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Bandwidth-Efficient Turbo Trellis-Coded
Modulation Using Punctured Component Codes
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Abstract—We present a bandwidth-efficient channel coding
scheme that has an overall structure similar to binary turbo
codes, but employs trellis-coded modulation (TCM) codes (includ-
ing multidimensional codes) as component codes. The combina-
tion of turbo codes with powerful bandwidth-efficient component
codes leads to a straightforward encoder structure, and allows
iterative decoding in analogy to the binary turbo decoder. How-
ever, certain special conditions may need to be met at the encoder,
and the iterative decoder needs to be adapted to the decoding of
the component TCM codes. The scheme has been investigated for
8-PSK, 16-QAM, and 64-QAM modulation schemes with varying
overall bandwidth efficiencies. A simple code choice based on the
minimal distance of the punctured component code has also been
performed. The interset distances of the partitioning tree can be
used to fix the number of coded and uncoded bits. We derive
the symbol-by-symbol MAP component decoder operating in the
log domain, and apply methods of reducing decoder complexity.
Simulation results are presented and compare the scheme with
traditional TCM as well as turbo codes with Gray mapping. The
results show that the novel scheme is very powerful, yet of modest
complexity since simple component codes are used.

Index Terms—Decoding, iterative methods, trellis-coded mod-
ulation.

I. INTRODUCTION

I N 1993, powerful so-called turbo codes were introduced [1]
which achieve good bit-error rates (BER’s) (10 10

at low SNR. They are of interest in a wide range of telecom-
munications applications, and comprise two binary component
codes and an interleaver. They were originally proposed for
binary modulation (BPSK). Successful attempts were soon
undertaken to combine binary turbo codes with higher order
modulation (e.g., 8-PSK, 16-QAM) using Gray mapping [2],
and alternatively as component codes within multilevel codes
[3]. In contrast, in our approach—called turbo trellis-coded
modulation (TTCM)—we have employed two Ungerboeck-
type codes [4] in combination with trellis-coded modulation
(TCM) in their recursive systematic form as component codes
in an overall structure rather similar to binary turbo codes
[5], [6]. A different approach for bandwidth-efficient coding
using recursive parallel concatenation was proposed in [7] and
[8] where there is no puncturing of coded bits or symbols.
TCM codes by themselves combine modulation and coding
by optimizing the Euclidean distance between codewords;
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they can be decoded with the Viterbi or the Bahl–Jelinek
(symbol-by-symbol MAP) algorithm [9]. Multidimensional
TCM allows even higher bandwidth efficiency than traditional
Ungerboeck TCM by assigning more than one symbol per
trellis transition or step [10]. In this case, the set partitioning
takes into account the union of more than one two-dimensional
signal set.

The basic principle of turbo codes is applied to TCM by
retaining the important properties and advantages of both
of their structures. Essentially, TCM codes can be seen as
systematic feedback convolutional codes followed by one (or
more for multidimensional codes) signal mapper(s). Just as
binary turbo codes use a parallel concatenation of two binary
recursive convolutional encoders, we have concatenated two
recursive TCM encoders, and adapted the interleaving and
puncturing. Naturally, this has consequences at the decoding
side.

In this paper, we also extend the basic concept of TTCM to
incorporate multidimensional component codes which allows
a higher overall bandwidth efficiency for a given signal
constellation than ordinary TTCM. As a further possibility of
increasing the bandwidth efficiency, we employ higher order
modulation constellations (for example, 64-QAM). These two
approaches require us to retain parallel transitions in the trellis
for complexity reasons; in other words, some of the informa-
tion bits are completely uncoded in both component codes. In
[5], we did not allow parallel transitions for 8-PSK and 16-
QAM modulation with two, respectively three, information
bits per symbol since the corresponding uncoded bits would
not benefit from the interleaver and the parallel concatenation.
However, due to the higher operating SNR for very high
bandwidth-efficient schemes and the large Euclidean distance
that separates the subsets of signal points that carry these
uncoded bits, the restriction of not allowing parallel transitions
to TTCM can be broken without loss of performance at least in
schemes with 8-PSK transmitting 2.5 information bits/symbol
and 64-QAM with 5 bits/symbol which were investigated here.

