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1 Introduction

The Seiberg-Witten (SW) solution of N = 2 SYM theories [1] provides an impressive exam-

ple of how the summation over the non-perturbative configurations in the non-integrable

quantum field theory amounts for the powerful information concerning the low-energy ef-

fective action and the spectrum of the stable particles. The combination of the educated

physical guesses and the analytic tools allowed to treat the strong coupling regime exactly.
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In the case of pure SU(2) theory it was discovered that the naive classical singularity where

the W -boson becomes massless split into two singular points, where the monopole and the

dyon become massless instead, enclosed by the curve of marginal stability (CMS) within

which the W-boson becomes unstable and no longer exists in the spectrum. If N = 2

SUSY is softly broken down to N = 1 SUSY the singular points of the Coulomb moduli

space correspond to the vacuum states of the N = 1 SYM theory.

The Seiberg-Witten result was reproduced microscopically by Nekrasov [2, 3] by con-

sidering the theory in the Ω-background C2
ǫ1,ǫ2 that provides the IR regularization by

localizing the integrals over the instanton moduli spaces on a set of isolated fixed points.

The partition function is expressed as a sum of the contributions from each of these points.

The Seiberg-Witten prepotential, which defines the low-energy effective action, can be ex-

tracted from the Nekrasov partition function as the leading term of the logarithm of the

partition function in the limit ǫ1, ǫ2 → 0.

The information contained in the Seiberg-Witten solution can be usefully packed in

the pair of integrable Hamiltonian systems. First, the Seiberg-Witten curves which encode

the information about the low-energy actions were identified with the spectral curves of

the classical holomorphic integrable many-body systems [4–9]. The type of the integrable

many-body system is in one-to-one correspondence with the matter content of the N = 2

SYM theory. The SW variables a, aD were identified with the action and the dual action

in the corresponding integrable system. The prepotential on the other hand was naturally

identified in terms of the second Whitham integrable system [4, 10] that is the semiclassical

limit of the (1+1) dimensional KdV or Toda field theory. In the Whitham theory the

variables a, aD form the symplectic pair while the prepotential F plays the role of the action

variable which can be immediately seen from the relation aD = ∂F
∂a which is the analogue

of the relation p = ∂S/∂q in the Hamiltonian mechanics. The time in the Whitham

dynamics was identified with the logarithm of the instanton counting parameter log Λ.

The coordinates in the first integrable system were identified with the positions of the

defect branes in some internal coordinate [8, 9].

The next step in this correspondence was made in [11–13]. It was argued that by

turning on an Ω-background with only one non-zero parameter ǫ1 the many-body type

integrable system gets quantized with a Planck constant ~ = ǫ1. The Yang-Yang function

(YY) of this system, which provides the Bethe Ansatz equations for a particular quanti-

zation, coincides with the effective twisted superpotential of the effective two-dimensional

N = (2, 2) theory that appears upon the reduction on the plane with Ω-background turned

on with the appropriate choice of the boundary conditions at the boundary of this plane,

while the quantum states are identified with the vacua of this theory. The effective twisted

superpotential arises as the leading term in the logarithm of the partition function in

the Nekrasov-Shatashvili (NS) limit ǫ = ǫ2 → 0. A more precise description of this two

dimensional theory was given in [14].

An interesting feature that appears in quantum many-body integrable systems is the

presence of exponentially small in ~ gaps between the energy bands for a particular type

of quantization. For example, for pure U(2) gauge theory one of the quantizations leads to

the famous Mathieu spectral problem which gives the spectrum of a particle in a periodic
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cosine potential. This gap between the bands has a transparent physical interpretation

in this quantum mechanical problem and appears due to quantum reflection over the bar-

rier. However, it looks rather mysterious from the gauge theoretic point of view. The

four-dimensional W -boson leads to an infinite tower of two-dimensional particles in the ef-

fective theory upon the reduction, and a quick inspection shows that some of this particles

naively become massless precisely at those values of the Coulomb parameters, for which

the splitting phenomenon appears, undermining the validity of the low-energy effective

description. These special values of the Coulomb parameters also appear as poles in the

instanton part of the superpotential. For each splitting point there are infinitely many

poles of all orders in the instanton series.

The goal of the present paper is to describe the physics near this loci. What we have

found is that after a proper resummation of the non-perturbative part and after combining

it with the perturbative contribution the naive pole singularities in the superpotential

transform into the cuts. The fate of the corresponding two-dimensional W -boson mode is

rather similar to the fate of the four-dimensional W -boson in the undeformed theory: it

decays into lighter particles before becoming massless on the curve of marginal stability that

encloses the cut. In our case this lighter particles are solitons which interpolate between

the vacua corresponding to split quantum states.

Let us note that the procedure of trans-series resummation that we actually use is

known in the mathematical literature as the trans-asymptotic matching [15]. It concerns

the reordering of the summation of trans-series near the naive poles. The procedure has

been successfully applied for the Painleve I and Painleve II equations [15] and in the physical

context it was applied for the trans-series for the gradient expansion of the hydrodynamical

equations in [16]. It was argued that the leading term of the resummed trans-series obeys a

nonlinear equation which is universal while the next terms of the expansion of the resummed

trans-series can be derived via the recursion relation from the leading term. We shall focus

in this study on the leading term in the resummed trans-series for the twisted superpotential

which locally describes the low-energy physics near the cuts when ~ is large.

Remarkably, the twisted superpotential for this local description has a rather familiar

form. For pure U(2) gauge theory it coincides with the superpotential of the sigma model

on CP1 with the twisted mass which is proportional to the “distance” ∼ (2a−~) from the

naive singularities at 2a = ~, and the two vacua of this sigma model correspond to split

levels. This identification allows us to read out the BPS spectrum of light particles of the

effective theory near the cuts, since the BPS spectrum for CP1-model was derived long

time ago [17, 18]. We also make a non-trivial check that in the local description of U(N)

gauge theory one has the sigma model on a flag variety, with the flag type determined by

the level splitting pattern.

The AGT correspondence [19] relates the Nekrasov partition function with the confor-

mal blocks in the Liouville theory. The NS limit in the gauge theory corresponds to the

classical limit on the Liouville side. Hence it is natural to ask what kind of non-perturbative

phenomena in Liouville theory the non-perturbative phenomena in QM correspond to. It

is known that (see, for instance [20, 21]) that the twisted superpotential of SU(2) SYM

with adjoint matter coincides with the classical one-point torus conformal block in the
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Liouville theory while SU(2) SYM with fundamental matter coincides with the classical

4-point spherical conformal block. It is useful to map the classical torus 1-point conformal

block to the particular 4-point spherical conformal block [22, 23] hence all SU(2) examples

can be considered on equal footing.

The 2-point torus classical conformal block involving the Ψ2,1 degenerate operator

obeys the Lame equations [24]. The Mathieu equation can be derived in a proper limit

from Lame equation and its solution was identified with the irregular conformal block

involving coherent Gaiotto state [25]. Therefore we shall argue that naive poles in inter-

mediate dimensions in classical 4-point conformal block disappear upon the trans-series

resummation.

The classical Liouville conformal block by AdS3/CFT2 holographic correspondence

(see [26] for a review) is lifted to a particular process in AdS3 bulk gravity. It was identified

with the on-shell action evaluated on the geodesic network in 3d gravity [27–29]. The effects

of operator insertions at the boundary depend on the behavior of their dimensions in the

classical limit. If the operator is heavy, that is its conformal dimension is proportional

to the central charge, it deforms the bulk and amounts to BTZ black hole or conical

defect depending on the value of the classical conformal dimension. The light operators

correspond to the geodesic motion in the bulk perturbed by the heavy operators [27, 30–33].

The accessory parameter in the Liouville theory which is related to the energy in the QM

problems corresponds to the conserved Killing momentum on the gravity side [27–29]. Since

we have explained the mechanism of the disappearance of the naive poles in the classical

Liouville conformal blocks, the natural question concerns the meaning of the corresponding

non-perturbative phenomena in AdS3 gravity.

It turns out that all four operators in the spherical conformal block are heavy and the

intermediate dimension is related to the heavy operator as well. The naive poles correspond

to the points where the intermediate state becomes degenerate and in the limit of the large

Planck constant(in QM sense) we are focusing on the “OPE limit” in the conformal block.

Since all operators are heavy we are dealing with the scattering of the degrees of freedom

which deform the bulk gravity. Not much is known about the scattering S-matrix in

AdS3-gravity however some non-perturbative phenomena have been considered for instance

in [34, 35]. In particular it was shown that there is the exponentially suppressed process

of the black hole formation in collision of two particles representing conical defects [35].

Therefore the gravity problem at hand involves the extremal BTZ BH and particles

yielding conical singularities. Using the map between the classical conformal block and

on-shall gravity action for the scattering process we claim that the poles in the scattering

amplitude as the function of the intermediate dimension disappears upon the resummation

of trans-series and the CMS around the naive pole emerges. The CMS can be considered

as the curve on the plane of the complex intermediate dimension at fixed time or the curve

at the complex time plane at fixed intermediate dimension. This suggests that probably

the transition between early times and late times proceeds through a kind of CMS.

There is an interesting similarity of our case with the low-energy monopole scatter-

ing [36]. That process can be described as the geodesic motion at the 2-monopole moduli

space which has a non-trivial Atiyah-Hitchin metric — the non-perturbative generaliza-
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tion of the Taub-NUT metric. There are specific geodesics on the monopole moduli space

which result in the excitation of the motion along S1 direction of the monopole moduli

space. Physically it means that the monopoles become dyons in the scattering process.

This happens because the initial angular momentum of the monopoles gets transformed

into the angular momentum of the electromagnetic field in the collision process. In the

physical space the process can be described by the exchange of the light W -boson between

two heavy monopoles.

The AdS3 gravity can be described via SL(2,R)×SL(2,R) Chern-Simons theory [37, 38].

Hence we are dealing with the moduli space of flat connections and the corresponding

Teichmuller spaces(which are analogues of the monopole moduli space for the monopole

scattering). The twisted superpotential is the action for the Whitham dynamics which on

the other hand corresponds to the geodesic motion on the Teichmuller space similar to the

monopole case. It is natural to conjecture that similar to the monopole case the motion

along the compact dimension of the moduli space can be excited in the process.

It was conjectured in [39] that some kind of the Schwinger-type phenomena takes

place in SYM which corresponds to the bounce-induced phenomena in QM however no

mechanism has been found. We shall present some arguments that the non-perturbative

monopole pair production in the external graviphoton field is relevant for the bounce in-

duced phenomena in the QM. We shall also comment on the relation of the Schwinger-like

picture to the representation of the Nekrasov partition function via the Myers effect in the

external graviphoton field.

There were several previous studies addressing the issue of singularities in the effec-

tive twisted superpotential. In [40] the resummation procedure that we use in this paper

was performed for finite-gap N = 2∗ U(2) gauge theory. In [41] the partition functions

of half-BPS surface defects near the corresponding locus were studied. It is necessary to

mention [42] where the Mathieu equation has been obtained in the mini-superspace approx-

imation in the sine-Gordon model on a cylinder. The absence of the naive singularity in

the plane of quasi-momentum in the sine-Gordon model has clear a physical interpretation.

The quasi-momentum is related to the effective constant electric field in the fermionic repre-

sentation and the emergence of the cut instead of the logarithmic singularities is associated

with the Schwinger-type pair production in the external electric field.

The paper is organized as follows. In section 2 we review some facts concerning the

Nekrasov partition function and Bethe/gauge correspondence. In section 3 we discuss the

low-energy description of the effective N = (2, 2) two-dimensional theory. We perform the

resummation of non-perturbative contribution and show that the naive singularities of the

superpotential in the Coulomb parameters get transformed into the cuts. We extract the

local superpotentials near these cuts and discuss their physical implications. In section 4

the interpretation of this phenomena in the classical Liouville theory and its holographic

dual is discussed. Some conjectures concerning the possible relation with the monopole-pair

production in the Ω-background are presented in section 5. The considerations in sections

4 and 5 are more qualitative however they suggest useful physical insights and analogies.

