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Bandstructure Effects in Silicon
Nanowire Electron Transport

Neophytos Neophytou, Abhijeet Paul, Mark S. Lundstrom, and Gerhard Klimeck

Abstract—Bandstructure effects in the electronic transport of
strongly quantized silicon nanowire field-effect-transistors (FET)
in various transport orientations are examined. A 10-band
sp3

d
5
s

∗ semiempirical atomistic tight-binding model coupled to
a self-consistent Poisson solver is used for the dispersion calcu-
lation. A semi-classical, ballistic FET model is used to evaluate
the current-voltage characteristics. It is found that the total gate
capacitance is degraded from the oxide capacitance value by 30%
for wires in all the considered transport orientations ([100], [110],
[111]). Different wire directions primarily influence the carrier
velocities, which mainly determine the relative performance dif-
ferences, while the total charge difference is weakly affected. The
velocities depend on the effective mass and degeneracy of the
dispersions. The [110] and secondly the [100] oriented 3 nm thick
nanowires examined, indicate the best ON-current performance
compared to [111] wires. The dispersion features are strong func-
tions of quantization. Effects such as valley splitting can lift the
degeneracies particularly for wires with cross section sides below
3 nm. The effective masses also change significantly with quanti-
zation, and change differently for different transport orientations.
For the cases of [100] and [111] wires the masses increase with
quantization, however, in the [110] case, the mass decreases. The
mass variations can be explained from the non-parabolicities and
anisotropies that reside in the first Brillouin zone of silicon.

Index Terms—Anisotropy, bandstructure, effective mass, in-
jection velocity, MOSFETs, nanowire, nonparabolicity, quantum
capacitance, tight binding, transistors.

I. INTRODUCTION

A S TRANSISTOR sizes shrink down to the nanoscale,

CMOS development investigates alternative structures

and devices [1]. Existing CMOS field effect transistors are

expected to evolve from planar to 3-D nonplanar devices at

nanometer sizes. A possible device approach that has attracted

much attention recently because of its possibility of enhanced

electrostatic control, is the use of nanowire (NW) transistors

as field effect devices. Nanowire transistors of diameters even

down to 3 nm have already been demonstrated by various exper-

imental groups [2]–[4]. Under extreme scaling of the device’s

dimensions, the atoms in the cross section will be countable,

and crystal symmetry, bond orientation, and quantum mechani-

cal confinement will matter. Proper atomistic modeling is there-

fore essential in understanding the electrical characteristics of

Manuscript received October 5, 2007; revised February 20, 2008. This work
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Fig. 1. (a) Schematic of the simulation procedure. Using an atomistic sp3d5s∗

tight-binding model, the bandstructure of the nanowire under consideration is
calculated. A semiclassical ballistic model is then used to calculate the charge
distribution in the wire from the source and drain Fermi levels. The charge is
used in a 2-D Poisson solver for the electrostatic solution of the potential in
the cross section of the wire. The whole process is performed self-consistently.
(b) The lattice in the wire transport orientations (surfaces) used. [100], [110],
and [111] orientations.

ultra-scaled cross section nanowire devices. This work iden-

tifies the main bandstructure parameters that influence the

transport properties of nanowire devices by using a nearest-

neighbor tight binding (TB) model (sp3d5s∗) [5]–[8] for

electronic structure calculation, coupled to a 2-D Poisson

solver for electrostatics. A simple semiclassical ballistic model

[9], [10] [Fig. 1(a)] is used to evaluate transport characteristics.

The ballistic transport characteristics of square nanowires 3 nm

wide, oriented in [100], [110], and [111] transport directions

were examined and compared.

The electrostatic potential variations in the lattice were calcu-

lated using a 2-D Poisson solver. Self-consistently accounting

0018-9383/$25.00 © 2008 IEEE
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for the potential variations in the nanowire cross section is a

critical step in evaluating nanowire transport characteristics.

Although this factor causes only small shifts of energy levels,

and weak lifting of degeneracies, it strongly influences the

charge placement in the cross section of the wire. The charge

placement, together with the small 1-D density of states in

nanowires, strongly degrades the capacitance of the device by

up to 30% and affects its performance. This degradation is

the same for all wire orientations. We show that the carrier

injection velocities (controlled by the transport mass) and the

degeneracies (controlled by orientation) are the dominant de-

termining factors of the relative device performance for dif-

ferent wire orientations. In terms of ON-current capabilities,

transport at small nanowire dimensions will be preferable in the

[110]-oriented devices that have the lowest mass and highest

carrier velocities, closely followed by the [100] devices with

somewhat higher masses. The [111] nanowires indicate a lower

performance due to their much heavier transport masses, in

agreement with [11]. As also shown by other authors, the

masses and degeneracies are strong functions of not only direc-

tionality, but also of structural quantization [12]–[14]. Specif-

ically, for the case of mass variations, this paper shows how

quantization affects the masses differently in different transport

orientations. It is a result of the nonparabolicity and anisotropy

of the Si bandstructure that is particularly evident in strongly

quantized nanowires. Wires in [110] transport orientation ex-

perience a reduction in the electron transport effective mass

compared to [100]- or [111]-oriented wires. A simple analytical

approach, presented in this paper, provides insight in under-

standing these variations. Other effects, such as valley splitting,

also have directional dependence and are significantly enhanced

in [110] nanowires compared to [100] or [111] nanowires.

Necessity of Atomistic Modeling: The effects investigated

in this study are mainly atomistic effects, which the usual

effective mass approximation (EMA) fails to capture. When we

compare devices in different orientations, the devices’ atomistic

descriptions have the advantage of being able to capture the

valley projections automatically and extract the dispersions of

the nanowires in the transport orientation. Atomistic modeling

also automatically includes information about band coupling

and mass variations as functions of quantization. The problem

of identifying the correct bandstructure and effective masses

of nanowires has been addressed by various authors [15]–[18]

with qualitative agreement on the main features of the elec-

tronic structures. Other sophisticated techniques for electronic

structure calculation also mention mass variations in nanostruc-

tures from their bulk values, which results in different threshold

voltages and ON-current densities [15], [19]. The EMA can still

be used [15], [20] for the conduction band only when we adjust

the effective masses to map masses extracted from atomistic

calculations, particularly for [100] oriented nanowires, and in

some cases for other orientations. In general, however, this

method is not always valid, and atomistic simulations are

more appropriate for nanowires of a few nanometers cross-

sectional sides.

