{: SCISPACE

formerly Typeset

@ Open access « Proceedings Article - DOI:10.1109/IPDPS.2002.1015568
Bandwidth-centric allocation of independent tasks on heterogeneous platforms
— Source link [

Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand ...+1 more authors

Institutions: Ecole normale supérieure de Lyon, University of California, Los Angeles

Published on: 15 Apr 2002 - International Parallel and Distributed Processing Symposium

Topics: Tree traversal, Bandwidth allocation, Grid computing, Resource allocation and Grid

Related papers:

» Scheduling Divisible Loads in Parallel and Distributed Systems

» The Grid 2: Blueprint for a New Computing Infrastructure

« Scheduling strategies for master-slave tasking on heterogeneous processor platforms

« Autonomous protocols for bandwidth-centric scheduling of independent-task applications

« Multi-installment load distribution in tree networks with delays

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/bandwidth-centric-allocation-of-independent-tasks-on-
s67pojw0zm

https://typeset.io/
https://www.doi.org/10.1109/IPDPS.2002.1015568
https://typeset.io/papers/bandwidth-centric-allocation-of-independent-tasks-on-s67pojw0zm
https://typeset.io/authors/olivier-beaumont-13mey6t41m
https://typeset.io/authors/larry-carter-28x2jhc5nw
https://typeset.io/authors/jeanne-ferrante-2tkog6cbun
https://typeset.io/authors/arnaud-legrand-18gghmrbij
https://typeset.io/institutions/ecole-normale-superieure-de-lyon-uvwhpiee
https://typeset.io/institutions/university-of-california-los-angeles-3qypghuz
https://typeset.io/conferences/international-parallel-and-distributed-processing-symposium-lhyhe1tq
https://typeset.io/topics/tree-traversal-34fbkr9x
https://typeset.io/topics/bandwidth-allocation-2a4s02ip
https://typeset.io/topics/grid-computing-3slduoxr
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/topics/grid-1e79jo7o
https://typeset.io/papers/scheduling-divisible-loads-in-parallel-and-distributed-3k76dweb22
https://typeset.io/papers/the-grid-2-blueprint-for-a-new-computing-infrastructure-49qhb93zz2
https://typeset.io/papers/scheduling-strategies-for-master-slave-tasking-on-3s894cvja1
https://typeset.io/papers/autonomous-protocols-for-bandwidth-centric-scheduling-of-jnnn6psgoc
https://typeset.io/papers/multi-installment-load-distribution-in-tree-networks-with-4c5w93rqq6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bandwidth-centric-allocation-of-independent-tasks-on-s67pojw0zm
https://twitter.com/intent/tweet?text=Bandwidth-centric%20allocation%20of%20independent%20tasks%20on%20heterogeneous%20platforms&url=https://typeset.io/papers/bandwidth-centric-allocation-of-independent-tasks-on-s67pojw0zm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bandwidth-centric-allocation-of-independent-tasks-on-s67pojw0zm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bandwidth-centric-allocation-of-independent-tasks-on-s67pojw0zm
https://typeset.io/papers/bandwidth-centric-allocation-of-independent-tasks-on-s67pojw0zm

& HAL

open science

\

Bandwidth-Centric Allocation of Independent Tasks on
Heterogeneous Platforms

Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, Yves
Robert

» To cite this version:

Olivier Beaumont, Larry Carter, Jeanne Ferrante, Arnaud Legrand, Yves Robert. Bandwidth-Centric
Allocation of Independent Tasks on Heterogeneous Platforms. [Research Report] RR-4210, LIP RR-
2001-25, INRIA, LIP. 2001. inria-00072412

HAL Id: inria-00072412
https://hal.inria.fr /inria-00072412
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00072412
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4210--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Bandwidth-centric allocation of independent
tasks on heterogeneous platforms

Olivier Beaumont,
Larry Carter,
Jeanne Ferrante,
Arnaud Legrand and

Yves Robert

No 4210
June 2001

THEME 1

apport
de recherche

V4¢ I N R 1A

RHONE-ALPES

Bandwidth-centric allocation of independent tasks on
heterogeneous platforms

Olivier Beaumont,
Larry Carter,
Jeanne Ferrante,
Arnaud Legrand and
Yves Robert

Théme 1 — Réseaux et systéemes
Projet ReMaP

Rapport de recherche n°4210 — June 2001 — 45 pages

Unité de recherche INRIA Rhone-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Téléphone : 04 76 61 52 00 - International : +33 4 76 61 52 00
Télécopie : 04 76 61 52 52 - International : +33 4 76 61 52 52

2 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

Abstract: In this paper, we consider the problem of allocating a large number
of independent, equal-sized tasks to a heterogenerous "grid" computing platform.
Such problems arise in collaborative computing efforts like SETI@home. We use a
tree to model a grid, where resources can have different speeds of computation and
communication, as well as different overlap capabilities. We define a base model,
and show how to determine the maximum steady-state throughput of a node in the
base model, assuming we already know the throughput of the subtrees rooted at the
node’s children. Thus, a bottom-up traversal of the tree determines the rate at which
tasks can be processed in the full tree. The best allocation is bandwidth-centric: if
enough bandwidth is available, then all nodes are kept busy; if bandwidth is limited,
then tasks should be allocated only to the children which have sufficiently small
communication times, regardless of their computation power.

We then show how nodes with other capabilities — ones that allow more or
less overlapping of computation and communication than the base model — can be
transformed to equivalent nodes in the base model. We also show how to handle a
more general communication model.

Finally, we present simulation results of several demand-driven task allocation
policies that show that our bandwidth-centric method obtains better results than
allocating tasks to all processors on a first-come, first serve basis.

Key-words: heterogeneous computer, allocation, scheduling, grid, metacomput-
ing.

(Résumé : tsup)

This text is also available as a research report of the Laboratoire de I'Informatique du Paral-
lélisme http://wuw.ens-1lyon.fr/LIP.

INRIA

Allocation de taches indépendantes sur plateformes
hétérogénes

Résumé : Dans ce rapport, nous nous intéressons au probléme de 1’allocation d’un
grand nombre de taches indépendantes et de taille identiques sur des plateformes de
calcul hétérogénes comme la fameuse computing grid. Ce type de problémes apparait
dans des projets de metacomputing tels que SETI@home. Nous utilisons des arbres
pour modéliser les plateformes dont les ressources peuvent avoir des vitesses de calcul
ou de communication différentes les unes des autres ainsi que diverses possibilités de
recouvrement. Nous définissons un modéle un modéle de base et montrons comment
déterminer le débit maximal d’un nceud en régime stationnaire dans ce modéle
partir du débit maximal de ses fils. Ainsi, en partant des feuilles et en remontant
vers la racine, il est possible de calculer la vitesse a laquelle les taches peuvent étre
traitées sur cet arbre. La meilleure allocation est bandwidth-centric: si les bandes
passante entre le pére et ses fils sont suffisamment élevées alors tous les noeuds
peuvent étre utilisés & plein régime; dans le cas contraire, les taches doivent étres
allouées en priorité aux fils dont le temps de communication avec le pére est le plus
petit, sans tenir compte de leur puissance de calcul.

Nous montrons ensuite comment les noeuds ayant d’autres capacités de commu-
nications —ceux qui permettent plus ou moins de recouvrement de calcul par les
communications que dans le modéle de base— peuvent étre transformés en nceuds
équivalents dans le modéle de base. Nous montrons également comment traiter le
cas d'un modele de communications plus général.

Enfin, nous présentons des simulations de différentes politiques d’allocations de
taches a la demande qui montrent que notre approche bandwidth-centric est meilleure
que les approches classiques (premier arrivé, premier servi).

Mots-clé : Plateformes de calcul hétérogéne, allocation, ordonnancement, grilles
de calcul, metacomputing

4 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

1 Introduction

In this paper, we deal with the problem of allocating a large number of independent,
equal-sized tasks to a heterogeneous “grid” computing platform. We allow a quite
general model of computation, where the various resources that make up the grid
can have not only different computation and communication speeds, but can even
have different capabilities in terms of how much various communication tasks can
be overlapped with computation. Our model is motivated by problems that are ad-
dressed by collaborative computing efforts such as SETI@home [32], factoring large
numbers [13], the Mersenne prime search [31], and those distributed computing prob-
lems organized by companies such as Entropia [16]. However, such efforts must also
deal with dynamically changing computational resources, which are not addressed
directly in our model. We discuss in Section 8 the implication of our work for such
enviroments.

We model a collection of heterogeneous resources and the communication links
between them as the nodes and edges of an undirected graph. We assume that
between any pair of nodes, there is only one path, that is, the graph is acyclic. Each
node is a computing resource (a processor, or a cluster, or whatever) capable of
computing and/or communicating with its neighbors at (possibly different) rates.

Given n independent, identical tasks to be allocated on the grid, we assume that
their data is initially located on (or generated by) a single node. We make this node
the root of the graph, which, being acyclic, is now a tree. The root processor decides
which tasks to execute itself, and how many tasks to forward to each of its children.
Each child faces in turn the same dilemma: determine how many tasks to execute,
and how many to delegate to each child. Due to heterogeneity, the children may
receive different amounts of work.

In this paper, we show how each node locally can attain the best allocation of
tasks to resources that maximizes the steady-state throughput, or tasks processed per
unit time, throughout the tree. We also show that this best allocation is bandwidth-
centric: if enough bandwidth is available to the node, then all children are kept
busy; if bandwidth is limited, then tasks should be allocated only to children which
have sufficiently fast communication times, in order of fastest communication time.
Counter-intuitively, the maximum throughput in the tree is achieved by delegating
tasks to children as quickly as possible, and not by seeking their fastest solution.

