculations along these lines have been carried out 
by Gittins and Jones (1979). The general form of the results is shown in Fig. 1. 

The origin of the axes drawn on the figure is at the point (cx,/3) = (-1, - 1). This means 
(see equation (12)) that R(cx, /; 1) is constant on straight lines through the origin. Using 
R(o, P; 1) as an allocation index in place of v(o, /3) is, of course, equivalent to adopting a 
one-step look-ahead rule. Each curve of constant v(a, /), or iSO-DAI, is asymptotic to a 
straight line which is parallel to the corresponding line of constant R(cx, /3; 1) as a. + P tends to 
infinity. This is not surprising since large values of a and /3 mean that the probability is high 
that the unknown probability 0 of success is close to R(x, ; 1); if 0 were actually known we 
should have a standard bandit process with the parameter, and therefore the DAI, equal to 0. 
For finite values of o and /, v(x, /3)> R(cx,/; 1), as is obvious from the definition of a DAL. 
This corresponds to the possibility that 0 may be greater than R(o,/3; 1). 
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FIG. 1. The dynamic allocation index for the multi-armed bandit problem. 

The extent to which the iSO-DAIS curve away from their asymptotes for small values of et 
and ,8 increases with the discounting parameter a. This is another way of saying that v(az, P) 
increases with a for any values of as and P8. It reflects the fact that we may expect to find 
that optimal policies differ most from one-step look-ahead rules when what happens in the 
more distant future is comparable in importance with what happens in the immediate future, 
in other words when a is close to one. 

8. A GENERAL METOD FOR CALCULATING DAIS 
The determination of DAIS for the scheduling problem and for the multi-armed bandit 

problem using the methods described in the previous two sections depends on certain special 
features of the bandit processes involved. A good general method when the problem does not 
simplify in some such fashion is to use the standard bandit processes as a calibration device. 

Consider the simple family of alternative bandit processes ID, Al} formed by an arbitrary 
bandit process D together with a standard bandit process with the parameter A. Optimal 
policies for { D, A} are DAI policies, and therefore start by continuing D if v(D) > A, and by 
continuing the standard process if v(D) < A. If v(D) = A, and only if this is so, an optimal 
policy may start in either of these ways. Our calibration procedure consists of finding a value 
of A such that an optimal policy for {D, St} can start either by continuing D or by continuing the 
standard process. It then follows that v(D) = A. 

As shown by Blackwell (1965), the maximum total expected reward for any Markov 
decision process satisfies a dynamic programming functional equation. For the family {D, A} 
this equation may be written as 

R({Dl, A}, x) = max [A/(1 -a), R(x, 1) + aE.i R({D, A}9 y)]. (13) 

Here R(x,, 1) is the reward resulting from continuing D when it is in state x at time zero. 
E,, denotes the expectation with respect to the state y of D at time one, given that D is in state 
x at time zero, when control I is applied. It may be noted that the standard bandit process 
has just one state, so that the state of D also defines the state of fD, Al. Also for this reason 
the state of ID, A} does not change if the standard process is continued, and it follows that a 
deterministic stationary Markov policy must continue the standard process for all time after 
it has done so for one time unit. If this happens at time zero,, the total expected reward is 
A/(1 -a), the first term on the right-hand side of equation (1 3). 
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Blackwell also shows that, provided the maximum total expected reward is bounded over 
all initial states, equations of the form (13) may be solved either by one of the policy improve- 
ment algorithms available for the purpose, or by starting with an approximate function, 
substituting in the right-hand side and thus obtaining a second approximation, and so on. 
From the DAI theorem it follows that, for any x, v(D, x) is the unique value of A for which the 
maximum on the right-hand side of equation (13) occurs both for the first and second terms 
in square brackets. Thus v(D, x) may be determined by solving (13) for a succession of values 
of A in the neighbourhood of v(D, x). 

At this point the reader may wonder what is the point of calculating v(D, x) in this way, 
since for any family Y of alternative bandit processes the optimal policy and maximum total 
expected reward may always be calculated directly from the equation, 

R(GF, x) = max {R(.F, x, u) + aE, u R(JF, y)}, (14) 
ueO(x) 

which is rather simpler than (13). Here R(.,x,u) is the reward resulting from applying u to 
the family F in state x at time zero. E.,,u denotes the expectation with respect to the state y of 
.F at time one, given that Y is in state x at time zero, when control u is applied. The answer 
is that the state-space for .F is the product of the state-spaces for its constituent bandit 
processes. In general this means that the states x for which (13) is solved are of lower dimen- 
sionality than those involved in (14), and this frequently brings an otherwise intractable 
problem within the bounds of computational feasiblity, as illustrated by the example described 
in the next Section. 

9. A MULTI-ARMED BANDIT WITH NORMALLY DIsTRmurED REwARDs 

Let D be a bandit process whose states are the set of N(e, m-l) (i.e. normal with mean e 
and variance m-1) distributions for a random variable 0. Continuation of D at process time t 
is defined as observing the (t+ l)st member of a sequence of independently distributed N(6, U2) 
random variables X,, X2, ..., where u2 is known. Changes of state occur according to Bayes' 
theorem, so that (see Raiffa and Schlaifer, 1961) 

{(t) m(0) e() + tta and m(t) = m(0) + ta2, et Mm(0) + tao2 

where e(t) and m(t) are the parameters which define the state of the bandit process at process 
time t and ?t = t-1(Xl + X2 + ... + X,). Thus, as for the ordinary multi-armed bandit, we have 
chosen a family of distributions for 0 which is closed under sampling, a restriction which is 
virtually essential in the ensuing calculations. 

The reward at the (t + l)st observation if this occurs at time s is a8 X+L. As before, a8R(x, 1) 
is the expected reward if D is continued in state x at time s. Thus if x = (6, m) then R(x, 1) = 6. 

A simple family of alternative bandit processes of this type forms a natural extension of 
the multi-armed bandit problem. A model of this type might well be appropriate in clinical 
trials if a number of treatments are to be compared whose object is to control some variable 
which is measured on a continuous scale. 

It is convenient to include in the notation the dependence on a of the various quantities 
which arise. Thus, for example, v(e, m, a) denotes the DAI for D in the state (6, m). 

It may be shown that 
v(e, m, a) = e + av(0, m, 1). (15) 

The proof is in two stages, proceeding roughly as follows. Firstly, if a constant is added to any 
set of numbers then the effect is to add the same constant to any weighted average of those 
numbers. If follows that v(e, m, a) = e + v(0, m, a). Secondly, if any set of numbers is multiplied 
by a constant then the effect is to multiply any weighted average by the same constant, so that 
v(0, m, a) = av(O, m, 1). 
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The most convenient method of calculating the DAI function in this case is to combine 
equation (15) with the procedure described in Section 8. Equation (13) becomes 

R(A, e,m,a) = max[A/(1-a); I y+aR A2, al dG(y)I. (16' 
U - A ~~m+cc r+ca, 

Here y denotes the value of the next observation when D is in the state (m, i), and G denotes its 
distribution function, which may be shown to be N(e, m-1 + U2). 

Now in view of equation (15) we need only solve equation (16) for 0 =0 and a = 1. Also, 
arguing along similar lines to the first part of the proof of (15), we have 

R(, 6, m, a) = el(l -a) + R(A - , O, m, a). 
Thus to determine the function v(e, m, a) we need to solve the equation 

R(A, 0, m, 1) = max (A/(1-a); af R(A-mY ,0, m + 1, 1) dG(y)}, (17) 

where G is N(O, m-l + 1). This may be done by substituting a reasonable approximation to 
the function R(Q, 0, M, 1), for a moderately large value of M, into the right hand side of (17), 
setting m+ 1 = M, and hence finding an approximation to R(Q, 0, M- 1, 1), then substituting 
this in the right-hand side of (17), and so on. 

It should be noted that these iterations involve functions of a single real variable. Any 
calculations based on equation (14) involve iterations with functions of 2n real variables, and 
are quite impracticable for n greater than 2. 

