BANDS OF λ-SIMPLE SEMIGROUPS

Stojan Bogdanović, Žarko Popović and Miroslav Ćirić

Abstract

Semigroups having a decomposition into a band of semigroups have been studied in many papers. In the present paper we give characterizations of various special types of bands of λ - semigroups and semilattices of matrices of λ - semigroups.

1. Introduction and preliminaries

Semigroups which can be decomposed into a band of left Archimedean semigroups have been studied by many authors. M. S. Putcha [17] proved a general theorem that characterizes such semigroups. Some other characterizations in the general case are given by S. Bogdanović, M. Ćirić and Ž. Popović [7] and P. Protić [14]. Some special decompositions of this type have been also treated in a number of papers. S. Bogdanović [1], [2], [3], P. Protić [13], [14], [15], S. Bogdanović and M. Ćirić [4] and S. Bogdanović, M. Ćirić and B. Novikov [6] studied bands of left Archimedean semigroups whose related band homomorphic images belong to several very important varieties of bands.

In this paper we give some results concerning decompositions into a band of λ-simple semigroups in the general and some special cases (Theorem 2).

Let a semigroup S be a semilattice Y of semigroups $S_{\alpha}, \alpha \in Y$, and for any $\alpha \in Y$, let S_{α} be a matrix (left zero band, right zero band) I_{α} of semigroup S_{i}, $i \in I_{\alpha}$. The partition of S whose components are semigroups $S_{i}, i \in I$, where $I=\cup_{\alpha \in Y} I_{\alpha}$, will be called a semilattice-matrix (semilattice-left, semillatice-right) decomposition of S. All band decompositions are special cases of semilattice-matrix decompositions. The general lattice theoretical properties of semilattice-matrix decompositions of semigroups are investigated by M. Ćirić and S. Bogdanović [11]. A semilattice of matrix of left Archimedean semigroups were studied by S. Bogdanović and M. Ćirić [4].

2000 Mathematics Subject Classifications. 20M10.
Key words and Phrases. λ-simple semigroup, band of semigroups, semilattice of semigroups. Received: May 1, 2010.
Communicated by Dragan S. Djordjević
Research supported by Ministry of Science and Environmental Protection, Republic of Serbia, Grant No. 144011

It is well known that a band of semigroups from a class \mathcal{K} of a semigroups is a semilattice of matrices of semigroups from \mathcal{K}. Semilattices of matrices of λ-simple semigroups are described by Theorem 3. The characterizations of semilattices of hereditary weakly left Archimedean semigroups are given by Theorem 5. At the end semilattice of λ-simple semigroups are described by Theorem 6 .

By \mathbf{Z}^{+}we denote the set of all positive integers. By S^{1} we denote a semigroup S with identity 1.

A semigroup in which all its elements are idempotents is a band. A commutative band is a semilattice. By $\mathcal{B}(\mathcal{S})$ we denote the class of all bands (semilattices).

Let ϱ be an arbitrary binary relation on a semigroup S. The intersection of all transitive relations on S containing ϱ is a transitive relation on S, denoted by ϱ^{∞}. It is easy to prove that $\varrho^{\infty}=\cup_{n \in \mathbf{Z}^{+}} \varrho^{n}$. The relation ϱ^{∞} we call the transitive closure of ϱ.

Let ϱ be an arbitrary relation on a semigroup S. Then radical $R(\varrho)$ of ϱ is a relation on S defined by:

$$
(a, b) \in R(\varrho) \Leftrightarrow\left(\exists p, q \in \mathbf{Z}^{+}\right)\left(a^{p}, b^{q}\right) \in \varrho .
$$

The radical $R(\varrho)$ was introduced by L. N. Shevrin in [19].
An equivalence relation ξ is a left (right) congruence if for all $a, b \in S, a \xi b$ implies $c a \xi c b(a c \xi b c)$. An equivalence ξ is a congruence if it is both left and right congruence. A congruence relation ξ is a band congruence on S if S / ξ is a band, i.e. if $a \xi a^{2}$, for all $a \in S$.