We investigate several operation models: with/without computation and commu-
nication overlap, and single-port vs. multiple-port communication links. For each
model, we provide the best allocation of tasks to processors, i.e. the allocation that
maximize the steady-state throughput. By ignoring the processor idle time at the

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 5

start and end of task execution, we are able to give simple allocation strategies.
Since the execution time will be within an additive constant of the optimal, this
approach is appropriate when n is suitably large. Note that most variants of the
problem of minimizing execution time are NP-complete [10, chapter 4], hence the
need to restrict to the simpler optimization problem of maximizing the steady-state
throughput.

We also present simulation results of demand-driven task allocation. We simu-
lated three strategies: one that allocates tasks to all children, a second that allocates
tasks only to those children specified by our bandwidth-centric approach, and a third
that adjusts the priorities to match the optimal strategy. These results show that in
the case of limited bandwidth, the latter two approach not only use fewer processors,
but also result in execution times that are often significantly faster.

In Section 2 we discuss some issues concerning the modeling of heterogeneous
platforms, and define several models of communication and computation. We give
in Section 3 a simple algorithm that finds the optimal allocation of tasks in one of
these models, the base model. Section 4 shows how to reduce the allocation problem
in any of the other models to a problem in the base model. In Section 5, we show
how to incorporate a more general cost model for communication; Section 6 gives
some simulation results; Section 7 describes related work, and finally we give some
remarks and conclusions in Section 8.

2 Modeling a grid

We first present our motivation for using a tree to model a grid, and then present
the models, including our base model, used in this paper.

2.1 Motivation and background

It is natural to model a grid as an undirected graph, where edges represent two-
way communiction links between grid nodes. For example, the resources available
to an application may be connected through a Wide-Area Network (WAN), where
gateways to the WAN are connected to a Local-Area Network (LAN) of workstations
and PC’s.

Often the actual interconnection structure in a given administrative domain is
acyclic, and therefore is an (unrooted) tree. Examples include a cluster of work-
stations, or the multiple clusters that make up a computer science department’s
computational resources. As well, the structure is often hierarchical, as in a campus-

RR n~4210

6 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

wide or business-wide network connecting several LAN’s. In this paper, we use a
tree to model the grid infrastructure. This is despite the fact that in large-scale
networks such as the Internet, there are multiple paths between nodes. We return
to this latter point shortly.

We also make the assumption that the data for the computation initially resides
at a single node of the tree, and the results of the computation will be returned to
that same node. This directly models the situation where data resides in a single
data repository; it also models the situation where a scientist creates a computational
model on a workstation, then farms out the computation to a variety of resources
available. We designate the node that serves as the source of the data the root of
the tree. Thus, work to be done is initiated by communication from parents towards
their children, and results are passed from children to its parent.

The advantage of using trees, as opposed to the more general graphs, in our
modeling, include

e No choices need be made about about how to route data.

e Trees fit in well with a number of programming paradigms such as Master-
Worker, Remote Procedure Call, and Divide-and-Conquer. With MPI and
PVM operations, even though processes commuicate point-to-point, there is
still a single processor that initiates the set of processes and allocates them to
processors. It is natural to think of this initiator as the parent of the child
Processors.

There are still important choices to be made in using a tree to model a grid. When
a collection of resources are connected by a high bandwidth network, e.g. Myrinet
or Ethernet, we can either make a supernode representing the collection, whose
children are the actual resources, or we can choose one of the resources to be the
parent, and the remainder its children. Depending on the circumstances, either
might be the right choice. For example, if there is a LAN where one specific node
serves as a gateway to a larger network which provides the data to the nodes in
the LAN, then the latter method seems desirable. Alternatively, the best way to
model the Internet’s backbone is as a single supernode, and each site connected to
the backbone is modeled as a child of the supernode. Our modeling technique allows
us to characterize each connection by the bandwidth it experiences to the backbone.
This allows us to use a tree structure for the incredibly complex Internet.

It is important in modeling to use the bandwidth that the application actually
achieves, rather than the theoretically achievable bandwidth. For instance, even

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 7

though there may be an OC3 connection between two supercomputer centers, the
bandwidth that any given application experiences is likely to be much lower than 155
Mbit/sec. To accurately determine the bandwidth experienced by an application, a
tool such as the Network Weather Service [35] or Remos [29] can be used.

Given that we have modeled each computational resource as a node, in a hetero-
geneous environment, there are many different factors that can be used to describe
the power of that node. Later in this section, we introduce a number of parameters,
representing both computational and communication speeds, as well as assumptions
about what operations can be performed concurrently. In Section 5, we also intro-
duce refinements in the communication cost model along the lines of overhead and
gap from the LogP model [15].

Previous work has also suggested using a tree to model underlying computational
and communication resources. In discussing the fat tree model, Leiserson gave a pro-
cedure for modeling an arbitrary computational resource (which could be a single
VLSI chip or an entire supercomputer) by a tree [28]. Starting with a graph whose
nodes represent processors and whose edges represent communication links, the pro-
cedure is to partition the graph into two pieces with roughly equal computational
power. When this method is applied recursively, the result is a binary tree where all
the processors are at the leaves.

Trees are also used by Alpern et al. as the basis of their PMH model [1]. Here,
starting with the same underlying graph, nodes that are connected by a link whose
bandwidth is above a certain threshhold are coalesced into supernodes. When this is
applied recursively, the result is a tree whose structure depends on the threshholds.

Both of these models were developed to model homogeneous computational re-
sources. Each can be applied as well in the heterogeneous case, but it remains an
open question as to the accuracy of the resulting model.

Yet another model of a heterogeneous network of computing resources is the
effective network view (ENV) model. The procedure described in [34] for constructing
such a model from measurements of a system actually constructs a graph that may
not be a tree. However, the method could easily be modified to only produce trees.!

2.2 Owur models

The target architectural/application framework is represented by a node-weighted
edge-weighted tree T = (V, E,w,c) as illustrated in Figure 1. Each node P;eV

!This would be accomplished by combining nodes that represent alternate networks, rather than
leaving them as separate nodes, in the optional “third active test” phase.

RR n~4210

8 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

Figure 1: A tree labeled with node (computation) and edge (communication) weights.

represents a computing resource of weight w;, meaning that node P; requires w;
units of time to execute one task. Each edge e : P, — P; is labeled by a value
cij which represents the time needed by node P; (the one closer to the root) to
communicate the data for one task to node P; (one of its children) plus the time
for the child to return the result when it is finished. For the purpose of computing
steady-state behavior, it does not matter what fraction of the commuication time
is spent sending a problem and what fraction is spent receiving the results.? To
simplify the exposition, we will henceforth assume that all the time is spent sending
the task’s data to the child, and no time is needed to communicate the results back.

The only assumptions on the values w; and c;; we make are that they are integers
with w; > 0 and ¢;; > 0. We disallow w; = 0, since it would permit a node to perform
an infinite number of tasks, and we restrict ourselves to integers (or equivalently to
rational numbers) since with arbitrary real numbers, it could happen that no periodic
could be within an additive constant of the optimal schedule asymptotically.®

2If our goal was to compute the total execution time of an application, this distinction might be
important.

3For example, if co1 = 1 — € where € is an irrational number less than .5, and w; = w2 = co2 = 1,
then there is a schedule that in ¢ timesteps executes t(1 + €) — o(1) tasks. But a periodic schedule
can execute at most t(1 + r) tasks, where r is a rational number less than e.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 9

ar el s

M(rlls * [lw) M(rlls|lw) — M(s[lr,w) — M(rlls,w) M(wllr,s) M(r, s, w)

Figure 2: Classification of the operating models.

There are several scenarios for the operation of the processors, which we describe
from the most powerful to the least hardware-demanding: see Figure 2, where “r”
stands for receive, “s” stands for send and “w” stands for work, i.e. compute. In the
figures, when two squares are placed next to each other horizontally, it means that
only one of them can be accomplished at a time, while vertical placement is used to
indicate that concurrent operation is possible. We also use “||” (respectively “”) to
indicate parallel (sequential) order of operations in the models.

M(r||s % ||w): Full overlap, multiple-port In this first model, a processor node
can simultaneously receive data from its parent, perform some (independent)
computation, and send data to all of its children. This model is not realistic if
the number of children is large.

M(r||s|w): Full overlap, single-port In this second model, a processor node can
simultaneously receive data from its parent, perform some (independent) com-
putation, and send data to one of its children. At any given time-step, there are
at most two communications taking place, one from the parent and/or one to a
single child. This model is representative of a large class of modern machines,
and is our base model.

M(r||s,w): Receive-in-Parallel, single-port In this third model, as in the next
two, a processor node has one single level of parallelism: it can perform two ac-
tions simultaneously. In the M(s||r, w) model, a processor can simultaneously
receive data from its parent and either perform some (independent) computa-
tion, or send data to one of its children. The only parallelism inside the node
is the possibility to receive from the parent while doing something else (either
computing or sending to one child).

RR n " 4210

10 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

M(s||r,w): Send-in-Parallel, single-port In this fourth model, a processor node
can simultaneously send data to one of its children and either perform some (in-
dependent) computation, or receive data from its parent. The only parallelism
inside the node is the possibility to send to one child while doing something
else (either computing or receiving from the parent).

M(wl|r, s): Work-in-Parallel, single-port In this fifth model, a processor node
can simultaneously compute and execute a single communication, either send-
ing data to one of its children or receiving data from its parent.

M(r,s,w): No internal parallelism In this sixth and last model, a processor
node can only do one thing at a time: either receiving from its parent, or
computing, or sending data to one of its children. This is really the low-end
computer!