By choosing M to be sufficiently large, arbitrarily close approximations to the DAI function 
may be obtained. Moreover, a large value of M corresponds to a high probability that if D 
is in the state (e, M) then 0 is close to e. This means that D is hardly distinguishable from a 
standard bandit process with the parameter e, leading to an obvious close approximation to the 
function R(, O, M, 1). 

Calculations along these lines have been carried out and will be reported separately. The 
function v(O, m, 1) turns out to have the general form shown in Fig. 2. This is because a bandit 
process in the state (0, m) with m large is very similar to a standard bandit process with the 
parameter zero, whilst the probability that 0 is substantially greater than zero increases as 
m decreases. 

v( O, , 1) 

e_-m 

FIG. 2. The dynamic allocation index for the multi-armed bandit with normally distributed rewards. 

Robbins and Siegmund (1974) have proposed a heuristic allocation rule for sequential 
probability ratio tests between two treatments, which is designed to cut down the number of 
tests with the inferior treatment. It would be interesting to compare the characteristics of 
their rule, which is designed for the case of normal distributions with known variance, with a 
DAI poliCy using the function v(6, mi, a). 
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10. A CLASS OF SEARCH PROBLEMS 
As a first example, consider the modification of the multi-armed bandit problem for which 

the total reward arises entirely from the first successful pull, and is equal to a8 if this is the 
sth pull to be made. The Markov decision process formed in this way might be a suitable 
model for a situation in which a number of different populations are being searched with the 
aim of finding as soon as possible an individual with some rare characteristic, at which point 
the search stops. However, at first sight the problem is not one which can be modelled by a 
simple family of alternative bandit processes, since once a success has been obtained on a pull 
of one arm no further non-zero rewards may be obtained from any of the arms. This difficulty 
may be overcome as follows. 

Consider the bandit process described in Section 7 with the following modifications. 
If X2+, =1 a zero reward accrues. If X,+, = 0 a zero reward accrues if at least one of 
X1, X2, ..., Xi is equal to one; otherwise a reward equal to -aa8 accrues, where s is the time at 
which Xt1 is observed. The state-space may be defined by adding to the state-space for an 
arm of a multi-armed bandit a state C, indicating that a success has occurred. 

For a bandit process of this type the DAI is negative until the first success occurs, and there- 
after equal to zero. Consequently an optimal policy for a simple family Y of alternative 
bandit processes of this type will always select for continuation a bandit process in state C if 
there is one available. If none of the bandit processes in JF is initially in state C and the 
first success occurs at the sth trial, then all subsequent rewards are equal to zero and the total 
reward is (a8- 1)/(1 -a). An optimal policy for Y is therefore one which maximizes the 
expectation of a8, and is an optimal policy for our modified multi-armed bandit problem. 
Thus the optimal policies for our search problem are those given by the DAI theorem for the 
corresponding F. 

It may be shown, and indeed it is fairly obvious, that v(x(l)) < v(x(0)) unless x(l)= C. 
It follows, using an argument similar to those used in Section 5 and assuming that x(O) is a 
beta distribution as in Section 7, that v'(01 fi) = v(Q, f) if 

I 1 f XI O., 
oo if X1 1. 

Thus 

v(oO) = 1 -1 xP{X1 O=?lX(0) =(a, 
I +a(l -a)-'P{X, = 1 Ix(O) = (a,)} 

This is a strictly increasing function of P{X1 = 1 Ix(O) = (a, f)}. It is therefore optimal to 
use this probability, which is equal to (a.+ 1)/(x+fl+ 2), as a DAI. This means that a one-step 
look-ahead policy is optimal for our search problem. 

The bandit process described in Section 9 may also be modified so as to model a search 
problem. Suppose that if XI1 belongs to some measurable subset B of the real line then a zero 
reward accrues; and if Xt+l 0 B then a zero reward accrues if at least one of (X1, X2, ..., Xt) e B, 
and otherwise a reward of -aa8 accrues, where s is the time at which X4+ is observed. Again 
we add a state C, indicating that an observation belonging to B has been made, to the state 
space for the multi-armed bandit with normally distributed rewards. This time it turns out 
that a one-step look-ahead policy is not in general optimal. 

A simple family of alternative bandit processes of this type might be a suitable model if 
the aim is to find as soon as possible an individual belonging to B from any one of a number 
of populations. The DAI function may be calculated as described in Section 8. Some results 
for the case B = [0, oo) are described by Jones (1970). 

Clearly a range of different search problems (and corresponding multi-armed bandit 
problems) may be modelled by considering distributions other than 0-1 and normal for the 
observations X1, X2,.... For example, Gittins and Jones (1974b) have prepared a set of 
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tables based on negative exponential distributions with an added probability atom at zero. 
These are designed for use in the screening of chemicals in new-product chemical research. 
Glazebrook (1978b) considers a multi-armed bandit problem in which several different out- 
comes, rather than just two, are possible at each trial. 

1 1. POSSIBLE FURTHER DEVELOPMENTS 
The examples which have been described show that there is considerable scope for applying 

the notions of forwards induction policies and dynamic allocation indices, using the theorems 
of Section 3. However, at this stage the story is incomplete. Later instalments may touch on 
the following points. 

(i) There may well be types of Markov decision process other than families of alternative 
bandit processes for which forwards induction policies are optimal. A simple characterization 
of the class of Markov decision processes with this property would be useful, since in many 
cases forwards induction policies are relatively easy to determine. 

One example of a Markov decision process for which forwards induction policies are known 
to be optimal, and which is not a family of alternative bandit processes, is described by Black 
(1965). This is a search problem for which an object is hidden in one of a number of boxes. 
For each box there is a detection probability on searching, if it contains the object, and a cost. 
The aim is to find the object at minimum cost. 

(ii) At present one is much more aware of the above-mentioned scope for practical appli- 
cations than of such applications actually being made. We hope this situation will change. 
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DISCUSSION OF DR GITTINS' PAPER 

Professor J. A. BATHER (University of Sussex): I shall restrict my comments to the multi-armed 
bandit problem described in Sections 1 and 7 of Dr Gittins' paper. He remarks that "its chief 
practical significance is in the context of clinical trials". This is true, but I would like to spend a 
few minutes considering why, after many years of study, there has been so little effect on the conduct 
of sequential medical trials. 

In the notation of Section 7, 01, 02, ... Oin are the unknown probabilities of success in n different 
sequences of Bernoulli trials or, alternatively, we can think of a single sequence of patients and n 
possible treatments for any one of them. The problem is to find a rule for allocating a treatment to 
each patient so that the number of successful treatments is maximized, in some sense. Suppose that, 
after a total of t trials, we have observed ri successes in mi trials with treatment i. The proportion 
of successes achieved so far is rlt, where r = Erj and t = Emi, summing over i from 1 to n. We need 
a rule which tells us which treatment should be given to the next patient in the sequence. 

The optimization problem is not well defined without further assumptions, which Dr Gittens 
expresses in the choice of a prior distribution and a discount factor a< 1. Even then, there are 
genuine difficulties: his result that the optimal policy can always be expressed in terms of dynamic 
allocation indices is a very impressive reduction of the problem, but the procedure described in 
Section 7 is still very complicated (see also Fabius and Van Zwet, 1970). I would like to ask Dr 
Gittins about the sensitivity of the optimal policy to changes in the prior distribution and in the 
discount factor, particularly as a t 1 which is the most important special case. It seems to me that 
we might do well to consider something less than exact optimality; I think the best may be the 
enemy of the good. 

I will conclude with a suggestion which I hope is constructive. Consider a family of sequential 
decision procedures depending on a randomized allocation index. The randomization is useful 
even though it is not a direct consequence of any particular optimality criterion. Let {Am} be a 
sequence of positive numbers such that Am.- 0 as m -oo and let Xit, i = 1, 2, ..., n, t = 1, 2, .... 
be i.i.d non-negative random variables with a distribution which is unbounded. Given the record 
of successes and failures in the first t trials, the next treatment is chosen according to 

max {ri/mj + Amj Xit}. 