Let ξ be an equivalence on a semigroup S. By ξ^{b} we define the largest congruence relation on S contained in ξ. It is well-known that

$$
\xi^{b}=\left\{(a, b) \in S \times S \mid\left(\forall x, y \in S^{1}\right)(x a y, x b y) \in \xi\right\}
$$

For an element a of a semigroup S, the left ideal (the ideal) of S generated by a we denote with $L(a)(J(a))$ and it we call the principal left ideal (the principal ideal) of S generated by a. Also, a subsemiogroup $\langle a\rangle$ of a semigroup S generated by one element subset $\{a\}$ of S is a monogenic or a cyclic subsemigroup of S.

Let a and b be elements of a semigroup S. Then:

$$
\begin{gathered}
a|b \Leftrightarrow b \in J(a), \quad a|_{l} b \Leftrightarrow b \in L(a), \\
a \longrightarrow b \Leftrightarrow\left(\exists n \in \mathbf{Z}^{+}\right) a\left|b^{n}, \quad a \stackrel{l}{\longrightarrow} b \Leftrightarrow\left(\exists n \in \mathbf{Z}^{+}\right) a\right|_{l} b^{n}, \\
\text { and }-=\longrightarrow \cap(\longrightarrow)^{-1} .
\end{gathered}
$$

Also, on a semigroup S the relation \uparrow_{l} is defined by

$$
a \uparrow_{l} b \Leftrightarrow\left(\exists n \in \mathbf{Z}^{+}\right) b^{n} \in\langle a, b\rangle a .
$$

Recall that a semigroup S is left Archimedean if $a \xrightarrow{l} b$, for all $a, b \in S$. A semigroup S is weakly left Archimedean if $a b \xrightarrow{l} b$, for all $a, b \in S$. A semigroup S is hereditary weakly left Archimedean if

$$
(\forall a, b \in S)\left(\exists i \in \mathbf{Z}^{+}\right) b^{i} \in\langle a, b\rangle a b
$$

A semigroup S is power-joined if for every $a, b \in S$ there exists $n, m \in \mathbf{Z}^{+}$such that $a^{n}=b^{m}$.

For an element a of a semigroup S we introduce the following notation

$$
\begin{gathered}
\Sigma(a)=\left\{x \in S \mid a \longrightarrow \longrightarrow^{\infty} x\right\}, \quad \Lambda(a)=\left\{x \in S \mid a \xrightarrow{l}{ }^{\infty} x\right\}, \\
\Lambda_{n}(a)=\left\{x \in S \mid a \xrightarrow{l}^{n} x\right\} .
\end{gathered}
$$

On a semigroup S we define the following equivalences by

$$
\begin{gathered}
a \sigma b \Leftrightarrow \Sigma(a)=\Sigma(b), \quad a \lambda b \Leftrightarrow \Lambda(a)=\Lambda(b), \\
a \lambda_{n} b \Leftrightarrow \Lambda_{n}(a)=\Lambda_{n}(b) .
\end{gathered}
$$

In [10] is proved that the relation σ is the greatest semilattice congruence on a semigroup, λ is an equivalence and it is a generalization of the well-known Green's equivalence \mathcal{L}.

A semigroup S is λ-simple (σ-simple, λ_{n}-simple) if $a \lambda b\left(a \sigma b, a \lambda_{n} b\right.$), for all $a, b \in S$. We denote by Λ the class of all λ-simple semigroups.

2. Special bands of λ-semigroups

For two classes \mathcal{X}_{1} and \mathcal{X}_{2} of semigroups, $\mathcal{X}_{1} \circ \mathcal{X}_{2}$ will denote the Mal'cev product of \mathcal{X}_{1} and \mathcal{X}_{2}, i.e. the class of all semigroups S on which there exists a congruence ϱ such that S / ϱ belongs to \mathcal{X}_{2} and each ϱ-class of S which is a subsemigroup of S belongs to \mathcal{X}_{1}.

By $\mathcal{L Z}$ we denote the variety of left zero bands.
Lemma 1.. Let S be a semigroup. Then

$$
\Lambda=\Lambda \circ \mathcal{L Z}
$$

Proof. Let S be a left zero band Y of λ-simple semigroups $S_{\alpha}, \alpha \in Y$. Assume $a, b \in S$, then $a \in S_{\alpha}, b \in S_{\beta}$, for some $\alpha, \beta \in Y$, whence $a b \in S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}=S_{\alpha}$. Hence, $a b, a \in S_{\alpha}$. So $a b \xrightarrow{l}{ }^{\infty} a$, whence $b \xrightarrow{l}{ }^{\infty} a$. In a similar way it can be prove that $a \xrightarrow{l}{ }^{\infty} b$. Thus $a \xrightarrow{l} \infty \cap(\xrightarrow{l})^{-1} b$ and by Lemma 6 [10] we have that $a \lambda b$. Therefore, S is a λ-simple semigroup.

