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Available at: http://www.pmf.ni.ac.rs/filomat

Filomat 24:4 (2010), 77–85 DOI: 10.2298/FIL1004077B

BANDS OF λ-SIMPLE SEMIGROUPS

Stojan Bogdanović, Žarko Popović and Miroslav Ćirić

Abstract

Semigroups having a decomposition into a band of semigroups have been
studied in many papers. In the present paper we give characterizations of
various special types of bands of λ- semigroups and semilattices of matrices
of λ- semigroups.

1. Introduction and preliminaries

Semigroups which can be decomposed into a band of left Archimedean semi-
groups have been studied by many authors. M. S. Putcha [17] proved a general
theorem that characterizes such semigroups. Some other characterizations in the
general case are given by S. Bogdanović, M. Ćirić and Ž. Popović [7] and P. Protić
[14]. Some special decompositions of this type have been also treated in a num-
ber of papers. S. Bogdanović [1], [2], [3], P. Protić [13], [14], [15], S. Bogdanović
and M. Ćirić [4] and S. Bogdanović, M. Ćirić and B. Novikov [6] studied bands of
left Archimedean semigroups whose related band homomorphic images belong to
several very important varieties of bands.

In this paper we give some results concerning decompositions into a band of
λ-simple semigroups in the general and some special cases (Theorem 2).

Let a semigroup S be a semilattice Y of semigroups Sα, α ∈ Y , and for any
α ∈ Y , let Sα be a matrix (left zero band, right zero band) Iα of semigroup Si,
i ∈ Iα. The partition of S whose components are semigroups Si, i ∈ I, where
I = ∪α∈Y Iα, will be called a semilattice-matrix (semilattice-left, semillatice-right)
decomposition of S. All band decompositions are special cases of semilattice-matrix
decompositions. The general lattice theoretical properties of semilattice-matrix
decompositions of semigroups are investigated by M. Ćirić and S. Bogdanović [11]. A
semilattice of matrix of left Archimedean semigroups were studied by S. Bogdanović
and M. Ćirić [4].
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It is well known that a band of semigroups from a class K of a semigroups is a
semilattice of matrices of semigroups from K. Semilattices of matrices of λ-simple
semigroups are described by Theorem 3. The characterizations of semilattices of
hereditary weakly left Archimedean semigroups are given by Theorem 5. At the
end semilattice of λ-simple semigroups are described by Theorem 6.

By Z+ we denote the set of all positive integers. By S1 we denote a semigroup
S with identity 1.

A semigroup in which all its elements are idempotents is a band. A commutative
band is a semilattice. By B (S) we denote the class of all bands (semilattices).

Let % be an arbitrary binary relation on a semigroup S. The intersection of
all transitive relations on S containing % is a transitive relation on S, denoted by
%∞. It is easy to prove that %∞ = ∪n∈Z+%n. The relation %∞ we call the transitive
closure of %.

Let % be an arbitrary relation on a semigroup S. Then radical R(%) of % is a
relation on S defined by:

(a, b) ∈ R(%) ⇔ (∃p, q ∈ Z+) (ap, bq) ∈ %.

The radical R(%) was introduced by L. N. Shevrin in [19].
An equivalence relation ξ is a left (right) congruence if for all a, b ∈ S, a ξ b

implies ca ξ cb (ac ξ bc). An equivalence ξ is a congruence if it is both left and right
congruence. A congruence relation ξ is a band congruence on S if S/ξ is a band,
i.e. if a ξ a2, for all a ∈ S.

Let ξ be an equivalence on a semigroup S. By ξ[ we define the largest congruence
relation on S contained in ξ. It is well-known that

ξ[ = {(a, b) ∈ S × S | (∀x, y ∈ S1) (xay, xby) ∈ ξ}.
For an element a of a semigroup S, the left ideal (the ideal) of S generated by

a we denote with L(a) (J(a)) and it we call the principal left ideal (the principal
ideal) of S generated by a. Also, a subsemiogroup 〈a〉 of a semigroup S generated
by one element subset {a} of S is a monogenic or a cyclic subsemigroup of S.