In other words, the next treatment must be one of the current "favourites" according to an index 
made up of the observed proportion of successes and a positive bias. The idea is that the random 
terms will tend to favour those treatments which have so far had relatively few trials. 

Any such decision procedure is asymptotically optimal in the following sense. Suppose that 
01> 02> 03>... > 0,. Then the random variables r,(t) and m,(t) have the property that, with 
probability 1, m1(t)/t -+ 1 and Zri(t)/t -+ 01 as t -+ oo, so the observed proportion of successes in all 
the trials converges to max (01, 02, ..., On). This result is a consequence of the strong law of large 
numbers. As Robbins pointed out (1952), it is easy to construct decision procedures which are 
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asymptotically optimal, but not all of them are "good'. I claim that some of the randomized 
allocation procedures obtained by defining Am = /rm perform well for any values of the unknown 
probabilities and over short as well as long sequences of trials. However, the evidence for this is 
not by any means complete. 

Dr Gittins has certainly provided us with plenty of food for thought and I hope my introduction 
of a rival index will not confuse matters nor delay still further the time when the theory of sequential 
decisions is translated into practice. I have much pleasure in proposing a vote of thanks. 

Professor P. WHrITLE (Statistical Laboratory, Cambridge): We should recognize the magnitude 
of Dr Gittins' achievement. He has taken a classic and difficult problem, that of the multi-armed 
bandit, and essentially solved it by reducing it to the case of comparison of a single arm with a 
standard arm. In this paper he brings a number of further insights. Giving words their everyday 
rather than their technical usage, I would say that my admiration for this piece of work is un- 
bounded, meaning, of course, very great. 

Despite the fact that Dr Gittins proved his basic results some seven years ago, the magnitude 
of his advance has not been generally recognized and I hope that one result of tonight's meeting 
will be that the strength of his contribution, its nature and its significance will be apparent to all. 

As I said, the problem is a classic one; it was formulated during the war, and efforts to solve it 
so sapped the energies and minds of Allied analysts that the suggestion was made that the problem 
be dropped over Germany, as the ultimate instrument of intellectual sabotage. In the event, it 
seems to have landed on Cardiff Arms Park. And there is justice now, for if a Welsh Rugby 
pack scrumming down is not a multi-armed bandit, then what is? 

And the name of DAI seems then also well chosen. But what is surprising is the hedonistic 
origin of the DAI concept, and of the forward induction principle. To someone brought up on the 
conventional backwards induction principle, like myself, the notion of a terminal reward or a 
terminal cost is an ingrained one, expressing as it does the consequences in the hereafter of one's 
actions in the present. But DAI has no consciousness of the hereafter, he behaves literally like there 
was no tomorrow, grabs what he can while it lasts, and then opts out. It is still somewhat unclear to 
me how it is that an optimal strategy can ignore the future to this degree; it must be, as Dr Gittins 
says, because the bandit formulation allows one to postpone certain courses of action without prejudice. 

Dr Gittins has given the interpretation of Section 8 in other papers (i.e. the calculation of DAI 
by calibration against a standard arm) but the interpretation of Sections 2 and 3 is new to me. This 
is the characterization of DAI as the maximal reward rate up to some stopping time. This is reminis- 
cent of the characterization of average cost optimality by the maximization of reward rate up to a 
stopping time defined by recurrence to the initial state. However, again there is a contrast: this 
latter criterion shows the awareness of moral principles, of which DAI iS so lamentably negligent, in 
that it observes the precept "leave things as you found them". 

I really have no contribution of substance to make. Obviously there are many questions one 
could ask, and generalizations one could suggest, but it seems most appropriate at the moment to 
congratulate Dr Gittins warmly on having developed a powerful optimization technique of great 
practical and conceptual significance. 
[A further comment added in writing after the meeting]: An index result which I might mention 
concerns sequential choice of experiment (types of experiment being indexed by u) for optimal 
discrimination between two simple hypotheses. The criterion for choice of u given in Theorem 4 of 
Whittle (1965) can be more simply expressed: choose the u for which Yu P1 + 8UP, is minimal. Here 
P1 and P2 are the probabilities of the two hypotheses conditional on current information, and y,,, au 
are the quantities defined in the paper quoted; essentially ratios of cost of experiment to Kullback- 
Liebler number for experiment u. The rule is optimal to within a no-overshoot approximation-I 
should be interested to know if it could also be derived by the methods of Dr Gittins' paper. 

The vote of thanks was passed by acclamation. 

Mr D. G. S. DAvrEs: I should like to speak from the standpoint of a research planning man 
rather than a statistician. I should also like to congratulate Dr Gittins and to draw attention to two 
features of his work which I think are important. 

First, the idea of a forwards induction policy is important. I know that many decision problems 
can be solved-perhaps all of them-by a backwards induction policy but, as Dr Gittins has pointed 
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out, this is often prohibitively difficult to calculate. In the world of research it is extremely difficult 
to get research workers to come up with data, and particularly to place any credence in long and 
involved computer calculations based upon the data which they have produced. If we can develop 
figures of merit and indices which are soundly based, and which can be used for allocation of effort 
in a forwards sequential manner, and if it is simply a matter of looking these things up in the tables, 
provided that the model is appropriate, I am sure that this is something which the research worker 
at the bench would be prepared to contemplate. However, if it is a matter of doing a large-scale 
modelling exercise on his project, then sending it away for computer analysis, he is much more 
reluctant about it-I speak from bitter experience. 

Secondly, Dr Gittins has emphasized the distinction between the DAI and the probability of 
success for the different routes. If we take the very simple model of the bandit, basically all we do 
is to carry out trials. If they succeed, that is fine; if they do not succeed, we do another trial. 
Dr Gittins has emphasized that we are gaining information as we do the trials, which gives us a 
potential way of re-evaluating which route to take, based on the way the trials are done. In the 
rather restricted range of applications in research where the DAI can be applied as it stands, informa- 
tion is gained simply by gaining an enhanced view of the frequency of occurrence of successes in any 
chosen route. However, this is only an example of a more general phenomenon, that in research 
generally there is always a conflict between going for immediate exploitation and going for 
information. 

Very often either we can do a trial straightaway, in which case we may succeed immediately, or 
we can do some background work instead which we hope will give a greater chance of success when 
the trial finally is made. This is the conflict-also mentioned by Professor Whittle-and there is a 
contribution here in the DAI in which some of these considerations are incorporated into the index 
itself. 

One caveat is that this is a very limited model, with limited application in research and develop- 
ment. In research and development we like to projectize our work-by "project", I mean a piece 
of work such that we can tell when it is finished. This particular method is applicable to a lifetime's 
work where we are continually doing trials-in the expectation, it is true, that they will come to 
fruition. But, as Dr Gittins said, it is a method with an unlimited time horizon. We like to be able 
to set finite time horizons in research and development. We hope that there is a learning curve 
superimposed on the work that is going on, so that we are not simply pulling the arm of the bandit 
all the time but also modifying that bandit as it goes along. I feel sure that this concept can be 
incorporated, but at present I am not absolutely certain how to do it. 

I should like to hope that we can go further and obtain more indices of this kind that are 
applicable in a forward induction sense-let us not worry too much about them being optimal 
because that does not matter as long as they are useful. There are many precedents for this. For 
example, if we are scheduling a critical path network under resource constraints, this cannot be 
done optimally because we are up against completely prohibitive combinatorial problems if any 
non-trivial plan is attempted, if we try to do it optimally. We can, however, still develop useful 
heuristic rules which will take us forward in a powerful way. 

Professor B. FRISTEDT (University of Liverpool): A big assumption is that the discount 
sequence, denoted by (at: t = 0, 1, ...) by Dr Gittins, is geometric. That one wants there to be 
stationary policies that are optimal is not the only reason for this assumption. As Dr Gittins (1975) 
has indicated, without some such assumption the principle is not valid that multi-armed bandit 
problems may be solved by comparing each bandit to a standard bandit. 