There are n independent tasks to be executed on the tree. Each task requires w;
units of time when executed by node F;. So the smaller w;, the faster the processor
node P;.

Initially, the data for all tasks is stored in the root processor. It takes c¢;; units
of time for node P; to send (the data for) one task to its child P;. In other words, if
a task is resident on node P; at time-step ¢, and if P; initiates the communication to
Pj at that time-step, then the task will be available to P; at time ¢ + ¢;;. Tasks are
atomic, their computation or communication cannot be preempted. A task represents
the granularity of the application.

Given a weighted tree and an operation mode (any one of the six listed above) for
each node, one might want to determine how many tasks should be executed by each
node so that the overall computation time is minimized. This is a difficult problem,
and in fact cannot be answered without knowing more about the network than is in
our model, such as the network latencies. Instead, we will answer a related question.
As is well-known, a computation consists of a start-up or initialization interval where
some processors are not running at the full speed that can be sustained, then a
steady-state interval where all processors are running at the maximum speed that
the network can sustain, and a clean-up interval when some but not all processors
are finished. See Figure 3 for an illustration. During the steady-state interval, the
operation of the tree is periodic, with b tasks executed every ¢ time units. Both the
start-up and clean-up times are bounded, no matter how many tasks there are. The
question we will answer is what is the rate or throughput, R = b/t, of processing
tasks in the steady-state interval. This answer can be used to give the execution
time of the full application within an additive constant.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 11

3

<

™
4
=]
.
.

>
§
=
o
B oH
()

C
S
C I
@ | Py P,
‘qlb"cl‘d’\‘\‘\ \‘ : ‘@’b"cl‘d’\‘\‘\ \‘ e °
P [C + o [\ \\T [d N o [NXK\\T Y 1
S ? ? ? % ! | ”
Ilbll g Ilbll 11
P C b" Ellu b” ‘ C” ‘ dllbll Ellu e
3 =Y 4
S | .
initialization 3 steady state

Figure 3: Initialization vs. steady state.

In steady state, the tree operates as a single (virtual) node whose computational
weight Wiree = % = % is to be minimized. The major contribution of this paper is
to determine the best allocation of tasks to processors, according to the criterion
of minimizing wyee, for any input tree and any of the previously listed operating

modes.

3 Solution for the Base model

In this section, we show how to compute the best task allocation using the base model
M(r||s||w), where a processor node can simultaneously receive data from its parent,
send data to one of its children and perform some (independent) computation.

3.1 Fork graph

We start with simple fork graphs before dealing with arbitrary tree graphs. A fork
graph, as shown in Figure 4, consists of a node Py and its k£ children P; ... P;. In
the base model, Py can communicate with a single child at a time: it needs ¢; units
of time to communicate a task to child P;. Concurrently, Py can receives data from
its own parent, say P_i, requiring c_; time per task. We give three examples in
Figures 5, 6 and 7: in the first, all children operate at full rate, and in the latter two,
the communication bandwidth is the limiting factor.
We now state and prove our main theorem:

RR n " 4210

12 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

Figure 4: Fork graph.

P, T T LT LT T T T])
P, RERNNNSRRNNNRRRRRRRARNNNNNRNRRRRARRARAY "y
p | OO
Py send | CCCCIIIIT O LS /X
Py Reev " P@ B

Figure 5: First example without saturation of the communication bandwidth: all
children can be kept fully active

P | | 2

P, \UHHHHHHH \UHHHHHHH Fo

Py EENEERERNNNNRRRNNAERRRNNRNEEEN
Po Send M D /R
Py Recv HH\HH\\HH\\HH\HiH\\HH\\HH\HHHHH\HH%WHH B P@ P

Figure 6: Second example with saturation of the communication bandwidth: some
children are partially idle due to the low bandwidth between P, and its parent

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 13

Py ooooo Doooo

Py 0

S S
Py Send | IEEEETIEIE T T T T AT [1110 S
Po Recv | (I D 1O

Figure 7: Third example with saturation of the communication bandwidth: child P;
is partially idle due to its high computation speed

Proposition 1 With the above notations, the minimal value of wipee for the fork
graph is obtained as follows:

1. Sort the children by increasing communication times. Re-number them so that
C1 SCQ... Sck.

2. Let p be the largest index so that Y F_, <L Ifp<klete=1- P, -,
otherwise let e = 0.

3. Then

1
1 P 1
%+Eﬂ@+éj

Intuitively, the processors cannot consume more tasks than sent by P_;, hence
the first term of the maximum, i.e. ¢_;. For the second term, when p = k the result
is expected: it basically says that children can be fed with tasks fast enough so that
they are all kept computing steadily. However if p < k the result is surprising: in the
situation when the communication bandwidth is limited, some children will partially
starve: these are those with slow communication rates, whatever their processing
speeds. In other words, a slow processor with a fast communication link is to be
preferred to a fast processor with a slow communication link.

Wtree — MaAX (C_l,

Proof Suppose the optimal periodic schedule has a fixed, steady state pattern of
period T': starting at time-step ?y, the whole pattern of computations and commu-
nications repeats every 7' time-units, i.e. at time-step ty + 7', o + 27, and so on.
At the end of the proof, we will give upper bounds on ty and T for (one particular)
asymptotically optimal schedule.

RR n " 4210

14 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

During this period of T units of time, let z_; denote the amount of time the node
spends receiving tasks from its own parent P_1, zy be the time spent computing, x;
be the time sending tasks to child Py, o units of time sending tasks to child P, ...,
and x units of time sending tasks to child Py. Because of periodicity and integral
costs, all of the z;’s are integers.

Because of the overlap hypothesis, the computation of zg tasks by Py doesn’t

diminish either the number z_; it can receive from P_; nor z1,zs,...,z;. We have
the following constraints for zg: 0 < zo < T, zo should be a multiple of wy. The
number of tasks that will be processed by Py is 5—‘(’]

We have similar constraints on z_1: 0 < z_1 < T, z_1 should be a multiple of
c_1. The number of tasks that are sent to Py is %

There are more constraints on z1,...,zx. For 1 < <k, 0 < z; < T, and z;
should be a multiple of ¢;. The single-port hypothesis translates into 1 +z2 + ...+
zp < T. The number of tasks received by child F; is ’2—2’, it can process these tasks
within the time frame iff ”c”—z x w; < T. Note that P, should not receive more tasks
than it can process.

There is a final constraint that ensures the steady-state of the whole process: the
number of tasks sent to the fork—join graph, i.e. i_;:, should be equal to the number

of tasks that it can consume, i.e. T+ EZ 1 %L This last quantity is exactly the
quantity that we want to maximize

Let us summarize the situation as a linear programming problem, where the
objective function is the number of tasks consumed within the 7" units of time:

Maximize 7> + EZ L

0<z; <Tfor —1<i<k
ﬁ—:xwingorlgiSk
Zk 137z <T

+Zz 1(:z

Because everything is linear in T, we can normalize the problem and set T = 1:
we now look for nonnegative rational values z_1,xg, 1, ..., T such that

subject to

Ek: r; <1
§ for1<z'<k

+Zz 1c,

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 15

We can further normalize these equations by introducing the rates R;: R_; = 2%

C—1
is the rate of tasks per second received from the parent P_i, Ry = i—g is the rate
they are executed in the parent node Py, and R;, for 1 <17 < k, is the rate they are
sent to and executed on the i-th child. We obtain the following formulation of the

problem of determining the optimal task allocation for the base model:

Base Problem: Maximize Zf:o R;,subject to
(BO) Ri=Y%, R,
(B].) Rflcfl S 1
(B2) Ri< g for0<i<k
(B3) i Ric; <1

Note that moving from the z;’s to the rates R;’s has a technical advantage: the
new formulation nicely encompasses the case where some communication time ¢; is
zero (which might be appropriate, for instance, for a shared-memory multiprocessor).

Let R be the solution of the Base Problem. We claim that R = min (i Loy S)

c—17 wo
(unless c_; = 0, in that case R = wio +5) , where S is the solution to the following
problem:

Auxiliary problem: Maximize Y% | R; subject to
(i) Riwiglforlgigk
(i) i Rici <1
Because the auxiliary problem is less constrained than the original one, we imme-
diately have that wLO—I—S > R. We also have ci—l > R, because of (B0) and (B1), hence

min (é, wio + S) > R. To show the reverse inequality, there are two cases, accord-

ing to the value of min (L Ly S). Assume first that min (L Ly S) =

c—1? wo c—1? wo c—1

Let (Ry,...,Ry) be the optimal solution of the auxiliary problem: S = Ele R; and
1

wio + S > é Let o = iis < 1. Then (é,w&o,aRl,...,aRk) is a solution to
wo

the base problem whose objective function is equal to é Therefore é <R.

Assume now that min (L Ly S) = wio + S. Let (Ry,..., Rg) be the optimal

c—1? wo
solution of the auxiliary problem: S = Ele R; and w%) +S5< é Let Ry = wio and

R = Ef:o R;. Then (R_1, Ry, Ry,...,Ry) is a solution to the base problem (note
that (B1) is satisfied because of the hypothesis). Hence wio + S < R. This concludes
the reduction to the auxiliary problem.