By applying the technique to 8-PSK, 16-QAM, and 64-
QAM modulation formats, we have shown its viability over a
large range of bandwidth efficiency and signal-to-noise ratios.
In all cases, low BER’s (10 10 ) could be achieved
within 1 dB or less from Shannon’s limit—a finding that, in the
context of binary turbo codes, was responsible for the interest
they generated.

The paper begins by describing the generic encoder (be-
ginning with a motivation for its structure); an encoder with
8-PSK signaling will serve as a salient example. We then
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Fig. 1. Generic encoder that treats uncoded bits as coded bits from a structural point of view.

present the results of a search for component codes for 8-PSK
and signal sets, taking into consideration the puncturing
at the encoder. This is followed by a section on the iterative
decoder using symbol-by-symbol MAP component decoders
whose structures are derived for our case of nonbinary trellises
and special metric calculation. Finally, we present simulation
results of the new scheme with two- and four-dimensional
8-PSK, as well as two-dimensional 16-QAM and 64-QAM.
The influence of varying the block size—of important practical
relevance—is also a subject of investigation. For reference, we
judge the new schemes against classical TCM and binary turbo
codes with Gray mapping, as well as their BER performance
with respect to channel capacity.

II. THE ENCODER

A. Motivation for the Structure

Let us recall that two important characteristics of turbo
codes are their simple use of recursive systematic component
codes in a parallel concatenation scheme. Pseudorandom bit-
wise interleaving between encoders ensures a small bit-error
probability [11]. What is crucial to their practical suitability is
the fact that they can be decoded iteratively with good perfor-
mance [1]. It is well known that Ungerboeck codes combine
coding and modulation by optimizing the Euclidean distance
between codewords and achieve high spectral efficiency (
bits per -ary symbol from the two-dimensional signal

space) through signal set expansion. The encoder can be repre-
sented as combination of a systematic recursive convolutional
encoder and symbol mapper. If out of bits are encoded,
the resulting trellis diagram consists of branches per state,
not counting parallel transitions. This results in more than two
branches per state for —we call this a nonbinary trellis.

We have employed Ungerboeck codes (and multidimen-
sional TCM codes) as building blocks in a turbo coding
scheme in a similar way as binary codes were used [1]. The
major differences are: 1) the interleaving now operates on short
groups of bits (e.g., pairs for 8-PSK with two-dimensional
TCM schemes) instead of single bits; 2) to achieve the desired
spectral efficiency, puncturing the parity information is not
quite as straightforward as in the binary turbo coding case;
and 3) there are special constraints on both the component
encoders as well as the structure of the interleaver.

Let the size of the interleaver be . The number of
modulated symbols per block is , with , where
is the signal set dimensionality. The number of information bits
transmitted per block is . The encoder is clocked in steps
of where is the symbol duration of each transmitted

-ary symbol. In each step, information bits are
input and symbols are transmitted, yielding a spectral
efficiency of bits per symbol usage. Fig. 1 shows the
generic encoder, comprising two TCM encoders linked by the
interleaver. A signal mapper follows each recursive systematic
convolutional encoder where the latter each produce one parity
bit in addition to retaining the information bits at their



208 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Fig. 2. Encoder shown for 8-PSK with two-dimensional component codes memory 3. An example of interleaving withN = 6 is shown. Bold letters
indicate that symbols or pairs of bits correspond to the upper encoder.

inputs. For clarity, we have not depicted any special treatment
of the uncoded bits as opposed to the bits to be
encoded: in practice, uncoded bits would not need to be passed
through the interleaver but would be simply used to choose the
final signal point from a subset of points after the selector. We
will return to the problem of parallel transitions shortly. For
the moment, the interleaver is restricted to keeping each group
of bits unchanged within itself (as visualized by the dashed
lines passing through the interleaver in Fig. 1). The output of
the bottom encoder/mapper is deinterleaved according to the
inverse operation of the interleaver. This ensures that at the
input of the selector, the information bits partly defining
each group of symbols of both the upper and lower input
are identical. Therefore, if the selector is switched such that
a group of symbols is chosen alternately from the upper
and lower inputs, then the sequence of symbols at the
output has the important property that each of thegroups
of information bits defines part of each group ofoutput
symbols. The remaining bit which is needed to define each
group of symbols is the parity bit taken alternatively from
the upper and lower encoder.