The results and the open questions are collected in Conclusion.
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2 Generalities on the Bethe/gauge correspondence

In this section we review the Bethe/gauge correspondence [11–13, 43–45] to set up the

conventions and formulate the problem. Throughout the paper we only discuss the case of

theories with a single U(N) gauge group.

2.1 Instanton partition function

First, let us recall the definition of the Nekrasov partition function [2, 3] of a four dimen-

sional gauge theory in the Ω-background C2
ǫ,~.

Let a denote a set of complex scalars which parametrize the moduli space of vacua,

m is set of masses for fundamental matter multiplets and Λ2N = exp(2πiτ) is a generated

mass scale that counts instantons.

The full Nekrasov partition function consists of perturbative and non-perturbative

contributions

Z(a,m,Λ; ǫ, ~) = Zpert.(a,m,Λ; ǫ, ~)× Z inst.(a,m,Λ; ǫ, ~) (2.1)

The non-perturbative part of the partition function is obtained by the equivariant local-

ization on the instanton moduli space and is defined as follows. Let

Vλ =
N
∑

i=1

∑

(r,s)∈λi

eai+(r−1)ǫ+(s−1)~, W =
N
∑

i=1

eai , M =

Nf
∑

i=1

emi (2.2)

Tλ = −MV∗λ +WV∗λ + eǫ+~VλW∗ − (1− eǫ)(1− e~)VλV∗λ (2.3)

which appear as the characters of the natural bundles on the instanton moduli space at a

fixed point, parametrized by a set {λi} of N Young diagrams. The star-operation inverts

all weights of a character:
(

∑

a

ewa

)∗
=
∑

a

e−wa (2.4)

The instanton partition function can be written as

Z inst.(a,m,Λ; ǫ, ~) =
∑

{λ}
Λ2N |λ|e(Tλ) (2.5)

where

e

(

∑

a

ewa −
∑

b

ewb

)

=

∏

bwb
∏

awa
(2.6)

is a symbol that converts the sum of characters into the product of weights.

The perturbative part is more subtle due to ambiguity of the boundary conditions at

infinity [46]. It can be written as

Zpert.(a,m,Λ; ǫ, ~) = Λ−N
ǫ~

∑N
i=1 a

2
i e

(

eǫ+~(MW∗ −WW∗)
(1− eǫ)(1− e~)

)

(2.7)

but since the character now has infinitely many terms a proper regularization is needed.

Physically the first multiplier comes from the tree level contribution, while the first and the
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second terms in the character come from the one-loop contribution of the matter multiplets

and W -bosons, respectively.

Note that the perturbative contribution does depend on the instanton counting pa-

rameter since it defines the running coupling constant τ .

2.2 Nekrasov-Shatashvili limit

The low-energy description of undeformed four dimensional gauge theory is characterized

by the prepotential, which can be obtained as the limit of the deformed partition function

F(a,m,Λ) = lim
ǫ,~→0

ǫ ~ logZ(a,m,Λ; ǫ, ~) (2.8)

It is known that it is related to some classical algebraic integrable system [4, 6]. In particular

the moduli space of vacua of the theory coincides with the base of the Liouville fibration

of this system. The underlying integrable system for a large class of quiver gauge theories

was found in [47].

In [13] a refinement of the correspondence with integrable systems was proposed. It

was argued that the effective two dimensional theory, which appears in the limit ǫ→ 0, is

related to the corresponding quantized algebraic integrable system, and ~ plays the role of

the quantization parameter.

More precisely we can consider a four dimensional gauge theory on C×D~ where D~

is the cigar-like geometry of [14] with the Ω-deformation turned on. With an appropriate

twist this geometry breaks half of the supersymmetries. Upon choosing the boundary

conditions on C × ∂D~ = C × S1 which preserve the remaining supersymmetries, we can

reduce our theory to a two-dimensional N = (2, 2) theory on C, the low energy description

of which is characterized by the effective twisted superpotential

W(a,m,Λ; ~) = lim
ǫ→0

ǫ logZ(a,m,Λ; ~) (2.9)

For the perturbative contribution we have

Wpert.(a,m,Λ; ~) = lim
ǫ→0

ǫ logZpert.(a,m,Λ; ǫ, ~) = (2.10)

− 1

2~
log

(

Λ2N

~2N

) N
∑

i=1

a2i +
N
∑

i,j=1

̟~(ai − aj)−
N
∑

i=1

Nf
∑

a=1

̟~(ai −ma)

where ̟~(x) obeys

d

dx
̟~(x) = log Γ

(

1 +
x

~

)

= const.−
∞
∑

n=1

log

(

x+ n~

~

)

(2.11)

The one-loop contribution ̟~(m) has a simple intuitive explanation as a contribution

of infinite number of angular momentum modes with mass parameters (m + n~) for n-th

mode into the effective twisted superpotential, which are chiral multiplets in the effective

two dimensional theory. Indeed, after integrating out a single chiral multiplet we get1

∆Wn = −(m+ n~)

[

log

(

m+ n~

~

)

−1
]

(2.12)

and after summing over n we get ̟~(m).

1We use ~ for the characteristic scale of 2d theory.
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In principle, if no accidental cancellations happen, the effective two dimensional theory

has infinitely many local degrees of freedom, which have different angular momentum along

D weighted with the massive parameter ~.

There are two natural boundary conditions [14] which require

TypeA :
aDi
~

=
∂W(a,m,Λ; ~)

∂ai
∈ Z (2.13)

TypeB :
ai
~
∈ Z+

θi
2π
, θ ∈ [0, 2π) (2.14)

Type A corresponds to Neumann-type boundary condition for gauge fields leading to a dy-

namical vector multiplet in two dimensions. On the contrary type B corresponds to Dirich-

let boundary conditions, fixing the holonomy along the boundary of the cigar parametrized

by θi and freezing gauge degrees of freedom.2 The choice of this boundary conditions spec-

ifies the quantization of an algebraic integrable system.

The Bethe/gauge correspondence states that the vacua of the effective two dimen-

sional theory are in one-to-one correspondence with the eigenstates of the Hamiltonians

of the quantum integrable system. Moreover, the expectation values of the topologically

protected chiral observables, which are traces of the adjoint scalars in a vector multiplet

TrΦk of a four dimensional theory, coincide with the eigenvalues of the Hamiltonians Hk

on this states:

〈vac|Hk|vac〉 ←→ 〈TrΦk〉vac. (2.15)

The simplest example of such correspondence for purely four dimensional gauge theory

is the periodic AN−1 Toda chain.

2.3 Pure U(N) and the periodic Toda chain

The (complexified) periodic Toda chain is a one-dimensional system of N non-relativistic

particles interacting with the following potential

V (x1, . . . , xN ) = Λ2
N
∑

i=1

exi−xi+1 , xN+1 = x1

where the coordinates xi ∈ C/(2πZ) while the momenta pi ∈ C. The set of classical

Hamiltonians {Hi} is conveniently encoded in the spectral curve equation

det(x− L(w)) = xN +H1x
N−1 +H2x

N−2 + . . .+HN − ΛN (z + z−1) = 0 (2.16)

where L(z) is a Lax operator

L(z) =



















p1 Λ2ex1−x2 0 . . . . . . ΛNz−1

1 p2 Λ2ex2−x3 . . . . . . 0

0 1 p3 Λ2ex3−x4 . . . 0

0 . . . . . . . . . . . . 0

0 . . . . . . . . . pN−1 Λ2exN−1−xn

Λ2−NexN−x1z 0 . . . 0 1 pN



















(2.17)

2There are could be more sophisticated boundary conditions which can be obtained e.g by coupling

our four-dimensional gauge theory to some three dimensional theory on C × ∂D~ in a supersymmetric

fashion [48].
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The first two Hamiltonians are

H1 = −
N
∑

i=1

pi (2.18)

H2 = −
1

2

∑

i 6=j

pipj + V (x1, . . . , xN ) (2.19)

As is well known the underlying 4d N = 2 gauge theory for this system is the pure U(N)

theory. In particular its Seiberg-Witten curve coincides with the spectral curve of the

integrable system [4, 5].

We are interested in the quantization of this system. The Hamiltonians and the mo-

menta are now promoted to differential operators, acting on wave functions ψ(x1, . . . , xN )

with pi = ~∂i. There are two natural quantizations, corresponding to type A and type

B boundary conditions [13]. Type A quantization corresponds to xi ∈ R and ψ(x1 −
x̄, . . . , xN − x̄) ∈ L2(RN−1) where x̄ =

∑N
i xi/N is the center of mass mode, which de-

couples in a trivial way. This condition leads to discrete unambiguous spectrum that

corresponds to the set of vacua in the gauge theory, provided that the type A boundary

condition aD/~ ∈ Z is satisfied.

In this paper we are interested in type B quantization that corresponds to xi ∈ iR/2πZ
and quasi-periodic non-singular wave functions

ψ(x1, . . . , xa + 2πi, . . . , xN ) = eiθaψ(x1, . . . , xN ) (2.20)

The quasi-periodicity parameters θa ∈ [0, 2π) are also known as Bloch-phases. In the

special case of N = 2, after the decoupling of the center of mass mode, the equation on

the wave function coincided with Mathieu equation

− ~2ψ′′(x) + 8Λ2 cos(2x)ψ(x) = 8uψ(x) (2.21)

where u = 1
4〈TrΦ2〉. For real Λ and ~ it describes a particle moving in a periodic cosine

potential. At fixed θ-parameters the spectrum is discrete. However as we vary them the

spectrum consists of peculiar structure of bands and gaps. In particular for small Λ and

when we sit near the edge of some band, the spectrum has exponentially small in ∼ 1/~

splitting of the eigenvalues. More precisely if θ1 = . . . = θk1 ; θk1+1 = . . . = θk2 ; . . . ; θkm+1 =

. . . = θkN and are all integers, then instead of naive N !
k1!k2!...kN ! -fold degeneracy as for Λ = 0

we have non-degenerate spectrum due to quantum reflection on the potential.

This second type of quantization appears to be more mysterious from the gauge theory

point of view. When all θ-parameters are zero aa/~ are forced to be equal to integer, and

when aab/~ ∈ Z \ {0} some perturbative W -boson modes naively become massless that is

clear from the logarithmic singularities in their perturbative contribution into the effective

twisted superpotential. Thus naively the effective description has to break down at this

locus, as was pointed out in [41]. One of the main purposes of the present paper is to

resolve this puzzling issue.
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3 Effective two-dimensional field theory

In this section we are interested in the physics of the effective two-dimensional N = (2, 2)

gauge theory, which appears upon the reduction of N = 2 four-dimensional gauge theory

in the Ω-background as was described in the previous section. Our main example will be

the simplest non-trivial case of pure U(2) gauge theory, though we will also comment on a

few generalizations.

3.1 Pure U(2) theory

In this case the superpotential W(a,Λ; ~) depends on a single complex parameter a

parametrizing vacua. The superpotential has the following expansion:

W(a,Λ; ~) =Wpert.(a,Λ; ~)− ~F (ν, q) (3.1)

F (ν, q) =

∞
∑

k=1

Fk(ν)q
2k (3.2)

where we have introduced dimensionless variables ν and q:

ν =
2a

~
, q =

Λ2

~2
(3.3)

The perturbative part Wpert. of the superpotential is

Wpert.(a,Λ; ~) = −2a2

~
log

(

Λ2

~2

)

+̟~(2a) +̟~(−2a) (3.4)

and the first few terms for Fk(s) are

∞
∑

k=1

Fk(ν)q
2k =

2

ν2−1q
2+

5ν2+7

(ν2−1)3(ν2−4)q
4+

16
(

9ν4+58ν2+29
)

3(ν2−1)5 (ν2−4)(ν2−9)
q6

+
1469ν10+9144ν8−140354ν6+64228ν4+827565ν2+274748

2(ν2−4)3 (ν2−1)7 (ν2−9)(ν2−16)
q8+. . . (3.5)

The characteristic feature that we observe for all Fk(s) is that they all have poles at

non-zero integers s = n for −k ≤ n ≤ k. However, as we will see shortly they are just

artifacts of the expansion in small q.