This paper is organized as follows. In Section II, the TB

model, its validity, and the simulation approach is described.

Section III contains the numerical results. Section III-A exam-

ines the behavior of bandstructure under charge filling of the

lattice for nanowires in different orientations for 3 nm cross-

sectional side square nanowires. Section III-B compares the

performance of nanowires of different orientations in terms of

total gate capacitance, quantum capacitance, injection velocity,

and drive current capabilities. Explanations for the relative

performance are given in terms of the most important dispersion

properties (masses and degeneracies). Section III-C examines

how structural quantization will impact the dispersions of wires

with different cross sectional areas. Valley splitting and the

mass variation in wires of different cross sections are examined.

Finally, in Section III-D an explanation of the dispersion mass

and band-edge variation is given using extracted bands from

the bulk bandstructure. Section IV summarizes and concludes

the paper.

II. APPROACH

Motivation for an Empirical TB Model: At the nanometer

scale, the concept of “new device” and “new material” are

blurred. Quantum mechanics of the electronic structure,

crystal symmetry, atomic composition, and spatial disorder

are important. A certain electronic structure model needs

to satisfy several requirements to capture nanoscale device

physics accurately. The finite extent of the devices, rather

than the infinite periodic nature, speaks for the choice of a

local basis set rather than a planewave basis set. The stability

of the bands in typical semiconductor devices speaks for a

reduced model that takes the existence of bands for granted.

The need to model complicated man-made heterostructures

speaks for a nearest neighbor model to eliminate ambiguities

of long-range coupling elements. The need to simulate large

extensive structures containing tenths of millions of atoms [7]

requires a reduced-order model. The need to accurately model

bandgaps (within a few millielectron volts) and masses (within

a few percent) speaks for an empirical bandstructure model,

rather than an ab initio model. All these requirements have led

to the choice of empirical tight-binding (TB) in this work.

The sp3d5s∗ TB Model: The basis set of the sp3d5s∗ nearest

neighbor TB model used in this work is composed of orthogo-

nal localized orbitals. This type of basis makes it very attractive

for accurate electronic structure of truncated nanostructures of

finite sizes and composition variations on a nanometer scale.

It is a very convenient method for treating material and po-

tential variations as well as strain fields. Parameterization was

performed using a genetic algorithm in [5], and the parameters

extracted can reproduce the band edges of the bulk silicon

bandstructure over the entire Brillouin zone. The model is

described in detail in [5]–[8]. The energy bands obtained for

nanowires, as well as for the bulk case in energy regions away

from the bulk minima, are in good quantitative agreement

with other theoretical calculations using pseudopotential and ab

initio GW methods.1 In this work, the electrostatic potential for

charge self-consistency is also included on the ON-sides of the

1Personal communication with Prof. Mark Schilfgaarde (Arizona State Uni-
versity) for the GW calculations and with Dr. Tony Low (Purdue University)
for the pseudopotential calculations. A comparison between the methods will
be published in the future.
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Hamiltonian matrix in an effective potential approach, which

shifts the bands with no further change in connectivity.

Validation of the Model Through Experimental Data: Be-

cause the accuracy of the results presented here strongly de-

pends on the validity of the TB model used, particularly on

its transferability to nanostructures, it is convincing to mention

that the same model and calibration parameters were used to

explain experimental data in a variety of applications with ex-

cellent qualitative agreement. Some examples include explain-

ing resonant tunneling diode applications for transport under

high bias with charge self-consistency [21]–[23], explaining

experimental data for the bandgap of ultrascaled nanowires

[24]–[26], valley splitting of tilted and disordered quantum

wells [27], and the electronic structure of silicon systems with

phosphorus impurities [28]. Further theoretical work presented

in [29] examines the performance of core shell nanowires and

validates against experimental data. Specifically, the theoretical

calculation of experimental measurements of the bandgap of

ultrascaled [112]-oriented nanowires in [24]–[26] is a strong

validation that the model captures the essential nonparabolici-

ties in a large part of the Brillouin zone of Si. As shown later,

nonparabolicites and anisotropies at high energies strongly

influence the masses and band edges of nanowires. Because the

bandgap of quantized systems is a strong function of the quan-

tization masses in the two transverse directions, verification

of the experimentally deduced nanowires’ bandgaps supports

the theoretical prediction for the behavior of the wires’ masses

under strong quantization and in extent the model’s validity.

The Simulation Approach: The simulated model device is

a rectangular nanowire of 3 × 3 nm dimensions in various

transport orientations. Unless otherwise stated, the specified

wire orientation is the transport direction. Three different

orientations, ([100], [110], and [111]) are investigated. The

atomic arrangement in each case is different, as shown in

Fig. 1(b).

The simulation procedure consists of three steps as shown in

Fig. 1(a) and described below:

1) First, the bandstructure of the wire is calculated us-

ing an atomistic tight-binding model. In this case, each

atomic side in the zincblende lattice is represented by

a sp3d5s∗ basis in the wire Hamiltonian. Because only

the conduction band is treated in this paper, the spin-

orbit coupling is ignored. This approximation favors

computational efficiency without affecting the accuracy

of the results [16]. The atoms that reside on the surface

of the nanowire are passivated in the sp3 hybridization

scheme [30]. This technique successfully removes all

dangling bonds that otherwise would create surface states

with eigenenergies in the device’s bandgap. Any effect

of surface reconstruction or surface imperfections is not

considered in this study. Only the channel atoms enter

the atomistic calculation in the Hamiltonian construction.