Let a and b be elements of a semigroup S. Then:

a | b ⇔ b ∈ J(a), a |l b ⇔ b ∈ L(a),

a −→ b ⇔ (∃n ∈ Z+) a | bn, a
l−→ b ⇔ (∃n ∈ Z+) a |l bn,

and =−→ ∩ (−→)−1.

Also, on a semigroup S the relation ↑l is defined by

a ↑l b ⇔ (∃n ∈ Z+) bn ∈ 〈a, b〉 a.

Recall that a semigroup S is left Archimedean if a
l−→ b, for all a, b ∈ S. A

semigroup S is weakly left Archimedean if ab
l−→ b, for all a, b ∈ S. A semigroup S

is hereditary weakly left Archimedean if

(∀a, b ∈ S)(∃i ∈ Z+) bi ∈ 〈a, b〉ab.
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A semigroup S is power-joined if for every a, b ∈ S there exists n,m ∈ Z+ such that
an = bm.

For an element a of a semigroup S we introduce the following notation

Σ(a) = {x ∈ S | a−→∞x}, Λ(a) = {x ∈ S | a
l−→ ∞x},

Λn(a) = {x ∈ S | a
l−→ nx}.

On a semigroup S we define the following equivalences by

a σ b ⇔ Σ(a) = Σ(b), a λ b ⇔ Λ(a) = Λ(b),

a λn b ⇔ Λn(a) = Λn(b).

In [10] is proved that the relation σ is the greatest semilattice congruence on a
semigroup, λ is an equivalence and it is a generalization of the well-known Green’s
equivalence L.

A semigroup S is λ-simple (σ-simple, λn-simple) if aλ b (a σ b, a λn b), for all
a, b ∈ S. We denote by Λ the class of all λ-simple semigroups.

2. Special bands of λ-semigroups

For two classes X1 and X2 of semigroups, X1◦X2 will denote the Mal’cev product
of X1 and X2, i.e. the class of all semigroups S on which there exists a congruence
% such that S/% belongs to X2 and each %-class of S which is a subsemigroup of S
belongs to X1.

By LZ we denote the variety of left zero bands.

Lemma 1.. Let S be a semigroup. Then

Λ = Λ ◦ LZ.

Proof. Let S be a left zero band Y of λ-simple semigroups Sα, α ∈ Y . Assume
a, b ∈ S, then a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y , whence ab ∈ SαSβ ⊆ Sαβ = Sα.

Hence, ab, a ∈ Sα. So ab
l−→ ∞a, whence b

l−→ ∞a. In a similar way it can be
prove that a

l−→ ∞b. Thus a
l−→ ∞ ∩ ( l−→ ∞)−1b and by Lemma 6 [10] we have

that aλb. Therefore, S is a λ-simple semigroup.
The converse follows immediately.

Lemma 2.. [6] Let X be a class of semigroups and let B1 and B2 be two classes
of bands. Then

X ◦ (B1 ◦ B2) ⊆ (X ◦ B1) ◦ B2.

The lattice LVB of all varieties of bands was studied by P. A. Birjukov, C. F.
Fennemore, J. A. Gerhard, M. Petrich and others. Here we use the characterization
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of LVB given by J. A. Gerhard and M. Petrich in [12]. They defined inductively
three systems of words as follows:

G2 = x2x1, H2 = x2, I2 = x2x1x2,
Gn = xnGn−1, Hn = xnGn−1xnHn−1, In = xnGn−1xnIn−1,

(for n ≥ 3), and they shown that the lattice LVB can be represented by the graph
given in Figure 1.
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Figure 1.