It is not clear that arbitrarily good approximations of R(A, 0, 1, 1) can be obtained via equation 
(17). Conceivably, if M is chosen so large that R(-, 0, oo, 1) is a good approximation of 
R(-, 0, M, 1), then the small initial error may grow through M- 1 iterations into a substantial error. 

Suppose, in Section 2, one defines E>atR(x(t), u(t)) to equal - oo when according to the usual 
conventions it does not exist, even as + oo or -oo. Does Blackwell's Theorem then hold with no 
assumptions, other than measurability, on R? I believe it does. 

Equation (11) does not depend on 0 having a beta distribution, since an arbitrary state that may 
occur can, for any initial distribution with or without a density, be expressed in terms of the numbers 
a (successes) and ,B (failures). 

In many situations I think that the only good alternative to a Bayesian approach is a minimax 
approach involving a risk function. See Fabius and van Zwet (1970). In case one feels compelled 
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to avoid a Bayesian outlook I think it is unrealistic to do so by regarding a first certain number of 
trials as merely experimental and the remaining trials as having no aspect of the experimental in 
them. Real-world problems do arise in which experiment, decisions, and acts based on those 
decisions are inherently interwoven. 

Mr A. G. BAKER (Unilever Research Laboratory, Wirral): Arising from the discussions in 1966 
at the OR Conference in Edinburgh, may I add my thanks and congratulations to Dr Gittins for 
the progress made by him and his colleagues since then. 

I should like, though, to bring out the implications of this work, as I see them, to a practising 
statistician-which is slightly related to Mr Davies' comments. There are two ways in which this 
work may be used: first, in the formal mathematical sense. For that, we would always be dependent 
on the theory being developed. 

Secondly, there are other aspects of this work which a practising statistician can already use. He 
can use the arguments, and the mental approach suggested by Dr Gittins' work in his debate with 
research colleagues on how to tackle a programme of work. This is important; the fact that there are 
theoretical justifications for looking at how to proceed from the approach of the theorem on DAI, in 
particular the concept that it sometimes pays to buy information. Mr Davies referred to this as 
"background work", which is not a term I would use because it really is buying information, 
whereas background work is more a matter of basic research. 

Those two points are the ones I should like to stress. Dr Gittins' work has given the practising 
statistician a basis for arguing on buying information, and the importance of doing so and, secondly, 
the importance of proceeding by using the DAI theorem. 

Dr F. P. KELLY (University of Cambridge): Today's paper reviews an extremely important 
advance in the theory of Markov decision processes whose ramifications are widespread and still 
not fully explored. To illustrate this I shall discuss two relatively old problems in the field where the 
DAI theorem can be used to extend the best known results, recently obtained by Kadane and Simon 
(1977). The first is the search problem referred to by Dr Gittins in the final section of his paper, 
which can be described as follows. An object is hidden in one of n boxes. Initially the probability 
that the object is in box i is P(i). Thejth look in box i costs c(i,j) and detects the object, given that 
it is in the box, with probability d(i,j). A policy is an infinite sequence b1 b2 ..., where bt is the box to 
be looked in at time t if the object has not been found before then, and the aim is to minimize the 
expected cost incurred until the object is found. I shall deal first with the case c(i,j) = 1, where the 
aim is to minimize the expected time till the object is found. Consider the related discounted 
decision process in which no costs are incurred, a reward at is obtained if the object is found at time 
t, and the searcher is not told whether or not he has yet found the object. A policy is again an 
infinite sequence b, b2 .... If this policy requires that at time t box i be looked in for the jth time, 
then the expected reward at time t is at R(i, j), where 

R(i, j) = P(i) 1(1 -d(i, k))} d(i, j), 

the unconditional probability the object is found on thejth look in box i. The discounted decision 
process is thus a family of alternative bandit processes. Let T be the time at which the object is 
found. Provided ET is finite 

E(a') = 1-(1-a) ET+ o(l-a), 
and the policy minimizing ET can be deduced from the optimal policy for the discounted decision 
process. The original problem in which the c(i,j) are not all equal can also be recast as a family 
of alternative bandit processes provided ; c(i, j) diverges for each i (summing over j from 1 to oo); 
we just let c(i, j) be the time it takes to look in box i for the jth time. The conclusion is that if 
v(i) = maxt>o {Y R(i, j)/l c(i, j)} (where the summations are over j from 1 to t) then the optimal 
policy for the original problem begins by looking in that box i for which v(i) is a maximum. 

The second problem I shall discuss is the gold-mining problem first formulated by Bellman 
(1957). A man owns n gold mines and a delicate gold-mining machine. Each day the man must 
assign the machine to one of his mines. When the machine is assigned to mine i for the jth time there 
is a probability p(i, j) that it extracts an amount of gold r(i, j) and remains in working order, and 
a probability 1 -p(i,j) that it extracts no gold and breaks down irreparably. The man's aim is to 
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maximize the expected amount of gold extracted before the machine breaks down. Let 
s(i,j) = -logp(i,j), and interpret s(i,j) as the "time" it takes to work mine i on the jth occasion 
the machine is assigned to it. With respect to this standard time scale the machine remains in 
working order for an exponentially distributed period independent of the policy adopted, provided 
fIlrlp(i,j) = 0 for each i. The man's problem thus corresponds to the related decision process in 
which the machine works for ever, but an amount of gold r(i,j) extracted at standard time s is worth 
e8 r(i,j). This decision process is a family of alternative bandit processes, and so the optimal 
policy begins by looking in that mine i for which 

V(i) = sup[ r(i,j) Hi p(i, k)/(1 - p(i, j)] 
t>O j=l kl- j=l 

is a maximum. 
The results just described have been established using a different method by Kadane and Simon 

(1977), who also consider the problems under arbitrary precedence constraints. Observe though 
that both problems are essentially deterministic: the optimal policy does not have to adapt to 
information becoming available with time. The advantage of formulating the problems as families 
of alternative bandit processes is that this allows the results to be generalized to the case where the 
characteristics of box or mine i are not certain but have probability distributions which alter as box 
or mine i is investigated. As a simple example suppose that in the search problem the jth look in 
box i is informative with probability D(i,j) and uninformative otherwise. An informative look 
determines whether or not the box contains the object, and an uninformative look yields no 
indication either way. Put more precisely this is equivalent to the assumption that the detection 
probabilities are independent Bernoulli random variables with E{d(i,j)} = D(i,j), and that d(i,J) 
becomes known after the jth look in box i. If 

v(i) = P(i) sup |f[[ H |( - D(i, k))} D(i,j)]/[ (11 (1- D(i, k))} c(i,i)] 11 
t>o = = - = 

then the optimal policy begins by looking in that box i for which v(i) is a maximum. 

Dr D. M. ROBERTS (Ministry of Defence): My first comment on Dr Gittins' paper concerns the 
practical significance of the concept of a DAI. One area in which I have recently been looking at 
this is new product chemical research. Specifically, one is confronted with a number of research 
projects all competing for a limited amount of effort. The way in which each project is characterized 
tends to be complex. For in order to be realistic, account must be taken of such factors as the way 
in which the effectiveness of research effort varies with time, the chances of success as a function of 
useful work done, as well as various financial parameters. Thus a casual look at the possibilities 
gives little indication of where effort should be applied and at what levels. 

However, it is possible to write a computer program which does two things. First, for any 
planned allocation, it shows the expected profitability of such an allocation. And, second, for each 
project, it calculates the DAI. A comparison of indices suggests ways in which effort might profitably 
be reallocated between projects, either as a modification of the initial allocation or, since the indices 
are functions of time, at an appropriate time within the forecast period. 

I have just completed the development of such a program and runs carried out so far tend to 
indicate that, in spite of the complexity of detail surrounding each project (which means that the 
DAI Theorem is not directly applicable), the DAI provides us with an effective single measure for 
comparing projects. 