RR n "~ 4210

16 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

We can now come to the solution of the auxiliary problem. As in the statement
of the theorem, let p be the largest index so that Zp = < 1. Let R} = 1 for
1<i<p Up<klet R, , = C+1,Wheree—1— zl pr—|—1<kletR*_()

for p+2 < i < k. We claim that (R}) is the optimal solutlon of the optimization
problem:

e First, it is indeed a solution. We have R}, < m when p < k. This comes

directly from the deﬁnltlon of p: since Y 77 + o >1,wehavee=1- P o <
2+l hence —¢- < . As for (ii), Zi:l Ric; = f 1 < 1forall j <p,

Wp+1’ Cp+1 — wp+1

by definition of p. And if p < k, Zfill Ric; =1, by deﬁmtlon of Rpi1.

e Second, it is the solution that maximizes the objective function. To see this,
consider all the optimal solutions, i.e. all the solutions that achieve the optimal
value of the objective function. Among these optimal solutions, consider one
solution (R}) such that R; is maximal. Assume by contradiction that R; <

I = w% Then there exists at least one index j > 2 such that R; > R,
otherwise the solution would not be optimal. Now, since the ¢; are sorted, we
have ¢; < ¢;. We do not change the value of the objective function if we let
Ry, = Ry +7 and R; = R; — 7, where 7 is an arbitrary small nonnegative
rational number. However, we do have a new solution to the optimization
problem, because (Ry + 7)c1 + (R; — 7)c; < Ric1 + Rjc;. Hence we have an
optimal solution with a larger R; than the original one, a contradiction. Hence
we have shown that there exist optimal solutions such that Ry = R]. We
restrict to such solutions without loss of generality and we iterate the process:
we finally derive that (R;) is an optimal solution.

The optimal solution of the auxiliary problem is

Finally, wiee = I%, which establishes our claim.
To conclude the proof, we only need to provide values for ¢y and T'. Since we
know the optimal solution (R), we choose T such that an integral number of tasks

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 17

can be processed by each processor. We have R} = w% for 0 <4 < p, hence T must
be a multiple of each w;, 0 <7 < p. Since R}, = c,,ﬁ? T should be a multiple of
cp+1- Note that Te is an integer if 1" is a multiple of each w;, 0 <4 < p. Finally, T
should be larger than c¢_;. A valid value (though not necessarily the smallest possible
value) for T is

T = lem(wo, wi, . .., Wp, €1, Cpt+1)-

It is not surprising that ¢;,...,c, do not appear in the expression for T', because
the choice of € ensures that ¢; < w; for 1 < ¢ < p. Finally, we can construct a
schedule that enters the steady-state behavior with ¢ = T: to see this, perform
exactly the same pattern of communications but no computation at all from time-
step 0 to tg — 1 =T — 1; each processor is then provided with exactly as many tasks
as required to enter its steady-state.

A less formal (but much shorter) proof of Proposition 1 is the following: sorting
the ¢; and feeding as many tasks as possible to the children taken in that order maxi-
mizes the number of tasks that are communicated to the children, hence the number
of tasks that are processed by the children. Add those processed by the parent, and
take the minimum with the input rate to derive the optimal value. |

Note that the proof in Proposition 1 is fully constructive: the number of tasks to
be computed by the parent and to be sent to each child is directly computed from
the optimal solution (R}).

3.2 Arbitrary tree graphs

The best allocation of tasks to processor nodes is easily determined using a bottom-
up traversal of the tree:

Proposition 2 Let G = (V, E,w,c) be an arbitrary tree graph. The minimal value
of Wiree for the whole graph is obtained as follows:

1. Consider any sub-tree consisting of several leaves and their parent. Replace this
tree with a single node whose weight is given by Proposition 1

2. Iterate the process until there remains a single node.

Then the minimal value is equal to the weight of the single node.

RR n~4210

18 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

Proof The proof is immediate: in steady state, a fork graph consisting of a parent
and several leaves behaves exactly as a single node of weight determined by Propo-
sition 1. For the root node, we can assume a link from a virtual parent with infinite
capacity, i.e. ¢.1 = 0.

We can give (possibly unnecessarily large) bounds on the period and start-up
times. The period T of an arbitrary tree is at most the least common multiple of
the periods of each fork graph encountered in the bottom-up traversal of the tree.
And a bound on the start-up time is this period T" times the maximum depth of the
tree. This time corresponds to a start-up strategy in which during the first 7" time
units, we send a period’s worth of work to the depth one nodes (but don’t execute
any tasks), in the next 7" time units we propogate this work to the depth two nodes
and replenish the depth one nodes, and so on. [|

Again, the proof is fully constructive, and the optimal task allocation is computed
using the bottom-up approach. Figure 8 is a small example.

4 Reductions for other models

Recall that a task allocation is specified by a non-negative set of numbers R_1,Ry,...,Rx,
where R_1 is the rate of tasks per second received from the parent, Ry is the rate
they are executed in the node, and R;, for 1 < ¢ < k, is the rate they are sent to
and executed on the ith child. We repeat here the formulation of the problem of
determining the optimal task allocation for the base model, which we refer to as the
Base Problem?:

Base Problem: Maximize Zf:o R;,subject to
(BO) R =Yt R,
(B1) R icB <1

(B2) R, < Lyfor0<i<k

(B3) Z§:1 Ricf <1

In subsequent subsections, we show how to reduce the problem of determining
the optimal task allocation for each of our other models to the Base Problem, or a
previously solved Problem. Each reduction will follow the same outline: we present
the constraints for the model in question; then give a simple set of definitions of

4Note that we have superscripted the parameters of the Base model with “B”, to distinguish its
values from those of other models

INRIA

The Master-Slave Paradigm with Heterogeneous Processors

19

Figure 8: Computing the best allocation for a tree graph.

RR n~4210

20 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

new variables; and finally show that by rewriting the constraints in terms of the new
variables, they are exactly the constraints of an instance of the Base Problem. Thus,
an optimal solution to the Base Problem provides an optimal solution to the problem
in the alternate model.

4.1 Reduction of Multiport Problem to the Base Problem

In this section, we show how to transform the problem of determining the optimal
task allocation for a full overlap, multiple-port model into an equivalent problem
in the base model. Hence, we can use our solution for the base model to obtain a
solution for the multiport model.?

Recall that in a full overlap, multiple-port model, M(r||s * ||w), a processor
node can simultaneously receive data from its father, perform some (independent)
computation, and send data to all of its children; in contrast, in a base model,
M(r||s||w), data can only be sent to one of its children.

We formulate the problem of determining the optimal task allocation for the
multiport model as follows:

Multiport Problem: Maximize Zf:o R;,subject to
(M0) R =37,k
(M1) R ™ <1
(M2) R;<-Lrfor0<i<k
w:

(M3) RicM <1for1<i<k

The constraints in both problems arise from the three operations that can be
executed in parallel. The first constraint (BO or MO) ensures that the number of
tasks communicated per second from the parent is equal to the sum of the rate
they are executed in the father node and the children; and the second constraint
ensures this same quantity is bounded by the bandwidth from the parent. The third
constraint is that the number of tasks per second executed by the parent (for i = 0)
or by the i-th child (for ¢ > 0) is bounded by the speed of the node. Finally, in
the Multiport Problem, constraint M3 requires that the number of tasks per second
communicated to each child be bounded by the bandwidth to the child.

We now show that we can convert a Multiport Problem to a Base Problem by
setting the communication times for the children to zero and adjusting the work
times to include the original bandwith constraints.

% Actually, the Multiport Problem is simpler to solve than the Base Problem, but we include this
transformation for completeness and to serve as a model for other reductions.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 21

Figure 9: Reduction from Multiport to Base.

Proposition 3 Given a Multiport Problem, there is an equivalent Base Problem
whose solution yields the solution to the Multiport Problem.

Proof Given a Multiport problem, we let ¢®; = ¢™ w{f = wé\/f ,and for 1 <1 <k,
we let ¢? = 0, and w? = max(wM,cM) (see Figure 9).

For i = 1,...,k, we can replace constraints M2 and M3 by R; < min(%\4, %/,)

or, equivalently, R; < —5. We can also rewrite Ry < %\4 as Ry < Thus the

constraints M2 and M3 are exactly equivalent to B2. ObVlously, BO and B1 are
equivalent, respectively, to M0 and M1, and B3 always holds; thus, we have shown
the equivalence of the Multiport problem to the Base Problem. [|

4.2 Reduction of Work-in-Parallel Problem to the Base Problem

In this section, we show how to transform the problem of determining the optimal
task allocation for M (wl|r, s) into an equivalent problem in the base model. Hence,
we can use our solution for the base model to obtain a solution for the new problem.

Recall that in this model, M(w]|r, s), a processor node can simultaneously per-
form some (independent) computation, and either receive data from its parent or
send data to one of its children; in contrast, in a base model, data can be simulta-
neously sent to a child or received from a parent.

RR n~4210

22 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

We formulate the problem of determining the optimal task allocation for this
model as follows:

Work-in-Parallel Problem: Maximize Y% R} subject to
k
(Wo0) RKVI =2li%o RzW
(W1) R%" <1
(W2) RV< L for0<i<k
w’

(W3) RW " +3% RV <1

The first three constraints W0, W1 and W2 are as in the Base and Multiport
Problems. Constraint W3 requires that the fraction of time spent communicating,
either with parent or a child, be bounded by 1.

Figure 10: Reduction from Work-in-Parallel to Base.
We now show that we can convert a Work-in-Parallel Problem to a Base Prob-
lem by adding the parent’s communication time to each of the children’s, and by

representing the node’s processor as a new child.

Proposition 4 Given a Work-in-Parallel Problem, there is an equivalent Base Prob-
lem whose solution yields the solution to the Work-in-Parallel Problem.

Proof Given a Work-in-Parallel problem, we let c?, = ¢}, 'wég = 00, c,? = W,
w,]fﬂ = wgV, and for 1 <3 <k, we let CiB = c¥V+cKVl, and wZB = wZW (see Figure 10).

