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BT-like VoD Systems under Flashcrowds 1. Introduction

Abstract

The efficiency of BitTorrent in content distribution has inspired a number of peer-to-peer (P2P) proto-
cols for on-demand video (VoD) streaming systems (henceforth BitTorrent-like VoD systems). However,
the fundamental quality-of-service (QoS) requirements of VoD (i.e. providing peers with a smooth play-
back continuity and a short startup delay) make the design of these systems more challenging than
normal file-sharing systems. In particular, the bandwidth allocation strategy is an important aspect
in the design of BitTorrent-like VoD systems, which becomes even more crucial in a scenario where a
large number of peers joins in a short period of time, a phenomenon known as flashcrowd. In fact, the
new joining peers all demand for content while having few or no pieces of content to offer in return yet.
An unwise allocation of the limited bandwidth actually available during this phase may cause peers to
experience poor QoS.

In this work, we analyze the effects of a flashcrowd on the scalability of a BitTorrent-like VoD system
and propose a number of mechanisms to make the bandwidth allocation in this phase more effective.
In particular, we derive an upper bound for the number of peers that can be admitted in the system
over time and we find that there is a trade-off between having the seeders minimize the upload of pieces
already injected recently and high peer QoS. Based on the insights gained from our analysis, we devise
some flashcrowd-handling algorithms for the allocation of peer bandwidth to improve peer QoS during
flashcrowd. We validate the effectiveness of our proposals by means of extensive simulations.

1 Introduction

In recent years, significant research effort has focused on how to efficiently use a P2P architecture to provide
large-scale VoD services. In particular, much has been investigated on how to utilize the design of BitTor-
rent to create efficient P2P VoD protocols [1, 6, 10, 11, 13]. Adapting BitTorrent’s bandwidth allocation
strategy to VoD is challenging because, similar to P2P live streaming systems, content has to be delivered
by streaming, which imposes some QoS requirements, i.e. providing users with smooth playback continuity
and a short startup delay. On the other hand, unlike P2P live streaming systems, in P2P VoD systems
different peers can be interested in different parts of the video at a certain moment over time, hence the peer
dynamics resemble those of P2P file-sharing systems.

While it has been demonstrated that these systems can attain a high performance once they have reached
a steady state [8], it is still unclear how well they deal with a phenomenon known as flashcrowd, in which a
large number of peers joins within a short period of time. In fact, it is considerably more challenging for a
P2P VoD system to accommodate an abrupt surge of new joining peers, while still providing an acceptable
service to existing ones. Thus, it is evident that an unwise bandwidth allocation strategy during this phase
may delay reaching the steady state and cause peers to experience poor QoS.

Despite the relevance of the problem, to date only a few research efforts have investigated P2P systems
under flashcrowds and they mainly address file-sharing and live streaming applications (see [4, 5]). However,
the analysis presented in [16] shows that flashcrowds affect P2P VoD systems as well. Motivated by these
observations, in this work, we seek to study P2P VoD systems under flashcrowds. More specifically, due to
BitTorrent’s efficiency and high proliferation of BitTorrent-inspired VoD protocols, in our study we focus on
a BitTorrent-like design.

Our analysis aims to answer the following questions: (i) how does a flashcrowd affect a BitTorrent-like
VoD system? (ii) how can bandwidth allocation be made more effective in enhancing peer QoS during
flashcrowd? With respect to the second research question, we have especially investigated the role of the
seeders, as they represent the major bottleneck when bandwidth is scarce [2, 4].

To summarize, we make the following contributions:

e We devise an analytical model that captures the dynamics of peers in a BitTorrent-like VoD system
during a flashcrowd.

e Using this model, first we find an upper bound to the number of newcomers that can be admitted in
the system over time, and then we show that a trade-off exists between having the seeder minimize the
upload of pieces already injected recently and high peer QoS.

e Finally, employing the insights of our analysis, we present and evaluate a class of flashcrowd-handling
algorithms to make bandwidth allocation more effective during flashcrowds, thereby improving peer
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QoS.

2 Related Work

BitTorrent is a widely popular P2P protocol for content distribution. In BitTorrent, files are split into pieces,
allowing peers which are still downloading content to serve the pieces they already have to others. Nodes
find each other through a central tracker, which provides them with a random subset of peers in the system.
Each node establishes persistent connections with a large set of peers (typically between 40 and 80), called
its meighborhood, and uploads data to a subset of this neighborhood. More specifically, each peer divides
equally its upload capacity into a number of upload slots. Peers that are currently assigned an upload slot
from a node p are said to be unchoked by p; all the others are said to be choked by p. The unchoking policy
adopted by BitTorrent, and many of its variants, is based on a kind of tit-for-tat: peers prefer unchoking
nodes that have recently provided data to them at the highest speeds. Each peer maintains its neighborhood
informed about the pieces it owns. The information received from its neighborhood is used to request pieces
of the file according to the local rarest-first policy. This policy determines that each peer requests the pieces
that are the rarest among its neighbors, so to increase piece diversity.

Because of its high efficiency, a lot of research has been conducted on adapting BitTorrent to VoD (see
[1, 6, 10, 11, 13]). These studies mainly focus on the piece selection policy, exploring the trade-off between
the need of sequential download progress and high piece diversity. Also, extensive work has been done
on modeling and analyzing BitTorrent-like VoD systems. Parvez et al. [8] study the performance of such
systems and conclude that they are scalable in steady state. Lu et al. [14] propose a fluid model to analyze
the evolution of peers over time. However, they do not consider the QoS requirements for VoD (to be
discussed in Section 3.2) in their analysis nor they focus on the flashcrowd scenario.