The converse follows immediately.
Lemma 2.. [6] Let \mathcal{X} be a class of semigroups and let \mathcal{B}_{1} and \mathcal{B}_{2} be two classes of bands. Then

$$
\mathcal{X} \circ\left(\mathcal{B}_{1} \circ \mathcal{B}_{2}\right) \subseteq\left(\mathcal{X} \circ \mathcal{B}_{1}\right) \circ \mathcal{B}_{2}
$$

The lattice LVB of all varieties of bands was studied by P. A. Birjukov, C. F. Fennemore, J. A. Gerhard, M. Petrich and others. Here we use the characterization
of LVB given by J. A. Gerhard and M. Petrich in [12]. They defined inductively three systems of words as follows:

$$
\begin{array}{lll}
G_{2}=x_{2} x_{1}, & H_{2}=x_{2}, & I_{2}=x_{2} x_{1} x_{2}, \\
G_{n}=x_{n} \bar{G}_{n-1}, & H_{n}=x_{n} \bar{G}_{n-1} x_{n} \bar{H}_{n-1}, & I_{n}=x_{n} \bar{G}_{n-1} x_{n} \bar{I}_{n-1},
\end{array}
$$

(for $n \geq 3$), and they shown that the lattice $\mathbf{L V B}$ can be represented by the graph given in Figure 1.

Figure 1.
Theorem 1.. [6] Let \mathcal{V} be an arbitrary variety of bands. Then

$$
\mathcal{L Z} \circ \mathcal{V}= \begin{cases}\mathcal{L Z}, & \text { if } \mathcal{V} \in[\mathcal{O}, \mathcal{L Z}] ; \\ \mathcal{R B}, & \text { if } \mathcal{V} \in[\mathcal{R} \mathcal{Z}, \mathcal{R B}] ; \\ {\left[G_{2}=I_{2}\right],} & \text { if } \mathcal{V} \in\left[\mathcal{S},\left[G_{2}=I_{2}\right]\right] ; \\ {\left[G_{3}=I_{3}\right],} & \text { if } \mathcal{V} \in\left[\mathcal{R} \mathcal{N},\left[G_{3}=H_{3}\right]\right] ; \\ {\left[G_{n+1}=I_{n+1}\right],} & \text { if } \mathcal{V} \in\left[\left[\bar{G}_{n}=\bar{I}_{n}\right],\left[G_{n+1}=I_{n+1}\right]\right], n \geq 2 \\ {\left[G_{n+1}=H_{n+1}\right],} & \text { if } \mathcal{V} \in\left[\left[\bar{G}_{n}=\bar{H}_{n}\right],\left[G_{n+1}=H_{n+1}\right]\right], n \geq 3\end{cases}
$$

Our next goal is to characterize semigroups from $\Lambda \circ \mathcal{V}$, for an arbitrary variety of bands \mathcal{V}.

Theorem 2.. Let \mathcal{V} be an arbitrary variety of bands. Then

$$
\Lambda \circ \mathcal{V}= \begin{cases}\Lambda, & \text { if } \mathcal{V} \in[\mathcal{O}, \mathcal{L Z}] ; \\ \Lambda \circ \mathcal{R} \mathcal{Z}, & \text { if } \mathcal{V} \in[\mathcal{R Z}, \mathcal{R} B] ; \\ \Lambda \circ \mathcal{S}, & \text { if } \mathcal{V} \in\left[\mathcal{S},\left[G_{2}=I_{2}\right]\right] ; \\ \Lambda \circ \mathcal{R N}, & \text { if } \mathcal{V} \in\left[\mathcal{R N},\left[G_{3}=H_{3}\right]\right] ; \\ \Lambda \circ\left[\bar{G}_{n}=\bar{I}_{n}\right], & \text { if } \mathcal{V} \in\left[\left[\bar{G}_{n}=\bar{I}_{n}\right],\left[G_{n+1}=I_{n+1}\right]\right], n \geq 2 \\ \Lambda \circ\left[\bar{G}_{n}=H_{n}\right], & \text { if } \mathcal{V} \in\left[\left[\bar{G}_{n}=\bar{H}_{n}\right],\left[G_{n+1}=H_{n+1}\right]\right], n \geq 3\end{cases}
$$