My second observation on Dr Gittins' paper concerns his reference to the search problem where 
an object is hidden with known occupation probability distribution in one of a number of boxes. 
It has been shown that, to minimize the expected cost of the search, one should look in the box 
where the product of two terms-the probability of the object being there and the detection 
probability-divided by the cost is greatest. Although this principle is generally demonstrated using 
a dynamic programming approach, the optimal strategy is actually a forwards induction policy, and 
it is interesting to note that Ross (1970) is able to derive its form solely by considering two-step 
look-ahead policies. Inevitably therefore, one is left wondering whether the Forwards Induction 
Theorem can be extended to cover this situation. 

Dr K. D. GLAZEBROOK (Newcastle University): I should like to put on record my thanks to 
Dr Gittins, not only for his interesting paper but also for being an immensely helpful and stimulating 
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supervisor and colleague. I feel, too, that after some years of familiarity with these results one is 
inclined to be blas6 about them and forget how demanding these problems have been to solve. 
Perhaps I could make just three points: 

(i) As Dr Gittins indicated, the policy which maximizes the total expected reward earned by a 
family of N alternative bandit processes during [0, M], M fixed, is not in general a forwards induc- 
tion policy. Suppose, though, that we consider the problem of maximizing the expected reward 
earned during [0, -z], X- an integer-valued stopping time, and ask for what X- is there a forwards 
induction policy which is optimal? Two important examples where this is the case are: 

X =inf {t; xi(t) E C, i = 1, ,N} (1) 
t>o 

and 
= inf{t; xi(t) E Ci for some i}, (2) 

t,>o 
where xi(t) is the state of bandit process i at time t and Ci is some subset of the state space of bandit 
process i. The scheduling problem discussed by Dr Gittins in Section 6 is an example of (1) and the 
search problem in Section 10 an example of (2). 

(ii) We might want to make stopping part of our decision structure; this could well be so in 
problems relating to research planning and clinical trials. We could model this by having a choice 
of 2N actions at each decision-epoch instead of N as previously. These actions would be "continue 
bandit process i", i = 1, ..., N, and "stop and decide in favour of bandit process i", i = 1, ..., N. 
I have obtained some optimal policies for such problems as these (Glazebrook, 1979). 

(iii) Many of the continuous-time analogues of the discrete-time decision processes discussed 
here will be controlled jump processes with the discounted cost criterion. Suppose that such a 
process is in state i at time 0, is subject to control u until its first transition, and is subject to an 
optimal control (if any such exists) thereafter. Let R[i, u] be the expected return from such a policy 
and let V<, be the optimal return function under discount rate a> 0. Under appropriate conditions 
we have that 

V(i) = inf {R[i, u]}, (3) 
u 

the infimum being over all admissible controls u. For a wide range of decision problems in research 
planning, stochastic scheduling and queueing (and indeed many continuous-time analogues of the 
problems discussed today), the optimal control problem stated in (3) looks very similar to a problem 
solved by Nash and Gittins (1977). Indeed so much so that I feel it may well be worthwhile defining 
a class of controlled jump processes which reflect the rather strange property that they may be 
solved by the techniques discussed there. 

Dr M. A. H. DEMPSTER (Balliol College, University of Oxford): I should like to make a few 
brief remarks concerning an important area of practical application-scheduling problems in a 
stochastic environment. As pointed out elsewhere by Dr Gittins and his associates stochastic 
scheduling problems arise in computer scheduling, reliability and R and D management as well as 
in factory scheduling. However, it is in the latter area where my own interest and these remarks 
are centred. (I am currently involved in a collaborative effort in this field with Fisher, Lageweg, 
J. K. Lenstra and Rinnooy Kan, cf. Dempster, 1979.) 

In manufacturing job shops, a three-level hierarchy of planning decisions may be outlined in 
terms of increasingly finer time units. The first two levels can currently be handled by known 
deterministic linear programming and combinatorial permutation procedures, but the third- 
concerning the sequencing of jobs through a single machine centre-is directly related to Dr Gittins' 
paper. At this level practical production scheduling involves a stochastic m-machine problem whose 
natural setting is in continuous time. 

Very recently Dr Gittins and his co-workers have obtained results for discrete time problems 
which show that DAT policies are optimal for the m-machine scheduling problem with a fixed queue 
of jobs j whose processing times t; are independent random variables. The discrete distributions 
F3t involved are either exponential, i.e. constant completion rate (cf. failure rate in reliability 
theory), monotone completion rate-either increasing or decreasing-and identical in the sense that 
they are all conditional distributions of the same distribution after arbitrary amounts of processing 
(Weber and Nash, 1978; Weber, 1979) or non-overlapping completion rate in the sense that the 
original monotone ordering of job processing time completion rates ft,(O)/(l -F t(O)) is not changed 
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by subsequent processing (Gittins, 1979). It does not appear to be an entirely trivial technical 
matter to extend these results to continuous time. Although the optimal m-machine sequencing 
policies to minimize respectively expected makespan and expected flowtime essentially longest 
and shortest expected processing time first (LEPT and SEPT)-are DAI policies, the methods used 
appear particular. It would be interesting to investigate how the general approach of Dr Gittins' 
paper could be utilized to obtain continuous time results. 

In this regard I should like to call attention to the work of Dr Weiss, who is currently visiting 
Birmingham University. Following recent work of Bruno and Downey and Fredrickson, he has 
shown with Pinedo (1978) that the above results regarding suitable variants of the LEPT and SEPT DAI 
policies are optimal for the problem of sequencing jobs with exponential processing times on m 
machines of differing speeds. From the point of view of practical operations research this is an 
extremely important result which we might hope to obtain more generally for continuous time 
stochastic scheduling problems using bandit process theory. 

There has recently been a considerable, deep and detailed combinatorial study of deterministic 
scheduling problems (in continuous time) as to their computational complexity (see Graham et al., 
1977). In layman's terms the simple question addressed is whether or not it is possible to find a 
computational algorithm for a deterministic scheduling problem that is polynomial in the problem 
parameters (easy) or whether the parameter dependency must be effectively exponential (NP-hard). 
For even the two-machine problem of minimizing makespan with no pre-emption of running jobs, 
the problem is known to be NP-hard in the deterministic case. On the other hand, a LEPT (DAI) 
policy is often used to sequence jobs in a practical m-machine problem-such as for a bank of lathes 
in a machine shop. The current theoretical operations research view, based on deterministic analysis, 
would say that such a policy is a suboptimal heuristic (cf. Graham et al.). The interesting property 
of the Weiss-Pinedo result is that this policy is indeed optimal as soon as specific random 
processing times are allowed. If extensions of these results could be found for different distributions 
(as in the discrete time case) and in more complex scheduling problems involving release and due 
dates (which are closer to those in the real world), we would have the extremely important result 
that heuristics which have been derived from practical experience can be proved optimal when we 
have the right model-namely one involving random variables. 

Finally, going considerably further, a problem arising in understanding of real job shops 
involves the analysis of a network of m-machine problems. There the work of Dr Kelly and his 
associates at Cambridge on networks of queues, and related work in the U.S. and Europe, will 
hopefully soon be relevant to stochastic production scheduling. Each node of the appropriate 
network would be not simply a single server but rather a scheduled m-machine system, so that input 
and output processes would be considerably more complicated than we have so far seen. Neverthe- 
less, there is some hope that the elegant theory of Walrand and Varaiya (1978), developed for 
queueing networks, could be applied more generally. 

This is a big programme, but I must emphasize that there is much of practical importance in it 
for operations research-both regarding computer networks and for factory scheduling. 

Dr J. POLONIMCKI: Dr Gittins' proposed solution to the infinite horizon multi-armed bandit 
problem has a very surprising feature. The method consists of looking at a function of the data 
(r successes, n trials) on each of the arms at a time; and then deciding for the next step to use that 
arm for which this function has the largest value. One-step ahead horizon optimal solutions can 
clearly be expressed in this way. The two-step ahead horizon optimal solution cannot. 