At this step, the energy of the dispersion states and

their wavefunctions are computed. Bandstructure effects

such as valley splitting and effective mass change under

physical quantization are investigated at this step for the

nanowire of interest, using equilibrium dispersion (flat

electrostatic potential in the Hamiltonian).

2) A semiclassical top-of-the-barrier ballistic model is used

to fill the dispersion states and compute the transport

characteristics [9], [10]. This model assumes that the

positive going states are filled according to the source

Fermi level, whereas the negative going states according

to the drain Fermi level. Once the occupancy of the

dispersion states is computed, using their wavefunction

from step 1, the charge distribution in each of the orbital

sites of the system (and therefore the spatial distribution

of charge) is obtained.

3) Using the charge distribution obtained in step 2, the two-

dimensional (2-D) Poisson equation is solved in the cross

section of the wire to obtain the electrostatic potential.

The Poisson’s equation is solved in 2-D, and all the

atomic locations are collapsed on the 2-D plane.2 The

Poisson domain is described by a finite difference mesh

and contains the nanowire core on an atomistic mesh,

the dielectric, and the metal. The electrostatic poten-

tial is added to the diagonal elements of the atomistic

Hamiltonian for recalculating the bandstructure until self-

consistency is achieved. In this step, the oxide in all

calculations is assumed to be SiO2 of 1.1 nm thickness.

This dielectric is not included in the Hamiltonian but

is only treated in the Poisson equation as a continuum

medium. Any effects due to the potential variations along

the transport direction are ignored. This falls under the

assumption that the carrier injection at the top of the

barrier is most important to the transport properties of

the device at the ballistic limit.

Although the transport model used is simplistic, it allows
for examining how the bandstructure of the nanowire alone
will affect its ballistic transport characteristics, ignoring any
short-channel effects or quantum mechanical tunneling under
the potential barrier. The same conclusion to this work can be
obtained from the full 3-D quantum nonequilibrium Green’s
function simulations [11], but the simple model used here
provides physical insight. It is also mentioned that the main
conclusions of this work will be valid for other nanowire
cross sections, i.e. cylindrical, since the electronic properties
of nanowires are a much more sensitive function of the quanti-
zation size rather than the quantization shape [15].

III. RESULTS AND DISCUSSION

A. Effect of Potential Variations on the NW Dispersion and

Charge Distribution

Description of the Dispersion in [100]-Oriented Wires: The

dispersion of a [100]-oriented nanowire is shown in Fig. 2(c).

It has a four-fold degenerate valley at the Γ point (kx = 0)
resulting from the k-space projection of the four silicon ellip-

soids that reside in the plane of quantization (here, the y−z
plane). There are two more valleys residing off-Γ (one in the

positive and one in the negative kx axis), that result from the

2We have conducted extensive tests to validate the 2-D Poisson solution
compared to the actual 3-D solution. A maximum deviation of 2% on the
band edges between the two approaches was found, as well as ignorable
deviation in the I-V characteristics. However, the 2-D method reduces the
Poisson computational time by almost 5× compared to the 3-D solution.
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Fig. 2. The 3-nm [100] rectangular wire. (a), (b) Two-dimensional cross section showing the charge distribution under low and high gate biases, respectively.
Even under high bias, the charge distribution is located almost half a nanometer away from the oxide. This causes degradation in the total capacitance of the wire.
The dots indicate the underlying atomic positions. (c), (d) E(k) plots for (a) and (b). The bandstructure features change under self-consistency. Efs is the source
Fermi level. (Zero energy indicates the conduction subband edge.)

two off-plane ellipsoids. The first four appear lower in energy

because of their heavy quantization mass (my ∼ ml = 0.89 m0

and mz ∼ mt = 0.19 m0) and have lighter transport mass

(mx ∼ mt = 0.19 m0). The other two appear at higher ener-

gies because of the lighter quantization masses (my ∼ mt =
0.19 m0 and mz ∼ mt = 0.19 m0) and have heavier transport

mass (mx ∼ mt = 0.89 m0). (The wire masses mx, my , mz

are close, but not exactly the bulk longitudinal and transverse

masses for reasons that will be addressed later on).

Change of the [100] Wire Dispersion Due to Potential

Variations/Charge Filling: The first part of this section investi-

gates how potential variations in the cross section of a wire can

change the dispersion and how the wavefunction shape changes

as the lattice fills up with a charge. Fig. 2 shows device features

for a 3 × 3 nm [100]-oriented nanowire under low and high

gate biases. (The drain bias used is VD = 0.5 V in all cases

throughout this work.) Under low gate biases, the lattice is

almost empty of charge [Fig. 2(a)], and the dispersion relation

[Fig. 2(c)] is the equilibrium dispersion. Under high biases,

there is significant charge filling of the lattice, as shown in

Fig. 2(b). The charge distribution takes the shape of the under-

lying atomic positions. In these simulations, even under high-

inversion conditions, the wavefunction is pushed almost 0.5 nm

away from the Si/SiO2 interface. The dispersion of these small-

sized nanowires, on the other hand, is usually considered to be a

material parameter and a property of the geometry under strong

confinement but independent of charge filling of the lattice.

Fig. 2(d) shows, however, that charge filling of the lattice causes

changes in the dispersion of the nanowire, even at the 3-nm wire

length scale. Here, the excited states at Γ shift down and now

reside below the off-Γ point valleys. In this case, the change

in the dispersion is small, but because it is associated with the

wavefunction shape that gives rise to the charge distribution in

the wire cross section, it can affect the device’s capacitance and,

to some extent, its transport characteristics.

Change of the [110] Wire Dispersion Due to Potential

Variations/Charge Filling: The change in the dispersion under
potential variations is also observed in different wire orienta-
tions, which have different dispersion relations. The position of
the bands shifts and degeneracies can also be lifted. Fig. 3(a)
and (b) shows the E(k) of a [110]-oriented nanowire under
low and high biases. The dispersion looks different from the
[100] dispersion, with a two-fold degenerate band at Γ and
a pair of two-fold degenerate bands off-Γ. A larger varia-
tion in the dispersion under charge filling of the lattice is
observed compared to the [100] wire case. The band degen-
eracies are lifted (from 2 to 1) by several millielectron volts.
This is an effect that cannot be captured in a simple EMA
treatment.