Proof. By Lemma 1 we have that $\Lambda \circ \mathcal{L Z}=\Lambda$. Let $\mathcal{V} \in\left[\mathcal{V}_{1}, \mathcal{V}_{2}\right]$, whence $\left[\mathcal{V}_{1}, \mathcal{V}_{2}\right]$ is some of the intervals of the lattice $\mathbf{L V B}$ from the theorem. By Theorem 1 we have that $\mathcal{V}_{2}=\mathcal{L} \mathcal{Z} \circ \mathcal{V}_{1}$, whence
$\Lambda \circ \mathcal{V}_{1} \subseteq \Lambda \circ \mathcal{V} \subseteq \Lambda \circ \mathcal{V}_{2}=\Lambda \circ\left(\mathcal{L Z} \circ \mathcal{V}_{1}\right) \subseteq(\Lambda \circ \mathcal{L Z}) \circ \mathcal{V}_{1}=\Lambda \circ \mathcal{V}_{1}($ by Lemma 1$)$.
Therefore, $\Lambda \circ \mathcal{V}_{1}=\Lambda \circ \mathcal{V}=\Lambda \circ \mathcal{V}_{2}$.

3. Semilattices of matrices of λ-simple semigroups

By the well-known result of A. H. Clifford, any band of λ-simple semigroups is a semillatice of matrices of λ-simple semigroups. These semigroups will be characterized by the following theorem.

Theorem 3.. A semigroup S is a semilattice of matrices of λ-simple semigroups if and only if

$$
\begin{equation*}
a \longrightarrow \longrightarrow^{\infty} b \Longrightarrow a b \xrightarrow{l}^{\infty} b, \tag{2}
\end{equation*}
$$

for every $a, b \in S$.
Proof. Let S be a semilattice Y of matrices of λ-simple semigroup $S_{\alpha}, \alpha \in Y$. Assume that $a \longrightarrow{ }^{\infty} b$, for $a \in S_{\alpha}, b \in S_{\beta}, \alpha, \beta \in Y$. Then by Lemma 1.4 [18] or Lemma 9 [10] is $\beta \leq \alpha$, whence $b, b a \in S_{\beta}$ and by Theorem 1 [4] we have that $b a \cdot b \xrightarrow{l}{ }^{\infty} b$, i.e. $a b \xrightarrow{l}{ }^{\infty} b$.

Conversely, since every semigroup S is a semilattice Y of semilattice indecomposable semigroups $S_{\alpha}, \alpha \in Y$, then for $a, b \in S_{\alpha}, \alpha \in Y$ we have that $a \sigma b$ (where σ is corresponding the greatest semilattice congruence on S), whence by Lemma $6[10] a \longrightarrow{ }^{\infty} b$. By Lemma 9 [10] we have that $a \longrightarrow{ }^{\infty} b$ in $S_{\alpha}, \alpha \in Y$. From this it follows by (2) that $a b \xrightarrow{l}{ }^{\infty} b$. By Lemma 11 [10] we have that $a b \xrightarrow{l}{ }^{\infty} b$ in $S_{\alpha}, \alpha \in Y$ and by Theorem 1 [4] S_{α} is a matrix of λ-simple semigroups, for all $\alpha \in Y$.

The next theorem gives an explanation why the notion "hereditary weakly left Archimedean" is used.

Theorem 4. The following conditions on a semigroup S are equivalent:
(i) S is hereditary weakly left Archimedean;
(ii) any subsemigroup of S is weakly left Archimedean;
(iii) \uparrow_{l} is a symmetric relation on S.