There is a single independent chiral trace operator u = 1
4〈TrΦ2〉. It is related to the

superpotential via quantum version of Matone relation [49–51]

u = −~

8
Λ
∂W(a,Λ; ~)

∂Λ
(3.6)

Below we will often need the monopole mass |aMD | which is in our normalization3

reads as:

aMD = i
~

4π

∂W(a,Λ; ~)

∂a
(3.7)

3One can fix the normalization by requiring that a and aM
D are given by the integral of the Seiberg-Witten

form pdq =
√
2

2π

√

u− Λ2 cos q dq over the corresponding A-cycle [−π, π] and B-cycle [arccos u/Λ2, 2π −

arccosu/Λ2].

– 10 –
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Figure 1. This picture shows the branch cut structure of the function u(q, ν). Each cut near

ν = n is identified with the cut near ν = −n. As the result of this identification we obtain an

infinite-genus surface.

For large a such that a ≫ Λ and a ≫ ~ instanton corrections are suppressed and one can

find using eqs. (3.4) and (2.11) that:

aMD = i
2a

π
log

2a

Λ
+O(a) (3.8)

since in this limit ̟~(x) =
x2

2~ log
x
~
+O(x)

3.1.1 Mathieu equation

As was discussed in the previous section, the finding of the expectation values of chiral trace

operator in different vacua of the effective two dimensional theory for type B boundary

conditions is equivalent to finding of the spectrum of the Mathieu equation

− ψ′′(x) + 8q cos(2x)ψ(x) =
8u

~2
ψ(x) (3.9)

with quasi-periodic boundary conditions ψ(x + π) = eπiνψ(x). In particular, for real Λ

and ~ the spectrum has an alternate set of bands and gaps with exponentially small band

widths in “low” spectrum when u ≈ −Λ2 and exponentially small gap widths in “high”

spectrum when u≫ Λ2.

Since πν is a Bloch phase the function u(q, ν) has period 2 in ν on the real axes.

However, this periodicity is not manifest in the expansion obtained by inserting (3.5) into

the Matone relation (3.6). For example, when we change ν along [0, 2] and are supposed

to return back we meet the singularity at ν = 1 in each term of the expansion. A possible

resolution is that instead of these naive poles the function u(ν, q) has branch cuts as shown

on the figure 1 with the identification of cuts near ν = n and ν = −n to make it 2 periodic,

and when we expand it in q we loose this branch cut structure and obtain poles. The latter

happens if the widths of this cuts vanish as q goes to 0. The identification of ν = n and

ν = −n is natural since ν is proportional to a Coulomb parameter a which transforms

under Weyl symmetry as a→ −a.

– 11 –
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3.1.2 Resummation

To obtain a good expansion of F (ν, q) near the cuts we use the same trick as in [40] and

reorganize the expansion in q in the following way

F (ν, q) =
∑

n>0

∞
∑

k=1

[

g
(n)
k

(

qn

n− ν

)

+ g
(n)
k

(

qn

n+ ν

)]

q2k−2+n (3.10)

where g
(n)
k (z) = O(z) and we have introduced variable z:

z =
qn

n− ν (3.11)

What is physical meaning of this resummation? From more technical point of view, it corre-

sponds to resumming separately the leading singularity from each instanton sector(function

g
(n)
1 ) then the subleading singularity (function g

(n)
2 ) and so on. As we will see shortly, log qn

plays the role of 2d FI parameter, whereas n−ν is proportional to the mass of light W-boson

mode. The combination log qn − log (n− ν) is exactly 2d effective FI parameter once we

integrate out a particle of mass n−ν. Therefore this expansion reorganizes the 4d instanton

expansion into a double expansion in terms of 2d effective vortices and 4d instantons.

By comparing the first few terms in the expansions of (3.10) and (3.5) in q we expect

that g
(n)
k have the following form

g
(n)
1 (z) =

log
(

1
2 +

√

1
4 + z2

ζ2n

)

+ 1−
√

1 + 4z2

ζ2n

z
(3.12)

for k = 1 and

g
(n)
k (z) =

(

1 + 4z2

ζ2n

) 5
2
−k
Q2k−3

(

z2
)

+ Pk−1

(

z2
)

z2k−1
(3.13)

for k > 1, where ζn = n!(n − 1)! and Pm(w), Qm(w) are some polynomials of degree m,

specific for each n and k. Using this ansatz and g
(n)
k (z) = O(z), one can compute P and

Q polynomials which appear g
(n)
k (z) for any given n and k by expanding the Nekrasov

partition function up to the corresponding order. We present the first few g
(n)
k functions

in the appendix A.

Once we have reorganized the expansion in this form, we capture the branch cut

structure provided that we identify the cuts near n and −n that was proposed in the

previous subsection. In particular, we can write down a perturbative in q expressions for

band/gap edges for ν ≈ n using the quantum Matone relation, which coincide with the

known expressions (see e.g. [39])

u0 =
~2

8

(

−q + 7

4
q3 − 58

9
q5 +

68687

2304
q7 + . . .

)

u−1 =
~2

8

(

1− 4q − 2q2 + q3 − 1

6
q4 − 11

36
q5 + . . .

)

u+1 =
~2

8

(

1 + 4q − 2q2 − q3 − 1

6
q4 +

11

36
q5 + . . .

)

. . .

(3.14)
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3.1.3 Local model

Now let us try to explain the physical implications of the appearance of the branch cuts

instead of the naive poles. Let us build a simplified local model near the first pole m =

(~ − 2a) → 0 in the limit of very large Ω-background ~ ≫ Λ or q ≪ 1. Naively, when ~

and a are very large, the instanton corrections are switched off and only the perturbative

part contributes

Wpert.(a,Λ; ~) ≈ −m
[

log

(

m

~

)

−1
]

+ const. (3.15)

which is nothing else but the contribution of a first W-boson angular momentum mode,

that naively becomes massless at 2a = ~. However, looking at the reorganized expansion

for the non-perturbative part we see that the first leading term has the same order in q as

the perturbative one, and

W(a,Λ; ~) ≈ −m
[

log

(

m

~

)

−1
]

− q~ g(1)1

(

q

1− ν

)

+ const.

= −m log





m+
√

m2 + 4Λ4

~2

2~



+

√

m2 +
4Λ4

~2
+ const. (3.16)

It is instructive to look at the mirror description of this system. Consider

W = m(Y − teff.) + e−Y + (Λ4/~2)eY . (3.17)

where teff. = log(~−1). If we integrate out the field Y we return back to (3.16). What we

obtain is the mirror description of chiral multiplet deformed by (Λ4/~2)eY operator.

Now we can try to give a physical interpretation of this additional term. As is well

known e−Y is related to the appearance of vortex configurations in the mirror description.

Similar eY is related to the appearance of vortex configurations with the opposite charge.

In the case of free chiral multiplet such term doesn’t appear since it has wrong quantum

numbers. However in our case the parameter (Λ4/~2) also carries quantum numbers and

in combination with eY allows for the terms of the form (Λ4/~2)ne(2n−1)Y . Since we work

in the first non-zero order in (Λ4/~2) we have only the term (Λ4/~2)eY . The appearance of

Λ4 which measures the instanton charge suggests that the configuration that has a negative

vortex charge also carries the instanton charge and it is this charge that allows for negative

vortex numbers.

Curiously similar deformation appears in a local model of a theory of a chiral doublet

surface defect in a pure SU(2) gauge theory, which is obtained by coupling 2d N = (2, 2)

chiral doublet theory, living on C ⊂ C2, to 4d N = 2 SU(2) theory via weakly gauging of a

global SU(2) symmetry of the doublet [52]. In that case the effective twisted superpotential

for the defect, that takes into account bulk effects, is

W = −〈Tr(m+Φ)
(

log(m+Φ)− 1
)

〉4d (3.18)

where m is the twisted mass parameter for the diagonal U(1) symmetry of the doublet and

Φ is the bulk vector multiplet scalar. The bulk averaging 〈. . .〉4d can be done using the
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resolvent of [3]

R(x) = Tr
1

x+Φ
=

2x
√

(x2 − 2u)2 − 4Λ2
(3.19)

which gives

− ∂mW = logΛ2 + arccosh
m2 − 2u

2Λ2
(3.20)

and for large m2 and 2u ≈ a2 close to 2u ≈ m2

− ∂mW ≈ log Λ2 + arccosh
m− a
Λ2/a

. (3.21)

A mirror description of this region is

W = (m− a)Y + e−Y − (Λ4/4a2)eY (3.22)

and similarly to our case the perturbative 2d description of the chiral doublet is deformed

by (Λ4/(4a2))eY which appears due to instantons in the bulk. In this situation the source

of this term has a simple interpretation in the brane construction of this defect [53] and

appears in the microscopic derivation of the superpotential [54–56].

3.1.4 Wall-crossing near the cut

Now we can answer what happens with the W -boson mode that naively becomes massless

near ν ≈ n. It has to disappear from the BPS spectrum and thus decays into other BPS

objects on some curve of marginal stability.

Let us again consider the mirror superpotential for our local model (3.17) near the first

pole. The vacuum values of Y are

Y (±,n) = log





−m±
√

m2 + 4Λ4

~2

2Λ4

~2



+ 2πin, n ∈ Z (3.23)

where 2πin appears due to the multivaluedness of the logarithm function. In the original

global description this vacua correspond to two split states near ν ≈ 1 and lie in the

two neighboring bands. It is easy to find the degeneracies of BPS particles, connecting

different vacua using the methods of [57, 58]. However one can simply notice that our local

superpotential coincides with the well known mirror description of CP1 sigma model with

a twisted mass, for which the BPS spectrum was already analyzed in [17]. Indeed, the

twisted superpotential for CP1 has the form (e.g. [59])

W
CP

1(t,m) = Σ(Y1 + Y2 − 2t) +
m

2
(Y1 − Y2) + e−Y1 + e−Y2 (3.24)

where t and m are the Kähler parameter of CP1 and the twisted mass, correspondingly.

After integrating out the fields Σ and Y2 we obtain

W
CP

1(t,m) = m(Y1 − t) + e−Y1 + e−2teY1 (3.25)

that gives us (3.17) up to a constant if e−t = Λ2/~.
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Translating [17] into our notations, the result for the BPS spectrum is the following.

In the region of large enough m there is a single state that connects Y (±,n) and Y (±,n+1)

and a tower of single states which interpolate between Y (+,n) and Y (−,n+k). The former

one has a mass |m| and corresponds to a W-boson mode while the latter corresponds to

solitons, coupled to k W-boson modes. On the other hand in the region of small m there

are only two single states, connecting vacua Y (−,n) and Y (+,n). The masses of this two

particles are

Msol. =

∣

∣

∣

∣

1

2π

Λ2

~

[

4

√

1 +
~2m2

4Λ4
+

~m

Λ2
log

(

m~−
√
4Λ2 +m2~2

m~+
√
4Λ2 +m2~2

)]∣

∣

∣

∣

, (3.26)

and in the m→ 0 limit

Msol. =

∣

∣

∣

∣

2

π

Λ2

~

∣

∣

∣

∣

(3.27)

On the curve of marginal stability |m| = 2Msol. all states of the large m region including

W-boson mode decay into this two particles.

Note that the electric charge of W-boson in the 4d theory is 2 and the electric charge of

all other BPS particles is integer in the units of W-boson charge. On the other hand in the

effective 2d theory the solitons both have charge 1. Thus this solitons do not simply come

from the modes of other BPS particles but appear only due to the generated superpotential.

Remark. One may ask why we do not obtain in the spectrum of 2d BPS particles the

modes of 4d particles with non-zero magnetic charge. At least in the undeformed theory

in the region of large u we expect the whole tower of dyons, but the effective twisted

superpotential doesn’t have monodromies associated with this particles. The resolution of

this puzzle lies in the boundary condition that we impose. Indeed as was shown in [14]

type B quantization leads to Dirichlet boundary condition for gauge fields. As the result

the flux of magnetic field through S1
∞ × ∂D~ where S1

∞ is the circle at infinity of C has to

be zero and that select only the particles with zero magnetic charge. In contrast the same

reasoning allows only for electrically neutral particles for type A quantization.

Though this analysis was done for the first gap 2a → ~, it is straightforward to do

the same local analysis near all other gaps for small q. We again obtain a pair of solitons

with masses

Mn =
2~

π

1

n!(n− 1)!