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 23

We can convert between solutions to the two problems by letting RZB = RZW, for
1<4<k,and RkB +1 = RW RO will be a new variable in the base model solution
constrained by Ro < B, that is, Ro <0,

Rewriting the constramts W1 and W2 with these values substituted, we obtain:

(W2) RP<Lfor1<i<k+1

These constraints, together with RY < w%’ are exactly what is needed to obtain

B1 and B2. To obtain B3, we rewrite the left-hand side of W3 as

R + S R eY = S0, RY(6f = o)+ S R Py = L, RYY e +
RycE, = Zz 1 RWCB + Rk+1ck—|—1 Zk+1 RPcP.

We rewrite W0 as RY, = ZZ Rl = Zkﬂ RB R5,, obtaining BO. Thus, we
have shown the equivalence of the Work—ln Parallel Problem to the Base Problem. H

Proposition 5 If wlY = oo, then after translating to the Base Problem using Pro-
postion 4, the solution to the Base Problem has Rfﬂ = 0, and the mazimum is

obtained by the maximization of Zle RZB.

Proof Since w,}fH = wgV = 00, the constraint REH < wé = é implies that

k+1

RP,, =0. |

Notice that if we had defined the Base Problem by deleting RkB 11, we would have
obtained the same solution as the first Base Problem.

Corollary 1 If a Work-in Parallel Problem with k children has wgV = o0, then after
translating to the Base Problem, the final solution has only k children.

4.3 Reduction of No-Overlap Problem to the Base Problem

In this section, we show how to handle the cases where communication with the child
cannot overlap computation. These cases are the fully sequential model M(r, s, w),
and the model M(r||s,w), where receiving from the parent can be done in parallel
with either of the other operations.

We formulate the problem of determining the optimal task allocation for either
of these models as follows:

RR n~°4210

24 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

No-Overlap Problem: Maximize Y. RM subject to
(No) RN =>F RN
(N1) RMcN, <1

(N2) RV< Lfor0<i<k

o
(N3) RYw) + 35 RNl +6(RM,cM) <1
where § = 1 if the model is M(r,s,w), and § = 0 if the model is M(r||s,w)

The first three constraints NO, N1 and N2 are as in previous problems. Con-
straint N3 requires that the operations that are sequentialized in each of the models
be bounded by the time available.

Figure 11: Reduction from No-Overlap to Base.

We now show how to convert the No-Overlap Problem to the Base Problem,
again by replacing the node’s processor with a new child.

Proposition 6 Given a No-Owverlap Problem, there is an equivalent problem, Work-
in-Parallel in the case of § = 1, and Base in the case 6 = 0, whose solution yields
the solution to the No-Overlap Problem.

Proof Given a No-Overlap Problem, we let c_; = ¢V, wg = 00, cxi1 = w(])v,
wg1 = wY', and for 1 < i < k, we let ¢; = ¢, and w; = w)¥ (see Figure 11). As

in the proof of Proposition 4, we define, for 1 < i < k, R; = RY, and Ry, = R(])V,

)

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 25

and constrain the new variable Ry byRy < wio, ensuring it will be 0. Notice that
¢ RN = MR, (and therefore Ry = RY)), and 3% RNc¢N + RYw) =
Zk—i—l R, ic;.

The constraints we derive from NO-N3 are:

(0) R {= Zk—l—lR

(1) R-ic-1 <1

(2) R<1for1<z<k+1
(3) zk+l Ric; + 6(R_1c_1) < 1

To obtain B2 (or W2) as in the Work-in-Parallel proof, we include the constraint
Ry < wLo‘

To obtain B3 (or W3) we rewrite N3 as Ry w41 —I—Zle Rici+6(R_1c_1) <1,
or Zk+1 Rici+d(R-1c—1) < 1. This latter constraint is the same as B3 when ¢ = 0,
and as W3 when § = 1. [

Note that in the case § = 1, it would appear that we go from a graph with
k children to k + 1 children using the above transformation to a Work-in-Parallel
Problem, and then to a graph with k+ 2 children in transforming to a Base Problem.
However, the first transformation will set wy = oo, so by Corollary 1, the second child
need not be added during the second transformation.

4.4 Reduction of Send-in-Parallel Problem to the Base Problem

In this section, we show how to transform the problem of determining the optimal
task allocation for M(s||r, w) into an equivalent problem in the base model. Hence,
we can use our solution for the base model to obtain a solution for the new problem.
Unlike the previous cases, the solution to the base model problem will have to be
modified slightly to provide a solution to the original (send-in-parallel) problem.

Recall that in the send-in-parallel model, a processor node can simultaneously
send data to one child, and either receive data from its parent or compute. We
formulate the problem of determining the optimal task allocation for this model as
follows:

RR n~4210

26 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

Send-in-Parallel Problem: Maximize % Rf subject to
(S0) R%, = Zf:o Ry
(S1) R5,5,<1

(S2) R < for0<i<k
w;
k S .S
(83) YRy’ <1
(S4) R%,c%, + Riwj <1
The constraints S0, S1, S2 and S3 are as in the Base Problem. Constraint S4
requires that the fractions of time spent receiving data from the parent and executing

at the node be bounded by 1. Note that constraint S2 for k¥ = 0 is implied by S4,
and so we can discard it from the list of constraints for a Send-in-Parallel problem.

,/ To P_1

Figure 12: Reduction from Send-in-Parallel to Base.

We show that we can convert a Work-in-Parallel Problem to a Base Problem
by adding the time spent receiving a task to the time needed to execute a task on
the node, and multiplying each child’s communication and work times by a carefully
chosen constant.

Proposition 7 Given a Send-in-Parallel Problem, there is an equivalent Base Prob-
lem whose solution is easily modified to give the solution to the Work-in-Parallel
Problem.
S S
Proof Let a= % We define c?, = ¢, wf = w§ +¢c%,, and for 1 <i <k,
0

B_ .S B_ .S -
¢; = acy and w;” = aw; (see Figure 12).

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 27

We can convert between work allocations in the two different models using the
following formulas: define R%, = RS,, RF = R§ + (1 - é) S RP,andfor1<i<

S S
k, define RB = %’. Note that 1 —1 =1 - 0 = = which we use later in

wg+e?; T wg+ed)?

the proof.
Rewriting constraint SO gives RB =RP-(1-1) Zk L aRB + Ek LaRB =
RE + = EZ LaRP = ZZ o RE, which is constramt BO for a base problem.
Rewrltlng constraint S1, we obtain RZ, < CBl’ which is constraint B1.

Similarly, rewriting constraint S3 gives us Zle aRP % = Zle RBcB < 1,
which is B3.

Rewriting constraint S2 for 1 <4 < k produces aRZ < w"‘B, which, after dividing
both sides by «, is B2 for 1 <3 < k. '

Finally, we will rewrite constraint S4 to gives us the missing case of constraint
B2 for kK = 0.

Rewriting the left hand side of S4:

k
RO ’LUO + R§IC§1 = ngos + C‘il(Rg + Z R:LS')
i=1
k

w +
= Ro’l,UO +Roc 1+C 1 OS+ 1 Z:.I%;S1
C -1 4=1

S
S S S s S
= (wd + RS + (ws + 2 R;
(wy 1) Ry + (wg 1) w +c ; ;1

SR -)RS

_ B pB
= wy Ry

Thus, S4 is equivalent to wlRE < 1,i.e. RF < B, which is B2 for k£ = 0.

We have shown that the constraints of the orlglnal Send-in-Parallel Problem
exactly correspond to those of the new Base Problem, so the solution of the Base
Problem yields the solution to the Send-in-Parallel Problem.

There is one final detail to attend to: we must show that the solution {RJ}
computed from {RP} has R > 0 for i = —1,0,1,...k. Unfortunately, this isn’t

RR n~4210

28 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

necessarily true; in fact, there may be many ways to maximize Zf:o RZB, and some
of these ways will produce a negative value for Rg. However, we claim (a) that one
can maximize Ef:o RP by keeping the node’s processor (in the Base model) fully
busy, i.e. that there is a maximum solution with Rf = 1/w¥, and (b) that this will
provide a solution to the Send-in-Parallel Problem with Rg > 0.5

To establish claim (a), we note that since w(? = wg +cB 12 cB 1, there is sufficient
bandwidth from the node to its parent to keep the processor busy, i.e. constraint
B1 can be satisfied even if we set RY = 1/wj. Furthermore, we argue that in the
Base model, it cannot hurt to keep the processor as busy as possible — either the
link to the parent is the bottleneck (in which case it doesn’t matter whether work
is assigned to the processor or to a child), or the bottleneck is the amount of work
that can be offloaded to the children (in which case, maximizing the work on the
processor is necessary.)

To prove claim (b), note that once we set R = 1/wf, we can rewrite:

k
Rg:Rf—(l—%)ZR S 1__ ZQRB L e ZRB
=1

Since R® = 1/wf, constraint B1 tells us Zle RE < 1/cB) — 1/wf = (wf -
cB)/cBiwd.

We can also rewrite « — 1 = ¢%, /w§ = B, /(wf — ¢B)). Making these two
substitutions in the above formula, we obtain:

B B B

RS > 1 ¢ wy —c2 1)_ 1 1 —0

0= "B [B B B,B /B B
Wy (wy —cZy) " cZwg wy wy

showing that Rj is non-negative and completing the proof.