In view of this surprising feature of the solution, the name "DAI" does not do justice to its appeal. 
A statistician knows not to look to the observed average rate of success of the arm (rln) for an 
optimal decision, nor to the expected rate of success {(r + 1)/(n + 2)}, nor to the expected waiting 
time to the next success (cf. r/(n + 1)). The DAI tells us to look at the "maximum expected rate of 
return", and choose the arm for which this is the largest. 

For practical application, we need a set of tables (one table per discount factor). These tables 
are not yet available, although Glazebrook (1978b) shows how they would be used. It is not clear, 
however, what happens as the working boundary for their calculation is extended. For clinical 
trial work there is needed, in addition, some reappraisal of the decision-making role of clinical 
trials. 

Is the "maximum expected rate of return" policy as optimal as Dr Gittins suggests? It is based 
on comparing an unknown process with a standard process, and we are told that the optimal 
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procedure here must have the property that once the known process has been used it will be used 
thereafter. Clearly such a policy is not asymptotically optimal, in the sense that there is a positive 
probability that the known process will be used an overwhelming proportion of the time, when the 
probability that it is superior is not equal to one. Having been told that the "optimal" procedure is 
not asymptotically optimal, it is disturbing that there exist procedures which are. The existence 
of asymptotically optimal or "convergent" procedures has been shown under fairly general 
conditions (Poloniecki, 1978). 

Dr G. WEISS (Birmingham University): I want to congratulate the author for pinpointing two 
important theorems, the forward induction and the DAI theorem and for showing how they underlie 
the scheduling and the multi-armed bandit problems. It seems likely that the theorems continue to 
hold when the definition of a bandit process is extended to be a semi-Markov decision process, 
where the continuation control is associated with a transition to another state, a reward and, in 
addition, a random time that passes until the next decision. In the scheduling context this formula- 
tion includes the scheduling problem when no pre-emptions are allowed. Harrison (1975) has calcu- 
lated DAI'S for that case. A further generalization of the bandit process is to allow the random 
emergence of new bandit processes when the continuation control is applied. This allows the 
treatment of arrivals as well as more complex feedback situations (see Meilijson and Weiss, 1977). 

On Professor Whittle's question concerning the validity of DAI'S when other arms can change 
state when one arm is pulled, Meilijson (1975, private communication) worked out a counter- 
example. 

The following contributions were received in writing, after the meeting. 

Professor E. M. L. BEALE (Scicon): Dr Gittins is to be congratulated on a clear exposition of a 
unifying approach to a narrow but significant class of problems. This approach is presented as an 
alternative to Dynamic Programming, but the algorithm for computing the DAI can equally be 
regarded as an application of Dynamic Programming. This can be seen most clearly when there is 
only a finite number of possible states. 

The DAI v is defined as the maximum value of the expected discounted net reward per unit of 
expected discounted time, when we have the option of giving up at any time after the first stage. It 
is natural to compute this by iteration in policy space, i.e. by iterative improvement in the set C 
of states from which we continue. 

Let Ri be the reward for continuing when in state i, pi, the transition probability from state i to 
state j, and io the initial state. Let Ck denote the set of states from which we continue under the kth 
trial policy, and let xi-W and wil) denote the discounted expected further reward and further duration 
respectively, when in state i. Then x?) = w,k) = 0 if i f Ct, and otherwise 

xik) = Ri + a pij xj), (1) 

wI) = 1 +a, Tpip w;1 (2) 

These equations can be solved for xik) and wil), and v, can then be computed as 

Vj = (Rio + a jpsj0 x(k))/(1 + ajpi0j w7k)). (3) 
I I 

A new continuation set Ck+1 can then be defined by the condition that i e C+1 if and only if 
R1 + aj pi xik) > vk(l + a pij w?)). (4) 

With this algorithm v+1 > vk and vk = v if Ck+l = Ck. 

The algorithm can be streamlined by writing y( ) = xik)-Vk W-k)v Then from (1) and (2) we 
deduce that 

yjk)= Ri-Vk+a2:piIy?) if i e Ck, (5) 

while from (3) we deduce that 
Rso- v+ ap,. yjk) = 0. (6) 

I 
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Here (5) and (6) are a set of linear simultaneous equations from which the yjk) and vk can be 
computed. Condition (4) can then be written: i E Ck+1 if and only if 

Ri-vk + a p,p y3k) > 0. 

Whether or not v is computed this way, we can write the equations defining the final values of 
v and yj in the form 

yi = max (0, Ri -v + a pij yj), (7) 

Rio- v + a. pij= 0. (8) 

These equations can be justified from first principles. They apply whether the number of states is 
finite or infinite, and can be solved by other means that nevertheless fall within the scope of Dynamic 
Programming. 

Professor R. BELLMAN (University of Southern California): These are important problems. 
It is interesting to note that the two-arm bandit problem can be used as an example of learning. 

See Bellman (1971, 1978); Dreyfus and Law (1977). There is much work to be done in the area of 
adaptive processes. 

Miss J. M. CAULDWELL: One of our chemists recently calculated that there was a total of 
8 x 1014 chemical structures in a series which he was screening. At the present rate of progress it 
would take 1-3 x 1012 years to test them here. If he could persuade the total population of the world 
to help, this time could be reduced to about 6000 years. Decision making in the early stages of the 
screening process is therefore vital. 

At some stage in the screening process someone has to make a decision about which compound 
type is showing no response and is not worthy of further investigation, as opposed to one or more 
compound types which are showing the potential of reaching the test target. Establishing the best 
line of follow-up when a series of compounds is being investigated is clearly a recurrent problem 
which has proved difficult to solve. 

Dr Gittins has recently applied the DAI theory to a set of data which had been collected by some 
of our chemists working on a particular research project. The results of the statistical analysis were 
of considerable interest to the chemists concerned because, although the project in question had 
been completed, the DAI theory picked out those groups which the chemists themselves had felt to 
be the most promising. The theory gave statistical support to what they felt were perhaps slightly 
woolly reasons for following up certain groups and abandoning other groups. Furthermore, our 
chemists recognized the potential of the theory in assisting with decision-making at an earlier stage 
in the screening process, with the advantage of having some indication of the number of compounds 
that would have to be tested before finding one that reached the test target. 

Dr P. W. JONES (University of Keele): I have two comments to make. If the optimal policy may 
be obtained by using DAI'S for the situation where bandit processes arrive randomly in time, then 
presumably this approach may now be used for the optimal solution of the problem of varietal 
selection where varieties may be introduced at any stage in the selection procedure. 

In a note, Jones (1975), the Bernoulli two-armed bandit with finite horizon, no discounting and 
independent beta priors was considered. The numerical work presented concerned the performance 
of two suboptimal policies. The one-step look ahead policy was found to be in excess of 99 per cent 
efficient compared with the optimal design. Using DAI'S in this case would give an efficiency which 
is at least as large as this. This seems to suggest that the considerable computational effort required 
using Dynamic Programming to obtain the optimal policy is not worthwhile. The play the winner 
rule was also used and this had an efficiency of over 90 per cent for all the cases, this is rather 
surprising since this rule depends only on the previous observation. In Freeman (1970) the Bayesian 
estimation, under quadratic loss of the median effective dose for up to three dose levels was 
considered. This is, of course, a multi-armed bandit problem. It was found that the up-and-down 
method of allocation, which is closely related to the play the winner rule, was in excess of 90 per cent 
efficient in most cases. 

In practice one would accept a slightly suboptimal rule which was easy to use. Therefore it 
would be interesting to investigate the efficiency of simple rules analogous to play the winner or 
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up-and-down rules for the Bernoulli multi-armed bandit problem with finite horizon or infinite 
horizon with discounting. The play the winner rule could be used to switch from the current arm to 
a randomly chosen arm or alternatively the play the winner rule could be used to switch from the 
current arm to that arm with the largest expected return for the next trial. To reduce the 
computational complexity, perhaps a mechanism for the early rejection of arms could be incorpor- 
ated. Is there any evidence to suggest that part of the optimal policy for the multi-armed bandit 
behaves in a relatively simple way? 