A simple example will now serve to clarify the operation
of the encoder for the case , , and
8-PSK signaling: it is illustrated in Fig. 2. The set partitioning
is shown in Fig. 3. The 6-long sequence

of information bit pairs ( )
is encoded in an Ungerboeck style encoder to yield the
8-PSK sequence . The information bits are

interleaved—on a pairwise basis—and encoded again into
the sequence (6, 7, 0, 3, 0, 4). We deinterleave the second
encoder’s output symbols to ensure that the ordering of the
two information bits partly defining each symbol corresponds
to that of the first encoder, i.e., we now have the sequence (0,
3, 6, 4, 0, 7). Finally, we transmit the first symbol of the first
encoder, the second symbol of the second encoder, the third of
the first encoder, the fourth symbol of the second encoder, etc.,

. Thus, the parity bit is alternately chosen from
the first and second encoder (bold, notbold, bold, etc.). Also,
the th information bit pair exactly determines two of the three
bits of the th symbol . This ensures that each information
bit pair defines part of the constellation of an 8-PSK symbol
exactly once.

B. Interleaver and Code Constraints

By deinterleaving the output of the second decoder, each
symbol index before the selector in Fig. 1 has the property
of being associated with input information bit group index,
regardless of the actual interleaving rule. However, from the
standpoint of the second componentdecoder, it will become
evident (see Section III) that with the alternate selection
chosen, the interleaver must map even positions to even
positions and odd ones to odd ones (or even–odd, odd–even).
Other than this constraint, the interleaver can be chosen to be
pseudorandom or modified to avoid low distance error events.

A constraint on the component code was made in [5] such
that the corresponding trellis diagram of the convolutional
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Fig. 3. Set partitioning for 8-PSK. Dotted ovals denote subsets corresponding to the different combinations ofd. The distances�i are relevant for code design.

encoders should have no parallel transitions. This ensures that
each information bit benefits from the parallel concatenation
and interleaving. This condition can be relaxed under a number
of conditions. The first, proposed in [12], applies if the
interleaver no longer keeps each group ofbits unchanged
during interleaving. Remember that we have so far assumed
that the interleaver keeps the input unchanged within each
group of information bits, and the corresponding symbol
deinterleaver does not modify its symbol inputs (except for
the actual re-ordering of their positions, of course). In [12],
the above condition was relaxed for 8-PSK with where
the interleaver swapped the two information bits and the code
allowed two parallel transitions per state. For 8-PSK with

, this ensures that each information bit influences either
the states of the upper or lower encoder—but never both. A
slight advantage for a small number of decoding iterations was
reported. Unless otherwise stated, the examples in this paper
assume a nonmodifying interleaver. The second case in which
we allow parallel transitions is when we desire a very high
bandwidth efficiency. Due to the higher operating SNR and
the large Euclidean distance that separates the subsets of signal
points that define parallel transitions (assuming sensible set
partitioning and mapping), uncoded information bits receive
ample protection at least in the cases of 8-PSK transmitting
2.5 information bits/symbol and 64-QAM with 5 bits/symbol.

The transmission of uncoded bits has been proposed for the
multilevel approach of [3] where channel capacity arguments
show that these two bits theoretically need only minimal (if
any) coding protection when five information bits are sent
using one 64-QAM symbol.

In the following, a heuristic rule is given in order to
determine the number of uncoded bits per symbol. It is based
on the experience that the BER of TTCM schemes (with large
block lengths) reaches a value of at a signal-
to-noise ratio which is approximately 1 dB above
the corresponding channel capacity [5]. Let us consider the
sequence of increasing inner-set distanceswhen following
down the partitioning of the corresponding signal set (for
an example of partitioning an 8-PSK constellation, refer to
Fig. 3). For each distance, we can evaluate a rough approx-
imation of the BER in the uncoded case, by applying the
well-known formula

erfc (1)

By using the above formula to approximate the BER of the
uncoded bits with , two approximations are included.