5 A more general communication cost model

So far, we have been considering a moderately simple model of communication costs.
In particular, we have used a single parameter, c¢; ;, to represent the cost of com-
munication between nodes v; and v;. This single parameter serves three roles: first,

51t is obvious that the other RS will be non-negative whenever the corresponding RE are.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 29

it constrains how much data can travel between the two nodes to be at most 1/¢; ;
tasks per unit time. Second, it represents how much of a shared resource at node
v; is consumed by the communication. What this “shared resource” is depends on
the model of the processor as described in Section 4; after the problem has been
transformed to a Base Problem, it will be the limit given by the constraint B3. Fi-
nally, it represents the use of a shared resource on the other end of the commuication
channel, node v,.

There is no particular reason why, in a heterogeneous network, these limits will
be the same. For instance node v; may have a powerful communication subsystem
that can handle communication tasks with little interference to other tasks, while
node v; may be less powerful.

The LogP model of communication [15] provides three communication parame-
ters. The latency L is the elapsed time from when a message is put on one end of the
communication channel to the time that it is received at the other. The overhead
o is how much time the sending or receiving processor must spend dealing with the
message. Finally, the gap g is how much time must pass between successive messages
being sent on the channel. The gap actually represents a bandwidth limitation; the
number of messages per unit time that can be sent is limited to 1/g.

We will adapt this model for our purposes. Since we are only considering the
“steady state” performance of the system, we do not need to concern ourselves with
the latency L. However, to reflect the heterogeneous nature of the system, there will
be two (possibly different) overhead parameters, representating the interference on
the processors at either end of the channel.

With respect to a given node, we will use g; to represent the gap of the channel
from the node to its 4-th child and g_; for the gap of the channel to its parent.
Similarly, we will use 0; and o_1 to represent the overhead of these communications
on the node’s processor.

We will show how the mechanisms developed earlier in this paper can handle this
more general communication model. As in section 4, we let Ry represent the number
of tasks per unit time computed at the node iteslf, R; be the rate of sending tasks to
the ¢-th child, and R_; = E’g R;. However, we give these numbers a slightly different
meaning in this new model: they will represent how much work the the subtree rooted
at the node could do, assuming that there were infinite bandwidth from the node to
its parent. In other words, we will not consider the constraint R_; < 1/g_; when we

RR n~4210

30 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

find a maximum solution for a subtree; instead, the constraint will be applied when
dealing with the node’s parent.”
At a given node, we have the following constraints:

Gap-Overhead Problem: Maximize Zf:o R;,subject to
(GO) R =Y, R

(G1) Rigf <l1for1<i<k

(G2) Ri<_gfor0<i<k

(G3) Row§ + 3% | Riof + R_10%, <1

Constraint GO ensures, as always, that each task communicated to a node is
either processed by the node or delegated to a child. G1 ensures that the bandwidth
limit to each child is respected. Note that by the earlier comment, we don’t include
the corresponding constrain for the channel to the parent. Constraint G2 asserts
that the processing speed limits are observed. Finally, G3 limits the work that can
be done on the node’s processor, taking into account the overhead on the processor
of each communication.

We now show that we can convert the Gap-Overhead Problem to the fully se-
quential model M(r, s, w).

Proposition 8 Given an instance of the Gap-QOverhead Problem, there is an equiva-

lent No-Owerlap Problem instance with 6 = 1 (i.e., an instance in the fully sequential
model).

Proof Given a Gap-Overhead instance, we let ¢, = 0%, w) = w§, and for

1<i<klet e’ =0f and w) = max(g%, wf)

Constraint GO is the same as NO of the No-Overlap Problem.

The 7 = 0, cases of constraint G2 and N2 are the same since w(? = wév . For
1 < i <k, constraints G1 and G2 can be combined as R < 1/maz(g¢,wf) = 1/wN
for 1 <i < k. This is the corresponding constraint N2.

After the variable substitution, constraint G3 becomes constraint N3 when § =
1.

Finally, notice that constraint N1 (that R_; < 1/cY;) is implied by constraint
N3 (when 6 =1).

"It would have been less natural to use this interpretation in Section 4, where the single com-
muication parameter could intefere in both the parent’s and the child’s processing. Now that com-
munication costs are broken into components, it is simpler to consider the bandwidth limitation on
a channel only when processing the endpoint closer to the tree’s root.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 31

Thus, the constraints of the Gap-Overhead Problem exactly correspond to the
constraints of the fully sequential problem, so the Gap-Overhead Problem can be
solved by the techniques of section 4.3. [|

Intuitively, this result can be interpreted as follows: In order to solve a Gap-
Overhead problem, we first replace the compute time of each child by the max of its
compute time (w;) and the communication time (g;). Clearly, we can’t get a child to
work faster than that limit. Next we treat it as a fully sequential problem, where the
overheads (both o_; and the o0;’s) play the role of the communication times. This is
natural, since in the fully sequential problem, the node’s processor is interrupted by
the overhead of communicating either to its parent or to any child. The solution to
the fully sequential problem gives the maximum work the node can perform, ignoring
the constraint B 1 < 1/g_1, which will be handled when this node is considered as
a child.

6 Simulations

6.1 Demand Driven Heuristics

In order to experimentally demonstrate the effectiveness of our approach, we tested
three different heuristics. The three heuristics use a similar, demand-driven ap-
proach; the main difference between them is the amount of information provided by
Proposition 1 that they use. All three heuristics use the following outline: each node
is initally given one task, except for the root which has 1000 tasks. Then, for each
time step, for each node,

e If the node’s processor is free and there is an unexecuted a task, then start
executing the task and request another task from the parent.

e For each child, if there is a new request from the child, put the request into a
queue, and request another task from the parent.

e If communication with a child is possible (meaning there is an outstanding
request, there is a task available, and the communication channel is free), then
start sending the task to the child.

We process the nodes from the leaves up to the root of the tree; thus in our simu-
lations, all requests are propagated up to the root in the same cycle that they are
generated.

The three heuristics are described below:

RR n~4210

32 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

e Heuristic 1: This heuristic uses all the processors. Requests for tasks are
satisfied in first-come, first-serve order. This heuristic uses no information
from Proposition 1.

e Heuristic 2: This heuristic only uses the processors which are assigned tasks in
the optimal solution (Proposition 1). The requests are satisfied in first-come,
first-serve order. Note that this heuristic may give more tasks to the (p+1)-th
child than would be executed under the optimal schedule. (Recall that in the
optimal schedule, this child should be idle part of the time to ensure that all
children with faster communication times are kept fully busy.)

e Heuristic 3: This heuristic uses the same processors as the second heuristic,
but it satisfies requests from the (p + 1)-th child only if there are no other
outstanding requests. Note that this child still could receive more tasks than
in the optimal solution, but it is less likely than with the second heuristic.

All three heuristics are demand-driven and fully dynamic. Indeed, the only infor-
mation that we use from Proposition 1 are choosing which processors will be fully
active, partly idle, and fully idle. These sets will not be (in general) affected by small
changes in machine parameters. Therefore, the heuristics should not be affected by
small dynamic changes in processor speeds and/or link bandwidths.

6.2 Simulation Results

We present the results of the heuristics for two different sets of tree graphs. All the
simulations have been performed with 100 randomly generated trees. The first set
of simulations corresponds to a simple fork graph — a root node with between 2 and
6 children. The results are displayed in Figure 13. The second set of simulations
corresponds to more general trees. For these simulations, each node has at most 5
children and at most 10 nodes have children. The results are displayed in Figure 14.
For all these simulations, all the nodes (except the root of the tree) own exactly one
task at the beginning of the execution. The root of the tree owns 1000 tasks at the
beginning. Each figure displays the ratio between the time necessary to process 1000
tasks with a given heuristic and the optimal steady state time given by Proposition 1.
The dashed line represents the ratios obtained with the first heuristic, the dotted line
represents the ratios obtained with the second heuristic and the solid line represents
the ratios obtained with the third heuristic. Each point on the x-axis represents
a different randomly-generated tree. They have been sorted according to the ratio
obtained with the first heuristic.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors

33

RR n~4210

20 40 60 80 100

tries

Figure 13: Simulations with a simple fork graph

0 20 40 . 60 80 100
tries

Figure 14: Simulations with a more general tree

34

0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

mean value | minimal value | mean value | minimal value

Fork Graph | Fork Graph | General Tree | General Tree
Heuristic 1 0.83 0.48 0.86 0.43
Heuristic 2 0.96 0.77 0.96 0.61
Heuristic 3 0.98 0.88 0.99 0.77

Figure 15: Minimal and mean values of the ratio for the different heuristics

Both Figures 13 and 14 illustrate the value of taking into account the static
information given by Proposition 1, even in the design of fully dynamic algorithms.
The mean and minimal values of the ratios for the different heuristics are displayed
in Table 15.