Dr P. NASH (Churchill College, Cambridge): The approach to the DAI theorem via forwards 
induction can be characterized as a branch-and-bound calculation. In deterministic dynamic 
programming, branch-and-bound methods attempt to overcome the curse of dimensionality by 
replacing the optimal remaining reward function by an estimate of it which is an upper bound (in a 
maximizing problem). At each stage, the total remaining reward given any particular initial decision 
is estimated as the sum of the one-step cost given this decision and the upper bound on the remaining 
reward in the state reached. The decision tree is evaluated by starting at the initial point and taking 
at each stage the decision for which the estimated total reward (including all the one-step costs for 
branches already traversed) is greatest. At any stage, attention centres on that node of the tree for 
which the sum of the estimated further reward and the one-step rewards obtained in reaching that 
node from the initial point is greatest. Eventually, this node is a final decision point, and then the 
upper bound calculations imply that the path leading to this node has higher total reward than any 
other. For a good enough upper bound, this occurs long before all paths have been evaluated. In 
contrast, the backwards induction of DP always evaluates all paths. 

For a family F of alternative bandit processes, an upper bound is (extending the notation 
of the paper) 

B(O) = sup {v(D, x(0))}/(1 - a) 
DGF 

Consider the sequence of decisions which fixes (D1, 1r), (D2, x2). One can show from the 
definition of v(D) that if the first decision is (D, T) and r(D, T) is the maximum expected reward 
given this initial decision, then 

r(D, i) < R7(D) + B(O) E{ar}. 
The first step of a branch-and-bound calculation fixes a particular choice of D1 and ir, the 

particular choice being that which maximizes 
R71(Dl) + B(O) E {atl} 

This means choosing the process whose DAT iS equal to (1- a) B(O), and r1 as the stopping time which 
yields the supremum in the definition of the DAI. The force of the forwards induction theorem is 
then that no decision path whose first branch does not coincide with this one need ever be 
investigated as we continue to branch and bound. This would seem to reinforce the hope that 
forwards induction policies can be proved optimal in more general circumstances, since for that 
particular initial decision to be optimal, we only require that paths which do not start with it will 
ultimately be abandoned in the branch-and-bound procedure. This is a weaker property than that 
by which the DAI theorem is proved. 

Professor D. 0. SIEGMUND (Stanford University): Typically dynamic programming problems 
are well understood qualitatively but difficult to implement computationally. In this paper Dr 
Gittins has described an interesting class of problems in which a simple but ingenious trick reduces 
these computational difficulties to manageable proportions. A given problem is replaced by a 
family of optimal stopping problems, which are much easier to solve. This produces a "splitting" 
of the given problem into independent components, the individual solutions to which may be glued 
together to solve the original. 

The key technical idea is that of the DAI. Given a bandit process, the DAI iS intuitively that value 
A which makes one indifferent between accepting an immediate reward of A and optimally stopping 
the bandit process with a residual reward of A discounted by at if stopping occurs at time t. 

The following example seems instructive. Let arm one of a MAB return 1 or 0 independently on 
each trial with known probability p. Let arm two return only ones with probability 7T and only 
zeros with probability wo. Then the DAI for arm two satisfies A = Xr1/(1 -a) + iro aA, and if 
A <pf(1 -a), one should always continue arm one. Suppose now there are N arms stochastically 

8 
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identical to arm two (but independent). For N large it is practically certain that at least one of these 
arms is better than arm one; but searching for it will bring a reward of 

7r1/(1 - a) + 7o avi/(l - a) + ... + 10N-1 aN_1 rl/(l- a) cl/(l- a) (1-foa)= A, 
so arm one remains optimal. 

The class of problems for which the methods of this paper are applicable is special, albeit 
important. It would be interesting to know how well this class might serve to approximate other 
problems. For example, the results do not appear to apply directly to multi-armed bandits with 
correlated prior distributions. However, for discount factors close to one and a relatively small 
number of arms, perhaps not too much is lost. Are there analogous results for an average return 
criterion, which by the relation of Cesaro to Abelian summability is related to the discounted 
return criterion? 

The potential applications to clinical trials are very thought-provoking, but their acceptance in 
practice may hinge on considerations apparently not amenable to systematic decision theoretic 
treatment (e.g. the desirability for randomization as an (the ?) important aspect of experimental 
design). 

Finally, the reader stimulated to study the proof of the DAI theorem (Gittins and Jones, 1974a) 
should be warned that Lemma 2 of that paper appears to have a crucial inequality reversed. 

Professor B. W. TURNBULL (Cornell University): I have been acquainted with the author's work 
on DAI'S for some time and this paper gives a very readable account of what is an interesting and 
significant contribution to the theory of sequential decision processes and sequential design of 
experiments. I wonder whether the theory can be adapted, as in Section 10 perhaps, to handle the 
problem where, at each stage, one option is to freeze eternally all the rival bandit processes and take 
a terminal reward which depends on a termminal decision to be taken then. If so, it would be of 
interest to compare the DAI rules with the asymptotically optimal procedures of Bessler (1960) who 
took a sequential game theoretic approach. Unlike the DAI procedure, Bessler's rules have the 
property of being randomized which is an advantage in clinical trials because of the problem of 
selection bias. Of course, in other applications, non-randomized rules may be preferable. 

In referring to Robbins and Siegmund (1974), the author alludes to the selection formulation 
of the n-armed bandit problem where it is desired to find a procedure that maximizes cumulative 
one-stage rewards from among that class of rules that eventually stop and select the best treatment 
with prescribed error probabilities. Also of interest here are the asymptotically optimal rules of 
Louis (1975, 1977). These papers all deal only with the case n = 2; for n > 3, similar methods can 
be used but there are some difficulties (Turnbull et al., 1978). 

The proposed use of adaptive sampling in medical trials in practice has been much criticized 
recently (Bailer, 1976; Simon, 1977). Two objections given are: 

(A) Although adaptive sampling can lead to fewer expected number of patients on inferior 
treatments (ITN), it increases the total expected sample size (ASN) compared to a non-adaptive 
method. This delays conclusion of the trial and perhaps adversely affects patients not part of the trial. 

(B) Adaptive sampling rules are too complicated. 
In response, it should be noted that (A) is only true for n = 2; for n k 3 substantial savings in 

both ASN and ITN can be achieved simultaneously by use of adaptive sampling. This is demon- 
strated in Turnbull et al. (1978) and is intuitively clear because non-contending treatments can now 
be dropped from consideration early. In response to (B), it might be noted that adaptive allocation 
of patients to treatments based on previous responses need not be much more complicated than the 
adaptive allocation rules, based on prognostic variables, designed to maintain balance in a stratified 
study. Yet the latter type of adaptive procedure is gaining acceptance in practice, e.g. in multi-clinic 
trials. Finally, since ASN as well as ITN can be reduced, adaptive sampling might be applicable in 
animal experiments where statistical considerations can play a greater role in the design and conduct 
of the study. 

The AUTHOR replied later, in writing, as follows. 

For me at any rate the discussion has been most interesting, and I should like to begin by 
thanking the proposer and seconder of the vote of thanks, and indeed all the participants, for their 
contributions and for their kind words. 
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Professor Bather raises the question of the sensitivity of the solution to the multi-armed bandit 

problem to changes in the prior distribution and the discount factor. The simplest generalization 
(Gittins and Jones, 1979) is that the gap between any iSO-DAI, and the line through the origin to 
which the iSO-DAI is asymptotically parallel, is always less than 4-0 for discount factors which are 
not greater than 099. This means that, except for small values of ot and g, the optimal policy is 
well approximated by one which always selects the arm for which the posterior expectation 
(ao + 1)f(ax + g + 2) of the unknown success probability is largest. Call this policy A. To this 
approximation, then, the solution is robust to changes in the discount factor. The effects of changes 
in the prior distribution on policy A are measurable as constant changes in a, and f for the arm 
concerned. As for most Bayesian procedures, the precise choice of prior distribution is not crucial, 
but priors which differ by assigning high probabilities to different regions of the parameter space 
(these correspond to high initial values of ax and g) lead to substantially different procedures. The 
calculations reported by Jones (1975) and Wahrenberger et al. (1977) show that for the finite 
horizon undiscounted problem policy A again does well, and is not unduly sensitive to changes in 
the prior distribution. 