With respect to flashcrowds, Liu et al. [5] study the inherent relationship between time and scale in a
generic P2P live streaming system and find an upper bound for the system scale over time. Esposito et al. [4]
recognize the seeders to be the major bottlenecks in BitTorrent systems under flashcrowds and propose a
new class of scheduling algorithms at the seeders in order reduce peer download times. However, none of
these previous works analyzes the case of P2P VoD applications.

3 System Model and Fundamental Principles

In this section, we present a discrete-time model to describe a BitTorrent-like VoD system under flashcrowd.
Then, we discuss the fundamental QoS requirements for a VoD system and derive an upper bound for the
system scale over time.

3.1 Model

We consider a BitTorrent-like VoD system consisting of an initial seeder, i.e. a peer with a complete copy
of the file, with upload capacity M, and a group of peers, with upload capacity p, joining the system at a
rate A(t). The video file shared in this system has streaming rate R (Kbits/s), size F' (Kbits) and is split
into n pieces of equal size, allowing peers who are still in the process of downloading to serve the pieces they
already have to others. The notation we use is shown in Table 1.

In the analysis, we assume that all peers utilize upload slots of identical size, i.e. the total number of
upload slots v, offered by the initial seeder and the number of upload slots v, offered by a peer are defined

as follows v
-

where 7 is the per-slot capacity, which, without loss of generality, we assume to be a submultiple of the
streaming rate R. This is equivalent to the concept of substreams used in commercial P2P streaming systems
(e.g. Coolstreaming [12]) and in P2P streaming literature (e.g. [3, 5]), where a video stream is divided into
many substreams of equal size and nodes could download different substreams from different peers.
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Notation Definition : i

F filesize (Kbits).
n number of pieces the file is split into.
R streaming rate (Kbits/s).
Ny number of sharers present in the system at the beginning of timeslot tg.
M initial seeders upload capacity (Kbits/s).
I

r

| M

peer upload capacity (Kbits/s).
per-slot capacity (Kbits/s).

Vs = /7] | number of upload slots opened by the initial seeder.
v, = |p/r| | number of upload slots opened by each peer.
A(t) arrival rate of peers in the system.
2(tg) number of newcomers at timeslot tx.
Z(ty) number of newcomers admitted in the system at the end of timeslot ¢.
x(ty) number of sharers at timeslot ¢.
y(tx) number of seeders at timeslot t.
Ul(t) total upload capacity available at timeslot 5 (Kbits/s).

If each uploader has at least as many unchoked peers as upload slots, the minimum time needed to upload
a piece is

T, = —
LY

with F'/n being the size (in Kbits) of a piece.

For simplicity, we assume that time is discrete, with the size of each timeslot t; being 7, (i.e. 5 = k7p
and k € {0,1,2,...,4,...}), and that the upload decisions are made at the beginning of each timeslot.
Consequently, in each timeslot, a peer will upload to another peer exactly one piece.

In our analysis, we distinguish between two types of downloaders: newcomers, having no piece yet, and
sharers, having at least one piece. We denote with z(ty), z(tx) and y(tx), the number of newcomers, sharers
and seeders during timeslot ¢z, respectively. In this notation, y(¢x) excludes the initial seeder supplied by
the video provider. Furthermore, we assume that, at timeslot to, there are already Ny initial sharers in
the system and that no peer leaves the system before its download is complete. Given this notation, the
evolution of peers in the system can be described by means of the following set of discrete-time equations

2(tg) = 2(tp—1) — 2(tk—1) + A(tk—1),
o(ty) = 2(tk—1) + 2(tk—1) — T(tg-1),
y(te) = y(tk—1) + T(tk—1) — v(tk—1),
z(to) = 0,z(to) = No,y(to) =0,

where A(tx—1) is the number of peers who joined within timeslot ¢;_1, Z(tx—1) is the number of newcomers
that turned into sharers at the end of timeslot t;_1 (i.e. they were admitted in the system), & (tx—1) is the
number of sharers that turned into seeders at the end of timeslot ¢_1, and y(tx—1) is the number of seeders
who left at the end of timeslot £;_1.

The total bandwidth available during a timeslot ¢; is given by the sum of the contributions of all the
sharing peers (seeders and sharers) available at the beginning of timeslot ¢, i.e.

Ulte) = M + pa(te) + py(tr). (1)

3.2 QoS Requirements for VoD

The upload decisions made by peers at the beginning of each timeslot t; should aim at satisfying the
fundamental QoS requirements for streaming. Firstly, peers should be able to play the video as smoothly as
possible. This means that those peers whose playback has already started should maintain, on average, a
download rate of at least R. For the purpose of the analysis, we assume that all sharers have already started
playback and hence we have:
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QoS Requirement 1: maximize the number of sharers who maintain a download rate of at least R at each
timeslot tg.

Secondly, it is desirable that joining peers experience low startup delays. Therefore, we have:

QoS Requirement 2: maximize the number of newcomers selected for upload at each timeslot tj.

With regards to these requirements we make the following observation: allowing a peer to start the
playback means that the system has committed itself to provide a satisfactory playback continuity to that
peer, while no commitment has been established with a newcomer yet. Hence, when the bandwidth is scarce,
it is more important to serve those peers that have already started playing, rather than admitting new nodes
in the system (i.e. Requirement 1 has priority over Requirement 2). Furthermore, by doing so, we also avoid
admitting in the system peers whose playback continuity cannot be guaranteed due to bandwidth scarcity.

3.3 Scalable System

An immediate consequence of QoS Requirement 1 is that, for a BitTorrent-like VoD system to scale with
the number of peers, it must hold that R < p. When this is not the case (i.e. when R > p), the sharers
alone are not able to support themselves with a downloading rate of at least R, and an additional amount
of bandwidth equal to R — p has to be provided to support each new sharer. In the remainder of this paper,
we will only focus on scalable systems where, by definition, R < p holds.