(

Λ2

~2

)n

(3.28)

and n-th W -boson mode decays into this solitons near the corresponding gap. Note that

for large n using eq. (3.8) we have:

Mn ∼ exp

(

−2π|aMD |
~

)

(3.29)

However, our analysis is restricted to the limit of large Ω-background Λ/~ ≪ 1 and

to a set of light BPS particles. In particular it doesn’t tell us anything about the strong

coupling region u ∼ Λ2. It would be interesting to explore this region and the global

structure of the BPS spectrum.

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
1
3
3

n1 n2 · · · nl−1 N

Figure 2. A quiver diagram for the gauged linear sigma model that is described by the sigma

model on a flag variety.

3.2 Pure U(N) theory

So far we have considered the case of U(2) gauge theory and have seen, that N = (2, 2)

CP1 model appears in the local description “near the gap”. One may ask how it generalizes

to the case of U(N) theories, e.g. for N -particle periodic Toda system. In that case we

already have different types of singularities parametrized by a set of integers (k1, . . . , kl)

such that k1 + . . . + kl = N , as was described in section 2. This singularities appear at

a1 = . . . = ak1 , ak1+1 = . . . = ak2 , . . . , akl−1+1 = . . . = akl and (aa−ab) ∈ Z\{0} otherwise.
The degeneracy of this singularities is N !

k1!...kl!
.

A natural candidate for the local description near the singularity is a N = (2, 2) sigma

model on the space Fl(k1,...,kl) of flags Ck1 ⊂ Ck1+k2 ⊂ . . . ⊂ CN . As a trivial check the

degeneracy of the singularity coincides with the number of vacua in this sigma model, and

the number possible deformations of Coulomb parameters a coincides with the number of

possible twisted mass parameters. However, in this sigma model we can also vary l − 1

Kähler parameters {ts}, the option that we don’t have in the local model. So the Kähler

parameters have to be specified in terms of Λ and ~.

The effective twisted superpotential for this sigma model can be obtained via describing

it as a low-energy limit of a gauged linear sigma model. The set of fields is encoded in a

quiver shown on the figure 2.

Each circle-node corresponds to a vector multiplet for a gauge group U(ns) where

ns = k1 + . . . ks and each arrow corresponds to a chiral multiplet in the bifundamental

representation. The last square-node corresponds to a global U(N) symmetry with param-

eters m1, . . . ,mN , which correspond to the twisted mass parameters of the sigma model.

The Kähler parameters comes from the Fayet-Iliopoulos parameters ts on each node. The

effective superpotential has the following form4

W(σ,m, t) =
l−1
∑

s=1

ns
∑

i=1

tsσ
(s)
i −

N
∑

i=1

nl−1
∑

j=1

(

mi − σ(l−1)
j

)

log

(

mi − σ(l−1)
j

)

e

−
l−2
∑

s=1

ns
∑

i=1

ns+1
∑

j=1

(

σ
(s+1)
i − σ(s)j

)

log

(

σ
(s+1)
i − σ(s)j

)

e

+

l−1
∑

s=1

ns
∑

i 6=j

(

σ
(s)
i − σ

(s)
j

)

log

(

σ
(s)
i − σ

(s)
j

)

e
(3.30)

where σ
(s)
i are the Coulomb parameters in the vector multiplet of the s-th node. After

4Here we omit an obvious characteristic scale of 2d theory.
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minimizing it with respect to σ by solving vacuum equations

exp
∂W(σ,m, t)

∂σi

∣

∣

∣

∣

σ∗

= 1 (3.31)

we obtain the effective twisted superpotential for our sigma modelWSM(m,t)=W(σ∗,m,t).

We expect that after proper identification of t in terms of Λ and ~ the result of the

resummation of the instanton partition function near the corresponding singularity ã will

be given by WSM(m, t) with mi = ãi − ai. In the next subsection we make make a non-

trivial check of this proposal for the case of the full flag variety Fl(1,...,1) near the singularity

ãi = (i− 1)~.

Our strategy is the following. We turn on the second Ω-background parameter ǫ

and consider the fully deformed Nekrasov partition function. From the point of view of

the effective two dimensional theory it corresponds to introducing a two-dimensional Ω-

background. The resulting partition function is the vortex partition function [60–63] for

this effective theory. We will see that in the limit ~ → ∞ near the gap this partition

function reduces to the vortex partition function of the desired sigma model.

3.2.1 Full flag sigma model from Nekrasov partition function

Let us consider the Nekrasov partition function of pure U(N) gauge theory with

as = (s− 1)~−ms in the limit ~→∞ with z = Λ2N/~2N−2 fixed. Looking at the charac-

ter of the tangent space at a fixed point λ

T pure
λ =WV∗λ + eǫ+~VλW∗ − (1− eǫ)(1− e~)VλV∗λ (3.32)

one can see that only a subset of diagrams with the condition that λs has at most (N − s)
rows has a non-vanishing contribution. Indeed, if this condition is not satisfied then too

many terms terms in the character contain ~ in the exponent that leads to a o(~2−2N )

contribution after applying e-symbol.

Let us introduce k
(s)
i = λi,s−i+1, σ

(s)
i = mi − ǫk(s)i and

zs =
(−1)Nz

s!(s− 1)!(N − s)!(N − s− 1)!

Then the Nekrasov partition function takes the following form

Z inst. =
∑

k
(s)
i ≥0

(

N−1
∏

s=1

z
∑

i k
(s)
i

s ×
N−1
∏

s=1

s
∏

i=1

s+1
∏

j=1

1

(σ
(s+1)
j − σ(s)i ;−ǫ)

k
(s)
i −k

(s+1)
j

×
N−1
∏

s=1

N
∏

i 6=j

(σ
(s)
i − σ

(s)
j ;−ǫ)

k
(s)
j −k

(s)
i

)

(3.33)

where

(a; ǫ)n = ǫn
Γ(n+ a/ǫ)

Γ(a/ǫ)
= a(a+ ǫ) . . . (a+ (n− 1)ǫ)

and σ
(N)
i = mi. This is precisely the vortex partition function for Fl(1,1,...) sigma model

with exponentiated FI parameters zi = e−ti . The first product comes from the contribution
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of bifundamental chiral multiplets and the fundamental chiral multiplet on the last node.

The second product is the contribution of the vector multiplets.

In the limit ǫ→ 0

Z inst. ∼ e 1
ǫ
W(σ,m,t) (3.34)

and using

(a; ǫ)(σ−a)/ǫ ∼ e−
1
ǫ

(

a log a
ǫ
−a
)

+ 1
ǫ

(

σ log σ
ǫ
−σ
)

(3.35)

we obtain (3.30) from the vortex partition function up to the perturbative contribution.

The latter comes from the perturbative superpotential Wpert.(a,Λ; ~).

3.3 N = 2∗ theory

One natural deformation of our story can be obtained by considering U(N) four dimensional

theory with the matter multiplet in the adjoint representation, that is known as N = 2∗

theory. It’s mass parameter m plays the role of the deformation parameter.

Its instanton partition function is

Z inst.(a,m,Λ; ǫ, ~) =
∑

{λ}
q|λ|τ e(T N=2∗

λ ) (3.36)

where

T N=2∗
λ = (1− em)T pure

λ (3.37)

and the instanton counting parameter is qτ = e2πiτ . In the decoupling limit m→∞ with

a proper rescaling of the instanton counting parameter Λ2N = qτm
2N we return back to a

pure gauge theory.

The underlying integrable system is also well-known. It is the elliptic Calogero-Moser

model which is the system of particles on a circle with the Weierstrass ℘-function potential

with the modular parameter τ . Its second quantum Hamiltonian has the form

Ĥ2 = −
~2

2

N
∑

i=1

∂2i +m(m+ ~)
∑

i<j

℘(xi − xj) (3.38)

and for N = 2 the spectral problem coincides with the spectral problem of Lame equation

− ~2

2
ψ′′(x) +m(m+ ~)℘(x)ψ(x) = −uψ(x) (3.39)

The quantized problem clearly resembles the case of Toda systems with the same issue

of the appearance of gaps and bands in the spectrum. The same methods of resummation

can be applied here providing the effective description in the weak coupling limit at large ~.

The superpotential is

W(a,m, qτ ; ~) =Wpert.(a,m, qτ ; ~)− ~F (ν, µ, q) (3.40)

where µ = m/~, q = q
1/2
τ and

Wpert.(a,m, qτ ; ~) = −
2a2

~
log q +̟~(2a) +̟~(−2a)

−̟~(m+ 2a)−̟~(m− 2a) (3.41)

– 18 –



J
H
E
P
0
1
(
2
0
1
8
)
1
3
3

The non-perturbative part after the reorganization has the following form

F (ν, µ, q) = F0(µ, q) +
∑

n>0

∞
∑

k=1

[

g
(n)
k

(

qn

n− ν , µ
)

+ g
(n)
k

(

qn

n+ ν
, µ

)]

q2k−2+n (3.42)

By computing the first few g
(n)
1 functions one can show that

g
(n)
1 (z) =

log
(

1
2 +

√

1
4 + c2nz

2

ζ2n

)

+ 1−
√

1 + 4c2nz
2

ζ2n

z
(3.43)

where

cn =

n
∏

k=−n+1

(µ+ n) (3.44)

For generic µ the effective description near ν ≈ n is the same as for pure U(2) gauge theory

up to renormalization of qn → cnq
n.

A new feature appears for µ ∈ Z≥0 (or µ ∈ Z<0) when cn = 0 for n > µ. In that

case the corresponding g-functions become trivial. However, precisely at this point the

perturbative contribution of matter multiplet cancels the logarithmic singularity of the

W-boson mode, leading to a regular behavior near this points. This is in agreement with

the well known fact that for such special µ the Lame equation has finite amount of gaps.

4 Non-perturbative gaps in the QM spectrum and classical Liouville

theory

4.1 Twisted superpotentials versus classical conformal blocks

In this section we shall use the AGT [19] and AdS3/CFT2 holographic correspondence to

identify our findings regarding the mechanism of non-perturbative gap formation in QM.

We will address the classical limit of the Liouville theory and a scattering process in the

AdS3 gravity involving heavy operators. Two groups of questions can be formulated

• What is the meaning of the exponentially small gaps in the QM spectrum from the

classical conformal block viewpoint? What kind of non-perturbative phenomena in

AdS3 gravity this exponentially small factor captures if any?

• What is the meaning of the CMS near the naive poles in the classical conformal block

in the Liouville theory? This CMS can be equally considered as the curve on the

plane of intermediate conformal dimension at fixed time or in the complex time plane

at fixed intermediate dimension. What is the meaning of the CMS curve from the

viewpoint of AdS3 scattering process involving some non-perturbative contribution?

We shall present the qualitative discussion of these questions in this section postponing the

detailed analysis for the separate publication.

Let us briefly remind that according to the AGT correspondence the Nekrasov parti-

tion function is identified with the particular conformal block in the Liouville theory whose
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type depends on the matter content on the gauge theory side. The coordinate on the

Coulomb branch corresponds to dimension of the intermediate state in the conformal block

therefore the poles we are hunting for correspond to the particular values of the interme-

diate dimensions. The central charge in the Liouville theory is expressed in terms of the

parameters of the Ω-deformation as follows

c = 1 + 6Q2, Q = b+
1

b
, b2 =

ǫ2
ǫ1

(4.1)

hence the NS limit ǫ2 → 0 on the gauge theory side corresponds to the classical c → ∞
limit in the Liouville theory. The dimensions of the degenerate operators in the classical

limit behave as

hs,1 = −
s− 1

2
+O(1/c) h1,r = −

r2 − 1

24
c+O(c0) (4.2)

The operators are naturally classified at large c limit according to behavior of their

conformal dimensions ∆i. The operators whose dimensions are proportional to c are called

heavy while ones whose dimensions are O(1) are called light operators. It is natural to

introduce the classical dimensions δi for the heavy operators defined as

∆i = b−2δi (4.3)

According to AGT correspondence the 4-point spherical Liouville conformal block is identi-

fied with the instanton part Zinst of the total Nekrasov partition function for SU(2) Nf = 4

theory

Fa(ǫ1, ǫ2,mi, q) = Zinst(a, ǫ1, ǫ2,mi, τ) (4.4)

Ztot = ZclZ1-loopZinst (4.5)

where the factors correspond to the classical, one-loop and instanton contribution to the

partition function. One-loop part Z1-loop coincides with the three-point DOZZ factor. The

coordinate at the Coulomb branch a corresponds to the intermediate conformal dimension

in the conformal block, masses mi yield the corresponding conformal dimensions of inser-

tions δi and the complexified coupling constant τ = 4πi
g2

+ θ
2π in SYM theory gets mapped

into the conformal cross-ratio in the 4-point spherical conformal block [19]. The 4-point

correlator in the Liouville theory is expressed in terms the Nekrasov partition function as

follows [19]

〈V (0)V (∞)V (1)V (q)〉 ∝
∫

daa2|Ztot(a)|2 (4.6)

In the classical NS limit ǫ2 → 0 the twisted superpotential gets identified with the

classical conformal block.