Change of the [111] Wire Dispersion Due to Potential

Variations/Charge Filling: Fig. 3(c) and (d) shows the same

features for a [111]-oriented wire. The degeneracy of the bands

of this wire is 3 (for each valley) because of the symme-

try between the transport axis (or, equivalently, the quan-

tization plane in the perpendicular direction) and the three

pairs of ellipsoids in the Si bandstructure. High biases increase

band coupling, which slightly lifts the degeneracies. Note

that in the case of [100] and [110] wires, the conduction

band minima is located at the Γ point because the quantized

∆ valleys project there. In the [111] case, however, the

conduction band minimum is located at 0.37 of the Brillouin

zone (normalized to 1) as seen in Fig. 3(c) and (d).3

3The length of the unit cell in [111] is L111 =
√

3a0. Therefore, the

Brillouin zone of a 1-D nanowire in [111] extends from −π/
√

3a0 to π/
√

3a0.
The ∆ valleys in bulk Si are located at kx = 0.815 · 2π/a0. Under quan-
tization in a (111) surface the valleys project on the [111] axis at k[111] =

0.815 · 2π/(
√

3a0) = 1.63π/(
√

3a0). The valley projection point falls in the
second Brillouin zone. It is then folded in the first Brillouin zone as k[111] =

1.63π/(
√

3a0) − 2π/(
√

3a0) = 0.37π/(
√

3a0). After normalization to the
length of the Brillouin zone, the valleys appear as k[111] = 0.37.

Authorized licensed use limited to: Purdue University. Downloaded on October 19, 2009 at 10:00 from IEEE Xplore.  Restrictions apply. 
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Fig. 3. (a) Bandstructure of a 3-nm [110]-oriented nanowire under low bias (VG = 0 V) and (b) high bias (VG = 0.8 V) and VD = 0.5 V. Under high biases the
degeneracies of the Γ valley are lifted from 2 to 1. (c) Bandstructure of a 3-nm [111]-oriented nanowire under low bias (VG = 0 V), (d) high bias (VG = 0.8 V),
and VD = 0.5 V. (e) The charge in the wire as a function of the difference of the conduction band edge from the Fermi level for two cases: 1) The Fermi level
“scans” the equilibrium bandstructure, and the charge is extracted. 2) The charge is extracted from the self-consistent calculations with potential variations in the
lattice taken into consideration. (f) Injection velocity for the same case as (e). Changes in the dispersion themselves do not reflect much on the charge distribution
or the injection velocities. The differences between the two models result from the spatial information of the wavefunction that corresponds to the bandstructure
changes.

Charge/Velocity Are Invariant to Self-Consistency: Just by

looking at these variations in the dispersion, however, it is

not clear that they will result in changes in the transport

characteristics. Indeed, Fig. 3(e) and (f) compares the density

of states and velocities at the same Ef − Ec (difference of

the Fermi level from the conduction band edge) between the

equilibrium dispersion and the dispersion at various biases

and little difference is observed. Quantities for two cases are

calculated:

1) The Fermi level “scans” the equilibrium bandstructure,

and the charge and injection velocities are extracted.

2) The results are extracted from the self-consistent calcu-

lations, with potential variations in the lattice taken into

consideration.

The charge and injection velocity is plotted as a function of

Ef . (Ec is shifted to zero for all wires.) There is no significant

difference in these extracted quantities due to the potential

variations, and the self-consistent vs. non-self-consistent curves

fall almost on top of each other. In this example, a large drain

bias (VD = 0.5 V) is used. Under low drain biases (VD =
1 meV) and low temperatures, however, where the transport

energy window can be comparable or even smaller than the

changes in the bandstructure, evidence of the bandstructure

differences in these two quantities, as well as other quantities

such as transconductance, is more likely to appear.

Charge Distribution Is Strongly Dependent on Self-

Consistency: Although the charge and velocity appear to be

only weakly modified by the self-consistent calculation, the

self-consistently-extracted bandstructure corresponds to a dif-

ferent wavefunction shape, which reflects a different charge dis-

tribution in space. This is the quantity that causes degradation

of the total gate capacitance, as will be shown later, and affects

the transport characteristics, and not the dispersion changes, by

themselves. Therefore, one has to also consider the change in

wavefunction that is associated with the dispersion changes.

(In an earlier work, [31], it is shown that the current-voltage

characteristics can be significantly overestimated if the spatial

variation of the charge is not considered.)

Orientation Differences in the Charge: The charge in

Fig. 3(e) for any position of the Fermi level is always highest

in the [111] wire case, due to the higher density of states

and valley degeneracy. This particular wire orientation has the

valleys with the heaviest mass (0.47m0, where m0 is the free

electron mass) and the largest degeneracy (D = 6). Therefore,

at a certain energy level (Ef − Ec), there are more states

Authorized licensed use limited to: Purdue University. Downloaded on October 19, 2009 at 10:00 from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Performance comparison of the 3-nm square wires in the [100], [110], and [111] directions at the same OFF-current (IOFF). (a) Gate capacitance CG vs.
gate bias (VG). The capacitance is similar for all wires and is degraded from the oxide capacitance by an amount that corresponds to an increase in the effective
oxide thickness of 0.54 nm. (b) Quantum capacitance CQ vs. VG of the three devices, which is a measure of the density of states at the Fermi level. (c) Comparison
between the injection velocities of the nanowires vs. VG. In all cases, the velocity is not constant but increases as the gate bias increases. The increase is calculated
by the difference between the value at high VG and the value at low VG. (d) IDS vs. VG for the three wires at the same IOFF. The velocity difference directly
reflects on the current differences.