• The error propagation from the partition levels which
include coded bits into the partition levels with uncoded
bits is neglected.
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• Moreover, the number of nearest neighbors is not included
in the calculation, only the pure distance is used to
evaluate (1).

As a result, we can identify at which level of the partition
chain the corresponding uncoded bits have enough protection
based on the distance and the given SNR to bring
the BER below . Two examples are given in the
following.

• Example 1:

— Signal set: four-dimensional 8-PSK.
— Desired information rate: 2.5 bits/symbol.
— The two 8-PSK symbols are generated by the rule

[10]

modulo 8. The parity bit is ; the information
bits are – .

— Corresponding channel capacity: 8.8 dB [4]
dB.

— Sequence of distances for the partition chain
of the signal set [10] and corresponding uncoded
BER’s shown in (a), at the bottom of the page.

— Conclusion: three encoded bits (including the parity
bit) are necessary to reach the desired BER for the
uncoded bits (hence, ).

• Example 2:

— Signal set: two-dimensional 64-QAM.
— Desired information rate: 5 bits/symbol.
— Corresponding channel capacity: 16.2 dB [4]

dB.
— Sequence of distances for the partition chain of

the signal set [4] and corresponding uncoded BER’s
given in (b), found at the bottom of the page.

— Conclusion: again, three encoded bits are necessary
to reach the desired BER for the uncoded bits
( ).

A further condition on the code, which has its origins at the
decoder [(8) in Section III-B], is that the information bits in
step do not affect the value of the parity bits at step; this
condition was also proposed for good TCM codes in [4].

In [13], an algorithm was presented that modifies an in-
terleaver for binary turbo codes in a controlled, but random

fashion. It tries to maximize the minimal distance between
codewords whose corresponding information difference vec-
tors have a small weight (typically, 1–5). The algorithm is
based on the distance properties of the component codes, and
works by attempting to break interleaver patterns leading to
small codeword distances. In principle, the algorithm can be
used for TTCM interleaver optimization as well, even though
the interleaver no longer maps single bits. Modifying the
interleaver might be especially useful for very small block
sizes where a random interleaver is likely not to be the best
choice.

C. Component Code Design

In an initial attempt to find good component codes, we
have used an exhaustive computer search similar to [4] that
maximizes the minimal distance of each component code
under consideration of randomly selecting the parity bits of
each second symbol.

In [4, eq. (15b)], it is stated that the minimal distance is
bounded by

(2)

minimizing over all nonzero code sequences . The vari-
able is the number of trailing zeros in . The values

, are the squared minimal Euclidean distances
between signals of each subset, and must be replaced by

, when the corresponding transmitted sym-
bol was “punctured”; the distances are shown in Fig. 3.
These new distances can be calculated by assuming that the
“random” parity bit takes its worst case value and minimizes
the distance between elements of the subsets. We obtained the
results of Table I, where the parity check polynomials in octal
notation are given as in [4]. Note that in the case of 8-PSK,
the punctured code has a loss compared to uncoded QPSK
( ), but we must not forget that
we are able to transmit anadditional (parity) bit every
8-PSK symbols, albeit with little protection within the signal
constellation.

It should be noted that better results might be obtained if the
code search maximizes the smallest distance between subsets

Part. Level

(a)

Part. level

(b)
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TABLE I
“PUNCTURED” TCM CODES WITH BEST MINIMAL DISTANCE FOR 8-PSK AND QAM (IN OCTAL NOTATION)

Code ~m H0(D) H1(D) H2(D) H3(D) d2
free

=�2

0

2-dim. 8-PSK, 8 states 2 11 02 04 3
4-dim. 8-PSK, 8 states 2 11 06 04 3
2-dim. 8-PSK, 16 states 2 23 02 10 3
4-dim. 8-PSK, 16 states 2 23 14 06 3

2-dim.Z2, 8 states 3 11 02 04 10 2

2-dim.Z2, 16 states 3 21 02 04 10 3

2-dim.Z2, 8 states 2 11 04 02 3

2-dim.Z2, 16 states 2 21 04 10 4

of the component code corresponding to small input Hamming
weights.