Proof. (i) \Longrightarrow (ii) Let T be a subsemigroup of S. For $a, b \in T$ we have that $b^{i} \in\langle a, b\rangle a b \subseteq T a b$, for some $i \in \mathbf{Z}^{+}$. Hence, T is a weakly left Archimedean semigroup and therefore S is a hereditary weakly left Archimedean semigroup.
(ii) \Longrightarrow (i) Assume $a, b \in S$, then $\langle b a, b\rangle$ is a weakly left Archimedean semigroup, whence

$$
b^{i} \in\langle b a, b\rangle b a \cdot b \subseteq\langle a, b\rangle a b
$$

for some $i \in \mathbf{Z}^{+}$.
(i) \Longrightarrow (iii) Let $a, b \in S$ such that $a \uparrow_{l} b$, i.e. $b^{n} \in\langle a, b\rangle a$, for some $n \in \mathbf{Z}^{+}$. Then $b^{n}=x a$, for some $x \in\langle a, b\rangle$. For x and a there exists $m \in \mathbf{Z}^{+}, y \in\langle x, a\rangle \subseteq\langle a, b\rangle$ such that $a^{m}=y a x=y b^{n}$, i.e. $b \uparrow_{l} a$.
(iii) \Longrightarrow (i) Let $a, b \in S$, then $b \uparrow_{l} a b$, whence $a b \uparrow_{l} b$, i.e. $b^{i} \in\langle a b, b\rangle a b \subseteq$ $\langle a, b\rangle a b$, for some $i \in \mathbf{Z}^{+}$.
T. Tamura [20] proved that in the general case a semilattices of Archimedean semigroups are not subsemigroup closed. Here, we prove that a semilattices of hereditary weakly Archimedean semigroups are subsemigroup closed. By the following theorem we generalize some results obtained in [5].

Theorem 5.. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of hereditary weakly left Archimedean semigroups;
(ii) $(\forall a, b \in S) a \longrightarrow b \Longrightarrow\left(\exists i \in \mathbf{Z}^{+}\right) b^{i} \in\langle a, b\rangle a b$;
(iii) every subsemigroup of S is a semilattice of hereditary weakly left Archimedean semigroups.

Proof. (i) \Longrightarrow (ii) Let S be a semilattice Y of hereditary weakly left Archimedean semigroups $S_{\alpha}, \alpha \in Y$. Assume $a, b \in S$ such that $a \longrightarrow b$. If $a \in S_{\alpha}, b \in S_{\beta}$ for some $\alpha, \beta \in Y$, then $\beta \leq \alpha$, whence $b, b a \in S_{\beta}$. Now

$$
b^{n} \in\langle b a, b\rangle b a b \subseteq\langle a, b\rangle a b,
$$

for some $n \in \mathbf{Z}^{+}$. Hence, (ii) holds.
(ii) \Longrightarrow (i) Assume $a, b \in S$. Since $a \longrightarrow a b$, then by the hypothesis $a \cdot a b \uparrow_{l} a b$, i.e. $(a b)^{n} \in\langle a, a b\rangle a^{2} b$, for some $n \in \mathbf{Z}^{+}$. Now by Theorem $1[9] S$ is a semilattice Y of Archimedean semigroups $S_{\alpha}, \alpha \in Y$. Further, assume $\alpha \in Y, a, b \in S_{\alpha}$. Then $a \longrightarrow b$, so by the hypothesis $b^{n} \in\langle a, b\rangle a b$, for some $n \in \mathbf{Z}^{+}$. Therefore, $S_{\alpha}, \alpha \in Y$ is an hereditary weakly left Archimedean semigroup.
(ii) \Longrightarrow (iii) Let T be a subsemigroup of S and $a, b \in T$ such that $a \longrightarrow b$ in T, then $a \longrightarrow b$ in S and by (ii), $b^{n} \in\langle a, b\rangle a b \subseteq T a b$, for some $n \in \mathbf{Z}^{+}$. Thus, T is a semilattice of hereditary weakly left Archimedean semigroups.
(iii) \Longrightarrow (i) This implication follows immediately.

A semilattices of λ-simple semigroups were described in [6] and [9]. Here, by the following theorem we give some new interesting characterizations of these semigroups.

Theorem 6.. The following conditions on a semigroup S are equivalent:
(i) S is a semilattice of λ-simple semigroups;
(ii) $(\forall a, b \in S) a \longrightarrow{ }^{\infty} b \Longrightarrow a \xrightarrow{l}{ }^{\infty} b$;
(iii) $(\forall a, b \in S) a-\longrightarrow^{\infty} b \Longrightarrow a \xrightarrow{l} \infty^{\infty} b$