Theorem 1.. [6] Let V be an arbitrary variety of bands. Then

LZ ◦ V =





LZ, if V ∈ [O,LZ];
RB, if V ∈ [RZ,RB];
[G2 = I2] , if V ∈ [S, [G2 = I2]] ;
[G3 = I3] , if V ∈ [RN , [G3 = H3]] ;
[Gn+1 = In+1] , if V ∈ [

[Gn = In], [Gn+1 = In+1]
]
, n ≥ 2;

[Gn+1 = Hn+1] , if V ∈ [
[Gn = Hn], [Gn+1 = Hn+1]

]
, n ≥ 3.
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Our next goal is to characterize semigroups from Λ ◦ V, for an arbitrary variety
of bands V.

Theorem 2.. Let V be an arbitrary variety of bands. Then

Λ ◦ V =





Λ, if V ∈ [O,LZ];
Λ ◦ RZ, if V ∈ [RZ,RB];
Λ ◦ S, if V ∈ [S, [G2 = I2]] ;
Λ ◦ RN , if V ∈ [RN , [G3 = H3]] ;
Λ ◦ [

Gn = In

]
, if V ∈ [

[Gn = In], [Gn+1 = In+1]
]
, n ≥ 2;

Λ ◦ [
Gn = Hn

]
, if V ∈ [

[Gn = Hn], [Gn+1 = Hn+1]
]
, n ≥ 3.

Proof. By Lemma 1 we have that Λ ◦ LZ = Λ. Let V ∈ [V1,V2], whence [V1,V2] is
some of the intervals of the lattice LVB from the theorem. By Theorem 1 we have
that V2 = LZ ◦ V1, whence

Λ ◦ V1 ⊆ Λ ◦ V ⊆ Λ ◦ V2 = Λ ◦ (LZ ◦ V1) ⊆ (Λ ◦ LZ) ◦ V1 = Λ ◦ V1 (by Lemma 1).

Therefore, Λ ◦ V1 = Λ ◦ V = Λ ◦ V2.

3. Semilattices of matrices of λ-simple semigroups

By the well-known result of A. H. Clifford, any band of λ-simple semigroups is
a semillatice of matrices of λ-simple semigroups. These semigroups will be charac-
terized by the following theorem.

Theorem 3.. A semigroup S is a semilattice of matrices of λ-simple semigroups
if and only if

(2) a −→ ∞b =⇒ ab
l−→ ∞b,

for every a, b ∈ S.

Proof. Let S be a semilattice Y of matrices of λ-simple semigroup Sα, α ∈ Y .
Assume that a −→ ∞b, for a ∈ Sα, b ∈ Sβ , α, β ∈ Y . Then by Lemma 1.4 [18]
or Lemma 9 [10] is β ≤ α, whence b, ba ∈ Sβ and by Theorem 1 [4] we have that

ba · b l−→ ∞b, i.e. ab
l−→ ∞b.

Conversely, since every semigroup S is a semilattice Y of semilattice indecom-
posable semigroups Sα, α ∈ Y , then for a, b ∈ Sα, α ∈ Y we have that aσb (where
σ is corresponding the greatest semilattice congruence on S), whence by Lemma
6 [10] a −→ ∞b. By Lemma 9 [10] we have that a −→ ∞b in Sα, α ∈ Y . From
this it follows by (2) that ab

l−→ ∞b. By Lemma 11 [10] we have that ab
l−→ ∞b

in Sα, α ∈ Y and by Theorem 1 [4] Sα is a matrix of λ-simple semigroups, for all
α ∈ Y .

The next theorem gives an explanation why the notion ”hereditary weakly left
Archimedean” is used.
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Theorem 4.. The following conditions on a semigroup S are equivalent:

(i) S is hereditary weakly left Archimedean;
(ii) any subsemigroup of S is weakly left Archimedean;
(iii) ↑l is a symmetric relation on S.