occupied compared to the other wires. The [100] wire of mass

0.27m0 and D = 4 of the lowest valley, follows. The [110]

wire has the lowest charge density at a certain energy level

because of its lighter mass (0.16m0) and lower degeneracy

(D = 2) at Γ.
Orientation Differences in the Velocity: The reverse trend

is observed in Fig. 3(f), where the [110] wire has the highest
velocity due to its lighter mass (0.16m0). Because the higher k
states are occupied, the velocity increases since it is propor-
tional to the slope of the bands. Noticeable here is the fact that
the carrier velocity in the [100] wire approaches [110] velocity
as the Fermi level is pushed into the conduction band. The
lighter masses (0.16m0) of the two-fold Γ valleys in the [110]
wire give an initial advantage over the heavier (0.27m0) [100]
wire Γ valley masses. Once the heavier four-fold degenerate
off-Γ valleys (with mass 0.61m0) of the [110], and the heavy
two-fold degenerate off-Γ valleys (with mass 0.94m0) of the
[100] start to populate, the carrier velocities become compara-
ble in the two cases. The exact reasons why the masses have
these values will be addressed later in the paper; however, this
analysis can guide us through the reasons why wires in different
transport orientations have different properties.

B. Device Performance Comparison of NWS in

Different Orientations

One of the points made in the previous paragraph is the

comparison of the different wire orientations at the same Fermi

level position into the dispersion of the wires. Although this is

a rough estimate of the wires’ properties, the Fermi level is not

at the same position for all devices, except under special cases.

In this section, the full self-consistent model is implemented

to compare the performance of the nanowires. Fig. 4 shows a

performance comparison between the wires in the [100], [110],

and [111] orientations. The various performance quantities

shown further on are all compared at the same OFF current

(IOFF) for all devices.

Gating Induces Same Capacitance/Charge in All Wire

Directions: Fig. 4(a) shows the total gate capacitance (CG) vs.

gate bias (VG) of the three wires at the same IOFF . The total

capacitance in the three wires is very similar for all gate biases

for reasons we will explain later. However, this is an indication

that the same amount of inversion charge is accumulated in all

wires regardless of their orientations. Our calculation supports

this argument too, showing that the charge difference between

the wires at high inversion does not exceed 2%. In a relative

performance comparison for wires in different orientations,

therefore, the amount of charge will not affect the relative

performance.

Low Semiconductor Capacitance (CS) Degrades the Gate

Capacitance (CG) by 30%: It is important to notice that the

capacitance value is degraded from the oxide capacitance by

almost 30% for all three wire cases. This is an amount that

corresponds to an effective increase in the oxide thickness of

0.54 nm, which is 50% of the physical gate oxide thickness

(tOX = 1.1 nm). This large gate control reduction is evidence

of the low semiconductor capacitance (CS) in low-dimensional

channels. The gate capacitance of a device is the series com-

bination of the oxide capacitance (COX) and the semicon-

ductor capacitance (CS) given by the simple relation CG =
CSCOX/(CS + COX). For an electrostatically well-behaved

MOSFET device, CS should be an order of magnitude larger

than COX so that the CG, and therefore the charge in the

device, is totally controlled by the gate. In this example, the

oxide capacitance of the rectangular structure is 0.483 nF/m,

numerically calculated using a 2-D Poisson solver that takes the

fringing at the edges into consideration. With CG = 0.3 nF/m

[maximum value of Fig. 4(a)], CS can be computed to be

CS = 0.8 nF/m, which is only twice the value of the oxide

capacitance (less than an order of magnitude difference).
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CS Controlling Factors: Charge Distribution Peak, Small

CQ: CS is defined as the differential of the charge in the device

with respect to the surface potential (ψS). In 1-D systems,

under a single-band effective mass approximation, the charge

is the integral of the 1-D density of states (g1−D) convoluted

with the Fermi function (f(Ef − E)) over energy as

CS =
∂(qns)

∂ψs
=

∂

∂ψs

(
∫

qg1Df [(Ef − Ec − εi)/kBT ] dE

)

(1a)

where q is the charge of the electron, ψs is the surface potential,

Ef is the Fermi level, Ec is the conduction band edge, and εi is

the distance of the ith quantized subband above Ec in energy.

Carrying on the integration, the equation above results in

CS =
q2

π

(

2m

�2

)1/2
√

kBT
√

π

× ∂

∂qψs

(

ℑ−1/2 [(Ef − Ec − εi)/kBT ]
)

(1b)

= q2

(

2m

π�2

)1/2
√

kBT

×ℑ−3/2 [(Ef −Ec−εi)/kBT ]

(

1− ∂εi

∂ψs

)

(1c)

=CQ

(

1 − ∂εi

∂ψs

)

. (1d)

The first part of (1c), CQ, is the quantum capacitance, which

is a measure of the density of states at the Fermi level. CS

is degraded from CQ by a factor that is proportional to how

much εi (the difference of the ith subband to Ec) changes.

Ideally, at high inversion conditions, εi should be constant,

meaning that the quantized levels and Ec shift by same amount,

and the subband levels can easily get in the potential well

that forms at the Si/SiO2 interface. This directly translates on

the wavefunction being able to come closer to the interface

as the surface is inverted more and more. However, εi can

float up as charge accumulates in the device, giving rise to

the differential term in (1d), and the wavefunction stays away

from the interface. As shown earlier on in Fig. 2(b), this shift

is almost 0.5 nm. Other than the wavefunction shift, CQ being

small is the second degrading factor of CS as indicated in (1d).

Fig. 4(b) shows the CQ of the three nanowires as a function

of VG, calculated as the density of states at the Fermi level.

Clearly, for all wires the maximum value is below 3 nF/nm,

not even an order of magnitude above COX = 0.48 nF/nm. The

fact that the position of the charge distribution degrades CS

from CQ almost four times (CS = 0. 8 nF/m) indicates its large

significance on the device’s capacitance. (Similar deviations of

the semiconductor capacitance from the quantum capacitance

have also been observed in thin-body devices [32].)

Variations in CQ Between Different Wire Orientations: As

shown in Fig. 4(b), in all wire cases, CQ is not constant but

undergoes large transitions as the Fermi level is pushed inside

the subbands at large gate biases. This is expected because

CQ is a measure of the density of states at the Fermi level,

and the differences in the dispersion cause differences in CQ.