3.4 Upper bound for the system scale in time

Even for a scalable system, only a limited number of newcomers can be admitted at each timeslot. This is
due to the fact that, until they complete the download of their first piece, newcomers consume bandwidth
without providing any bandwidth in return. In this section, we will derive an upper bound for the number
of newcomers that can be admitted in the system at each timeslot, assuming that all the bandwidth U (¢x)
available at a certain timeslot ¢; is fully utilized. We proceed by first reserving the necessary bandwidth
for the sharers to satisfy QoS Requirement 1. Then, based on the remaining bandwidth, we calculate the
number of newcomers that can be admitted in timeslot ty.

Reserving the necessary bandwidth for the sharers

From QoS Requirement 1 it follows that the minimum amount of bandwidth U, (¢;) that needs to be reserved
for the sharers at timeslot ¢, is
U, (tr) = Rx(ty). (2)

Admitting the newcomers and upper bound

After having reserved the necessary bandwidth for the sharers, the remaining bandwidth (if any), can be
used to admit newcomers in the system. To this end, we find the following upper bound for the number of
newcomers that can be admitted during timeslot ¢.

Lemma 1. For a BitTorrent-like VoD system with streaming rate R and average peer upload capacity pu > R,
the number of newcomers %(ty) that can be admitted during timeslot ti has the following upper bound

< M + py(ty) + (n — R)z(t)

2(ty) (3)
Proof. Taking Eq. (2) into account, the bandwidth available for newcomers at timeslot ¢y is at most U (ty) —
Uy (tr) = U(tr) — Rx(ty) = M + py(tx) + (u — R)x(tx). Since the capacity of a peer upload slot is , Eq. (3)
follows. O

From Lemma 1, it is clear that, at the beginning of a huge flashcrowd, when there are only few or no
seeders (besides those supplied by the service provider) and few sharers who can only provide a limited
fraction of bandwidth to newcomers, the system can only admit a small amount of newcomers per timeslot.
When this happens, it is impossible to avoid newcomers experience longer startup delays, as we will show
with our experiments in Section 6.
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Figure 1: Seeder’s piece allocation at timeslot tj.

4 Seeders’ Piece Allocation Analysis

In this section, we will to study the piece allocation strategy of the seeders in a BitTorrent-like VoD system
during a flashcrowd. The reason to focus on the seeders is twofold. Firstly, their piece allocation strategy
is a crucial aspect during flashcrowd, as seeders are the only interesting peers in that phase (all other peers
have few or no pieces yet). Secondly, the complete bandwidth allocation problem in a BitTorrent-like system
is NP-hard [4].

We proceed by first defining the features of the BitTorrent-like VoD protocol we consider and introducing
a useful concept to understand the flow of data from the seeders to the peers. Then, we analyze in detail
the seeders’ piece allocation.

4.1 Protocol Features

For the purpose our analysis, we assume that the seeders coordinate their behaviors. Consequently, in the
remainder of this section, we assume that there is only one seeder in the system holding the total seeding
capacity vs(tx) available at each timeslot ¢;. We assume that the seeder knows

1. the arrival rate A(tx), the leaving rate v(t); and
2. the last piece it has sent to the sharers.

Given our first assumption, the seeder always knows the exact number of peers in the system at each moment
in time.

In the following we describe the piece allocation and the piece download schemes adopted by the seeder
and by the downloaders, respectively.

Seeder Piece Allocation

Having denoted with v, (¢x) the total number of upload slots provided by the seeder at timeslot ¢, we assume
that

3) each of these slots is allocated to a different peer;
4) the seeder unchokes, at each timeslot, the oldest v;(t) peers in the system; and

5) unless otherwise specified, at each timeslot ¢, the seeder uploads pieces from i to i + v4(tg) — 1, where
i — 1 is the piece with highest index uploaded at the previous timeslot t;_;.

Strategy 3) reflects the idea of serving as many peers as possible. Strategy 4) is justified by the fact that
younger peers, having a lower level of progress than older peers, can download their needed pieces from older
peers, while the oldest peers can obtain the pieces they need only from the seeder. As a consequence of our
strategy 5), each of the v,(tx) peers unchoked by the seeder will receive a different piece, as illustrated in
Figure 1. We note that this scheme increases the bartering abilities among peers, hence allowing a high peer
bandwidth utilization.
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Figure 2: Organized view of an overlay mesh relative to a BitTorrent-like VoD system. Solid arrows and
dashed arrows represents diffusion connections and swarming connections, respectively.

level 1 (L)

Piece Download Scheme

According to the QoS Requirement 1 for VoD, a sharer should keep an average download rate of at least
R, in order to maintain a good stream continuity. However, the pieces needed by peers cannot always be
downloaded in a strict sequential order, otherwise the bartering abilities among nodes are hampered. To
avoid this scenario, we assume that

6) each peer defines a download buffer B, of size B which includes pieces [i,i + B — 1], where i = aB,
with o € {0,1,2,..., 5]}

Once all the pieces in the current buffer B, are downloaded, a peer defines the next buffer B,+1 = B, + B =
[i + B,i+ 2B — 1]. Although pieces from outside the buffer can be downloaded, it is necessary to enforce
the buffer filling rate to be at least R, in order to satisfy QoS Requirement 1. Even if the schemes used in
practice are more practically convenient (with the buffer being implemented as a sliding window following
the playback position or the first missing piece of the file [9, 10, 13]), a static buffer makes the computation
of its filling rate easier, which will be useful in the analysis in Section 4.3.