Zinst(a, ǫ1, ǫ2, τ)→ exp(b−2W (a,mi, ~, τ)) (4.7)

Fa(ǫ1, ǫ2, δi, q)→ exp(b−2fδin(δi, ~, q)), δin = b−2

(

1

4
− a2

~2

)

(4.8)
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Since we have exact coincidence of the twisted superpotential and the classical conformal

block the naive poles in the twisted superpotential correspond to the naive poles in the in-

termediate dimension plane in the classical Liouville conformal block. Therefore we are able

to translate our findings for the superpotential the corresponding statement that the inte-

grand in the integral representation for the classical Liouville correlator does not have poles.

Similarly the torus one-point classical conformal block corresponds to twisted su-

perpotential in N = 2∗ theory which depends on the external and intermediate di-

mensions ∆,∆in. To have the unified picture it is useful to represent the one-point

torus conformal block Fc,∆in(λ, q) as the spherical conformal block with four insertions

F sp
c,∆in

[λ1, λ2, λ3, λ4](q). The explicit mapping of parameters under the map goes in arbi-

trary Ω-background as follows

Fc,∆in(λ, q) = F sp
c,∆in

[

λ

2
− 1

2b
,
λ

2
+

1

2b
,
b

2
,
b

2

]

(q) (4.9)

where conformal dimensions ∆i are equal to

∆i =
1

4
(Q2 − λ2i ) (4.10)

The modulus of the torus q gets mapped into the position of the insertion x on the sphere as

q(x) = exp

(

−πK(1− x)
K(x)

)

K(x) =

∫ 1

0

dt
√

(1− t2)(1− xt2)
(4.11)

At the classical b → 0 limit the corresponding classical 4-point spherical conformal

block has two equivalent representations

f spδin [δ1, δ2, δ3, δ4](q)= f sp
1
4
−a2

~

[

1

4

(

1−m
2

~

)

,
1

4

(

1− (m+~)2

~

)

,
1

4
,
1

4

]

(q)=

= f sp
1
4
−a2

~

[

1

4

(

3

4
−m

~

(

1+
m

~

)

)

,
1

4

(

3

4
−m

~

(

1+
m

~

)

)

,
3

16
,
3

16

]

(q)

(4.12)

where m is the adjoint mass in N = 2∗ theory. All of insertions correspond to the heavy

operators and the intermediate classical dimension is heavy as well.

If we insert the additional light Ψ2,1(z) operator in 1-point torus conformal block and

consider the 2-point classical conformal block the Lame equation can be identified. The

decoupling equation for the 2-point block can be brought into the conventional QM form

with Lame potential
(

d2

dz2
+ k℘(z|τ) + E

)

Ψ(z, τ, E) = 0 (4.13)

where τ is the modulus of the elliptic curve and k = m
~
(m
~
+1) The energy in the ℘ potential

is related to the classical conformal block via the properly normalized quantum Matone

relation
E

4π2
= −

(a

~

)2
− k

12
(1− 2E2(τ)) + ~−1q

d

dq
WN=2∗(q, a,m, ~) (4.14)

where E2 is the Eisenstein series and a is the Bloch phase.
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The prepotential for the pure SYM theory can be derived from the 1-point torus

conformal block in the limit that corresponds to the dimensional transmutation in the

field theory or the Inozemtsev limit in the language of integrable systems. Prepotential is

expressed in terms of the norm of the coherent Gaiotto state [25]

Fc,∆(Λ) = 〈∆,Λ2|∆,Λ2〉 (4.15)

L0|∆,Λ2〉 =
(

∆+
Λ

4

∂

∂Λ

)

|∆,Λ2〉, (4.16)

L1|∆,Λ2〉 = Λ2|∆,Λ2〉, Ln|∆,Λ2〉 = 0, n ≥ 2 (4.17)

where Λ is the non-perturbative scale in pure N = 2 SYM theory.

To get the Mathieu equation we insert the probe Ψ2,1(z) operator and consider the

classical limit of the null vector decoupling equation for the degenerate irregular conformal

block. The wave function is represented as the matrix element of the degenerate chiral

vertex operator between two Gaiotto states.

〈∆1,Λ
2|V+(z)|∆2,Λ

2〉 → z∆1−∆+−∆2φ

(

Λ

~
, z

)

exp

(

1

b2
fδ

(

Λ

~

))

(4.18)

The function

ψ

(

Λ

~
, z

)

= zrφ

(

Λ

~
, z

)

, δ = 1/4− r2 (4.19)

obeys the Mathieu equation with the energy

E = 4r2 − Λ
∂

∂Λ
fδ

(

Λ

~

)

(4.20)

4.2 Non-perturbative QM gaps and classical conformal block

The phenomena we have found for the twisted superpotentials can be translated into the

classical Liouville conformal blocks. First, the disappearance of the poles in the twisted

superpotential implies the absence of the poles in the intermediate dimension in the classical

conformal block multiplied by DOZZ factor.The energy in the QM problem is identified

with the accessory parameter while the Bloch phase with the intermediate dimension.

Recall that accessory parameter can be derived in two ways. First, evaluate the classical

action in the Liouville theory Scl(δi, q) on the solution to the equation of motion with the

prescribed behavior near the points of operator insertions

φ(z) = −2αi log |z − zi|+O(1) 2b2∆i = αi(2− αi) (4.21)

Then consider the derivative of the action with respect to the modulus

c2 = −
dScl
dq

(4.22)

which has been identified with the accessory parameter familiar in the uniformization

problem. Generically the number of independent accessory parameters depends on the

genus of the surface and the number of the marked points. The accessory parameter
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depends on the classical intermediate dimensions and function c2(δin) exactly coincides

with the dependence of the energy on the Bloch phase in the QM.

The second way of evaluation of the conformal block deals with the so-called mon-

odromy method [64]. One artificially inserts the additional Ψ2,1 light “probe” operator

which obeys the null-vector decoupling equation. Since this operator is light it does not

deform the initial heavy conformal block and indeed can be considered as the useful probe.

For instance, if we insert the light degenerate Ψ2,1 operator in 4-point conformal block the

5-point conformal block will obey the Lame equation with respect to the coordinate of the

light operator insertion as we have discussed above. The poles in conformal block occur

when the heavy intermediate dimension becomes degenerate.

To define accessory parameters in the monodromy method one utilizes the second

order differential equation for the conformal block with additional degenerate operator Ψ2,1

inserted at point z. This new 5-point conformal block obeys the second order equation

(

d2

dz2
+ T (z)

)

Ψ(z) = 0 (4.23)

with T (z) depending on the conformal dimensions of the operators in the conformal block

and the accessory parameters ci to be determined. The accessory parameters ci are defined

via the singular behavior of stress tensor T (x, z) near the insertions of the operators in

4-point block

T (z, x) =
4
∑

i=1

(

ci
z − xi

+
hi

(xi − z)2
)

+ nonsingular (4.24)

They obey the sum rules

4
∑

i=1

ci = 0

4
∑

i=1

(xici + hi) = 0

4
∑

i=1

(cix
2
i + 2cixi) = 0 (4.25)

therefore for the 4-point block there is only one independent accessory parameter which we

denote c2. It depends on the classical intermediate dimension δin and the function c2(δin)

derived by the monodromy method coincides with function obtained from the derivative

of classical Liouville action with respect to the coordinate of the insertion point.

Let us summarize what kind of new information about the Liouville classical torus

conformal block can be traced from our findings concerning the partial resummation of

the instanton contributions. First, the exponentially small gap in the QM spectrum cor-

responds to the exponentially small gap in the accessory parameter c2(a) near the pole in

the conformal block considered as a function of intermediate dimension δin. The instanton

series gets resummed near the pole 2a = k~ and trans-asymptotic matching procedure cor-

responds to the particular resummation of OPE expansion of the 4-point conformal block.

The pole in the complex a plane at fixed q becomes a cut in imaginary direction. As we

have shown the cut is enclosed with the CMS in the a-plane and the pole disappears.

The function c2(a) defines the infinite genus Riemann surface for the pure N = 2

SYM case. For the N = 2∗ theory at special value of adjoint mass m = ~ the Riemann

surface has genus one. To some extend the very phenomena of the cuts formation from the
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naive poles upon the proper resummation corresponds to the derivation of the Riemann

surface familiar in the context of finite-gap solution to the KdV equations. It would be

very interesting to understand better the meaning of the CP1 solitons in the local model

from the Liouville viewpoint. We plan discuss this issue elsewhere. Note that recently the

generalization of the recursion relations derived from the expansion of the conformal block

in the naive poles in the exchanged momentum has been discussed in [65, 66].

It is worth to mention one more aspect of the classical limit in the Liouville theory

namely its intimate relation with the Teichmuller space. The classical action evaluated

on the solution to the classical equation of motion in Liouville theory plays the role of

the action for the Whitham dynamics which on the other hand can be interpreted as the

geodesic motion on the Teichmuller space. The review on the relation between the quantum

Liouville theory and the quantum Teichmuller space can be found in [67, 68]. In the context

of the SW theory relation between the prepotential and Whitham action was first noted

in [4, 10]. It is important that in the NS limit of the Ω-deformed theory the Whitham

dynamics remains classical however with perturbed Hamiltonian. The quantization of the

Teichmuller dynamics occurs only when the second parameter of the Ω-deformation is

switched on.

The relation between the classical Liouville theory and the Whitham classical dynamics

goes as follows. At the Liouville side there are equations relating the accessory parameter

c2 and dual quasimomentum aD with the derivatives of classical Liouville conformal block

f(a, q) with respect to the intermediate weight a (recall that δ2in = 1
4− a2

~2
) and the insertion

point q:

c2 = −
df(a, q)

dq
aD =

df(a, q)

da
(4.26)

These equations have the meaning as conventional Hamilton-Jacobi equations for the

Whitham dynamics

E = −dS
dt

p =
dS

dx
(4.27)

since (aD, a) provide the Poisson pair for the Whitham phase space and log q plays the role

of time. Additionally we have the equation of motion in the Whitham system

daD
dq

= −dc2
da

(4.28)

It is known as P/NP relation or bridge equation in the context of QM [69–71] and its

identification as the Whitham equation of motion has been found in [51]. Another in-

terpretation of this relation via the holomorphic anomaly and mirror transform has been

developed in [72].

The natural objects which describe the structure of the Teichmuller space are the

coadjoint Virasoro orbits (see [73, 74] for a review) which are the infinite dimensional

phase spaces supplemented with the Kirillov-Kostant symplectic form. The coadjoint orbit

is parametrized by the two-differentials L = d2

dx2 + T (x) where T is stress tensor of a

2d theory. Classically the conformal blocks are the functions on the phase space that is

functions on the coadjoint Virasoro orbits. The classical Liouville equation is nothing but

the stationary condition for a point on the coadjoint orbit Ṫ = 0 [75].
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Can we expect that something special can happen in the near-pole region from the

viewpoint of Virasoro coadjoint orbits? The classical intermediate dimension at n-th pole

corresponds precisely to the DiffS1

SLn(2,R) coadjoint orbit. The stabilizer of the orbit SLn(2,R)

is formed by (L−n, L0, Ln) Virasoro generators. Remarkably nearby this type of orbits

there are two families of special coadjoint orbits which does not involve the constant rep-

resentative. They can be considered as the small perturbations of the DiffS1

SLn(2,R) orbit and

are usually denoted as DiffS1

Tn,±
, DiffS1

Tn,ρ
where the stabilizers of the orbits depend on their

invariants. The presence of integer invariant n reflects the fact that π1(SL(2,R)) = Z and

special orbits can be derived from the orbits of ̂SL(2,R) with nonvanishing windings by

small perturbation. Although special coadjoint Virasoro orbits do not admit any standard

quantization procedure they are well defined classical phase spaces.