Comparing CQ for different wire orientations, the [111] wire

has the largest CQ for most of the bias range because of

the higher mass (m∗ = 0.47 m0) and higher degeneracy of

its valleys (D = 6). The CQ drop at high biases in [111] is

associated with the decreasing 1-D density of states away from

the band edges and the fact that its bands flatten out at Γ and

do not extend as parabolic bands in the k-space, as shown

in Fig. 3(d). On the other hand, the [100] and [110] wires

initially have lower CQ, because of their lower density of states

(lighter masses and lower degeneracies). At high biases, the

upper valleys of the [100] and [110] wires start to get populated,

which allows a continuous increase in CQ for these wires. More

specifically, because the charge in all cases is almost the same

at a given bias, the same number of states in each wire needs

to be occupied. The Fermi level in the [110] wire with lower

mass and smaller valley degeneracies reaches the upper valleys

faster (at a lower gate bias) than the [100] wire to occupy the

same number of states. Once this happens, the CQ of the [110]

wire surpasses the CQ of the [100] wire (around VG = 0.4 V).

Variations in CQ Do Not Cause Variations in CG: The

differences in CQ are not large enough to result in differences

in the total capacitances between wires in different orientations,

however. As seen earlier, CQ is only partially responsible for

the total capacitance degradation. The small differences in CQ

are smeared out in CG by the oxide capacitance and the charge

shift from the interface, which is very similar for all the above

wires. (This observation can, of course, be different in the case

of high-k dielectric oxides in which the importance of CQ can

be more pronounced.)

Velocity Controls the Transport Differences in Different

Orientated Wires: As explained above, the charge is almost

the same in all three nanowires. Because the ON-current per-

formance is given by the product of charge times the velocity

in the ballistic limit, any performance differences will result

from differences in the carrier velocities if the charge is the

same. Fig. 4(c) shows the injection velocities of the wires versus

the gate bias (VG). The [110] wire has the largest velocities,

whereas the [111] wire has the lowest. In all cases, the injection

velocities are not constant but increase as the lattice is filled

with a charge because faster high-energy carrier states are being

populated. This increase in velocities, calculated form the initial

value at low gate biases to the final value at high gate biases,

can reach up to 17% in the [110] wires and even up to 27% in

the [100] and 24% in the [111] wire orientation cases. When

we compare the velocities of the different wires, however, the

masses of the valleys determine the velocities of the carriers.

(In 1-D, under the parabolic band approximation, the velocity

is proportional to v ∼1/
√

m∗.) As a result, the [110] wire with

m∗ = 0.16 m0 has the highest velocity, followed by the [100]

wire with mass m∗ = 0.27 m0, and finally by the [111] wire of

mass m∗ = 0.47 m0. The larger density of states of the [111]

wire and its larger degeneracy do not allow the Fermi level to

be pushed far into the conduction band. Therefore, only the

lower energy and slower carries are used, and the velocity in

this case is low. In the [110] wire case, the degeneracy is 2, and

the subband density of states is low; therefore, the Fermi level

will be pushed far into the conduction band, and faster carries

will be used, as shown in Fig. 4(c).
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Fig. 5. Effect of valley splitting in small nanowires. (a)–(c) E(k) of a 2 nm wire in the [100], [111] and [110] orientations respectively. (d) Effect of valley
splitting in the [110] wire as the dimensions decrease. The Γ valleys are severely affected at cross sections below 3 nm, whereas the off-Γ valleys are not affected
as much.

Velocity Differences Affect the I–V Differences: The veloc-

ity difference directly reflects on the IDS as shown in Fig. 4(d),

in which the drive current capabilities of the wires are compared

at the same IOFF. The [110] and [100] wires perform better

than the [111] wire in terms of ON-current capabilities. The

current in the [110] wire stands ∼5% higher than the [100]

wire and ∼20% higher than the [111] wire. This result must

be qualified because the bandstructure of the wires is a very

sensitive function of their quantization. The results presented

here are for these specific 3-nm wire examples. In cases where

important dispersion parameters such as the relative placement

of the valleys in energy, masses and degeneracies are altered,

different conclusions might be drawn, particularly for the rel-

ative performance of the [100] and [110] wires, which is not

that large. In the next section, we analyze how exactly these

parameters (valleys splittings that lift degeneracies, and masses)

are affected by quantization.

C. Quantization Influence on Valley Splitting and

Mass Variation

Quantization strongly affects both factors that control the

performance, the degeneracies and masses. In this section of

the paper, we examine the effect of quantization on these

parameters. Degeneracies are controlled mainly by the orien-

tation but can be lifted due to valley splitting [12]–[14] under

strong quantization (both electrostatic and structural).

Weak Valley Splitting in [100] and [111] Quantized Wires:

Fig. 5(a) and (b) shows the E(k) of a 2-nm wire in the

[100] and [111] orientations. A slight valley splitting of the

degenerate valleys under quantization is observed. In the [100],

the splitting is 10 meV, and in the [111] wire the splitting is

24 meV. These values are less than the room temperature

kBT = 26 meV and are not expected to have a significant

effect in the transport properties of the nanowires at room

temperature.

Strong Valley Splitting in [110] Quantized Wires: In the case

of [110] nanowires, valley splitting is significantly larger. As

shown in Fig. 5(c) in the E(k) of a 2-nm [110] wire, Γ and off-Γ
valleys experience valley splitting of their degeneracies by

76 meV and 14 meV, respectively. Fig. 5(d) shows how this

effect varies with the spatial confinement in the [110] wire.

Although large nanowires (> 5 nm) are not affected, valley

splitting can reach up to 200 meV for the Γ valleys of narrow

wires with sizes as narrow as 1.5 nm. The valley splitting of the

off-Γ valleys, on the other hand, is not affected as much. Only a

few tenths of the millielectron volts of splitting are observed in

this case. (Note that the splitting in the other wire orientations is

smaller than the [110] wires of similar quantization sizes, even

for wires below 2 nm [14].)