4.2 Organized View of an Overlay Mesh

To understand the flow of data from the seeder to the downloading peers, we use the concept of organized
view of an overlay mesh, originally proposed for P2P live streaming systems [7]. In this view, downloaders
are grouped into levels based on their shortest distance from the seeder through the overlay as shown in
Figure 2. The set of peers on level i is denoted by L;. Ly peers are directly served by the seeder, Lo peers are
served by L peers, and so on. The connections from L; peers to L;1 peers are called diffusion connections,
since they are used for diffusing new pieces through the overlay. On the other hand, the connections from
L; peers to L; peers, where j < i, are used to exchange missing content through longer paths in the overlay
(i.e. swarming). We call these connections swarming connections.

4.3 Piece Replication at the Seeder

A seeder might decide to upload only pieces not yet present in the overlay or upload again some pieces
already injected recently (a behavior which we term piece replication).

As observed earlier, a system where the seeder adopts the first strategy allows a higher peer bandwidth
utilization.

On the other hand, a higher piece replication at the seeder, when properly implemented, allows a faster
diffusion of pieces in the system and increases the system scale. In fact, if the seeder serves to the peers the
pieces they need in the immediate future (rather than new, far-away ones), then these peers have a lower
chance of missing a piece before its playback deadline. Furthermore, since these nodes obtain some of the
needed pieces directly from the seeders, they need to obtain fewer pieces from their neighbors, which can
then utilize a higher fraction of their bandwidth to serve newcomers, thereby reducing startup delays and
increasing the system scale. However, even if the seeder decides to upload again some pieces already present
in the system, a certain minimum number of new pieces has to be injected at each timeslot, to allow older
peers maintain a download speed of at least R.
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Hence, a balance is necessary between injecting enough new pieces in the system and serving pieces
needed right away. We study this issue using the concept of seeder replication factor Fj at timeslot ty,
which we define as the fraction of replicated pieces over the total number of pieces that a seeder allocates in
that timeslot. Thus, a seeder replication factor of a/b, for a seeder with b upload slots, means that a of the
allocated pieces will be a replica while the other b — a will be pieces not yet present in the system. In the
following, we show how to determine an upper and a lower bound for the seeder replication factor Fj.

Theorem 1. Let a BitTorrent-like VoD system with streaming rate R consist, at the beginning of timeslot
ti, of a seeder with upload capacity rvs > R and at least x(ty) > v, sharers with upload capacity rv, > R.
Then, the maximum value of the seeder replication factor Fy, guaranteeing that, independently from previous
upload allocations, the sharers keep a buffer filling rate of R at timeslot tyy1, is

v, — L&

max I, = T, (4)

Vs

R
Vs—

Proof. Let us assume that Fj >

—. This means that the number of replicated pieces uploaded by the
seeder at timeslot t is C'(t) > vs — % which in turn means that the seeder has injected at most D(ty) < g
new pieces. Now, let us assume that previous upload allocations are such that, by the end of timeslot t;, all
L, peers complete the download of all pieces until (and including) piece i, where i is the piece with highest
index uploaded by the seeder at timeslot ¢5_1. Consequently, at timeslot tx41, the L; sharers can complete,
at most, the download of the D(t;) < g new pieces injected by the seeder at timeslot ¢, which means that
their average download rate can be at most D(¢)r < R. Hence, we have demonstrated that there exist at
least one scenario in which the sharers will not be able to maintain a piece buffer filling rate of at least R

when Fj, > V‘“’_%. On the other hand, when Fj, < =—=, then D(t) > %, which means that the sharers can
potentially reach an average download rate of D(t;)r > R. O

As we will see later on in this paper (Section 6), the upper bound for the seeder replication factor is also
the value yielding the best playback continuity. In fact, on one hand this value allows enough replication to
limit the number of pieces peers miss, and on the other hand it guarantees that the oldest peers have enough
new pieces to keep an average download rate as high as the playback rate.

R
Vs—

Theorem 2. Let a BitTorrent-like VoD system with streaming rate R consist, at the beginning of timeslot
ti, of a seeder with upload capacity rvs > R, x(ty) > vs sharers with upload capacity rv, > R and z(ty)
newcomers. Then, the minimum value of the seeder replication factor F}, at timeslot t;, necessary to mazximize
the number of newcomers to be admitted, while still guaranteeing the sharers a buffer filling rate of R, is

0 if z(tx) < Z1(tr),
z(t)—E-—Kaz .
min Fj, = % if Z1(t) < 2(tk) < Za2(tr),
Vs — 7 .
- 1 if 2(tk) > Za(ti),
where
R
K=vp——, (5)
R
Zi(te) = - + Ka(te), (6)
Zg(tk) = Vs + Kac(tk). (7)

In order to prove Theorem 2 we need to introduce the following

Lemma 2. Given a BitTorrent-like VoD system under the same conditions as in Theorem 2, if the seeder
does not replicate, then its average contribution of pieces within the buffer of each L1 sharer is

ng + Ka(ty) — min{ Za(t), 2(tx) }
ve — 1

pieces per timeslot, where K and Zs(ty) are defined in Eq. (5) and (7), respectively.
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For the proof of Lemma 2 we refer the reader to the Appendix.

Proof of Theorem 2. When the sharers are able to serve all the newcomers (with at least one piece each), as
well as complete the download of the % pieces within their respective current buffers necessary to maintain
a good stream continuity (QoS Requirement 1), utilizing only their aggregate bandwidth, then the seeder
does not need to replicate and can inject new pieces into the system.