III. T HE DECODER

The iterative decoder is similar to that used to decode binary
turbo codes, except that there is a difference in the nature of
the information passed from one decoder to the other, and in
the treatment of the very first decoding step (half iteration).
A major novelty is the fact that each decoder alternately sees
its corresponding encoder’s noisy output symbol(s), and then
the other encoder’s noisy output symbol(s). The information
bits, i.e., systematic bits that partly resulted in the mapping
of each of these symbols, are correct—in the sense of being
identical to the corresponding encoder output—in both cases.
However, this is not so for the parity bits since these belong
to the other encoder every other group ofsymbol—we have
indexed these symbols with “*” and will call these symbols
“punctured” for brevity. Note that in the following, the at-
tribute “*” or “punctured” refers to the pertinent component
decoder only.

In the binary turbo coding scheme, it can be shown that the
component decoder’s output can be split into three additive
parts (when in the logarithmic or log-likelihood ratio domain
[14]) for each information bit : the systematic component
(corresponding to the received systematic value for bit),
the a priori component (the information given by the other
decoder for bit ), and the extrinsic component (that part
that depends on all other inputs). Only the so-called extrinsic
component may be given to the next decoder; otherwise,
information will be used more than once in the next decoder
[1], [15]. Furthermore, these three components are disturbed
by independent noise.

Here, the situation is complicated by the fact that the
systematic component cannot be separated from the extrinsic
one since the noise that affects the parity component also
affects the systematic one because—unlike in the binary
case—the systematic information is transmitted together with
parity information in the same symbol(s). However, we can
split the output into two different components: 1)a priori and
2) (extrinsic and systematic). Each decoder must now pass just
the latter to the next decoder, and care is taken not to use the
systematic information more than once in each decoder. Note
that we have written (extrinsic and systematic) in parentheses
to stress their inseparability. In the Appendix, we have derived
the symbol-by-symbol MAP decoder for nonbinary trellises.

A. Extrinsic, A Priori, and Systematic Components

Because we will now take a close look at the way the
iterative decoder works, we have decided to write logarithms
of probabilities, denoted by , for brevity and clarity. We
had stated above that we wish to pass the component (extrinsic
and systematic) to the next decoder in which it is used asa
priori information. We shall define the component (extrinsic
and systematic) as that part of the MAP output that does not
depend on thea priori information Pr . In other words,
we must subtract thea priori term (A4)

Pr (3)

from the logarithm of (A10) to obtain a term independent of
the a priori information Pr

Pr Pr (4)

. This can be done since Pr is
a factor in that does not depend on or and can be
written outside the summations in (A10). We will abbreviate

in diagrams and when written in text by ( ).
However, the decoder must be formulated in such a way

that it correctly uses the channel observation and thea
priori information Pr at each step . This is best
illustrated in a diagram: see Fig. 4. Shown on the left is
the interrelation of both MAP decoders for one information
bit in a binary turbo coding scheme. We have denoted the
extrinsic component—omitting the index—by , thea priori
component by , and the systematic and parity ones byand
. Bold letters indicate that the variables correspond directly

to the upper decoder, not bold ones correspond directly to
the lower decoder. Of course, the decoders have memory
(indicated by inputs and ), so each input will affect many
neighboring outputs; we have only shown the relationships for
one bit. Both decoders are symmetrical as they only pass the
newly generated extrinsic information to the next decoder.

The right side shows the decoders for TTCM where the
upper decoder sees a punctured symbol (which was output by
the other decoder: “-mode”); in the example of our encoder in
Fig. 2, it might have received a noisy observation of symbol

. The corresponding symbol from the upper encoder
( ) was not transmitted. The upper decoder now ignores this
symbol—indicated by the position of the upper switch—as far
as the direct channel input is concerned: in (A3), we set

(5)
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Fig. 4. Decoders for binary turbo codes and TTCM. Note that the labels and arrows apply only to one specific info bit (left) or group ofm info bits
(right). The interleavers/deinterleavers are not shown.

illustrated in Fig. 4 by ( ) 0. The only input for this step
in the trellis isa priori information from the other decoder,
and this includes the systematic information. The output
of the MAP, for this transition, is the sum of thisa priori
information and newly computed extrinsic information,
which is

(6)

since we have set to zero. Thea priori information
is subtracted, and the extrinsic informationis passed to the
second decoder as itsa priori information (see the equations
written in Fig. 4). The second decoder, however, sees a symbol
that wasgenerated by its encoder; hence, it can compute

(7)

for each , and subsequently which is used as
the a priori input of the upper decoder in the next iteration.
The setting of the switches will alternate from one group of
bits (index ) to another.