Proof. (i) =⇒ (ii) Let T be a subsemigroup of S. For a, b ∈ T we have that
bi ∈ 〈a, b〉ab ⊆ Tab, for some i ∈ Z+. Hence, T is a weakly left Archimedean
semigroup and therefore S is a hereditary weakly left Archimedean semigroup.

(ii) =⇒ (i) Assume a, b ∈ S, then 〈ba, b〉 is a weakly left Archimedean semigroup,
whence

bi ∈ 〈ba, b〉ba · b ⊆ 〈a, b〉ab,

for some i ∈ Z+.
(i) =⇒ (iii) Let a, b ∈ S such that a ↑l b, i.e. bn ∈ 〈a, b〉a, for some n ∈ Z+. Then

bn = xa, for some x ∈ 〈a, b〉. For x and a there exists m ∈ Z+, y ∈ 〈x, a〉 ⊆ 〈a, b〉
such that am = yax = ybn, i.e. b ↑l a.

(iii) =⇒ (i) Let a, b ∈ S, then b ↑l ab, whence ab ↑l b, i.e. bi ∈ 〈ab, b〉ab ⊆
〈a, b〉ab, for some i ∈ Z+.

T. Tamura [20] proved that in the general case a semilattices of Archimedean
semigroups are not subsemigroup closed. Here, we prove that a semilattices of
hereditary weakly Archimedean semigroups are subsemigroup closed. By the fol-
lowing theorem we generalize some results obtained in [5].

Theorem 5.. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of hereditary weakly left Archimedean semigroups;
(ii) (∀a, b ∈ S) a −→ b =⇒ (∃i ∈ Z+) bi ∈ 〈a, b〉ab;
(iii) every subsemigroup of S is a semilattice of hereditary weakly left Archimedean

semigroups.

Proof. (i) =⇒ (ii) Let S be a semilattice Y of hereditary weakly left Archimedean
semigroups Sα, α ∈ Y . Assume a, b ∈ S such that a −→ b. If a ∈ Sα, b ∈ Sβ for
some α, β ∈ Y , then β ≤ α, whence b, ba ∈ Sβ . Now

bn ∈ 〈ba, b〉bab ⊆ 〈a, b〉ab,

for some n ∈ Z+. Hence, (ii) holds.
(ii) =⇒ (i) Assume a, b ∈ S. Since a −→ ab, then by the hypothesis a · ab ↑l ab,

i.e. (ab)n ∈ 〈a, ab〉a2b, for some n ∈ Z+. Now by Theorem 1 [9] S is a semilattice
Y of Archimedean semigroups Sα, α ∈ Y . Further, assume α ∈ Y , a, b ∈ Sα. Then
a −→ b, so by the hypothesis bn ∈ 〈a, b〉ab, for some n ∈ Z+. Therefore, Sα, α ∈ Y
is an hereditary weakly left Archimedean semigroup.

(ii) =⇒ (iii) Let T be a subsemigroup of S and a, b ∈ T such that a −→ b in T ,
then a −→ b in S and by (ii), bn ∈ 〈a, b〉ab ⊆ Tab, for some n ∈ Z+. Thus, T is a
semilattice of hereditary weakly left Archimedean semigroups.

(iii) =⇒ (i) This implication follows immediately.
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A semilattices of λ-simple semigroups were described in [6] and [9]. Here, by
the following theorem we give some new interesting characterizations of these semi-
groups.

Theorem 6.. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of λ-simple semigroups;

(ii) (∀a, b ∈ S) a −→ ∞b =⇒ a
l−→ ∞b;

(iii) (∀a, b ∈ S) a ∞b =⇒ a
l−→ ∞b

Proof. (i) =⇒ (ii) Let S be a semilattice Y of λ-simple semigroups Sα, α ∈ Y .
Assume a, b ∈ S such that a −→ ∞b. Then by Lemma 1.4 (2) [18] (or Lemma 9
(b) [10]) a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y and β ≤ α, whence ba, b ∈ Sβ . So

ba
l−→ ∞b. Since a

l−→ ba
l−→ ∞b, we then have that a

l−→ ∞b.
(ii) =⇒ (i) Let (ii) hold. By Theorem 1 [10] every semigroup S is a semilattice