Specifically, if the sharers serve the newcomers, they will be having a total of X1 (tx) = vpa(ts) — Zm(tx)
slots left, being vpx(ty) the total number of slots offered by the sharers, Z,,(t) := min{Zs(tx), z(tx)}, and
Zs(tx) the maximum number of newcomers that can be served at this timeslot (as derived from Lemma
1 applied to this case). Hence, it holds that X (tx) > vpx(ty) — Z2(ty) = %x(tk) — v,. Of these slots,
Xo(tr) = (x(tr) — vs) £ can be used to provide the £ needed pieces to the L; sharers (j > 1), which are
z(ty) — vs in total. Consequently, the number of slots from the sharers available for the L; peers are

Xs(tk) :Xl(tk) 7X2(tk) :I/SgﬁLKI(tk)*Zm(tk). (8)

Alternatively, X(t;) can be considered as the maximum number of pieces that L; peers can receive through
swarming. Now, the piece replication at the seeder should be such to allow each of these peers complete the
download of the % pieces within their current buffers at the end of timeslot ¢;. This makes a total of Ry, /r
needed pieces for all the Ly peers. Of these pieces, X;(tx) can be obtained from swarming, and, by Lemma
2, at most other

Xs(tr)

ve — 1

pieces are provided by the seeder (when not taking replication into account). Hence, the total amount of
needed pieces minus those provided through swarming and by the non-replicating activity of the seeder
corresponds to the minimum number of pieces that the seeder needs to replicate at timeslot ¢

C(ty) = max {o, %/S X (t) — X(tk)} _

Ve — 1

— max {o, VS”j - (Zm(tk) - § - Kx(tk)) } .

Hence, the minimum replication factor Fj is

Fi, = Cltk) = max {O, Zm(t) — g — Kat) } . (9)

ve— 1

From Eq. (9) we notice that, when z(t;) < Zi(tx) = £ + Kxz(tx), the seeder does not need to perform
any replication. Furthermore, we observe that, when z(tx) > Za(tx) = vs + Kx(tx), the minimum seeder

_R
replication factor equals to %, which completes our proof. O

5 Algorithms for Flashcrowds

In this section, we present a class of flashcrowd-handling algorithms that use the insights gained by our
analysis to make the bandwidth allocation in BitTorrent-like VoD systems under flashcrowds more effective
in enhancing the QoS requirements of peers. First, we explore some methods to allow a peer to detect
whether the system is under flashcrowd, and then, we describe our algorithms in detail.

5.1 Flashcrowd Detection

Ideally, the bandwidth allocation of each peer at every moment in time should rely on some global knowledge
of the state of the system at that time (e.g. total number of peers, number of newcomers, current download
progress of all peers, etc.). However, providing all the nodes in the system with this kind of information is
not feasible in practice. Furthermore, the bandwidth allocation problem in BitTorrent-like systems has been
shown to be NP-hard [4].
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Figure 3: Comparison between the real value and the value perceived by a peer for different flashcrowd
detection metrics. Peers join at rate A(t) = )\06_5 with A\g = 5 and 7 = 1500 from time ¢y = 5000s in a
system with a seeder and Ny = 7 initial peers. All the other parameters are like in Table 2.

Hence, in this paper, we will use an heuristic approach where each peer considers the system to be either
in “normal state” or “under flashcrowd”. Depending on which state the peer assumes the system is in, it
will utilize a different bandwidth allocation algorithm. To implement this mechanism, peers need some way
to detect the occurrence of a flashcrowd. Based on a peer’s local knowledge, a natural choice to identify a
flashcrowd would be to measure the following:

(a) Increase in the perceived number of newcomers. A peer can track the number of newcomers
that connect to it by checking the pieces owned by its neighbors.

However, when the peerlist provided by the tracker contains a constant number of nodes, this is not a good
metric for detecting a flashcrowd, as its accuracy decreases with the size of the system (see Figure 3(a),
obtained running the BitTorrent-like VoD protocol proposed in [13] under the settings described in Section
6.1 of this paper). On the other hand, since the tracker provides each peer with a random subset of the
nodes, we can assume that each peer encounters a random and therefore representative selection of other
peers and we can measure the following:

(b) Fraction of neighbors having less than 50% of the file. Esposito et al. [4] observed that, in the
BitTorrent file-sharing system, the average file completion level of peers during a flashcrowd is biased
towards less than half of the file, i.e. there are many more peers with few pieces than peers with many
pieces.

Our experiments corroborate the findings of Esposito et al. [4]. Furthermore, our experiments also show
that the difference between the real value of peers having less than 50% of the file and the value perceived
by a peer (i.e. based on the nodes in its neighborhood) is barely visible (Figure 3(b)). These results confirm
that (b) represents a good metric for a peer to detect a flashcrowd only based on his local information.
Furthermore, using this method, peers can estimate the end of a flashcrowd as well, by checking when the
fraction of neighbors with more than half of the file becomes higher than that of peers with less than half of
the file. Hence, in our experiments, we will use this method to detect a flashcrowd.

Once detected a flashcrowd, a peer needs also to know whether the flashcrowd is negatively affecting the
system performance. In fact, the same flashcrowd might have a different impact on the system performance
depending on how many peers are already there when the flashcrowd hits. Therefore, each sharer periodically
measures its download performance and checks whether it is enough to meet the QoS Requirement 1 for
VoD. On the other hand, a seeder does not download data nor it can trust information received by other
peers (as they might lie). Therefore, a seeder will only use the flashcrowd detection method to activate its
flashcrowd-handling algorithm.
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5.2 Flashcrowd-Handling Algorithms

In our proposal, a peer runs a certain default algorithm until it detects both a flashcrowd and (in the case of
a sharer) it measures that its performance is low. When this happens, it will switch to a flashcrowd-handling
algorithm. More specifically, a peer will assume the system to be under flashcrowd once the number of
its neighbors having less than 50% of the file is gone above a certain threshold T. If the peer is a seeder,
this is enough for it to activate its flashcowd-handling algorithm. If it is a sharer, it will only activate
its flashcrowd-handling algorithm if its sequential progress® is below the streaming rate R. The sequential
progress is a good metric for a real-time check of the preservation of a peer’s stream continuity. Furthermore,
it has the advantage of being agnostic with respect to the piece selection policy adopted by the underlying
BitTorrent-like VoD protocol.