While considering classical 4-point conformal block with four heavy operators four

classical coadjoint orbits are involved and the near-pole coadjoint orbit corresponds to the

intermediate dimension. We could suggest that the account of special coadjoint Virasoro

orbits DiffS1

Tn,±
, DiffS1

Tn,ρ
is important for the exponentially small effects in the classical conformal

blocks near poles. This point certainly deserves the separate study.

4.3 On non-perturbative phenomena in AdS3 gravity

4.3.1 Mapping to the scattering in AdS3

The classical conformal blocks in Liouville theory have interesting interpretation in the

holographic picture. The central charge in the Liouville theory is related with the gravita-

tional constant in AdS3 [76]

c =
3RAdS

2GN
(4.29)

and classical limit corresponds to the small Newton constant. The spectrum of the quantum

AdS3 gravity involves the vacuum state and energy levels corresponding to the conical

defects, BTZ black holes and quasinormal modes in the BTZ background.

An asymptotically AdS3 metrics in global coordinates reads as

ds2 = α2 1

cos2(ρ)
(α−2dρ2 + dt2 + sin2 ρdφ2) (4.30)

where α2 > 0 corresponds to the conical defect while α2 < 0 to the BTZ black hole. The

parameter α is related to the classical dimension of the heavy boundary operator

α =
√
1− 4h (4.31)

The isometry generators of AdS3 (L−1, L0, L1) form the SL(2,R) algebra and if we introduce

the variable w = φ + it the important isometry generator acts as Lw = −i∂w. The

temperature of the BH is T = 2πα while the angle deficit equals δφ = 2π(1 − α) for the

conical defect metric. The threshold value α = 0 corresponds to the extremal BTZ BH

with zero temperature or equivalently the maximally massive particle.

The precise mapping of the conformal blocks into the bulk has been developed

in [29, 77, 78]. It was shown that the boundary conformal block corresponds to the par-

ticular geodesic Witten diagram when the integration over positions of trivalent vertices
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in the bulk goes along geodesics connecting boundary points. If some operators are light

they correspond to the geodesics in the AdS3 background modified by the heavy operators.

If all operators are heavy one has to take into account the equilibrium conditions at the

junctions of heavy geodesics. Note that previous studies have used slightly different view-

point involving the Hartle-Hawking wave function in 3d gravity. Particles correspond to

the point-like insertions while the BTZ BH to the boundaries which the Hartle-Hawking

wave function depends on. Such viewpoint was applied for instance for the eternal black

holes [79] (see [80] for the review on this approach).

The conformal block was identified up to a constant with the on-shell 3d gravity action

evaluated on the bulk geodesic network [27–29]

logF(a, q,mi) = −Son-shell(a, q,mi) = 2
∑

segments

2hili(a, q,mi) (4.32)

where we have in mind 4-point spherical conformal block relevant for matter in fundamental

or 1-point torus block for the adjoint. The force balance condition is assumed at two bulk

junction points in the spherical case and in one junction point for the torus case. The

positions of vertices are subject to the minimization of the total worldline action. The

action of the Killing vector field on the on-shell bulk action yields the conserved Killing

momentum pw which is identified with the accessory parameter c2 [27–29]

q
Son-shell
dq

= pw = −c2 (4.33)

Another way to reproduce the conformal block in terms of AdS3 bulk involves the

representation of AdS3 gravity as SL(2,R)×SL(2,R) Chern-Simons theory [37, 38]. In this

approach the heavy operators correspond to the flat connections with the fixed holonomies

while the light operators to the open SL(2,R) Wilson lines with one end at the boundary.

It was checked in [81, 82] that the simplest conformal blocks are reproduced in the CS

approach. Note that since the conformal block involving only heavy operators concerns only

flat connections such conformal blocks can be interpreted as the specific geodesic motion

on the moduli space of the flat SL(2,R) connections. The dynamics on the Teichmuller

space can be obtained from the dynamics on SL(2,R) flat connections via Hamiltonian

reduction (see [83] for the early study).

In the case of heavy-light conformal blocks the bulk dynamics corresponds to the

geodesic motion in AdS3 in the background created by the heavy boundary insertions,

see [27, 30–33] for the recent studies. In our situation we have four heavy operators and

the physical process in the bulk is the scattering of the conical defect and the extremal

BH or scattering of two conical defects. We consider the near pole regime and sum up

contributions to the AdS action from all relevant subleading saddles corresponding to SYM

instantons. The conformal blocks involving only heavy operators have been previously

discussed in [34, 35] where the technique suitable for derivation of gravity S-matrix for

the scattering of the particles and BH was developed. In particular the probability of the

BH-particle scattering, Hawking emission and BH production in particle collision has been

estimated. Note that attempt to extract non-perturbative information about 3d gravity
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from the semi-classical conformal blocks has been performed in [30] where the subleading

saddles have been taken into account.

What kind of phenomena in AdS3 gravity have we encountered? Is it non-perturbative

or its interpretation in the gravity terms does not require any tunneling? We have seen in

our study that the summation of the relevant instanton terms near the pole in the inter-

mediate dimension in the 4-point classical conformal block amounts to the exponentially

small gap in the accessory parameter c2 and the higher genus Riemann surface emerges

which generically has infinite genus.

Since the accessory parameter c2 corresponds to the conserved Killing momenta we

have therefore found the exponentially small gap in the values of the conserved momenta.

The intermediate dimension in the conformal block corresponds to the mass of the in-

termediate state in the scattering of two heavy modes and n-th pole corresponds to the

intermediate particle with winding number n in SL(2,R). Therefore we can claim that

the purely winding modes in the intermediate state in the scattering are forbidden due to

“non-perturbative screening” upon the resummation of the relevant terms in OPE. The

AdS on-shell action develops the cuts instead of the naive poles in the intermediate masses

in the a plane at fixed q or in the q plane at fixed a. The latter viewpoint implies that

transition from the early time to late time dynamics goes through the CMS surrounding

the q = 0 region. The rearrangement of the spectrum in CP1 model at the CMS near

each naive pole in the intermediate masses corresponds to the rearrangements of junctions

of geodesics. There is some similarity with the geodesic representation of disappearance

of the W-boson from the spectrum in SW theory since the corresponding geodesics at the

u-plane decays into the pair of geodesics via the string junction exactly at CMS [84].

4.3.2 Comparison with heavy-light conformal blocks

Let us briefly compare our all-heavy 4-point function with heavy-light 4-point classical

conformal blocks focusing at the cut structure. It was argued in [85, 86] that there is the

cut emanating from z = 1 in the heavy-light conformal block 〈OH(0)OH(1)OL(∞)OL(z)〉
in the z-plane. The presence of the cut amounts to a few nontrivial physical phenomena

emerging at small z region.

The specific resummation of the small z contributions has been performed in [86]. It

was demonstrated that to reproduce the small z limit at c→∞ one has to take care of the

limit when cz = constant in the classical limit. The resummation of the (cz)n terms in the

z expansion of the conformal block has been performed and it was demonstrated that it

reproduces correctly the leading small z power and log singularities derived in a different

way. It is this resummation which makes the transition from the Euclidean to Lorentzian

geometry for the conformal blocks involving the degenerate operators self-consistent.

In our case we have all-heavy classical conformal block 〈OH(0)OH(1) OH(∞)OH(q)〉
and we consider the “double classical limit” although this notation could sound confusing.

Namely we consider the limit ǫ2 → 0, ~ → ∞ limit in the Ω-background hence we have

the product of two large numbers in the Liouville central charge and from the conventional

classical limit viewpoint we account some subleading terms. We have performed the re-

summation of the following terms near the pole in the intermediate dimension when the
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corresponding intermediate state becomes degenerate

[

( q
~
)n

n− ( δin
~
)

]k

(4.34)

where n-is the number of pole in the conformal block when the intermediate operator

becomes Ψ1,n. The ~ is the large formal parameter in the classical Liouville theory however

it effectively yields the limit of small q in conformal block somewhat similar to the heavy-

light case.

We have derived above that upon resummation the cut in the space-time Liouville

coordinate q emerges. Similar to the heavy-light case we have obtained the cut in the

space-time coordinate z however in the all-heavy case the position of the cut depends on

the distance from the pole in the intermediate dimension.

Recall that we have started our study from the Ω-deformed SYM theory in NS limit.

The Liouville space-time coordinate corresponds to the complexified coupling constant

in the SYM theory hence the cut in the space-time Liouville coordinate near n-th pole

corresponds to the cut in the SYM coupling constant nearby the n-th vacuum state. The

cut in the Liouville theory makes the transition from the early times to the late times

quite rich and a kind of chaotic behavior with the Lyapunov exponents can be recognized.

Therefore we can expect the same rich structure when moving from the weak coupling to

strong coupling regimes at the SYM side of the correspondence. We hope to discuss this

point elsewhere.

4.3.3 Analogy with the low-energy monopole scattering

It it worth to mention the following useful analogy. Consider the low-energy monopole

scattering at the weak coupling regime. The monopoles are heavy particles and their

scattering is described in the moduli approximation as the geodesic motion in the moduli

space of two monopoles [36]. The scattering phase can be evaluated from the action along

this geodesics. The moduli space of two monopoles enjoys the Atiyah-Hitchin metrics.

The non-perturbative phenomena in the monopole scattering occur due to the non-trivial

geodesics in this metrics. For instance, there is the exponentially suppressed process of the

monopoles into dyons scattering. The key physical phenomenon behind this process is that

angular momentum of the colliding monopoles gets transformed into angular momentum

of electromagnetic field. It is angular momentum which is responsible for the stabilization

of the Euclidean configuration responsible for this non-perturbative process. It can be

described as the motion along a peculiar geodesics in the moduli space which involves the

motion along S1 yielding the electric charge. Let us emphasize that such process is possible

only in some range of the initial angular momenta of the monopoles otherwise the relevant

geodesics are unreachable. This threshold can be also reformulated as the existence of the

threshold in the impact parameter space in the R3.

On the other hand this non-perturbative process can be also described via the exchange

by light W-boson in the physical space. The information concerning the scattering phases

can be extracted from the propagator of the light W-boson which knows about its quantum
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spectrum. Of course this exchange can not be described in the naive perturbation theory

since monopole is not elementary particle and to some extend can be considered as the

coherent state of the infinite number of W-bosons.

The scattering of the heavy modes in AdS3 we consider can be similarly described as

the geodesic motion on the Teichmuller space which can be identified with the solution to

the equation of motion in Whitham dynamics. As we have mentioned above the conserved

Killing momentum of the colliding objects in 3d gravity c2(a) plays the key role. Indeed,

the exponentially small gap in the values of the Killing momentum is the indication of the

non-perturbative phenomena. The emergence of the CMS in the intermediate dimension

at fixed coordinate or in coordinate at fixed intermediate dimensions in our study is the

analogue of the regions in the angular momentum plane or impact parameter plane when

the process monopoles → dyons is possible.

The natural question is if we have in the scattering in AdS3 any analogue of the

angular momentum transfer from the colliding particles to the electromagnetic field similar

to the monopole case. The possible speculation goes as follows. We would like to excite

topologically non-trivial geodesics in the Teichmuller which could be interpreted as carrying

the Killing momentum of the gravitational field. The natural candidates for such objects

are the special coadjoint Virasoro orbits whose very existence follows from the nontrivial

π1 (SL(2,R)). Hence we can suggest that the analog of the non-perturbative transfer of

the angular momentum from the colliding particles to the EM field corresponds to the

”‘excitation”’ of the special Virasoro orbits with nontrivial windings along the geodesic

motion in the Teichmuller space. However note that we have found that pure winding

states in the intermediate channel disappear. They are enclosed within the CMS where

they decay to the solitonic states.