6.3 Analysis of a compute-limited case

Let us consider the fork graph depicted in Figure 16, with a root Py and three
children P, P, and P3. With the notations of Proposition 1,

! 1

Figure 16: Fork graph with three children

2

a_1, 1.2 9 4
- 45 60 '

Thus, all the processors are kept fully active in the optimal solution, and all three
heuristics give the same results. The ratio is in this case equal to 0.997. The small
difference between 0.997 and 1 is related to the fact that it takes a few steps for the
demand-driven algorithm to reach the steady state.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 35

6.4 Analysis of a bandwidth-limited case

Let us consider the fork graph depicted in Figure 17, with a root Py and 3 children
P, P, P3, Py and P;5. Two children with slow links have been added. In this case,

1 1 2 1 10
Figure 17: Fork graph with five children

e 59 2 T

2w 60 10 60
so that in the optimal solution given by Proposition 1, Py is partly idle and Ps
is kept fully idle. The ratios obtained by heuristics 1, 2 and 3 are respectively
0.55, 0.61 and 0.88. With the first heuristic, processors Py, P1, P>, P3, P4 and
Ps respectively process 70%,6%,6%,6%,6% and 6% of the tasks. The last two
children process just as many tasks as the other children. In fact, in this case, the
root of the tree is sending tasks to its children all the time and, since the last two
children have small processing times, they request tasks just as often as the other
children. With the second heuristic, processors Py, Py, P, P3 and P, (Ps is not
used any more) respectively process 64%, 9%, 9%, 9% and 9% of tasks. The same
phenomenon occurs, but in this case, since P5 is not used, the results are slightly
better. With the third heuristic, processors Py, Pi, P, P3 and Py (P4 is given low
priority and Pj is not used at all) respectively process 44%,22%, 18%,14% and 2%
of tasks. This solution is much more balanced and is closer to the optimal solution
given by Proposition 1, where the nodes respectively process 39%, 26%, 20%, 16%
and 0.1% of tasks. Nevertheless, we are far from the optimal solution (the ratio is
0.88) because the last child still processes too many tasks and has a very slow link.

One way to overcome this problem is to give more tasks to each processor at the
beginning of the execution. The values of the ratio become 0.57, 0.62, 1.001 if the
children own 4 tasks at the beginning of the execution (instead of 1). The fact that
the time necessary to process 1000 tasks with the heuristics may be smaller than
in the optimal solution is not surprising since all the children are given 4 tasks “for
free” (without communication) at the beginning of the execution. In this case, with

RR n~4210

36 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

the third heuristic, the different nodes respectively process 39%, 26%, 19%, 16% and
0.6% of tasks, which is very close to the optimal solution.

6.5 Simulations with larger initial distributions

As we just saw, giving more tasks at the beginning of the execution is effective in
making a simulation of 1000 tasks using the third heuristic match the theoretical
steady-state performance. An alternate method would be to simulate far more than
1000 tasks. Unfortunately, we do not yet know an efficient way to initialize the
simulations to enter steady-state immediately.

Figure 18 and 19 (corresponding respectively to Figures 13 and 14) display the
results when 4 tasks are given to each processor (instead of 1), and Table 20 sum-
marizes the mean and minimal values of the ratio for the different heuristics. In
this case, we note that the third heuristic is almost optimal. Also notice that in
Figure 18, the simulations of the first heuristic are sometimes significantly better
than the optimum. This artifact is a result of our giving four “free” tasks to each of
several processors that aren’t even used in the optimum solution.

1.2

ratio
o
[o2]

0.6l

04 20 404jgg 60 80 100

Figure 18: Simulations with a simple fork graph

7 Related work

Mapping and scheduling tasks onto heterogeneous platforms has received consider-
able attention in recent years (see the survey papers of Berman [7] and Feitelson [17]).

In contrast to our work, many related works use the execution time of the applica-
tion to guide its task allocation. A well-known example of a high-level scheduling and
load-balancing tool is AppLeS, which provides application-level scheduling agents

INRIA

The Master-Slave Paradigm with Heterogeneous Processors

37

12

ratio

0.8 :

0.6t !

20 0 . 60
tries

80 100

Figure 19: Simulations with a more general tree

mean value | minimal value | mean value | minimal value

Fork Graph | Fork Graph | General Tree | General Tree
Heuristic 1 0.86 0.54 0.91 0.51
Heuristic 2 0.96 0.67 0.98 0.58
Heuristic 3 1.00 1.00 1.01 1.00

Figure 20: Minimal and mean values of the ratio for the different heuristics

whose goal is to minimize the application’s execution time on dynamically chang-
ing, heterogeneous systems [26, 8]. AppLeS agents utilize the Network Weather
Service [35] to monitor the varying performance of resources potentially available
to their applications, and use this information to predict the resources available at
the time the application will be scheduled. Another closely related problem is to
determine the best allocation of tasks to workers (using a Master-Worker paradigm),
given a fixed time bound. This is considered, for instance, by Beaumont et al [6]. In
our terms, their model corresponds to scheduling a fork-join node in a No-Overlap
model M(r, s, w)where the parent (the Master) cannot perform any computation.
Most related work only considers a single level of heterogeneity. The work of [12]
uses a combined compile-time/runtime approach to create customized load balanc-
ing strategies for an application to minimize its execution time on a single cluster of
workstations. In [11], a purely static, architecture-conscious approach is considered
for load-balancing parallel loops which may have different amount of work in each
iteration, on a (possibly) heterogeneous network of workstations. This work also
considers the effects of limited memory size. In Andonie et al. [2], a dynamic pro-
gramming approach is used to minimize the execution time of independent tasks (for

RR n~4210

38 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

training distributed backpropagation neural networks) on a heterogeneous network
of workstations.

There are some works that (like ours) consider a multiple-leveled network; for
instance [21] is an empirical evaluation of several scheduling strategies (round robin,
first come first serve, etc) when applied hierarchically for clusters of subclusters.

Some approaches to minimizing execution time are purely static. Algorithms
for statically partitioning a large rectangular iteration space so as to load-balance
the work of different-speed processors are given in Crandall and Quinn [14] and
Kaddoura, Ranka and Wang [22]. Proposals for the extension of the ScaLAPACK
library to heterogeneous processors are given by Barbosa, Tavares and Padilha [3],
Kalinov and Lastovetky [23], and Beaumont et al [4, 5|. All these papers target a
specific class of algorithms where processors are assigned rectangular tiles of a large
iteration space; for each processor, computation costs are proportional to its tile
surface while communication costs are proportional to its tile perimeter.

Other approaches — notably the various self-scheduling techniques [25, 20, 19,
30] — use dynamic heuristics. All but [19] were developed for homogeneous systems.
Because our approach does not give equal priority to all requests, we can do better
in steady-state than self-scheduling, as shown in our experimental results.

Several theoretical papers deal with complexity results for parallel machine prob-
lems with a server. In this model, heterogenous tasks are allocated by the server one
at a time on the homogeneous parallel machine. NP-completeness results are given
in [18, 24, 9] and guaranteed approximations in [27]. In constrast, our work consider
the allocation of homogenous tasks on a heterogeneous system.

The work most closely related to ours is Shao’s thesis [33]. He suggests using
the Maximum-Flow algorithm on the graph (not necessarily a tree) representing
heterogeneous resources to maximize steady-state throughput of Master-Worker ap-
plications. In contrast, our work obtains a simple, closed-form formula for maxi-
mizing steady-state, which in turn gives insight into the construction of a dynamic
algorithm.

8 Conclusion and discussion

In this paper, we considered the problem of allocating a large number of independent,
equal-sized tasks to a heterogeneous collection of computing resources. We assume
the data for the tasks is initially located on a single resource. Such problems arise
in collaborative computing efforts.

This paper makes the following contributions to this problem:

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 39

o We suggest that it is natural to model the computing resources as a tree, whose
nodes can have different speeds of computation and communication. Our model
also allows nodes to have differing capabilities in terms of allowing overlap of
computation and communication.

e For one particular model of overlap capabilities — the base model which allows
computation and communication in two directions to overlap — we give an
explicit solution to the problem of determing the allocation of tasks to nodes
in the tree that maximizes the number of tasks executed per unit time in steady-
state. This optimal solution is bandwidth-centric: tasks should be allocated to
nodes in order of fastest communication time. This result may be counter-
intuitive, it says the speed of the processors is irrelevant to choosing which
processors to send tasks to.

e We show how other models of overlap capability can be reduced to the base
model. The reductions work on a node-by-node basis, so it is simple to handle
a heterogeneous system with nodes having not only differing speeds but also
differing capabilities.

e We define a more general communication model which includes the overheads
and gap of the LogP model, and showed how to obtain the best steady-state
task allocation for this model as well.

e We present simulation results of demand-driven task allocation heuristics. These
results show that our bandwidth-centric method, where tasks are allocated only
to nodes with sufficiently fast communication times, obtains better results than
allocating tasks to all processors on a first-come, first serve basis. Even better
results are given by giving a low priority to the processors that, in the optimal
solution, are idle part of the time.

Our model does not directly address the dynamically changing nature of the
grid, nor does it consider the total execution time from sending out the first task
to receiving the result from the very last. Although both of these are important
considerations, this paper nonetheless suggests a simple and powerful heuristic: al-
location of tasks at each node should be bandwidth-centric. In other words, given
limited bandwidth, tasks should be allocated locally at each node with priority given
to how fast they can be communicated from the node to a child, and not based on
the computational speed of the child.

This heuristic can be incorporated into an autonomous and dynamically self-
adjusting scheduling policy. Each node should have a finite buffer for unprocessed

RR n " 4210

40 0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

tasks. The buffer should be large enough to smooth over “bursty” behavior, but if
it too large, there may be longer start-up and finish-up times. When the number of
tasks in the node’s buffer falls below a critical level,® the node should request addi-
tional tasks from its parent node. Meanwhile, a node should prioritize the requests
it receives from its children according to the time it takes to communicate with the
child. The times used for prioritization are simply the times that the node measures
for its side of the communication.

In a human example, suppose a manager can delegated tasks to Bob via US
mail (which only requires 30 seconds to address an envelope), but delegating to Eve
requires 4 minutes to operate a fax machine. Then the manager should always answer
Bob’s requests for more work before responding to Eve’s, even though the mail to
Bob may be slow, and regardless of whether Bob or Eve is the faster worker.?

Note that the decision about how many tasks to process in the node itself depends
on the overlap model. In the Base Model, where computation does not intefere with
communication, the node should assigns itself work with highest priority. When com-
putation slows commuication down, then the transformations of section 4 describe
how to assign a priority to local processing.