B. Metric Calculation in the First Decoding Stage

The above applies only to the decoding process wherea
priori information for the upper decoder is already available,
which is the case in all but the very first decoding stage. We
had relied on the fact that if the upper decoder sees a group
of punctured symbols, we had embedded the systematic
information, so to speak, in thea priori input. Before the
first decoding pass of the upper decoder, we need to set the
a priori information to contain the systematic information for
the transitions, where the transmitted symbol was determined
partly by the information group , but also by the unknown
parity bit produced by theotherencoder. We thus

set thea priori information, by applying the mixed Bayes’
rule, to

Pr Pr const

const

const
(8)

where it is assumed that Pr Pr
, i.e., the parity bit in the symbol is statistically

independent of the information bit group and equally likely
to be zero or one. Furthermore, the initiala priori probability
of —prior to any decoding—is assumed to be constant for
all . Above, it is not necessary to calculate the value of the
constant since the value of Pr can be determined
by dividing the summation by its sum over all
(normalization). If the upper decoder is not at atransition,
then we simply set Pr to .

C. The Complete Decoder

The complete decoder is shown in Fig. 5. By “metric s,” we
mean the evaluation of (8). All thin signal paths are channel
outputs or values of ;
thick paths represent a group of values of logarithms of
probabilities.

We would like to ensure that punctured and unpunctured
symbols are uniformly spread, i.e., occur alternately at both
of the decoders’ inputs. With our encoder’s selector, the
interleaver must be chosen as in Section II-B.

1) Avoiding Calculation of Logarithms and Exponen-
tials: Since we work with logarithms of probabilities, it
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Fig. 5. Complete decoder.

is undesirable to switch between probabilities and their
logarithms. This becomes necessary, however, at the following
four stages in the decoder.

1) In (8), when we sum over probabilities
( ), but the demodulator

provides us with .
2) When evaluating

to normalize (8) to unity.
3) When normalizing the sum of (A10) to unity.
4) When calculating the hard decision of each individual

bit given the values of (A10).

All of the above mandate the calculation of the logarithm
of the sum over exponentials (when the decoder otherwise
operates in the log domain). By recursively applying the
relation [14]

(9)

the problem can be solved for an arbitrary number of expo-
nentials. The correction function can be realized with
a one-dimensional table with as few as eight stored values
[14]. When implementing the above, we noticed negligible
degradation.

2) Subset Decoding:When the component code’s trellis
contains parallel transitions, this reduces the required decoding
complexity: during the iterations, it is not necessary to decide

on, or calculate soft outputs for, the uncoded bits that cause
these parallel transitions. In the MAP decoders, the parallel
transitions can be merged, which mathematically corresponds
to adding the path transition probabilities of
the parallel transitions. It is clear that the sum is over just
those values of which represent all combinations of
the statistically independent uncoded bits. There is one such
sum for every particular combination of the remainingbits
which are encoded. From then on, the MAP decoder calculates
and passes on only the likelihoods of thesebits. Hence, the
(de-)interleaver needs to operate only on groups ofbits.
During the very last decoding stage, decisions (and if desired,
reliabilities) for the uncoded bits can be generated by
the MAP decoder, either optimally or suboptimally, e.g., by
taking into account only those transitions between the most
likely states along the trellis.

IV. EXAMPLES AND SIMULATIONS

As examples, we have used 2-D 8-PSK (with 1024
and 5000), 2-D 16-QAM (with 683 and 5000), 4-D
8PSK (with 40, 200, and 3000), and 2-D 64-QAM (with

40, 200, and 3000). The interleavers were chosen to
be pseudorandom, and identical for each transmitted block.
In all cases, the component decoders were symbol-by-symbol
MAP decoders operating in the log domain. The number of
trellis states was eight. To help the reader compare curves
for different values of , the axes of the respective curves
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Fig. 6. TTCM for 2-D 8-PSK, 2 bits/symbol. Channel capacity: 2
bits/symbol at 5.9 dB.