Similar to the monopole case we can assume that by adding the degenerate light

Ψ2,1 probe operator, which is analogue of W-boson, in the monodromy method we probe

the “saddle configuration in AdS space” responsible for the scattering process in AdS3

geometry. That is why the wave function of the light operator which obeys the Lame or

Mathieu equation knows about the on-shell action on the geodesic network. The quantum

spectrum of the Mathieu and Lame equations contains the whole information concerning

the scattering process of the heavy objects.

5 Comments on monopole production

In this section we will speculate on 4d interpretation of the level splitting. We conjecture

that it is related to monopole production by Omega-background. Also, in the next section

we will present a possible brane picture.

It is instructive to take ~→ 0 limit in order to study the original N = 2 d = 4 theory

in the weak Omega-background. For large energies u≫ Λ the gaps are exponentially small.

Leading order WKB approximation yields the following answer for the gap width [87]:

∆u =
~

π

∂u

∂a
arctan

(

e−
2π
~

Im aMD

)

=
~

π

∂u

∂a

∑

n=1,3,5,...

1

n
e−

2πn
~

Im aMD (5.1)
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For large u, aMD is pure imaginary, therefore in the exponent we have the monopole mass

|aMD | = Im aMD . Note that the leading term was previously recovered in eq. (3.29).

Exponent ∼ exp
(

−2π|aMD |
~

)

is a typical answer for a particle production rate in a weak

external field. This suggests that the band structure is probably related to the Schwinger

creation of monopoles by Omega-background. This analogy becomes even more clear if

we translate the energy (5.1) into the prepotential. Differentiating Matone’s relation (3.6)

with respect to the a we obtain:

∂aMD
∂ log Λ

= −i 2
π

∂u

∂a
(5.2)

Therefore (5.1) leads to:

∆F =
2

π

∑

n=1,3,5,...

1

n2
e−

2πn
~

|aMD | (5.3)

This is exactly the Schwinger answer for the particle production rate in a external field.

However, there are two subtleties. First of all, if we simply integrate out monopoles in the

external Omega-background the answer is the Minkowski space5 is given by the following

integral [88–90]:

1

ǫ

∫ +∞

0

ds

s2
e−s|aMD |

eis~ − 1
(5.4)

The integral has poles at s = 2πn. Residues at these poles produce the imaginary part

which is responsible for the particle production. This brings us to the second subtlety: the

number of pairs n is always odd. We conjecture that as we jump from one band to another

the imaginary part of (5.4) changes sign for odd number of pairs.

In the weak coupling region u ≫ 1 the BPS spectrum contains dyons of arbitrary

electric charge. Therefore apart from monopole production one can also expect dyon pro-

duction. We conjecture that the prepotential also receives corrections in the form

∞
∑

n=1

∞
∑

c=0

(−1)n+1

n2
exp

(

−2πn(|aMD |+ ca)

~

)

(5.5)

The above equation surely received ~ corrections. It is natural to guess that these correc-

tions are purely perturbative, in other words they can be easily calculated by substituting

a, aD by the exact WKB periods in the spirit of [91]. It would be interesting to verify

all these conjectures by comparing eq. (5.5) with exact WKB analysis similar to that of

Kashani-Poor and Troost [92].

5.1 Brane picture

As we have demonstrated, the Nekrasov partition function in the NS limit ε2 → 0 has

branch cuts at 2a = n~ = nε1, n ∈ Z. In the effective 2d description these poles are

related to W-boson decay. It is interesting to find the interpretation of these poles from

the viewpoint of the original 4d theory. WKB result (5.3) suggests that the cuts are

5This is the reason we have ei~s instead of e~s.
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NS5 D4

x4

a2 − a3

a1 − a2

Figure 3. U(3) pure gauge theory. The distance x4 = 1/g24d between NS5 branes in the 4-

direction is the instanton counting parameter. Coordinates of D4 branes in the (x5, x6) plane set

the corresponding Higgs VEV.

related to monopole production by the Omega-background, since the jump at the cut is

proportional to monopole production rate. But why do monopoles appear only then 2a is

an integer multiplier of ε1? Unfortunately, we do not have a clear explanation for the NS

limit ε2 = 0. However, as we will demonstrate in this section, in the so-called unrefined

limit ε1 = −ε2 = ε one can easily connect the condition 2a = nε1 to monopole production

even in the SU(N) case.

We start from type IIA brane construction for pure N = 2 SU(N) gauge theory without

Omega-background. We suspend N D4 branes between two NS5 branes (see figure 3).

Branes are stretched along the following directions:

NS5: 0 1 2 3 5 6

D4: 0 1 2 3 4

Positions of N D4 branes in the (x5, x6) plane determine the Higgs VEV ai. Instantons

are represented by D0 branes stretched along x4 between two NS5. W-bosons are realized

by fundamental strings between D4. Monopoles are D2 branes stretched along (x0, x4, l),

where l is a line in the (x5, x6) plane connecting two D4 branes. In [93] it was demon-

strated that in this construction, the Omega-background corresponds to the constant flux

of Ramond-Ramond(RR) 4-form field strength:

F (4) = 2ε
(

dx4 ∧ dx5 ∧ dx1 ∧ dx0 − dx4 ∧ dx5 ∧ dx2 ∧ dx3
)

(5.6)

In this background D0 branes turn into a bound state of D0 and fuzzy D2-D2 due to the

Myers effect — figure 4. Moreover, one can recover the Nekrasov partition function [93]:

in the (x5, x6) plane D2 branes effectively interact as point-like 2d Coulomb charges, with

+1 charge at ai+εn
k
i and -1 at ai+εñ

k
i . The potential between a charge q at x and charge

q′ at y is of course logarithmic:

V = −qq′ log |x− y| (5.7)

The partition function of this 2d Coulomb gas directly leads to the Nekrasov partiton

function. In fact, there is a one-to-one correspondence between integer numbers nki , ñ
k
i and

a Young diagram λi.
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x5

x0

x1

Ñi
k

Ni
k

D4

D2 a1-a2

Figure 4. Geometry of composite D0–fuzzy D2-D2 bubble. Distance Nk
i = ε

(

nk
i + 1/2

)

. For each

D4 brane at x5 = ai, there could be an arbitrary number of bubbles extending to ai + ε
(

nk
i + 1/2

)

on one side and ai−ε
(

ñj
i + 1/2

)

on the other. The only requirement is that D2 should not coincide:

nk
i < nk+1

i .

Now lets return to the monopole production. Note that the D0-D2 composites, like

the original D0 brane instantons, are stretched along the x4 direction. The only difference

between them and monopoles is that monopole D2 branes are stretched all the way from

one D4 to another. We conjecture that if the distance between two of the D4 branes

becomes an integer multiple of ε, then D0-D2 may form a cylindrical D2. But cylindrical

D2 brane is exactly the Euclidean configuration responsible for monopole production [94]!

The formation may occur in two situations: either two D2 branes coming from different

D4 touch and form a cylinder or one D2 becomes big enough to overlap the adjacent D4.

In this case we have a cylinder plus an instanton starting from the adjacent D4. It is

easy to see that such collisions indeed lead to poles in the Nekrasov partition function:

contribution to the partition function from two D2 branes is proportional to(k, l simply

numbers D2 branes) [93]:

e−V =
1

ai + εnli − aj + εñkj + ε
(5.8)

Therefore if two D2 touch, it indeed leads to a pole. Apart from the potential energy (5.7)

each D2 brane has a kinetic energy:

eKi =

N
∏

l=1

1
(

al − ai − εñli
) (

al − ai − ε
(

ñli − 1
))

. . .
(

al − ai + εnli
) (5.9)

Therefore if D2 brane intersects adjacent D4, it leads to a pole too.

To further check this picture lets study a single D2 brane cap stretched between two

D4 in SU(2) theory. The corresponding pair of Young diagrams is just a row with n boxes
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if 2a = εn and an empty diagram. We are expecting that such configuration becomes a

single cylinder stretched between two D4 and its contribution should be of order e−2π|aMD |/ε

for large n. Indeed, it is easy to check that for such pair of Young diagram the Nekrasov

formulas produce

1

n!2(n+ 1)!2
∼ exp

(

−4π|aMD |
ε

)

(5.10)

where we have used eq. (3.8). Note the appearance of the same factor6 1
n!2(n+1)!2

as in

eq. (3.12). We expect that after the resummation of an infinite number of such cylinders

we will again obtain the square root function as in (3.12), such that the contribution of a

single cylinder in indeed e−2π|aMD |/ε.

6 Conclusions

In this paper we have analyzed the interplay between the non-perturbative tunneling effects

in the QM and the fate of the naive singularities in the effective twisted superpotential of

the effective two-dimensional theory. We have focused on the simplest phenomena in this

context — exponentially small gaps in the QM spectrum well above the barrier. It was

shown explicitly that each pole singularity gets split into the cut upon the summation over

the proper terms in the instanton trans-series. This procedure corresponds to the trans-

asymptotic matching procedure known in mathematical literature. In the case of pure U(2)

gauge theory the theory that appears in the local description was identified with the sigma

model on CP1 and two SUSY vacua in 2d theory support the existence of the solitonic 2d

states. Much similar to the decay of the W -boson in the SW theory, the W -boson with

angular momentum n decays into the pair of solitons inside the curve of marginal stability

around n-th cut. Some partial results have been also obtained for U(N) case where the

corresponding local model was identified with the flag sigma-model.

The non-perturbative twisted superpotential for SU(2) with fundamental or adjoint

matter theory is known due to AGT correspondence to coincide with the classical conformal

block. The naive pole in the superpotential corresponds to the naive pole in the classical

conformal block where the intermediate dimension corresponds to the degenerate operator.

We argue that near each pole the conformal block enjoys the CP1 geometry. Moreover

there is a wall crossing phenomena near each pole which can thought of as the region in the

space of intermediate dimensions or in the complex time plane near the operator insertion

point. Using the holographic correspondence we can map near the pole geometry of the

classical conformal block into the scattering of two heavy objects in AdS3 geometry. We

have argued that the poles in the scattering amplitudes corresponding to the pure winding

modes in the intermediate states disappear and the cuts get developed. We predict some

wall-crossing phenomena for the scattering process of conical defects and extremal black

holes. However this issue deserves much more detailed study. The analogy with the non-

perturbative effects in the low-energy monopole scattering involving the geodesic motion

on the monopoles moduli space has been mentioned.

6The difference n → n− 1 appears because here we are dealing with self-dual Omega-background.
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It is a bit surprising in spite of the resurgence arguments that the exponentially small

gap in the spectrum due to the above barrier reflection which certainly is the effect of

instanton-anti-instanton pairs in QM is expressed in terms of the instantons in 4d without

the use of anti-instantons. To get more intuition on this subtle point we have taken a look

at the Schwinger-like interpretation of the exponentially gap formation in 4d theory as some

instanton-anti-instanton phenomena as well. There are arguments that the gap formation is

related to Schwinger non-perturbative monopole pair creation by the graviphoton. However

this point certainly deserves further analysis. Note that there is some analogy with the 4d

SYM case when the effects of monopoles in 4d can be recovered upon the summation over

the instantons in (4+1)d theory with one small compact dimension [95]. In our case we

have recovered the effects of 2d solitons summing up the monopole loops which correspond

to the bounces for the pair creation and lives effectively in 2+1 dimensions.

There are many questions to be answered. The difficult question concerns the in-

terpolation between large and small Planck constant in QM. The regions in the moduli

space around each cut enclosed by the CMS at large ~ have to be glued into the single

CMS around the origin of the moduli space in SW solution at ~ = 0. This implies the

complicated rearrangement of the wall-crossing network when ~ is decreasing. The com-

plexification of the Planck constant discussed in [96] as well as approach suggested in [97]

seem to be important for this question. The analysis of the band and gap structure in

the full Ω-background certainly of great interest. It corresponds to the quantization of the

Whitham dynamics and being translated via AGT to Liouville theory and AdS3 gravity

concerns the non-perturbative effects in quantum 3d gravity which would generalize our

consideration of the semi-classical scattering.