Proof. (i) \Longrightarrow (ii) Let S be a semilattice Y of λ-simple semigroups $S_{\alpha}, \alpha \in Y$. Assume $a, b \in S$ such that $a \longrightarrow{ }^{\infty} b$. Then by Lemma 1.4 (2) [18] (or Lemma 9 (b) [10]) $a \in S_{\alpha}, b \in S_{\beta}$, for some $\alpha, \beta \in Y$ and $\beta \leq \alpha$, whence $b a, b \in S_{\beta}$. So $b a \xrightarrow{l}{ }^{\infty} b$. Since $a \xrightarrow{l} b a \xrightarrow{l} \infty^{\infty} b$, we then have that $a \xrightarrow{l} \infty^{\infty} b$.
(ii) \Longrightarrow (i) Let (ii) hold. By Theorem 1 [10] every semigroup S is a semilattice Y of σ-simple semigroups $S_{\alpha}, \alpha \in Y$. Then for $a, b \in S_{\alpha}, \alpha \in Y$, by Theorem 1.1 [18] we have that $a-{ }^{\infty} b$, and by Lemma 1.4 (3) [18] $a-\infty b$ in $S_{\alpha}, \alpha \in Y$, whence $a \longrightarrow{ }^{\infty} b$ in $S_{\alpha}, \alpha \in Y$. So by hypothesis $a \xrightarrow{l}{ }^{\infty} b$ and by Lemma 11 (a) [10] $a \xrightarrow{l} \infty^{\infty} b$ in $S_{\alpha}, \alpha \in Y$, since $a, b \in S_{\alpha}$. Thus $a \xrightarrow{l} \infty^{\infty} b$ in $S_{\alpha}, \alpha \in Y$, for all $a, b \in S_{\alpha}$ and by Lemma 6 [10] $S_{\alpha}, \alpha \in Y$ is a λ-simple semigroup. Therefore, S is a semilattice of λ-simple semigroups.
(i) \Longrightarrow (iii) Let S be a semilattice Y of λ-simple semigroups $S_{\alpha}, \alpha \in Y$. Assume $a, b \in S$ such that $a-{ }^{\infty} b$. Then by Lemma 1.4 (3) [18] $a, b \in S_{\alpha}$ and $a-\infty b$ in S_{α}, for some $\alpha \in Y$, whence $a \lambda b$ and by Lemma 6 (iv) [10] $a \xrightarrow{l} b$.
(iii) \Longrightarrow (i) Let (iii) hold. Since every semigroup S is a semilattice Y of σ-simple semigroups $S_{\alpha}, \alpha \in Y$, then for $a, b \in S_{\alpha}, \alpha \in Y$, by Theorem 1.1 [18] we have that $a-{ }^{\infty} b$, whence $a \xrightarrow{l}{ }^{\infty} b$ and $a(\xrightarrow{l})^{-1} b$ in S_{α}. Thus $a \xrightarrow{l} \infty \cap(\xrightarrow{l})^{-1} b$ and by Lemma 6 (iv) [18] S_{α} is a λ-simple semigroup.

Problem 1. By \mathcal{M} we denote the class of all matrices (rectangular bands). Let

$$
\Lambda \circ \mathcal{M}^{k+1}=\left(\Lambda \circ \mathcal{M}^{k}\right) \circ \mathcal{M}, \quad k \in \mathbf{Z}^{+} .
$$

Describe the structure of semigroups from the following classes

$$
\Lambda \circ \mathcal{M}^{k+1}, \quad\left(\Lambda \circ \mathcal{M}^{k+1}\right) \circ \mathcal{B}, \quad\left(\Lambda \circ \mathcal{M}^{k+1}\right) \circ \mathcal{S}
$$

The previous problem can be formulated in the same way if instead the class Λ we take the class of all power-joined semigroups or the class of all λ_{n}-simple semigroups.

4. Some remarks on λ-equivalence

In this section we give some characterization of λ congruence.

Lemma 3.. The following conditions on a semigroup S are equivalent:
(i) λ is a congruence;
(ii) $\lambda=\lambda^{b}$;
(iii) λ is a band congruence.

Proof. This assertion follows by Lemma 2.2 [8].
Lemma 4.. The following conditions on a semigroup S are equivalent:
(i) λ^{b} is a band congruence;
(ii) $\lambda^{b}=R\left(\lambda^{b}\right)$;
(iii) $(\forall a \in S)\left(\forall x, y \in S^{1}\right)\left(x a y, x a^{2} y\right) \in \lambda$.

Proof. (i) \Leftrightarrow (ii) This follows by Lemma 2.1 [8] and Lemma 2.3 [8].
(i) \Leftrightarrow (iii) This follows by Lemma 2.4 [8].