Fig. 7. TTCM for 2-D 8-PSK, 2 bits/symbol. Channel capacity: 2
bits/symbol at 5.9 dB.

were chosen to show the same range of SNR. The channel
was modeled to be AWGN, where is the one-sided noise
power spectral density. The small block sizes of 200, 1000,
and roughly 2050 information bits were included to verify that
the schemes work well in applications that tolerate only short
end-to-end delays. In general, it must be borne in mind that
when comparing different approaches to channel coding, the
block size (or other measure of fundamental delay) must be
kept constant.

The BER curves are shown in Figs. 6 and 7 for 8-PSK
with 2 bits/symbol (bps), in Figs. 8 and 9 for 16-QAM with
3 bps, in Figs. 10–12 for 8-PSK with 2.5 bps, and finally in
Figs. 13–15 for 64-QAM with 5 bps.

One iteration is defined as comprising two decoding steps:
one in each dimension. The weak asymptotic performance of
the component code (evident after from the high BER after the
very first decoding step) seems not to affect the performance
of the turbo code after a few iterations since good BER can
be achieved at less than 1 dB from Shannon’s limit for large

Fig. 8. TTCM for 2-D 16-QAM, 3 bits/symbol. Channel capacity: 3
bits/symbol at 9.3 dB.

Fig. 9. TTCM for 2-D 16-QAM, 3 bits/symbol. Channel capacity: 3
bits/symbol at 9.3 dB.

Fig. 10. TTCM for 4-D 8-PSK, 2.5 bits/symbol. Channel capacity: 2.5
bits/symbol at 8.8 dB.



ROBERTSON AND WÖRZ: TTCM USING PUNCTURED COMPONENT CODES 215

Fig. 11. TTCM for 4-D 8-PSK, 2.5 bits/symbol. Channel capacity: 2.5
bits/symbol at 8.8 dB.

Fig. 12. TTCM for 4-D 8-PSK, 2.5 bits/symbol. Channel capacity: 2.5
bits/symbol at 8.8 dB.

Fig. 13. TTCM for 2-D 64-QAM, 5 bits/symbol. Channel capacity: 5
bits/symbol at 16.2 dB.

Fig. 14. TTCM for 2-D 64-QAM, 5 bits/symbol. Channel capacity: 5
bits/symbol at 16.2 dB.

Fig. 15. TTCM for 2-D 64-QAM, 5 bits/symbol. Channel capacity: 5
bits/symbol at 16.2 dB.

interleaver sizes . For comparison, Fig. 6 includes the results
for a Gray mapping scheme for 2-D 8-PSK as presented
in [2]; it has the same complexity (when measured as the
number of trellis branches per information bit) as our four-
iteration scheme and the same number of information bits
per block: 2048. The number of states of the binary trellis
for the Gray mapping scheme is eight, hence, there are 2048

8 2 trellis branches per decoding in each dimension;
in our TTCM scheme, there are 1024 8 4 branches.
Compared to TCM with 64-state Ungerboeck codes and 8-
PSK (not included in the figures), we achieve a gain of 1.7 dB
at a BER of 10 . At this BER, our proposed TTCM system
has a 0.5 dB advantage over the Gray mapping scheme after
four iterations. Rather than comparing all of our examples with
other coding techniques, we simply point out that good BER
can be achieved within 1 dB from Shannon’s limit as long as
the block size is sufficiently large.

The results for the higher bandwidth-efficient examples are
also encouraging, except for the fact that the characteristic
flattening of the BER curves comes into effect at higher BER:
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in the case of the two-dimensional schemes with 8-PSK and
16-QAM, this happens between 10and 10 whereas the
BER curve begins to flatten at roughly a factor of 10 higher
for the bandwidth-efficient schemes with 8-PSK and 64-QAM.
However, turbo-coded systems will often be employed as an
inner coding stage by concatenating a block code (e.g., RS or
BCH code) with a turbo code in order to reach very low BER;
in these cases, BER’s of around 10are sufficient.