The strategy described above can adapt to dynamically changing network con-
ditions. Each node periodically measures its bandwidth to its parent and children,
and changes priorities accordingly. There are practical issues involved in estimating
current communication costs from historical data; these issues have been investi-
gated by the Network Weather Service [35]. A nice feature of our approach is that
each node makes its decisions autonomously. The explicit solution we derived, which
maximizes the throughput of the entire grid, does not require solving a global max
flow problem (as suggested, for instance, by Shao [33].)

By ignoring startup costs and focusing on steady-state throughput, we were able
to obtain a simple, explicit solutions to our optimization problem. However, it
would be interesting to invesitgate the cost of startup, through theory, simulations,
and actual experiments.

That said, we note that the question of whether it’s better to maximize steady-
state performance or to minimizing application execution time is a complex one. A
system administrator may want to optimize steady-state performance, noting that
(assuming the applications can adapt to dynamically changing conditions) while one

8The optimal value for this level should be the subject of more research. It will most likely
depend, among other things, on the latency of each network connection, and thus cannot be answered
using only the parameters of our model.

90f course, if Bob is slower, there will be fewer requests from him. And it is important that Bob
maintain a large enough backlog of work so that he is not idle while waiting for the mail delivery.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 41

application is starting up or finishing, other applications are able to make use of
these idle resources. What does matter to the administrator is that if the network
is the bottleneck, then faster network resources should be used in preference to
slower ones. Our solution has this feature. On the other hand, a user with only
one application to run may only care about the turnaround time for that particular
job. However, the turnaround issue is complex. If new jobs are created faster than
the system can process them, then the system will get further and further behind
in its work; asymptotically, the average turnaround time will be infinite. The best
way to prevent this situation, or to make the backlog grow as slowly as possible, is
to have the highest possible throughput. Thus in some situations, it can be argued
that steady-state performance is all that matters.

There are many other ways our work could be extended. Future work should
consider the addition of data dependences between tasks. It should also consider, in-
stead of having a constant per-task communication cost, that sending a larger amount
of work involves some savings in per-task communication costs. This would reflect
applications (such as matrix multiplication) that have a favorable communication-
to-computation ratio; however, it would require adding an additional parameter,
memory capacity, to model each node. Another generalization would allow initial
data to reside on several nodes, instead of a single node.

It is likely that many of these harder problems, particularly those that address
the total application execution time, will be NP-complete. The bandwidth-centric
approach of this paper may suggest good heuristics in these cases.

References

[1] B. Alpern, L. Carter, and J. Ferrante. Modeling parallel computers as memory
hierarchies. In Proceedings of the Working Conference on Massively Parallel
Programming Models. IEEE Computer Society Press, 1993.

[2] R. Andonie, A.T. Chronopoulos, D. Grosu, and H. Galmeanu. Distributed
backpropagation neural networks on a PVM heterogeneous system. In Parallel
and Distributed Computing and Systems Conference (PDCS’98), pages 555-560.
TASTED Press, 1998.

[3] J. Barbosa, J. Tavares, and A.J. Padilha. Linear algebra algorithms in a hetero-
geneous cluster of personal computers. In 9th Heterogeneous Computing Work-
shop (HCW’2000), pages 147-159. IEEE Computer Society Press, 2000.

RR n~4210

42

0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

[4]

[5]

[6]

[7]

8]

9]

Olivier Beaumont, Vincent Boudet, Fabrice Rastello, and Yves Robert. Load
balancing strategies for dense linear algebra kernels on heterogeneous two-

dimensional grids. In 14th International Parallel and Distributed Processing
Symposium (IPDPS’2000), pages 783-792. IEEE Computer Society Press, 2000.

Olivier Beaumont, Vincent Boudet, Fabrice Rastello, and Yves Robert. Matrix-
matrix multiplication on heterogeneous platforms. In 2000 International Confer-
ence on Parallel Processing (ICPP’2000). IEEE Computer Society Press, 2000.

Olivier Beaumont, Arnaud Legrand, and Yves Robert. The master-slave
paradigm with heterogeneous processors. Technical Report RR-2001-13, LIP,
ENS Lyon, March 2001. Available at www.ens-1lyon.fr/LIP/.

F. Berman. High-performance schedulers. In I. Foster and C. Kesselman, edi-
tors, The Grid: Blueprint for a New Computing Infrastructure, pages 279-309.
Morgan-Kaufmann, 1999.

F. Berman and R. Wolski. TheAppLeS project: A status report. In Proceedings
of the 8th NEC Research Symposium, 1997. Available at http://www.gcl.ucsd.
edu//hetpubs.html#AppLeS.

P. Brucker, C. Dhaenens-Flipo, S. Knust, S.A. Kravchenko, and F. Werner.
Complexity results for parallel machine problems with a single server. Techni-
cal Report Reihe P, No. 219, Fachbereich Mathematik Informatik, Universitat
Osnabriick, 2000.

P. Chrétienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors. Scheduling
Theory and its Applications. John Wiley and Sons, 1995.

Michal Cierniak, Mohammed J. Zaki, and Wei Li. Compile-time scheduling
algorithms for heterogeneous network of workstations. The Computer Journal,
40(6):356-372, 1997.

Michal Cierniak, Mohammed J. Zaki, and Wei Li. Customized dynamic load
balancing for a network of workstations. Journal of Parallel and Distributed
Computing, 43:156-162, 1997.

James Cowie, Bruce Dodson, R.-Marije Elkenbracht-Huizing, Arjen K. Lenstra,
Peter L. Montgomery, and Joerg Zayer. A world wide number field sieve factor-
ing record: on to 512 bits. In Kwangjo Kim and Tsutomu Matsumoto, editors,

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 43

[14]

[15]

Advances in Cryptology - Asiacrypt 96, volume 1163 of LNCS, pages 382-394.
Springer Verlag, 1996.

P.E. Crandall and M.J. Quinn. Block data decomposition for data-parallel
programming on a heterogeneous workstation network. In 2nd International
Symposium on High Performance Distributed Computing, pages 42-49. IEEE
Computer Society Press, 1993.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subra-
monian, and T. v. Eicken. Logp: Towards a realistic model of parallel compu-
tation. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM Press, 1993.

Entropia. URL: http://www.entropia.com.

D.G. Feitelson. High performance cluster computing. volume 1: Architecture
and systems. In R. Buyya, editor, The Grid: Blueprint for a New Computing
Infrastructure, pages 519-533. Prentice Hall PTR, 1999.

N. Hall, C.N. Potts, and C. Sriskandarajah. Parallel machine scheduling with a
common server. Discrete Applied Mathematics, 102:223-243, 2000.

Susan Flynn Hummel, Jeanette Schmidt, R. N. Uma, and Joel Wein. Load-
sharing in heterogeneous systems via weighted factoring. In Proceedings of the
8th Annual ACM Symposium on Parallel Algorithms and Architectures, pages
318-328, June 1996.

Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: A
method for scheduling parallel loops. Communications of the ACM, 35(8):90-
101, 1992.

H. A. James, K. A. Hawick, and P. D. Coddington. Scheduling independent
tasks on metacomputing systems. Technical Report DHPC-066, University of
Adelaide, Australia, 1999.

M. Kaddoura, S. Ranka, and A. Wang. Array decomposition for nonuniform
computational environments. Journal of Parallel and Distributed Computing,
36:91-105, 1996.

A. Kalinov and A. Lastovetsky. Heterogeneous distribution of computations
while solving linear algebra problems on networks of heterogeneous computers.

RR n~4210

44

0. Beaumont, L.Carter, J. Ferrante, A. Legrand and Y. Robert

In P. Sloot, M. Bubak, A. Hoekstra, and B. Hertzberger, editors, HPCN Europe
1999, LNCS 1593, pages 191-200. Springer Verlag, 1999.

S.A. Kravchenko and F. Werner. Parallel machine scheduling problems with a
single server. Mathematical Computational Modelling, 26:1-11, 1997.

Clyde P. Kruskal and Alan Weiss. Allocating independent subtasks on paral-
lel processors. IEEE Transactions on Software Engineering, 11(10):1001-1016,
October 1985.

Grid Computing Laboratory. Apples. URL: http://apples.ucsd.edu.

H. Lee and M. Guignard. A hybrid bounding procedure for the workload al-
location problem on parallel unrelated machines with setups. Journal of the
Operational Research Society, 47:1247-1261, 1996.

C.E. Leiserson. Fat-trees: universal networks for hardware-efficient supercom-
puting. IEEE Transactions on Computers, 34(10):892-901, 1985.

B. Lowenkamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and
J. Subhlok. A resource query interface for network-aware applications. In
Proceedings of the Seventh International Symposium on High Performance Dis-
tributed Computing, 1998.

Constantine D. Polychronopoulos and David J. Kuck. Guided self-scheduling:
A practical scheduling scheme for parallel supercomputers. IEEE Transactions
on Computers, C-36(12):1485-1495, 1987.

Prime. URL: http://www.mersenne.org.
SETI. URL: http://setiathome.ssl.berkeley.edu.

Gary Shao. Adaptive scheduling of master/worker applications on distributed
computational resources. PhD thesis, University of California at San Diego,
May 2001.

Gary Shao, Fran Berman, and Rich Wolski. Using effective network views to
promote distributed application performance. In Hamid R. Arabnia, editor,

International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’99). CSREA Press, 1999.

INRIA

The Master-Slave Paradigm with Heterogeneous Processors 45

[35] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. Future
Generation Computer Systems, 15(10):757-768, 1999.

RR n~4210

/<

Unit e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhone-Alpes, 655, avenue de 1’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