Masses Generally Increase With Increase in Quantization:

The effective mass is the second important transport perfor-

mance dispersion property that is affected by quantization of

the nanowire cross section. The injection velocity and quantum

capacitance strongly depend on the masses. Both the quantiza-

tion and the transport masses of nanowires under arbitrary wire

orientations are certain combinations of the longitudinal (ml =
0.89 m0) and the transverse effective masses (mt = 0.19 m0)
of the Si ellipsoids. Fig. 6(a) shows the three pairs of ellipsoids

that form the conduction band minima in Si, each characterized

by the x-, y-, and z-directional masses. The masses of the

valleys that appear in the nanowire dispersion are automatically

included in tight binding. What will be shown is that under

quantization, the exact values of these masses are changed

from their bulk values. In most cases, quantization results in

an increase in the effective mass. Fig. 6(b) shows the variation

in the lowest valley transport masses as the dimension of the

wire cross section is reduced. At large wire cross sections, the

mass of the [100] valley that is located at Γ approaches the bulk

transverse mass mt = 0.19 m0. The bulk mass of the [111]

wire is larger because it is a combination of mt = 0.19 m0

and ml = 0.89 m0 (the bulk value is 0.43m0) [18], [33]. The

mass in the [100] case almost doubles as the dimension of

the wire’s side decreases from 7.1 to 1.5 nm (88% increase).

(The 3-nm wire has m∗ = 0.27 m0 as mentioned earlier.) The

corresponding increase in the [111] wire’s mass is 17%, with
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Fig. 6. (a) The three equivalent pairs of ellipsoids in the conduction band of Si are described by the longitudinal and transverse masses. Combining these masses
results in the quantization and transport masses of nanowires under arbitrary orientations. (b) Transport masses oriented in [100], [110], and [111] vs. the wire
dimension as calculated from TB. At large wire cross sections, the [100] and [110] located at Γ approach the bulk mt = 0.19 m0. The mass of the [111] wire
is larger because it combines mt and ml = 0.89 m0. As the wire dimensions shrink, the mass of the [110] wire is reduced, whereas the masses of the other
two wires increase. (c) Off-Γ valley masses for the cases of the [110] and [100] wires. Both increase as the dimensions decrease. (The bulk mass values for

every orientation are denoted.) The percentage change denoted is the change in the effective masses between the 1.5-nm mass value (mostly scaled wire) and the
7.1-nm wire.

the 3-nm wire having m∗ = 0.47 m0. The off-Γ valley masses

(upper valleys) of both [100] and [110] wires also increase as

the dimension reduces as shown in Fig. 6(c). In the [100] off-Γ
valley case, a slight mass increase of 9% between the 7.1- and

1.5-nm wires is extracted from the bandstructure calculations.

The off-Γ valley mass increase in the [110] case is 11%.

[110] Wire Γ Valley Masses Decrease With Increase in

Quantization: In contrast to the rest of the valleys, the Γ valley

mass of the [110]-oriented wires decreases with increase in

quantization. As shown in Fig. 6(b) the mass decreases by 32%

as the side of the wire reduces from 7.1 to 1.5 nm. As mentioned

earlier, the mass of a 3-nm [110] wire is m∗ = 0.16 m0, which

gives enhanced injection velocities and transport characteristics

of [110] wires over the rest of the wires. Anisotropy and

nonparabolicity in the Si conduction band Brillouin zone cause

this unintuitive behavior, as explained in the next section.

D. Understanding the Nanowire Mass Variation as a

Function of Quantization

Semi-Analytical Construction of the Wire’s Dispersion: This

distinctly different observation in the masses of wires is a result

of the nonparabolicity and anisotropy of the Si bandstructure.

Under any physical quantization, the subband levels will fol-

low the “particle in a box” quantization, seen in Fig. 7(a).

The smaller the physical domain, the larger the corresponding

quantized k, and the higher the energy levels of the subbands.

To estimate the quantization levels of the Si conduction band

ellipsoid quantized along the longitudinal direction, the energy

contour in the x−y plane near the band minima is plotted in

Fig. 7(b), “cut” through the ellipsoid along its longitudinal axis.

Similarly, in Fig. 7(a), quantization of Lx of 2, 3, and 5 nm, re-

spectively, will shift the energy levels to the vertical lines shown

in the figure. The energy levels at these lines will be the relevant

subbands in an ultrathin-body (UTB) quantization—with one

quantized dimension. Fig. 7(c) now shows the energy contour

taken at the 3-nm line perpendicular to the contour of Fig. 7(b)

in the y−z plane. An extra quantization in the z-direction (the

second quantized dimension, as in the wire case) will leave only

one allowed k-space variable—the transport direction one. This

forms the 1-D dispersion of the wire. The relevant 1-D bands

are the ones located at the horizontal lines of Fig. 7(c). Lines

for Lz = 2, 3, and 5 nm, respectively, are shown. The solid line

indicates a relative subband for an UTB device with Lx = 3 nm

and Lz = ∞ (k = 0, only one quantization dimension).

Mass and Band-Edge Extraction From the Semi-Analytical

Construction: The 1-D subbands of Fig. 7(c) are plotted in

Fig. 7(d) for the cases of Lz = 2, 3, and 5 nm, respectively.

(The x-direction quantization is Lx = 3 nm in all cases). The

mass of these bands is the transport mass (y-direction) that

the wire has in the [010] orientation (equivalent to the [100]

wire orientation described previously). Smaller cross sections

raise the subband energy and increase the masses. Through

this process, we can deduce both the transport masses and the

placement of the subband edges in the energy. The quantization

masses can be extracted from the subband edges. The more

nonparabolic the bulk bandstructure is at higher energies in the

direction of quantization, the slower the subbands rise in energy

with quantization, compared to the parabolic band case. This

results in larger quantization masses. The more nonparabolic

the bulk bandstructure is in the transport direction, the larger the

transport masses will be. All these effects appear in thin-body

channel devices [UTB of Fig. 6(d)], however, they are signifi-

cantly more enhanced in the case of nanowires because of the

extra quantization of one more physical dimension [19], [29].