V. CONCLUSIONS

We have presented a channel coding scheme (TTCM) that
is bandwidth efficient and allows iterative turbo decoding
of codes built around punctured parallel concatenated trellis
codes together with higher order signaling. In contrast to
using binary turbo codes and subsequent Gray mapping onto
the constellation, we have designed the turbo code directly
around two recursive TCM component codes. Thereby, the
bitwise interleaver known from classical binary turbo codes
is replaced by an interleaver operating on a group of bits. By
adhering to a set of constraints for the component code and
interleaver, the resulting code can be decoded iteratively using,
e.g., symbol-by-symbol MAP component decoders working
in the logarithmic domain to avoid numerical problems and
reduce the decoding complexity. We outlined the structure of
the iterative decoder, and derived the symbol-by-symbol MAP
algorithm for nonbinary trellises. Furthermore, we illustrated
the differences compared to the binary case as far as the
definitions of extrinsic, systematic, and extrinsic components
of the symbol-by-symbol MAP output are concerned. In the
case of a TTCM decoder, it was shown that it is necessary to
group the systematic and extrinsic components together.

A search for good component codes was performed, taking
into account the puncturing at the transmitter. The selection
criterion was their minimal distance. Using these simplest of
these codes (memory three), simulations were undertaken, and
the results indicate a marked improvement over classical TCM
with Ungerboeck codes, and performs better than turbo codes
and Gray mapping at comparable complexity. Most impor-
tantly, error correction close to Shannon’s limit is possible for
highly bandwidth-efficient schemes that are of relatively low
complexity.

Possible further areas of study could be better overall
code design (taking into account the interleaver and the
component codes), analytical performance evaluation, as well
as a comprehensive study of implementation issues.

APPENDIX

THE SYMBOL-BY-SYMBOL MAP

ALGORITHM FOR NONBINARY TRELLISES

We will briefly rederive the symbol-by-symbol MAP al-
gorithm [9] (MAP for short) for nonbinary trellises. At the
moment, we consider just a classical TCM scheme, witha
priori information—on each group of info bits —to be used
in the decoder. Let the number of states be, and the state
at step be denoted by . The group
of information bits can be represented by an integer in
the range and is associated with the transition

from step to . The receiver observes sets of
noisy symbols, where such symbols are associated with each
step in the trellis, i.e., from step to step the receiver
observes . The total received sequence
be . It is the TCM encoder output
sequence that has been disturbed by additive
white Gaussian noise with one-sided noise-power spectral
density . Each is the group of
symbols output by the mapper at step.

The goal of the decoder is to evaluate Pr for each
, and for all . Let us define the forward and backward

variables

(A1)

(A2)

The branch transition probability for step,
, is denoted by and calculated

as

Pr (A3)

is either zero or one,
depending on whether encoder input
is associated with the transition from state to

or not. In the last component of (A3), we use the
a priori information

Pr
Pr
Pr

Pr

Pr (A4)

where . If there does
not exist a such that ,
then Pr is set to zero.

We must bear in mind that the event
has no influence on if is known, and hence

(A5)

Using (A5) and the fact that

(A6)
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the product of (A1), (A2), and (A4) can be shown to be

(A7)

Obviously

(A8)

so we can rewrite (A7) as

(A9)

Therefore, the desired output of the MAP decoder is

Pr const

(A10)

. The constant can be eliminated
by normalizing the sum of (A10) over all to unity. The
probability Pr comprisesa priori, systematic,
and extrinsic components since it depends on the complete
received sequence as well as thea priori likelihoods of .

All that remains now is to recursively define
and . We begin by writing

Pr

(A11)

and dividing both sides by and expanding into the
form

Pr

(A12)

Because of (A8), we can write (A13), as shown at the bottom
of the page. Defining

(A14)

yields

(A15)

Similarly

(A16)

since
. Finally, we can calculate recursively using

(A17)

In our implementation of the above algorithm, we have used
logarithms of probabilities and logarithms of ,

, and employing the quasioptimal log-
MAP algorithm [14] that uses the function in conjunction
with a table lookup to compute the logarithm of a sum of
exponentials. The loss incurred through the use of the log-
MAP algorithm is less than 1/10 dB, even when using a
lookup table with eight stored values.

Pr

Pr
(A13)
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