In the following we present our flashcrowd-handling algorithms for the sharers and the seeder respectively,
which are derived from the insights gained from our analysis in Sections 3.1 and 4.3.

Flashcrowd-handling algorithm for the sharers

Recall that, when bandwidth is scarce, the priority of a BitTorrent-like VoD system is to meet the QoS
Requirement 1, i.e. maximize the number of sharers that keep a smooth playback continuity (Section 3.2).
Hence, newcomers should only be allowed in the system if there is enough bandwidth available for them,
after the necessary bandwidth for all the current sharers has been reserved (Lemma 1). Peers, however, do
not have (nor it is reasonable for them to have) global knowledge of what is happening in the system at a
certain instant in time (how many sharers and newcomers there are, how many newcomers have been already
unchoked, etc.). Therefore, we propose that, when a sharer is running the flashcrowd-handling algorithm,
it will choke all the newcomers and keep them choked until it switches back to the default algorithm.
Newcomers might still be unchoked by peers who are not running the flashcrowd-handling algorithms, if any.
This strategy avoids wasting bandwidth to admit newcomers, when existing peers struggle to keep a smooth
playback continuity.

Flashcrowd-handling algorithm for the seeder

As we have observed in Section 4.3, the seeder’s behavior is crucial during a flashcrowd. Similarly to sharers,
seeders choke all newcomers when they are running the flashcrowd-handling algorithm. Furthermore, based
on the observation from our analysis in Section 4 that older peers can only get their pieces from the seeder
and given that the competition for the seeder is higher during flashcrowd, we designed our flashcrowd-
handling algorithm to have the seeder keep the oldest peers always unchoked. Then, we have implemented
two different classes of seeding behavior as reported below.

1) Passive seeding (FH with PS): the seeder does not directly decide which pieces it will upload and
the decision is left to the requesting peers.

With this strategy we will evaluate the effectiveness during flashcrowd of the piece selection strategy employed
by peers.

2) Active seeding (FH with AS): the seeder decides which piece to send to each requesting peer.

This second strategy allows us to evaluate the impact of different replication factors. For what concerns the
pieces to replicate, we have chosen a proportional approach, in order to reduce the skewness of piece rarity:
all pieces are replicated the same number of times. More specifically, given a replication factor Fj at seeder’s
unchoking round k, the number of new pieces the seeder injects in the system is w = (1 — F)vs, v, being the
number of upload slots of the seeder. Then, the number of peers directly unchoked by the seeder is divided
in g = %= groups of size w each and peers within each group are assigned pieces from i to i +w — 1, where
i — 1 is the piece with highest index uploaded by the seeder in the previous round. For an illustration see
Figure 4.

For what concerns the coordination of multiple seeders, we make the following observations. Firstly, in
a flashcrowd scenario, typically there is only one or a few seeders in the swarm, i.e. the content injectors.

la peer’s sequential progress is defined as the rate at which the index of the first missing piece in the file grows [6]
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Figure 4: Seeder’s piece allocation with g = Z= groups of peers.

In the case of only one seeder, no coordination is needed, while in the case of few seeders, the coordination
overhead is not very high. In fact, since the seeders do not unchoke new nodes until some of the currently
unchoked peers leave, and since the behavior of the seeders is deterministic, they need to coordinate only at
the beginning, when getting their first connections, and every time an unchoked peer leaves. Secondly, the
creation of new seeders at a later stage, as a consequence of peers completing their downloads and remaining
in the system to seed, indicates per se that more and more bandwidth becomes available in the system.
At this stage, the system would likely be already able to deliver a reasonably good service even for short
seeding times and no flashcrowd-handling mechanism in place [?]. Thus, the coordination between these
newly created seeders and the initial seeder(s) can be avoided.

Finally, we note that, even if a seeder activates its flashcrowd-handling algorithm in a flashcrowd that
would not affect the system very seriously, peer QoS will not degrade. In fact, although the seeder does not
unchoke any newcomers, they will still be unchoked by many other sharers in the system. Hence the impact
on newcomers’ startup delay would be minimal. Regarding the fact that older peers always remain unchoked,
we believe that this is not a problem either. In fact, as pointed out earlier, older peers can only obtain their
pieces from the seeders and, if they do not need to compete with other peers for the seeder’s slots, they are
likely to experience better QoS, and hence able to serve more peers with a lower level of progress.

6 FEvaluation

In this section, we evaluate our proposed flashcrowd-handling algorithms by means of simulations. First,
we introduce the details of the experimental setup, the evaluation metrics, and we describe the different
flashcrowd scenarios used. Then, we present and analyze the simulation results.

6.1 Experimental Setup

We have implemented a default BitTorrent-like VoD algorithm and our flashcrowd-handling algorithms on top
of the MSR BitTorrent simulator [2]. This discrete event-based simulator accurately emulates the behavior
of BitTorrent at the level of piece transfers and has been widely used, also for simulating BitTorrent-like
VoD protocols [13, 15]. In all our experiments we have utilized the algorithm presented in [13] as our default
BitTorrent-like VoD protocol, with tit-for-tat as peer selection policy and local rarest-first within the buffer
as piece selection policy?. We have set the flashcrowd detection threshold value T to 0.5, since our simulations
show that, in normal state, the fraction of a peer’s neighbors having less than 50 % of the file lies, on average,
below 0.5 (see Figure 3(b)). Different threshold values will be explored in future work.