The randomized allocation indices proposed by Professor Bather are variations of policy A, 
and their good performance is thus not altogether surprising. The device of randomization leads to 
the asymptotic optimality property which he describes, and which, as Dr Poloniecki points out, the 
Bayes policy based on DAI'S does not have. A thoroughgoing Bayesian would not, of course, regard 
this as a particularly strong objection. However, it would be interesting to examine the performance 
policies obtained by adding a random component to the DAI, rather than the proportion of 
successes, for each arm. In this way it might be possible to have the best of both worlds. Extensive 
calculations of the DAI function have been carried out for various values of the discount factor, and 
are described by Gittins and Jones (1979). 

It can actually be shown that for any values of of and ,B the DAI tends to one as the discount factor 
tends to one. This means that the gap between an iSO-DAI and the asymptotically parallel line 
through the origin must tend to infinity, despite the above-mentioned unremarkable behaviour for 
discount factors up to 0-99. The behaviour of the iSO-DAI'S in the limit is an intriguing open 
question, as (Berry, 1972) is the nature of the optimal policy for the undiscounted case as the 
horizon tends to infinity, though the practical significance may not be particularly great in either 
case. 

As Professor Bather says, there is a noticeable lack of enthusiasm among medical statisticians 
for allocation rules designed to reduce the number of patients given inferior treatments in clinical 
trials. My impression, like that of Professor Siegmund, is that this is largely attributable to the 
importance attached to randomization as a means of removing bias. However, pressure from 
medical practitioners and from governments may lead to a change of attitude. Professor Turnbull 
also makes some interesting comments on this point. 

The result mentioned by Professor Whittle is intuitively appealing. The quantities y. and S. are 
natural measures of the cost of progress towards a terminal decision, under H1 and H2 respectively, 
when experiment u is used. Thus one might hope to find an elementary derivation. However, I 
have been unable to find an interpretation of this rule as a forwards induction policy, and would be 
inclined to look for for an appropriate generalization of Wald's equation. 

The remarks of Mr Davies, Mr Baker and Miss Cauldwell refer primarily to the set of DAT tables 
prepared by Gittins and Jones (1974b) as an aid in new-product chemical research. It is encouraging 
to hear from them of scope for practical application. I am in the process of analysing several sets 
of compound screening data provided by pharmaceutical companies with the help of these tables. 
The findings of this exercise will be reported in due course. 

Mr Davies also raises the question of what to do if a bandit process improves as a result of the 
research team's increased skill in selecting new compounds. My feeling is that such changes can 
best be taken into account by calculating the DAI on the basis of recent results only, rather than by 
modelling the learning process itself. Of course, as Professor Bellman remarks, the models do 
incorporate an aspect of learning, but this is not the one to which Mr Davies refers. 

The computer-based procedure mentioned by Dr Roberts is also designed as a learning model, 
this time for the purpose of dividing resources between different new-product chemical research 
projects. I have been following its development with interest. 

I should like to congratulate Dr Kelly on finding two ingenious new applications of the DAI 
theorem in the form which allows the time between successive decision points to depend on the state 
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of the bandit process which is currently being continued. As Dr Weiss surmises, the theorem still 
holds if this time is also allowed to be random, a result which is given in a slightly different form by 
Gittins and Nash (1977). The striking feature of Dr Kelly's two examples is his use of this variable 
time to represent first a cost, and then a probability, thereby establishing results for situations where 
the things which look most like bandit processes do not function independently. 

For his first example of a hidden object, with no costs, but a reward of at if it is found at time t, 
each box taking one unit of time to search, the expected reward under an arbitrary deterministic 
policy is 

,n co J-1 
I P(i) E n (1- d(i, k)) d(i, j) at(itl). (* 

i-1 j=1 k-i 

Here the time at which the jth search of box i takes place, if the object has not been found before 
then, is denoted as t(i,j). We note that the expression (*) is also the expected total reward for a 
family of n alternative bandit processes for each of which the state coincides with the process time, 
under a policy which, for all i and j, continues bandit process i for the ith time at time t(i,j). To 
make this interpretation we must let the undiscounted reward from continuing bandit process i 
when it is in state j be 

P(i) 17l (1- d(i, k)) d(i,j). 
k-1 

The optimal policy for both problems is therefore expressible in terms of DAI's. For the case when 
the time taken by the jth search of box i is c(i,j) we simply replace t(i,j) by EJ=, c(i, k) in (*), and 
make the corresponding change in the expression for the DAI. Letting a tend to one in this expression 
leads to the index v(i) given by Dr Kelly. Thus a policy based on this index must be such as to 
minimize the term of order 1 - a as a tends to I in (*), and this is precisely what is required for the 
original undiscounted search problem for which c(ij) is the cost of thejth search of box i. Indeed 
a neat piece of work, and I hope Dr Kelly will not mind my filling in these details. 

Professor Fristedt and Dr Poloniecki draw attention to the possibility that the iterative methods 
of calculation which I have described may lead to unacceptable accumulation of errors. This is an 
important consideration, and checks must be incorporated in any set of calculations to ensure that 
this does not happen. 

Dr Glazebrook indicates three areas of current and prospective research interest His paper on 
stoppable families of alternative bandit processes provides a partial answer to a question raised by 
Professor Turnbull. It extends the DAI theorem to stoppable families under a certain condition, 
which includes monotonicity conditions as special cases. 

Dr Glazebrook suggests using a hamiltonian approach to solve continuous-time sequential 
allocation problems, along the lines of Nash and Gittins (1977). This is certainly a line worth 
pursuing, and the account given by Nash (1973) is still worth reading, not least for its discussion 
(Section 2.4) of the multi-server problems to which Dr Dempster refers. It seems to me, however, 
that we could also do with a general theorem for translating discrete-time results into their obvious 
continuous-time analogues. The entire theory of Markov decision processes has a gap at this point. 

Dr Dempster gives a useful outline of current work on multi-processor scheduling problems. 
As he says, this is an exciting area in which much remains to be done. I conjecture, for example, 
that conditions which ensure that the policy which minimizes expected average flow-time is 
expressible in terms of a DAI, when no new jobs arrive, will also ensure this when the arrivals of new 
jobs form a Poisson process. For the single processor case this has already been established by 
Nash (1973), as a consequence of the DAI theorem, and independently by Meilijson and Weiss (1977), 
who used a neat, and entirely different, inductive argument. As Dr Jones says, there is a possible 
application in varietal selection, though here the calculation of DAI'S may present serious problems. 

It is interesting to note that for this result the criterion is the average return per unit time, and 
was established by Nash from the corresponding discounted return problem by letting the discount 
factor tend to one. I share Professor Siegmund's view that there must be more general results of 
this type waiting to be proved. 

Professor Beale presents an attractive algorithm for carrying out the calculations outlined in 
Section 8, which I am sure will prove useful. His equation (7) is equivalent to equation (13) of the 
paper, and his equation (8) is implicit in the text of the following paragraph. As he says, this is all 
dynamic programming, but I stand by my assertion that "forwards induction policies are often 
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easier to determine than backwards induction policies", and that it is therefore worth knowing 
when forwards induction policies are optimal. Dr Nash's characterization of forwards induction as 
a branch-and-bound calculation supports this view. This is a connection which itself warrants 
further investigation. 

Finally, I should like to thank Professors Fristedt and Siegmund for clarifying several points. 
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