Y of σ-simple semigroups Sα, α ∈ Y . Then for a, b ∈ Sα, α ∈ Y , by Theorem
1.1 [18] we have that a ∞b, and by Lemma 1.4 (3) [18] a ∞b in Sα, α ∈ Y ,

whence a −→ ∞b in Sα, α ∈ Y . So by hypothesis a
l−→ ∞b and by Lemma 11 (a)

[10] a
l−→ ∞b in Sα, α ∈ Y , since a, b ∈ Sα. Thus a

l−→ ∞b in Sα, α ∈ Y , for all
a, b ∈ Sα and by Lemma 6 [10] Sα, α ∈ Y is a λ-simple semigroup. Therefore, S is
a semilattice of λ-simple semigroups.

(i) =⇒ (iii) Let S be a semilattice Y of λ-simple semigroups Sα, α ∈ Y . Assume
a, b ∈ S such that a ∞b. Then by Lemma 1.4 (3) [18] a, b ∈ Sα and a ∞b in

Sα, for some α ∈ Y , whence aλb and by Lemma 6 (iv) [10] a
l−→
∞

b.
(iii) =⇒ (i) Let (iii) hold. Since every semigroup S is a semilattice Y of σ-simple

semigroups Sα, α ∈ Y , then for a, b ∈ Sα, α ∈ Y , by Theorem 1.1 [18] we have that
a ∞b, whence a

l−→ ∞b and a( l−→ ∞)−1b in Sα. Thus a
l−→ ∞ ∩ ( l−→ ∞)−1b

and by Lemma 6 (iv) [18] Sα is a λ-simple semigroup.

Problem 1. By M we denote the class of all matrices (rectangular bands). Let

Λ ◦Mk+1 =
(
Λ ◦Mk

) ◦M, k ∈ Z+.

Describe the structure of semigroups from the following classes

Λ ◦Mk+1,
(
Λ ◦Mk+1

) ◦ B,
(
Λ ◦Mk+1

) ◦ S.

The previous problem can be formulated in the same way if instead the class
Λ we take the class of all power-joined semigroups or the class of all λn-simple
semigroups.

4. Some remarks on λ-equivalence

In this section we give some characterization of λ congruence.
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Lemma 3.. The following conditions on a semigroup S are equivalent:

(i) λ is a congruence;
(ii) λ = λ[;
(iii) λ is a band congruence.

Proof. This assertion follows by Lemma 2.2 [8].

Lemma 4.. The following conditions on a semigroup S are equivalent:

(i) λ[ is a band congruence;
(ii) λ[ = R(λ[);
(iii) (∀a ∈ S)(∀x, y ∈ S1) (xay, xa2y) ∈ λ.

Proof. (i)⇔(ii) This follows by Lemma 2.1 [8] and Lemma 2.3 [8].
(i)⇔(iii) This follows by Lemma 2.4 [8].

Corollary 1.. If S ∈ Λ ◦ B, then

(∀a ∈ S)(∀x, y ∈ S1) (xay, xa2y) ∈ λ.

Proof. Let S be a band Y of λ-simple semigroups Sα, α ∈ Y . Assume a ∈ S and
x, y ∈ S, then xay, xa2y ∈ Sα, for some α ∈ y, whence (xay, xa2y) ∈ λ.

Problem 2. Is the converse of the Corollary 1 holds?
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[5] S. Bogdanović, M. Ćirić and M. Mitrović, Semilattices of hereditary Archimedean
semigroups, Filomat (Nǐs) 9:3 (1995), 611–617.
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[10] M. Ćirić and S. Bogdanović, Semilattice decompositions of semigroups, Semigroup
Forum 52 (1996), 119–132.
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P.O. Box 224, 18000 Nǐs, Serbia
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