The settings for our experiments are shown in Table 2. The system is initially empty, until a flashcrowd
of N peers starts joining. In our simulations, we have utilized both an exponentially decreasing arrival rate
At) = Xoe~ 7, and an arrival rate with N peers joining altogether at time ¢y = 0. The simulation stops after

2The VoD protocol presented in [13] employes an adaptive mechanism to increase a peer’s buffer size if that peer is experi-
encing a good QoS. In this way, peers bartering abilities are increased when the conditions are favorable. The parameter “initial
buffer size B” reported in Table 2 represents the default initial size of each peer’s buffer.
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Figure 5: Percentage of peers experiencing perfect playback continuity (PCI = 100%) and good playback
continuity (PCI > 95%) in a system hit by flashcrowds of different intensities as defined in Section 6.3. The
graphs compare the performance of the flashcrowd-handling algorithms with different replication factors.
The vertical bars represent the confidence intervals over 10 simulation runs. Note that the scale of the
horizontal axis is not linear.

the last peer completes its download. In our experiments, we have assumed the worst case scenario of peers
leaving immediately after their download is complete. On the other hand, the initial seeder never leaves the
system.

Finally, to decide when playback can safely commence, the method introduced in [6] is used. Specifically,
a peer will start playback only when it has obtained all the pieces in the initial buffer and its current
sequential progress is such that, if maintained, the download of the file will be completed before playback
ends.

6.2 Evaluation Metrics

To evaluate how well our solutions meet the QoS requirements for VoD, we have utilized the following metrics:

1. Playback Continuity Index (PCI): defined as the ratio of pieces received before their playback deadline
over the total number of pieces. The higher a peer’s PCI, the smoother the playback it experienced.
Hence, the PCI measures how well the QoS Requirement 1 is met.

2. Startup delay, to measure how well the QoS Requirement 2 is met.

6.3 Scenarios

In our simulations, we have considered three scenarios characterized by three different flashcrowd intensities:

12
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Table 2: Simulation Settings

’ Parameter \ Value
Flashcrowd size NV 1500 peers
Video playback rate R 800 Kbits/s
Video length L 1 hour
Initial buffer size B 20 pieces
Piece size 256 KBytes
Upload capacity of the initial seeder M | 8000 Kbits/s (10R)
Peer upload capacity u 1000 Kbits/s
Per-slot capacity r 200 Kbits/s
Flashcrowd detection threshold T 0.5

e low intensity: exponentially decreasing arrival rate \(t) = Xoe~ 7, with A\g = 5 and 7 = )\ﬂo = 300;
e medium intensity: exponentially decreasing arrival rate A(t) = Xoe~ 7, with A\g = 10 and 7 = /\ﬂo =
150;

o high intensity: N peers joining altogether at time ty.

6.4 Results

We will first analyze the effect of different replication factors F} over the performance of our flashcrowd-
handling algorithms and then we will compare the default Bit Torrent-like VoD algorithm with our flashcrowd-
handling algorithms.

The effect of different replication factors

Figure 5 shows the percentage of peers experiencing perfect (PCI = 100%) and good (PCI > 95%) playback
continuity for flashcrowd-handling algorithms with active seeding having different replication factors under
the three simulated scenarios. As we can see, no replication (i.e. Fy, = 0) is not an optimal strategy, as it
always causes a considerable amount of peers experience poor stream continuity (in the case of flashcrowd
of high intensity, for example, only 36% of peers experience perfect playback continuity). On the other
hand, when the seeder performs replication, the playback continuity index of peers increases. In fact, as we
observed in Section 4, a higher piece replication at the seeder decreases the chance of peers missing pieces.
However, we have also showed that the seeder replication shall not be too high: the seeder needs to inject

Vs

_E

new pieces at a rate of at least R (which means a replication factor Fy, < —-—=), in order to make sure that

its unchoked peers keep a download rate of at least R necessary to meet the first QoS Requirement for VoD.

Indeed, from Figure 5 we can observe that, in all scenarios, the playback continuity index improves as the
R

Ve—

R
= the playback continuity

replication factor grows until it reaches the limit Fj, = Véuj When Fj, >
index starts degrading again.

Vs

Default algorithm vs flashcrowd-handling algorithms

Figure 6 shows the CDF of peer playback continuity index for the default BitTorrent-like VoD algorithm
and our flashcrowd-handling algorithms under the three simulated scenarios. The algorithm with active

seeding pictured has replication factor Fj, = ys;g, which, as shown by the previously presented results, is
the one that maximizes QoS Requirement 1. As we can observe, the flashcrowd-handling algorithm with
active seeding (FH with AS) consistently outperforms the other ones, with never more than 10% of the peers
receiving a playback continuity index below 100%. By contrast, in the case of flashcrowd with high intensity,
the default algorithm is not able to provide any peer with a PCI of 100%. Furthermore, we can notice that,
while the performance of the other two algorithms degrades with more intense flashcrowds, that of FH with
AS stays constant. Finally, we note that the flashcrowd-handling algorithm with passive seeding (FH with
PS) works relatively well for not too intense flashcrowds, but suffers performance degradation with a very
intense flashcrowd. This is due to the fact that the seeder replication factor is controlled by the peers, which
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Figure 6: CDFs of peer’s playback continuity index in a system hit by flashcrowds of different intensities as
defined in Section 6.3. The graphs compare the performance of the default algorithm without flashcrowd-
handling (no FH) with the flashcrowd-handling algorithm with passive seeding (FH with PS) and active
seeding (FH with AS), respectively. The active seeding algorithm uses the maximum replication factor
according to Eq. (4).

do not coordinate their piece requests among each other. The local rarest-first strategy used by each peer
to select a piece to download is supposed to smoothen this effect. However, since its effectiveness builds
up once a peer has been in the system for some time, it is less powerful when the system is under a heavy
flashcrowd.