The generalization of the analysis for the 5d SYM gauge theory and therefore for

the relativistic Toda system seems to be straightforward and the interplay between the

summation over the instantons near the naive poles and summation over the torus knot

invariants [98] could yield new ways to utilize the knot invariants in context of the tunneling

phenomena in the quantum mechanics with difference Schrödinger equation. The interplay

between the naive poles and non-perturbative completion of the theory has been discussed

in ABJM theory in [99, 100]. It would be interesting to apply our approach to that

case. Another interesting question concerns the possible meaning of our analysis in the

hydrodynamical picture for the instanton moduli space at large N [101].

The list of stable BPS objects in Ω-background involves the BPS domain walls and

BPS strings [102–104] which saturate the corresponding central charges in SUSY algebra.

It is not clear which role these 4d states play in the sigma models near the cuts on the

QM side and in the AdS3 gravity. In particular the most pressing question concerns the

interpretation of the 2d kinks in the near-pole CP1 model from the 4d viewpoint. In the

worldsheet theory on the surface operator or on the non-Abelian string the kinks correspond

to the trapped monopoles [105]. However in our case when we have just the dimensional

reduction to 2d in the Ω-background such interpretation does not work literally or at least

needs some modification. Another question is: what is the counterpart of BPS domain

walls and strings on the QM side? The recent development in [106] seems to be relevant

for this question.
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One more question concerns the issue of the “time decay of the correlators” which

becomes popular in the context of the information loss paradox starting from [107]. In

the Liouville context one treats the coordinate of the vertex insertion as time-like variable

and investigate the transition from the early time to late time behavior of the conformal

block focusing at the subleading saddles which yield non-decaying late-time contributions.

In our study we have found that there are wall-crossing phenomena near the naive poles.

Hence the transition from early time to late time behavior could undergo the wall-crossing

at intermediate times which is purely non-perturbative phenomena.
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A g-functions for pure U(2)

Here we list a few g
(n)
k functions which have appeared in the main text for pure U(2) theory.

• n = 1

g
(1)
1 (z) = −

√
4z2 + 1− log

(

1
2

(√
4z2 + 1 + 1

))

− 1

z
(A.1)

g
(1)
2 (z) = −

(

2− z2
)√

4z2 + 1−
(

3z2 + 2
)

12z3
(A.2)

g
(1)
3 (z) = −

127z4

288 − z2

16 +
11z6

180
− 599z4

1440
+ 13z2

80
+ 1

20√
4z2+1

− 1
20

z5
(A.3)

g
(1)
4 (z) = −

−16985z6

20736 + 1847z4

5184 − z2

64 +
55z10

1008
+ 235z8

567
− 191617z6

145152
− 4343z4

36288
+ 71z2

448
+ 1

42

(4z2+1)3/2
− 1

42

z7
(A.4)

• n = 2

g
(2)
1 (z) = −

√
z2 + 1− log

(

1
2

(√
z2 + 1 + 1

))

− 1

z
(A.5)

g
(2)
2 (z) = −8− 8

√
z2 + 1

9z
(A.6)

g
(2)
3 (z) = −

−3355z2

1728 −
− 11141z4

5184
− 3679z2

1728
− 3

8√
z2+1

− 3
8

z3
(A.7)

– 35 –



J
H
E
P
0
1
(
2
0
1
8
)
1
3
3

• n = 3

g
(3)
1 (z) = −

√

z2

36 + 1− log

(

1
2

(

√

z2

36 + 1 + 1

))

− 1

z
(A.8)

g
(3)
2 (z) = −

3z2 − 3z2
√

z2

36 + 1

16z3
(A.9)

B Comment on two Riemann surfaces

The Lame equation at fixed coupling is a simple example of the finite-gap potential familiar

in the theory of the KdV equation. In general the potential n(n + 1)℘(x) corresponds to

genus n Riemann surface and therefore the Mathieu cosine potential which can be derived

from the Weierstrass function via the Inozemtsev limit n→∞ corresponds to the infinite

genus Riemann surface.

It is worth to make a comment on the place of these Riemann surfaces in our study.

First of all recall that there are two Riemann surfaces in the play. The first one P (x, y) = 0

appears at the classical level and corresponds to the fixed level of all integrals of motion

Ik in the holomorphic Hamiltonian system Ik(pi, qi) = Ik. For SU(2) case this is genus one

Riemann surface bundled over the complex energy plane. For SU(N) it is higher genus

Riemann surface, for instance g = N − 1 for pure SU(N) gauge theory. Upon quantization

this Riemann surface becomes the operator yielding the Baxter equation acting on the

“wave function” of the single separated variable x:

P

(

x,
d

dx

)

Q(x, Ik) = 0 (B.1)

The commutation relation between x and y can be more complicated and the Baxter

equation can be a difference or even an integral equation. The x-dependence of wave

function of the quantum integrable system Ψ(x,E) at fixed energy or fixed integrals of

motion in the many-body case is controlled by the solutions to the Baxter equation.

However there is the second Riemann surface which governs the E-dependence of the

wave function and its genus is not related with the genus of the classical spectral curve. The

potential in Schrödinger equation is treated as the initial condition for the KdV evolution

and the whole KdV dynamics occurs on this finite genus Riemann surface. Let us remind

how it can be obtained. Consider the Schrödinger equation with the periodic potential
(

− d2

dx2
+ V (x)− E

)

f(x) = 0 (B.2)

Two solutions of the Schrödinger equation defines the monodromy matrix M

(f1(x+ T,E), f2(x+ T,E)) = (f1(x,E), f2(x,E))M (B.3)

The Riemann surface can be written in terms of the monodromy matrix in the form

t2 − TrMt+ 1 = 0 (B.4)

and relates the complex Bloch phase of the solution and its energy.
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For the potential V = −2℘(x) the genus one Riemann surface reads as

y2 =

3
∏

k=1

(E − Ek) (B.5)

where

E1 = ℘(ω1), E2 = ℘(ω2), E3 = ℘(ω3), (B.6)

and (2ω1, 2ω3) are fundamental periods of ℘ function,
∑

ωi = 0. For the adjoint mass in

the N = 2∗ theory mad = ~n we have 2n naive poles in the superpotential which yield the

n cuts upon the split. For pure N = 2 SYM we have the infinite number of poles and this

fits with the fact the Riemann surface for the Mathieu potential has infinite genus.
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[arXiv:1501.05671] [INSPIRE].

[40] M. Beccaria, On the large Ω-deformations in the Nekrasov-Shatashvili limit of N = 2∗

SYM, JHEP 07 (2016) 055 [arXiv:1605.00077] [INSPIRE].

[41] S. Jeong, Splitting of surface defect partition functions and integrable systems,

arXiv:1709.04926 [INSPIRE].

[42] S.L. Lukyanov, Critical values of the Yang-Yang functional in the quantum sine-Gordon

model, Nucl. Phys. B 853 (2011) 475 [arXiv:1105.2836] [INSPIRE].

[43] G.W. Moore, N. Nekrasov and S. Shatashvili, Integrating over Higgs branches, Commun.

Math. Phys. 209 (2000) 97 [hep-th/9712241] [INSPIRE].

[44] A.A. Gerasimov and S.L. Shatashvili, Two-dimensional gauge theories and quantum

integrable systems, arXiv:0711.1472 [INSPIRE].

[45] A.A. Gerasimov and S.L. Shatashvili, Higgs Bundles, Gauge Theories and Quantum

Groups, Commun. Math. Phys. 277 (2008) 323 [hep-th/0609024] [INSPIRE].

[46] N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and

qq-characters, JHEP 03 (2016) 181 [arXiv:1512.05388] [INSPIRE].

[47] N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional N = 2 quiver

gauge theories, arXiv:1211.2240 [INSPIRE].

[48] N. Nekrasov, V. Pestun and S. Shatashvili, Quantum geometry and quiver gauge theories,

arXiv:1312.6689 [INSPIRE].

[49] M. Matone, Instantons and recursion relations in N = 2 SUSY gauge theory, Phys. Lett. B

357 (1995) 342 [hep-th/9506102] [INSPIRE].

[50] R. Flume, F. Fucito, J.F. Morales and R. Poghossian, Matone’s relation in the presence of

gravitational couplings, JHEP 04 (2004) 008 [hep-th/0403057] [INSPIRE].

[51] A. Gorsky and A. Milekhin, RG-Whitham dynamics and complex Hamiltonian systems,

Nucl. Phys. B 895 (2015) 33 [arXiv:1408.0425] [INSPIRE].

– 39 –

https://doi.org/10.1007/JHEP10(2017)140
https://doi.org/10.1007/JHEP10(2017)140
https://arxiv.org/abs/1707.09311
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.09311
https://doi.org/10.1007/JHEP06(2016)183
https://arxiv.org/abs/1603.08440
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.08440
https://doi.org/10.1088/0264-9381/19/15/309
https://arxiv.org/abs/hep-th/0202117
https://inspirehep.net/search?p=find+EPRINT+hep-th/0202117
https://doi.org/10.1088/0264-9381/19/15/308
https://arxiv.org/abs/hep-th/0112164
https://inspirehep.net/search?p=find+EPRINT+hep-th/0112164
https://doi.org/10.1016/0375-9601(85)90238-5
https://doi.org/10.1016/0375-9601(85)90238-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,A107,21%22
https://doi.org/10.1016/0370-2693(86)90140-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B180,89%22
https://doi.org/10.1016/0550-3213(88)90143-5
https://doi.org/10.1016/0550-3213(88)90143-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B311,46%22
https://doi.org/10.1007/JHEP02(2015)160
https://arxiv.org/abs/1501.05671
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05671
https://doi.org/10.1007/JHEP07(2016)055
https://arxiv.org/abs/1605.00077
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.00077
https://arxiv.org/abs/1709.04926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.04926
https://doi.org/10.1016/j.nuclphysb.2011.07.028
https://arxiv.org/abs/1105.2836
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2836
https://doi.org/10.1007/PL00005525
https://doi.org/10.1007/PL00005525
https://arxiv.org/abs/hep-th/9712241
https://inspirehep.net/search?p=find+EPRINT+hep-th/9712241
https://arxiv.org/abs/0711.1472
https://inspirehep.net/search?p=find+EPRINT+arXiv:0711.1472
https://doi.org/10.1007/s00220-007-0369-1
https://arxiv.org/abs/hep-th/0609024
https://inspirehep.net/search?p=find+EPRINT+hep-th/0609024
https://doi.org/10.1007/JHEP03(2016)181
https://arxiv.org/abs/1512.05388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05388
https://arxiv.org/abs/1211.2240
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2240
https://arxiv.org/abs/1312.6689
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6689
https://doi.org/10.1016/0370-2693(95)00920-G
https://doi.org/10.1016/0370-2693(95)00920-G
https://arxiv.org/abs/hep-th/9506102
https://inspirehep.net/search?p=find+EPRINT+hep-th/9506102
https://doi.org/10.1088/1126-6708/2004/04/008
https://arxiv.org/abs/hep-th/0403057
https://inspirehep.net/search?p=find+EPRINT+hep-th/0403057
https://doi.org/10.1016/j.nuclphysb.2015.03.028
https://arxiv.org/abs/1408.0425
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0425


J
H
E
P
0
1
(
2
0
1
8
)
1
3
3

[52] D. Gaiotto, S. Gukov and N. Seiberg, Surface Defects and Resolvents, JHEP 09 (2013) 070

[arXiv:1307.2578] [INSPIRE].

[53] D. Gaiotto, Surface Operators in N = 2 4d Gauge Theories, JHEP 11 (2012) 090

[arXiv:0911.1316] [INSPIRE].

[54] A. Gorsky, B. Le Floch, A. Milekhin and N. Sopenko, Surface defects and instanton-vortex

interaction, Nucl. Phys. B 920 (2017) 122 [arXiv:1702.03330] [INSPIRE].

[55] S.K. Ashok et al., Surface operators, chiral rings and localization in N = 2 gauge theories,

JHEP 11 (2017) 137 [arXiv:1707.08922] [INSPIRE].
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