Corollary 1.. If $S \in \Lambda \circ \mathcal{B}$, then

$$
(\forall a \in S)\left(\forall x, y \in S^{1}\right)\left(x a y, x a^{2} y\right) \in \lambda
$$

Proof. Let S be a band Y of λ-simple semigroups $S_{\alpha}, \alpha \in Y$. Assume $a \in S$ and $x, y \in S$, then xay, $x a^{2} y \in S_{\alpha}$, for some $\alpha \in y$, whence $\left(x a y, x a^{2} y\right) \in \lambda$.

Problem 2. Is the converse of the Corollary 1 holds?

References

[1] S. Bogdanovic, Some characterizations of bands of power-joined semigroups, Algebric conference 1981, Novi Sad, 121-125.
[2] S. Bogdanović, About weakly commutative semigroup, Mat. Vesnik 5 (18)(33) (1981), 145-148.
[3] S. Bogdanović, Bands of power-joined semigroups, Acta Sci. Math. 44 (1982), 3-4.
[4] S. Bogdanović and M. Ćirić, Semilattices of weakly left Archimedean semigroups, FILOMAT (Niš) 9:3 (1995), 603-610.
[5] S. Bogdanović, M. Ćirić and M. Mitrović, Semilattices of hereditary Archimedean semigroups, Filomat (Niš) 9:3 (1995), 611-617.
[6] S. Bogdanović, M. Ćirić and B. Novikov, Bands of left Archimedean semigroups, Publ. Math. Debrecen 52/1-2 (1998), 85-101.
[7] S. Bogdanović, M. Ćirić and Ž. Popović, Semilattice decompositions of semigroups revisited, Semigroup Forum 61 (2000), 263-276.
[8] S. Bogdanović, Ž. Popović and M. Ćirić, Bands of k-Archimedean semigroups, Semigroup Forum 80 (2010), 426-439.
[9] M. Ćirić and S. Bogdanović, Decompositions of semigroups induced by identities, Semigroup Forum 46 (1993), 329-346.
[10] M. Ćirić and S. Bogdanović, Semilattice decompositions of semigroups, Semigroup Forum 52 (1996), 119-132.
[11] M. Ćirić and S. Bogdanović, The lattice of semilattice-matrix decompositions of semigroups, Rocky Mauntain Math. J. 29 (4) (1999), 1225-1235.
[12] J. A. Gerhard and M. Petrich, Varieties of bands revisited, Proc. London Math. Soc. 58 (3) (1989), 323-350.
[13] P. Protić, The band and the semilattice decompositions of some semigroups, Pure Math. and Appl. Ser A 2/1-2 (1991), 141-146.
[14] P. Protić, On some band decompositions of semigroups, Publ. Math. Debrecen 45/1-2 (1994), 205-211.
[15] P. Protić, Bands of nil-extensions of right simple semigroups, Publications de l'institut mathématique 62 (76) (1997), 41-45.
[16] M. S. Putcha, Semilattice decompositions of semigroups, Semigroup Forum 6 (1973), 12-34.
[17] M. S. Putcha, Bands of t-Archimedean semigroups, Semigroup Forum 6 (1973), 232239.
[18] M. S. Putcha, Minimal sequences in semigroups, Trans. Amer. Math. Soc. 189 (1974), 93-106.
[19] L. N. Shevrin, Theory of epigroups I, Mat. Sbornik 185, no. 8 (1994), 129-160 (in Russian).
[20] T. Tamura, Quasi-orders, generalized Archimedeaness, semilattice decompositions, Math. Nachr. 68 (1975), 201-220.

Addresses:
Stojan Bogdanović
University of Niš, Faculty of Economics, Trg Kralja Aleksandra 11, P.O. Box 121, 18000 Niš, Serbia

E-mail: sbogdan@eknfak.ni.ac.rs
Žarko Popović
University of Niš, Faculty of Economics, Trg Kralja Aleksandra 11, P.O. Box 121, 18000 Niš, Serbia

E-mail: zpopovic@eknfak.ni.ac.rs
Miroslav Ćirić
University of Niš, Faculty of Science, Department of Mathematics, Višegradsa 33, P.O. Box 224, 18000 Niš, Serbia

E-mail: ciricm@bankerinter.net mciric@pmf.pmf.ni.ac.rs