For what concerns the startup delay (Figure 7), we can make the following observations. First we note
that, for a flashcrowd with low or medium intensity, FH with AS is able to maintain a relatively low startup
delay for all peers (comparable to that of the default algorithm). This is a sign that an adequate replication
of pieces at the seeder results in satisfying both QoS requirements, when possible. On the other hand,
FH with AS significantly increases the startup delay of peers in the scenario of heavy flashcrowd. This is
an experimental validation of what stated in Lemma 1: the bandwidth available at the beginning of the
flashcrowd is not enough to serve all the joining peers, which, consequently, will experience longer startup
delays.

We have simulated each of the three flashcrowd scenarios 10 times and found out that the behavior of
the different algorithms is very stable, with the standard deviation never exceeding 1.6 and 3.4 of the mean
values of PCI and startup delay, respectively.

7 Conclusion and Future work
In this work, we have studied the allocation of bandwidth in a BitTorrent-like VoD system under flashcrowd.
We have defined what the priorities are when bandwidth is scarce, so to provide a good QoS to as many

peers as possible. In doing so, we have shown that there is an upper bound for the number of peers that
can be admitted in the system in time. Furthermore, we have demonstrated that a trade-off exists between
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Figure 7: CDFs of peer’s startup delays. The notations and the setups as the same as for Figure 6.

low piece replication at the seeders and high peer QoS. In particular, we have shown that, the larger a
flashcrowd, the more pieces (up to a certain limit) the seeders need to replicate, in order to have peers
experience an acceptable QoS. Then, we have used the insights gained from our analysis to design a class of
flashcrowd-handling algorithms that improve peer QoS when the system is under a flashcrowd.

On a different note, our study also shows that heavy flashcrowds have a huge impact on BitTorrent-like
VoD systems, although peers are incentivized to contribute their bandwidth to the network. We therefore
expect that systems which do not incorporate such incentives are (i) either likely to provide lower QoS to
their users, since peers are not “forced” to contribute their bandwidth (and might decide not to), or (ii) they
need to supply considerably more server bandwidth in order to have their service scale with the flashcrowd
size, as compared to BitTorrent-like (incentivized) systems.

There are several directions for further studies. For example, it would be desirable to consider the effect
of early peer departures due to users impatience in getting access to the video content. Furthermore, it
might be interesting to dynamically adjust the capacity provisioning of the service provider to adapt to the
size of flashcrowd. This will also require a deep investigation of different flashcrowd detection techniques.
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Appendix

In order to give the proof of Lemma 2, first we introduce the following notations. Let Tz be the average
number of timeslots needed by a L, peer to download a piece buffer of size B and let Sg be the total number
of pieces allocated in the buffer by a non replicating seeder within the time interval Tz. Then, the average
buffer filling rate dg of a L1 peer can be calculated as the sum of the total contribution through swarming
and seeder over the number of timeslots Tg needed to complete the download of the buffer, i.e.

i+T
_ Ziiitf Xs(tk) + 5B X Sp

d = S T
B Th s+ Ty

where ¢; is the timeslot when the current buffer B, was defined, X,(tx) is given in Eq. (8), and finally X
and % are the average buffer filling rates provided through swarming and by the seeder, respectively, over
the time frame Tg.

Proof of Lemma 2. A non replicating seeder will provide consecutive pieces to the downloaders. This means
that in timeslot ¢, it will give piece ¢ + kvy to downloader p;, piece i + kvg + 1 to downloader p;y; and

so on; then at timeslot t;41 the scheme will be repeated starting from piece i + (k + 1)v,. This allocation
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Figure 8: Representation of peer ¢’s current buffer B,. In this example, B = 2v, and the seeder allocates to
peer i the pieces kvs + i (the colored ones in the figure), with k positive integer. Thus, the seeder allocates
to peer 7 a total of Sg = B —9 pieces.

vs

results in the seeder uploading, to each peer at each timeslot, an average number of pieces within the buffer

equals to
Sp

T’
Since at each timeslot ¢, each peer receives from the seeder a piece with index vg higher than the piece
received at the previous timeslot (see Figure 8), then we have

(10)

B
Sp=—. 11
5= (11)
On the other hand, T depends on the buffer size B and on dg. Though we gave the definition of dp,
its exact value can only be calculated after the download of the current buffer B, is completed. Since, at
timeslot ¢, we do not know the bandwidth allocation for any timeslot ¢; > t;, we approximate dp to the
instantaneous buffer filling rate at timeslot tx:

Sp

dp =~ dB(tk) = Xs(tk) + TB(tk)-

(12)

which is a reasonable approximation for small B, that can be downloaded in a few rounds (i.e. B < 5v,).
We can now calculate Ty as follows:
B

B
T ~ Tg(t;) = - 7
B B( k?) dB(tk) Xs(tk)—i_%

which yields
B-Sg B(vs—1)
T ~Tg(tr) = = . 13
B~ Tp(tr) Xotn) o Xoltr) (13)

Plugging into Eq. (10) the expressions for Sp and T as calculated in Eqgs. (11) and (13), gives

Sp_ e _ Xa(t) (14
Tg B—l) — p 1’
vs Xs(tk)
which concludes our proof. O
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