Different Orientations, Different Anisotropies: The transport

masses of wires in other orientations can be explained similarly.

Evident in the bandstructure is the anisotropy, which results in
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Fig. 7. (a) Energy levels of a quantized structure using the particle-in-a-box picture. Under quantization, the subband edges and masses can be deduced from the
materials’ bulk dispersion with a numerical E(k) diagram. (b) Energy contour at the middle of one of the Si Brillouin zone ellipsoids calculated using the full 3-D
k-space information of the Si Brillouin zone. A “cut” through the Si ellipsoid along its longitudinal axis is shown. Under quantization in Lx = 2, 3, and 5 nm,
respectively, the relevant subband energies are indicated by the vertical kx = constant lines. (c) A cut through the Si ellipsoid perpendicular to its longitudinal
axis at the kx line corresponding to the 3-nm quantization line of (b). The nonparabolicity and anisotropy is evident in this figure. The horizontal lines indicate
the relevant energy regions under another quantization in the y-direction for Ly = 2-, 3-, and 5-nm quantized structures, respectively. UTB is the relevant band
for a UTB device Lx = 3 nm thick in [001] with Lz = ∞. This is only quantized in the x-direction. (d) Dispersions of the vertical lines in (c). The masses and
the band edge of the dispersions will be the ones that appear in a quantized wire. (e) The 2-D plot is the same as in (c). The 45◦ lines correspond to a quantization
in [0-11] for Lyz = 2, 3, and 5 nm, respectively. UTB is the relevant band for a UTB device Lx = 3 nm thick in [001] with Lyz = ∞. (f) Dispersions of the
45◦ lines in (e). Nonparabolicity is evident in this orientation. (g) Zoom of the right (positive momentum) branch of (f) with all dispersions shifted to the origin for
comparison. As the structure is quantized in [0-11], the mass becomes lighter. Anisotropy in the Brillouin zone is directly reflected on the masses in the different
wire orientations [as in Fig. 6(b)].

different behavior in the quantization of the [100] to quantiza-

tion of the [110] axes. In [110]-oriented wires, the [100] and

[0-11] directions are quantized. The [100] quantization is the

same step as the one in Fig. 7(b). Quantizing the [0-11] di-

rection will result in extracting 1-D bands by lines that cross

Fig. 7(e) at 45◦, (in Lyz, instead of horizontal). Fig. 7(f)

shows the first subband of the dispersions of structures with

Lx = 3 nm and Lyz = 2 nm, 3nm, 5nm and ∞, similar to

Fig. 7(d). Evident in this case is the nonparabolicity of the

dispersion, also evident in the dispersion of the actual [110]

nanowire of Fig. 5(c). For comparison purposes, Fig. 7(g)

shows the positive kyz branch of the dispersion, with all the

bands shifted to the origin. Clearly, as the structure is quan-

tized in the [0-11] direction, the curvature of the dispersion

increases, corresponding to a lowering of the transport mass

of the wires. In contrast to the [001] quantization case of

Fig. 7(c), here the anisotropy in the bandstructure results in a

reduction of the transport masses with increase in quantization,

in agreement with the calculation for the actual nanowire mass

shown in Fig. 6(b). The magnitude of the mass variation is

smaller however, in the [0-11] quantization direction, compared

to the [001] direction. (Similar anisotropic results have been

also obtained using empirical nonlocal pseudopotential and ab

initio GW calculations.1)

1) Limitations of the Semi-Analytical Construction: This

construction method can provide a rough guidance as to what

the dispersion of a nanowire will look like. This method,

however, does not include any of the interactions between the

bands/valleys (which are enhanced when the material is phys-

ically confined in a nanowire), and lacks any band-coupling

information. Effects such as valley splitting, which are a con-

sequence of band coupling, cannot be captured. The extracted

mass values, as well as their variation trends under quantization,

are quite accurate, however. In the case of nanowire electronic

transport for nanowires larger than 3 nm, where the mass is

an important transport parameter, a first order estimation of
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the nanowires’ performance can be drawn using this analytical

mass extraction.

IV. CONCLUSION

Transport properties of nanowires in different transport

orientations ([100], [110], and [111]) are examined using a

10 orbital sp3d5s∗ atomistic TB model self-consistently

coupled to a 2-D Poisson solver. A semiclassical ballistic model

was used to calculate the current-voltage characteristics of the

nanowires. The dispersions of the nanowires undergo changes

under gate bias, which can cause large lift of degeneracies and

small subband shifts in some cases. Although these changes

under self-consistency do not alter the velocity and density of

states of the wires, they are associated with the spatial distribu-

tion of charge that, together with the small 1-D density of states,

can degrade the nanowire’s capacitance by 30%. The quantum

capacitance of the different oriented 3-nm wires that are

investigated is not only a strong function of gate bias but also of

similar magnitude in all wires. Almost the same is also the total

gate capacitance of all nanowire devices in the different orien-

tations investigated, as well as the inversion charge. Due to their

lighter mass, the 3-nm [110]-oriented wires have the maximum

injection velocities, whereas [111]-oriented wires have the low-

est injection velocities due to their higher masses. The injection

velocity reflects directly on the current capabilities of the wires,

where the [110]- and [100]-oriented wires indicate the best

performance in terms of ON-current capabilities compared to

the [111] wires, which are the worst. The masses of the wires

are a sensitive function of the wire dimensions (below 7 nm)

and strongly influence the output performance of nanowire

devices. This is an effect that resides in the nonparabolicity and

anisotropy of the Si Brillouin zone that is particularly important

in strongly quantized devices. Valley splitting is another effect

strongly dependent on quantization. The [110] nanowires with

dimensions below 3 nm are extremely sensitive to this. Finally,

the simulator used in this study will be released as an en-

hanced version of the Bandstructure Lab on nanoHUB.org [34].

This simulation engine allows any user to duplicate the

simulation results presented here. Over 800 users have used the

Bandstructure Lab in the past 12 months.
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